Movatterモバイル変換


[0]ホーム

URL:


JP3400691B2 - Organic oxidation treatment equipment using supercritical fluid - Google Patents

Organic oxidation treatment equipment using supercritical fluid

Info

Publication number
JP3400691B2
JP3400691B2JP30395197AJP30395197AJP3400691B2JP 3400691 B2JP3400691 B2JP 3400691B2JP 30395197 AJP30395197 AJP 30395197AJP 30395197 AJP30395197 AJP 30395197AJP 3400691 B2JP3400691 B2JP 3400691B2
Authority
JP
Japan
Prior art keywords
fluid
preheater
mixture
oxygen
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP30395197A
Other languages
Japanese (ja)
Other versions
JPH11138198A (en
Inventor
寛 楠本
敏彦 福島
伸二 麻生
斎 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filedlitigationCriticalhttps://patents.darts-ip.com/?family=17927260&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3400691(B2)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi LtdfiledCriticalHitachi Ltd
Priority to JP30395197ApriorityCriticalpatent/JP3400691B2/en
Publication of JPH11138198ApublicationCriticalpatent/JPH11138198A/en
Application grantedgrantedCritical
Publication of JP3400691B2publicationCriticalpatent/JP3400691B2/en
Anticipated expirationlegal-statusCritical
Ceasedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界状態の流体
中で有機物と酸素とを反応させて有機物を酸化処理する
装置及び処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a processing method for oxidizing an organic substance by reacting the organic substance with oxygen in a fluid in a supercritical state.

【0002】[0002]

【従来の技術】従来の有機物酸化処理装置では、焼却処
理が主流であった。特に有機汚泥の代表である下水汚泥
の処理方法として、従来から無害化および減容化効果の
高い焼却法が用いられている。汚泥の焼却は、一般の焼
却と同様に焼却炉を用いる方法が現在最も普及している
が、下水処理場から排出される汚泥のように水分量が9
7〜98%と高い汚泥を可燃にするためは、汚泥を焼却
炉に供する以前に濃縮、脱水処理し、汚泥中の水分量を
80%程度まで低下させる必要があった。
2. Description of the Related Art In the conventional organic substance oxidation treatment apparatus, incineration treatment has been the mainstream. In particular, as a method for treating sewage sludge, which is a representative of organic sludge, an incineration method, which is highly effective in detoxifying and reducing the volume, has been used. The most popular method for incinerating sludge is to use an incinerator as in the case of general incineration, but the water content is 9% like sludge discharged from a sewage treatment plant.
In order to make sludge as high as 7 to 98% flammable, the sludge is concentrated and dehydrated before being put into an incinerator, and the water content in the sludge is reduced.
It was necessary to reduce it to about 80%.

【0003】一方、汚泥の焼却を水の存在下で行う方法
が特表平6−511190号公報で示されている。この
方法によると、有機物、酸素、水の混合物を水の超臨界
状態(22MPa以上、374℃以上)にすることによ
り、水を溶媒として有機物が酸化されることになる。有
機物の焼却に超臨界状態の水を用いる利点としては、有
機物と酸素が同一相で均一に混合するため反応速度が速
く完全燃焼するため、一般の焼却炉に見られるような有
害ガスの発生が抑制でき、排ガス処理装置が不要になる
ことにある。また、焼却炉を用いた方法と対比すると、
高圧という不利な点はあるが、汚泥を水の存在下で酸化
できるため、汚泥中の水分量を低下させるといった前処
理が簡略化ができるという利点がある。
On the other hand, a method of incinerating sludge in the presence of water is disclosed in Japanese Patent Publication No. 6-511190. According to this method, the mixture of organic matter, oxygen, and water is brought into a supercritical state of water (22 MPa or more and 374 ° C. or more), whereby the organic matter is oxidized using water as a solvent. The advantage of using water in the supercritical state for the incineration of organic matter is that the organic matter and oxygen are uniformly mixed in the same phase, so the reaction rate is fast and complete combustion occurs, so that the generation of harmful gas as seen in general incinerators is generated. It can be suppressed, and the exhaust gas treatment device becomes unnecessary. Also, when compared with the method using an incinerator,
Although it has the disadvantage of high pressure, it has the advantage that pretreatment such as reducing the amount of water in sludge can be simplified because sludge can be oxidized in the presence of water.

【0004】前記公報で開示されている超臨界水を用い
た有機物処理装置を図15に示す。有機物処理装置は有
機物供給ポンプ3,酸素供給ポンプ7、予熱器2、反応
器1、および気固液分離器11から構成される。また、
反応器1には管状反応器が使用され、連続的に有機物の
酸化が行える構成となっている。
FIG. 15 shows an organic matter treatment apparatus using supercritical water disclosed in the above publication. The organic matter treatment apparatus is composed of an organic matter supply pump 3, an oxygen supply pump 7, a preheater 2, a reactor 1, and a gas-solid separator 11. Also,
A tubular reactor is used as the reactor 1 and is configured to continuously oxidize organic substances.

【0005】有機物を含む流体4は、酸化剤となる酸素
8と混合後、供給ポンプ3で水の臨界圧力以上(25M
Pa)まで加圧されて予熱器2に流入し、ここで臨界温
度近くまで加熱された後、反応器1へと流入する。反応
器1ではおよそ数秒で有機物の酸化反応が終了し、反応
器1を流出する処理水6は冷却器5で冷却された後、気
固液分離器11を経て系外へと排出される。
The fluid 4 containing an organic substance is mixed with oxygen 8 serving as an oxidant and then supplied by a supply pump 3 to a pressure higher than the critical pressure of water (25 M
It is pressurized to Pa) and flows into the preheater 2, where it is heated to near the critical temperature and then flows into the reactor 1. In the reactor 1, the oxidation reaction of the organic substance is completed in about several seconds, and the treated water 6 flowing out of the reactor 1 is cooled by the cooler 5 and then discharged to the outside of the system through the gas-liquid separator 11.

【0006】反応器1で有機物の酸化反応を起こさせる
には、予熱器2で有機物を含む流体4を所定の温度まで
加熱する必要がある。有機物の処理量が多くなると、予
熱に要するエネルギーがかなりの量になるため、予熱は
極力有機物の酸化反応に伴って放出される反応熱を熱回
収して利用することが必要となる。前記公報では、水な
どの熱媒体17を用いて反応器1出口の処理水6から熱
交換器21を介して熱を回収し、これを予熱器2におけ
る熱源として使用し、不足する熱エネルギーは電気ヒー
タを併用することによって、予熱におけるエネルギー消
費を低く抑えている。
In order to cause the oxidation reaction of the organic substance in the reactor 1, it is necessary to heat the fluid 4 containing the organic substance to a predetermined temperature in the preheater 2. As the amount of treated organic matter increases, the amount of energy required for preheating becomes considerably large. Therefore, preheating needs to recover and utilize the reaction heat released along with the oxidation reaction of the organic matter as much as possible. In the above-mentioned publication, heat is recovered from the treated water 6 at the outlet of the reactor 1 via the heat exchanger 21 by using the heat medium 17 such as water, and this is used as the heat source in the preheater 2. Energy consumption during preheating is kept low by using an electric heater together.

【0007】[0007]

【発明が解決しようとする課題】下水汚泥のような有機
汚泥を上記装置で酸化処理する場合には、汚泥の粘度が
水に比べて非常に大きいため、汚泥の流動性が悪くな
り、予熱器の汚泥上流側における汚泥の流動状態が層流
となる。この結果、予熱器の汚泥上流側における伝熱性
能が低い値となり、汚泥を所定の温度まで昇温するには
予熱器における伝熱面積を大きくすることが必要であっ
た。また、脱水処理を行わない汚泥のように、汚泥中の
水分量が大きい場合には、予熱器を流出する汚泥の温度
を高く設定する必要があるため、熱回収によって予熱を
行うにはより高温の熱源が必要となる。熱媒体を用いて
予熱を行う方法では、熱媒体と処理水の熱交換に必要な
温度差分だけ、熱媒体の温度が処理水に対して低下する
ため、熱媒体による熱回収が不可能となり、この結果、
電気ヒータ等の外部からの熱エネルギーの供給量を多く
なるといった課題があった。
When an organic sludge such as sewage sludge is subjected to an oxidation treatment by the above apparatus, the viscosity of the sludge is much higher than that of water, so that the sludge becomes poor in fluidity and the preheater. The sludge flow state on the upstream side of the sludge becomes a laminar flow. As a result, the heat transfer performance on the upstream side of the sludge in the preheater becomes a low value, and it was necessary to increase the heat transfer area in the preheater in order to raise the sludge to a predetermined temperature. In addition, when the amount of water in the sludge is large, such as sludge that is not dehydrated, it is necessary to set the temperature of the sludge flowing out of the preheater to a high temperature, so it is necessary to set a higher temperature to perform preheating by heat recovery. The heat source of is needed. In the method of preheating using the heat medium, the temperature difference of the heat medium with respect to the treated water is reduced by the temperature difference required for heat exchange between the heat medium and the treated water, so that heat recovery by the heat medium becomes impossible, As a result,
There is a problem that the amount of heat energy supplied from the outside such as an electric heater is increased.

【0008】本発明は上記の問題点に鑑みてなされたも
ので、下水汚泥に代表される粘度の高い有機汚泥を超臨
界状態の水中下で酸化処理する装置における予熱器の小
型化、および汚泥濃度が小さく多量の水分を含む汚泥に
対しても熱回収によるランニングコストの低減を図りな
がら確実に酸化処理を行うことができる超臨界流体を用
いた有機物酸化処理装置及び処理方法を提供することに
ある。
The present invention has been made in view of the above problems, and downsizing of a preheater in an apparatus for oxidizing organic sludge having high viscosity represented by sewage sludge under supercritical water, and sludge. To provide an organic substance oxidation treatment apparatus and treatment method using a supercritical fluid capable of reliably performing oxidation treatment while reducing running cost by heat recovery even for sludge having a small concentration and containing a large amount of water. is there.

【0009】[0009]

【0010】[0010]

【課題を解決するための手段】上記目的は、超臨界状態
の流体中で有機物と酸素とを反応させ、該有機物を酸化
処理する装置において、該有機物と無機物および流体と
からなる混合物流体を流体の臨界圧以上に加圧し供給す
る混合物供給装置、該酸素を流体の臨界圧力以上に加圧
し供給する酸素供給装置、該混合物流体を予熱するため
に該混合物流体が流動する複数の流路と、該流路の外側
に反応後の混合物処理流体を前記混合物流体の流れ方向
と逆方向に流れる流路を備えた予熱器、超臨界状態の流
路中で有機物と酸素とを反応させる反応器、および反応
生成物を含む混合物処理流体から気相、固液相を分離す
るための気固液分離器で構成し、さらに該反応器を流出
した混合物処理流体と該予熱器を流動する該混合物流体
とを該予熱器の伝熱面を介して熱交換させて、該予熱器
を流動する該混合物流体を加熱する、ことによって達成
される。
SUMMARY OF THE INVENTION The above-mentioned object is, in an apparatus for reacting an organic substance and oxygen in a fluid in a supercritical state to oxidize the organic substance, to mix a fluid mixture of the organic substance, the inorganic substance and the fluid. A mixture supply device that pressurizes and supplies above the critical pressure of, an oxygen supply device that pressurizes and supplies the oxygen above the critical pressure of a fluid, and a plurality of flow paths through which the mixture fluid flows to preheat the mixture fluid, A preheater provided with a flow path on the outside of the flow path, in which themixed treatmentfluid after reaction flows in a direction opposite to the flow direction of the mixedfluid , a reactor for reacting organic matter and oxygen in the flow path in a supercritical state, and vapor from the mixture processing fluid containing the reaction product, asolid-liquid phase constituted by a gas-solid-liquid separator for separating further the mixturefluid flowing mixture process fluid and preheater which flows out from the reactor <br/> and the preheater By heat exchange through the heat transfer surface, heating the mixturefluid flowing preheater, it is accomplished by.

【0011】上記構成により、予熱器に流入する粘度の
大きい有機汚泥は、該予熱器で反応器を流出した温度の
高い処理水と熱交換を行ってその温度を上昇させること
ができるため、少ない伝熱面積で熱回収でき、また、汚
泥中の有機物濃度が低い場合でも、熱回収によるランニ
ングコストの低減ができる。
With the above structure, the organic sludge having a large viscosity flowing into the preheater can be exchanged with the treated water having a high temperature flowing out of the reactor by the preheater to raise the temperature thereof, so that the temperature is small. The heat can be recovered in the heat transfer area, and the running cost can be reduced by recovering the heat even when the organic matter concentration in the sludge is low.

【0012】[0012]

【発明の実施の形態】以下、実施例にしたがって本発明
を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to Examples.

【0013】図1は本発明の実施例に係わる超臨界水を
利用した有機物酸化処理装置を示す。
FIG. 1 shows an organic substance oxidation treatment apparatus using supercritical water according to an embodiment of the present invention.

【0014】下水汚泥等に代表される有機汚泥4は、汚
泥供給ポンプ3によって水の臨界圧力以上に加圧され、
酸素供給ポンプ7によって供給される酸素8と酸素注入
点15で混合した後、予熱器2に流入する。汚泥4は予
熱器2で反応器1を流出した処理水6と熱交換を行うこ
とで加熱され、その後反応器1に流入する。反応器1内
では汚泥4と酸素8によって酸化され、反応生成物とし
て生じる水、二酸化炭素、窒素、および灰分等を含む処
理水6として反応器1を流出する。処理水6は予熱器2
に流入し、汚泥4と熱交換を行うことで冷却され、冷却
器5によって更に冷却された後、気固液分離器11に流
入する。気固液分離器11では、気相18と固液相19
に分離され、圧力調整弁12、13を経て外部へと放出
される。
The organic sludge 4 represented by sewage sludge is pressurized by the sludge supply pump 3 to a pressure higher than the critical pressure of water,
After mixing with the oxygen 8 supplied by the oxygen supply pump 7 at the oxygen injection point 15, it flows into the preheater 2. The sludge 4 is heated by exchanging heat with the treated water 6 flowing out of the reactor 1 in the preheater 2, and then flows into the reactor 1. In the reactor 1, the sludge 4 and oxygen 8 oxidize, and the reactor 1 is discharged as treated water 6 containing water, carbon dioxide, nitrogen, ash and the like produced as reaction products. Treated water 6 is preheater 2
And is cooled by exchanging heat with the sludge 4, further cooled by the cooler 5, and then flows into the gas-solid separator 11. In the gas-solid separator 11, the gas phase 18 and the solid-liquid phase 19
And is released to the outside through the pressure control valves 12 and 13.

【0015】超臨界水を用いた有機物酸化処理装置を実
用化する上で最も重要な点は、有機物の酸化反応に伴っ
て放出される反応熱を熱回収してランニングコストの低
減を図ることである。反応器1を流出した処理水6か
ら、予熱器2に供給される汚泥4の予熱に必要な熱量が
回収できれば、外部からの熱入力を必要とせずに該有機
物酸化処理装置を自立運転することが可能となる。この
熱回収の良否は汚泥4と処理水6とを熱交換する予熱器
2の性能に依存することになるため、該有機物酸化処理
装置の実用化にあたっては予熱器2の性能向上を図るこ
とが必要となる。
The most important point in putting an organic matter oxidation treatment apparatus using supercritical water into practical use is to reduce the running cost by recovering the reaction heat released along with the oxidation reaction of the organic matter. is there. If the amount of heat required for preheating the sludge 4 supplied to the preheater 2 can be recovered from the treated water 6 that has flowed out of the reactor 1, the organic substance oxidation treatment apparatus can be operated independently without the need for external heat input. Is possible. Since the quality of this heat recovery depends on the performance of the preheater 2 for exchanging heat between the sludge 4 and the treated water 6, it is possible to improve the performance of the preheater 2 when putting the organic matter oxidation treatment device into practical use. Will be needed.

【0016】一方、超臨界水を用いた有機物酸化処理装
置では、汚泥中の有機物を超臨界状態の水中で酸素と反
応させ酸化させることを特徴とするため、有機物濃度が
数%程度となる汚泥に対しても酸化処理が可能となる装
置を構成する必要がある。汚泥中の水分量が多くなると
汚泥4の熱容量が大きくなるため、汚泥4の酸化反応に
伴う温度上昇幅が小さくなる。このため、反応器1出口
の温度を設定温度まで上昇させるには、予熱器2におけ
る交換熱量を大きし、予熱器2出口における汚泥4の温
度を高くすることが必要となる。
On the other hand, the organic matter oxidation treatment apparatus using supercritical water is characterized in that the organic matter in the sludge is reacted with oxygen in the water in the supercritical state to oxidize it, so that the sludge having an organic matter concentration of about several percent. Therefore, it is necessary to configure an apparatus that can perform oxidation treatment. When the amount of water in the sludge increases, the heat capacity of the sludge 4 increases, so that the temperature rise width due to the oxidation reaction of the sludge 4 decreases. Therefore, in order to raise the temperature at the outlet of the reactor 1 to the set temperature, it is necessary to increase the amount of heat exchanged in the preheater 2 and increase the temperature of the sludge 4 at the outlet of the preheater 2.

【0017】本実施例は、予熱器2に内管と外管で構成
される二重管式の熱交換器を使用し、内管の内部を汚泥
4、内管と外管の間を処理水6が互いに対向するように
流動させて熱交換を行うことにより、処理水6の有する
熱エネルギーを効果的に熱回収するものである。予熱器
2における熱回収量は、予熱器2の伝熱性能、伝熱面積
および汚泥4と処理水6との温度差に依存し、それぞれ
の値を大きくとると熱回収量は増大することになる。そ
こで、本実施例では、図15に示すような熱媒体を利用
する従来の方法に対し、予熱器の加熱に反応器1を流出
した処理水6を直接利用するため、予熱器2における汚
泥4と処理水6の温度差を熱媒体を用いた場合に失って
いた温度分(処理水6と熱媒体17の熱交換に必要な温
度差に相当)だけ大きくとることが可能となる。この結
果、従来の方法と比較し、伝熱面積を等しくすると、予
熱器2における熱回収量を増大、また熱回収量を等しく
すると、予熱器2の伝熱面積を減少、すなわち予熱器を
小型化することが可能となる。
In this embodiment, a double pipe heat exchanger composed of an inner pipe and an outer pipe is used as the preheater 2, and the inside of the inner pipe is treated with sludge 4 and the space between the inner pipe and the outer pipe is treated. By causing the water 6 to flow so as to face each other and performing heat exchange, the heat energy of the treated water 6 is effectively recovered. The heat recovery amount in the preheater 2 depends on the heat transfer performance of the preheater 2, the heat transfer area, and the temperature difference between the sludge 4 and the treated water 6, and the heat recovery amount increases as the respective values increase. Become. Therefore, in the present embodiment, the treated water 6 flowing out of the reactor 1 is directly used for heating the preheater as compared with the conventional method using a heat medium as shown in FIG. It is possible to increase the temperature difference between the treated water 6 and the treated water 6 by the temperature that is lost when the heat medium is used (corresponding to the temperature difference required for heat exchange between the treated water 6 and the heat medium 17). As a result, compared with the conventional method, if the heat transfer area is made equal, the heat recovery amount in the preheater 2 is increased, and if the heat recovery amount is made equal, the heat transfer area of the preheater 2 is decreased, that is, the preheater is downsized. Can be converted.

【0018】図2は本発明の他の実施例に係わる超臨界
水を利用した有機物酸化処理装置を示す。前記実施例と
異なるのは、予熱器2と反応器1との間に電気ヒータ2
0を設置し、さらに予熱器2に流入する処理水6の一部
をバイパスさせる流量調整弁14を設置した点にある。
FIG. 2 shows an organic substance oxidation treatment apparatus using supercritical water according to another embodiment of the present invention. The difference from the above embodiment is that an electric heater 2 is provided between the preheater 2 and the reactor 1.
0 is installed, and a flow rate adjusting valve 14 that bypasses a part of the treated water 6 flowing into the preheater 2 is installed.

【0019】反応器1における温度は、下水汚泥の場
合、反応生成物中におけるアンモニア等に代表される有
害物質の生成を抑制するため、600〜650℃の高温に設定
する必要がある。反応器1における最大到達温度は、予
熱器2出口の汚泥4の温度に有機物の酸化反応に伴って
放出される反応熱による温度上昇分を加えた温度で表さ
れるが、反応熱による温度上昇値は汚泥中の有機物濃度
と有機物の反応熱の値によって決定されることから、反
応器1における温度は流入する汚泥4の性状および予熱
器2の性能にしたがって制御する必要がある。本実施例
では、汚泥4中の有機物濃度が高い、あるいは反応熱が
大きい場合には、予熱器2における熱回収量を減少させ
るように、流量調整弁14の開度を大きくし、予熱器2
に流入する処理水6の流量を低下させるように制御す
る。また、汚泥4中の有機物濃度が低い、あるいは反応
熱が小さい場合には、予熱器2出口部(反応器1入口
部)に設置した電気ヒータ20によって、反応器1に流
入する汚泥4の温度を上昇させる。したがって、反応器
出口における温度を検出することによって、電気ヒータ
20の電気入力や流量調整弁14の開度を制御すること
で、反応器出口温度を所定の温度に設定できるため、流
入する汚泥中の有機物濃度や有機物の性状が変動した場
合でも確実に有機物の酸化処理を行うことが可能とな
る。
In the case of sewage sludge, the temperature in the reactor 1 must be set to a high temperature of 600 to 650 ° C. in order to suppress the production of harmful substances such as ammonia in the reaction product. The maximum temperature reached in the reactor 1 is represented by the temperature of the sludge 4 at the outlet of the preheater 2 plus the temperature increase due to the reaction heat released along with the oxidation reaction of the organic matter. Since the value is determined by the concentration of the organic matter in the sludge and the value of the heat of reaction of the organic matter, the temperature in the reactor 1 needs to be controlled according to the properties of the inflowing sludge 4 and the performance of the preheater 2. In the present embodiment, when the organic matter concentration in the sludge 4 is high or the reaction heat is large, the opening degree of the flow rate adjusting valve 14 is increased so as to reduce the heat recovery amount in the preheater 2 and the preheater 2
It is controlled so that the flow rate of the treated water 6 flowing into When the organic matter concentration in the sludge 4 is low or the reaction heat is small, the temperature of the sludge 4 flowing into the reactor 1 is controlled by the electric heater 20 installed at the outlet of the preheater 2 (inlet of the reactor 1). Raise. Therefore, the reactor outlet temperature can be set to a predetermined temperature by detecting the temperature at the reactor outlet and controlling the electric input of the electric heater 20 and the opening degree of the flow rate adjusting valve 14. Even if the organic substance concentration or the property of the organic substance changes, it is possible to reliably perform the oxidation treatment of the organic substance.

【0020】図3は本発明のさらに他の実施例に係わる
超臨界水を利用した有機物酸化処理装置を示す。前記実
施例と異なるのは、酸化材である酸素9の注入点15を
予熱器2と反応器1のの間に設定した点にある。
FIG. 3 shows an organic substance oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention. The difference from the above-mentioned embodiment is that the injection point 15 of oxygen 9, which is an oxidant, is set between the preheater 2 and the reactor 1.

【0021】有機物濃度の低い汚泥4を酸化処理する場
合、汚泥4の熱容量が大きくなるため、酸化に伴って放
出される反応熱によって生じる反応器1における温度上
昇が小さくなる。このため、反応器1内の温度を設定温
度まで上昇させるには、予熱器2において予熱器2を流
出する汚泥4の温度を水の臨界温度以上まで加熱する必
要がある。予熱器2内の温度が水の臨界温度以上になる
と、予熱器2内で有機物の酸化に対する温度条件が達成
されることになるため、予熱器2に流入する以前に汚泥
4と酸素8とを混合した場合には、予熱器2内で有機物
の酸化反応が開始する。予熱器2で有機物の酸化反応が
生じると、予熱器2内の汚泥4の温度が上昇し、処理水
6との温度差が小さくなり処理水6からの熱回収量が少
なくなるばかりでなく、反応器1における温度上昇が小
さくなるため、電気ヒータ20による加熱が常時必要と
なる。
When the sludge 4 having a low organic matter concentration is subjected to the oxidation treatment, the heat capacity of the sludge 4 becomes large, so that the temperature rise in the reactor 1 caused by the reaction heat released by the oxidation becomes small. Therefore, in order to raise the temperature in the reactor 1 to the set temperature, the temperature of the sludge 4 flowing out of the preheater 2 in the preheater 2 needs to be heated to the critical temperature of water or higher. When the temperature in the preheater 2 becomes equal to or higher than the critical temperature of water, the temperature condition for the oxidation of organic substances is achieved in the preheater 2, so that the sludge 4 and the oxygen 8 are removed before flowing into the preheater 2. When mixed, the oxidation reaction of the organic matter starts in the preheater 2. When the oxidation reaction of the organic matter occurs in the preheater 2, not only the temperature of the sludge 4 in the preheater 2 rises and the temperature difference from the treated water 6 becomes small and the heat recovery amount from the treated water 6 decreases. Since the temperature rise in the reactor 1 is small, heating by the electric heater 20 is always required.

【0022】そこで、図3に示すように、酸素8の注入
点15を予熱器2と反応器1の間に設定し、予熱器2を
流出した汚泥4に酸素8を混合する方法を採ることによ
り、予熱器2内での有機物の酸化反応を抑制し、熱回収
によって汚泥の予熱をまかなうことができるため、電気
ヒータ等による外部からの熱入力を最小限に抑え、ラン
ニングコストの低減を図ることが可能となる。
Therefore, as shown in FIG. 3, an injection point 15 of oxygen 8 is set between the preheater 2 and the reactor 1, and the oxygen 8 is mixed with the sludge 4 flowing out of the preheater 2. As a result, the oxidation reaction of organic substances in the preheater 2 can be suppressed and the sludge can be preheated by recovering the heat. Therefore, the heat input from the outside by an electric heater or the like can be minimized to reduce the running cost. It becomes possible.

【0023】図3に示す実施例では、供給する酸素8は
酸素供給ポンプ7の仕事量に等価な熱量だけ予熱されて
汚泥4に注入されることになるが、図4に示すように予
熱器2で熱交換を行って冷却された後の処理水6の有す
る熱エネルギーを熱交換器25を介して酸素8の予熱に
用いることにより、電気ヒータ20の入力を減少させ、
ランニングコストの低減を図ることが可能となる。
In the embodiment shown in FIG. 3, the oxygen 8 to be supplied is preheated by the amount of heat equivalent to the work of the oxygen supply pump 7 and injected into the sludge 4, but as shown in FIG. By using the heat energy of the treated water 6 that has been cooled by performing heat exchange in 2 to preheat the oxygen 8 via the heat exchanger 25, the input of the electric heater 20 is reduced,
It is possible to reduce the running cost.

【0024】また、酸化処理の対象となる汚泥中の有機
物濃度が低下あるいは有機物の性状が変動し、熱回収量
だけでは汚泥の予熱が行えない場合には、酸素注入点1
5と反応器1との間に設置された電気ヒータ20の電気
入力によって不足する熱エネルギーを補うことによっ
て、確実に有機物の酸化処理を行うことが可能となる。
When the concentration of the organic matter in the sludge to be oxidized is reduced or the property of the organic matter changes and the sludge cannot be preheated only by the heat recovery amount, the oxygen injection point 1
By supplementing the thermal energy which is insufficient due to the electric input of the electric heater 20 installed between the reactor 5 and the reactor 1, it is possible to reliably perform the oxidation treatment of the organic matter.

【0025】なお、酸化処理の対象として供給される汚
泥中の水分量が大きく、有機物濃度が小さい場合には、
熱回収によるランニングコストの低減を図るためには予
熱器を巨大にして、汚泥の予熱に必要な伝熱面積を大き
くする必要が生じてくる。このような場合には、汚泥を
濃縮、脱水する前処理行程を付加し、汚泥中の水分量を
減少させ、有機物濃度を増大させることによって、該有
機物酸化処理装置における予熱器の小型化およびランニ
ングコストの低減を図ることができることは言うまでも
ない。
When the amount of water in the sludge supplied as an object of the oxidation treatment is large and the organic matter concentration is small,
In order to reduce the running cost by heat recovery, it becomes necessary to enlarge the preheater and increase the heat transfer area required for preheating sludge. In such a case, a pretreatment step for concentrating and dehydrating the sludge is added to reduce the amount of water in the sludge and increase the organic matter concentration, thereby reducing the size and running the preheater in the organic matter oxidation treatment apparatus. It goes without saying that the cost can be reduced.

【0026】また、処理水6が流動する配管系は水の臨
界圧以上の高圧条件にあるため、図5に示すように、熱
媒体24を用いて処理水6の有する熱エネルギーを熱交
換器23を介して熱回収することにより、高圧条件にあ
る配管系を簡素化することができる。
Further, since the piping system through which the treated water 6 flows is under a high pressure condition higher than the critical pressure of water, as shown in FIG. 5, the heat energy of the treated water 6 is transferred to the heat exchanger by using the heat medium 24. By recovering the heat via 23, the piping system under high pressure conditions can be simplified.

【0027】図6は本発明のさらに他の実施例に係わる
超臨界水を利用した有機物酸化処理装置を示す。前記実
施例と異なるのは、反応器1を流出した処理水6をまず
予熱器2の上流側の汚泥4と熱交換させ、次に予熱器2
の下流側の汚泥4と熱交換させる点にある。
FIG. 6 shows an organic substance oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention. The difference from the above embodiment is that the treated water 6 flowing out of the reactor 1 is first heat-exchanged with the sludge 4 on the upstream side of the preheater 2, and then the preheater 2
The point is to exchange heat with the sludge 4 on the downstream side of.

【0028】下水汚泥に代表される有機汚泥は、汚泥中
の有機物濃度が数%と小さいにも関わらず、汚泥の粘度
は同一温度における水の粘度の10〜103倍もの高い値を
示す。このため汚泥の流動性は極めて悪いものとなり、
汚泥供給のしやすさや予熱器の伝熱性能に悪影響を与え
ることになる。
The organic sludge typified by sewage sludge has a high concentration of 10 to 103 times the viscosity of water at the same temperature, even though the concentration of organic substances in the sludge is as low as several%. Therefore, the sludge has extremely poor fluidity,
This will adversely affect the ease of sludge supply and the heat transfer performance of the preheater.

【0029】予熱器2に流入する汚泥4は、予熱器2を
流れる間に処理水6との熱交換によって常温近くからそ
の温度を上昇させる。汚泥4の温度が低い予熱器2の汚
泥上流側では、汚泥4の粘度の影響により、汚泥4の流
動状態は層流となる。一方、汚泥4の温度が高くなる予
熱器2の汚泥下流側では、汚泥4の大部分を占める水の
粘度に比例して汚泥4の粘度の絶対値も小さな値となる
ため、汚泥4の粘度の影響は小さくなり、流動状態は乱
流へと遷移する。層流域での伝熱性能は乱流域の値に比
べると2桁ほど小さく、層流状態で流れる汚泥4の温度
を上昇させるには、非常に多くの伝熱面積が必要となる
ため、予熱器2の大きさは層流域での熱交換に要する伝
熱面積に支配される。
The sludge 4 flowing into the preheater 2 increases its temperature from near room temperature by heat exchange with the treated water 6 while flowing through the preheater 2. On the upstream side of the sludge 4 in the preheater 2 where the temperature of the sludge 4 is low, the flow state of the sludge 4 becomes a laminar flow due to the influence of the viscosity of the sludge 4. On the other hand, on the sludge downstream side of the preheater 2 where the temperature of the sludge 4 becomes high, the absolute value of the viscosity of the sludge 4 becomes small in proportion to the viscosity of the water that occupies most of the sludge 4, and therefore the viscosity of the sludge 4 The effect of is reduced and the flow state transitions to turbulence. The heat transfer performance in the laminar flow region is about two orders of magnitude smaller than the value in the turbulent flow region, and an extremely large heat transfer area is required to raise the temperature of the sludge 4 flowing in the laminar flow state. The size of 2 is governed by the heat transfer area required for heat exchange in the laminar flow region.

【0030】汚泥の流動状態が層流から乱流へと遷移す
る温度は、汚泥の粘度、流速および管径に依存する。汚
泥中の有機物濃度が低い場合には、水の粘度の温度依存
性にしたがい比較的低温度で層流から乱流への遷移が生
じるが、有機物濃度が高い場合には、温度が高くなって
も汚泥の粘度が大きな値に保持されるため流れの遷移は
発生しにくい。しかしながら、下水汚泥のような有機汚
泥では、汚泥に熱を加えることによって汚泥中の有機物
が熱分解し粘度が低下する現象があり、本発明者らが下
水汚泥に対して行った実験では、汚泥の粘度は加熱温度
150℃近くから低下を開始し、加熱温度250℃近くではほ
ぼ水の粘度に等しくなることを結果を得ている。したが
って、予熱器に必要な伝熱面積を小さくするためには、
予熱器に流入する汚泥をできる限り早い段階で粘度が低
下する温度まで昇温することが必要となる。
The temperature at which the flow state of sludge changes from laminar flow to turbulent flow depends on the viscosity of sludge, the flow velocity and the pipe diameter. When the concentration of organic matter in sludge is low, the transition from laminar flow to turbulent flow occurs at a relatively low temperature according to the temperature dependence of the viscosity of water, but when the concentration of organic matter is high, the temperature rises. However, since the sludge viscosity is maintained at a large value, flow transition is unlikely to occur. However, in organic sludge such as sewage sludge, there is a phenomenon that the organic matter in the sludge is thermally decomposed by heating the sludge and the viscosity is reduced. Viscosity is heating temperature
The results show that the temperature starts to drop at around 150 ° C and becomes almost equal to the viscosity of water at heating temperatures near 250 ° C. Therefore, in order to reduce the heat transfer area required for the preheater,
It is necessary to raise the temperature of the sludge flowing into the preheater to a temperature at which the viscosity decreases as early as possible.

【0031】そこで、本実施例に示すように、反応器1
を流出した処理水6をまず上流側の汚泥4と熱交換さ
せ、次に予熱器2の汚泥上流側で熱交換した後の処理水
6を予熱器2の下流側の汚泥4と熱交換させる方法が有
効となる。この方法によると、予熱器2に流入する粘度
の高い汚泥4を、まず反応器1を流出した最も温度の高
い処理水6との間で熱交換させるため、熱交換に必要な
汚泥4と処理水6との間の温度差が大きくなり、汚泥上
流側での交換熱量が増大し、汚泥上流側の汚泥4の温度
上昇を早めることができる。
Therefore, as shown in this example, the reactor 1
The treated water 6 that has flowed out of the tank is first heat-exchanged with the sludge 4 on the upstream side, and then the treated water 6 after heat exchange is performed on the upstream side of the sludge of the preheater 2 with the sludge 4 on the downstream side of the preheater 2. The method will be effective. According to this method, the sludge 4 having a high viscosity which flows into the preheater 2 is first heat-exchanged with the treated water 6 having the highest temperature which has flowed out of the reactor 1, so that the sludge 4 and the treatment necessary for the heat exchange are treated. The temperature difference with the water 6 increases, the amount of heat exchanged on the upstream side of the sludge increases, and the temperature rise of the sludge 4 on the upstream side of the sludge can be accelerated.

【0032】図7に、予熱器の長さ方向に沿った汚泥お
よび処理水の温度分布を示す。反応器を流出した処理水
を予熱器の汚泥下流側から流入させた場合を実線、処理
水をまず予熱器の汚泥上流側、次に汚泥下流側から流入
させた場合を破線で表す。予熱器に流入する汚泥、処理
水の条件が等しい場合には、処理水をまず予熱器の汚泥
上流側に導入し、汚泥の温度を早い時期に上昇させて粘
度の低下を促すことによって、所定の温度条件まで汚泥
を昇温させるために必要な予熱器長さを短くできること
がわかる。
FIG. 7 shows the temperature distribution of sludge and treated water along the length of the preheater. The solid line shows the treated water flowing out of the reactor from the sludge downstream side of the preheater, and the broken line shows the treated water from the sludge upstream side of the preheater and then from the sludge downstream side. If the conditions of sludge and treated water flowing into the preheater are the same, the treated water is first introduced to the upstream side of the sludge in the preheater, and the temperature of the sludge is raised at an early stage to promote the decrease of viscosity, It can be seen that the length of the preheater required to raise the temperature of the sludge up to the temperature condition can be shortened.

【0033】なお、反応器を流出した処理水を流入させ
る予熱器の位置は、汚泥の粘度や流量等によって異な
り、各条件に対して予熱器の長さが最小となる流入位置
が存在する。この予熱器の最小長さは、汚泥中の有機物
濃度が高く、汚泥の粘度が大きくなる程、図1に示す実
施例のように反応器を流出した処理水を予熱器の汚泥下
流側から流入させた場合に必要な予熱器の長さに対して
小さくなるため、本実施例で示す方法は汚泥中の有機物
濃度が高く、汚泥の粘度が大きい場合に非常に効果的で
ある。
The position of the preheater into which the treated water that has flowed out of the reactor flows is different depending on the viscosity and flow rate of sludge, and there is an inflow position where the length of the preheater becomes the minimum for each condition. The minimum length of the preheater is such that as the organic matter concentration in the sludge is higher and the viscosity of the sludge is higher, the treated water flowing out of the reactor is introduced from the sludge downstream side of the preheater as in the example shown in FIG. Since the length becomes smaller than the required length of the preheater, the method shown in this example is very effective when the organic matter concentration in the sludge is high and the sludge viscosity is high.

【0034】図6に示す実施例は、伝熱性能に対する汚
泥の粘度の影響が最も顕著に現れる予熱器の汚泥上流側
における交換熱量を大きくするため、熱交換に必要な温
度差を大きくしたところに特徴があるが、汚泥側の伝熱
性能そのものの値を改善する方法も効果が大きい。
In the embodiment shown in FIG. 6, the temperature difference required for heat exchange is increased in order to increase the amount of heat exchanged on the upstream side of the sludge in the preheater where the effect of sludge viscosity on heat transfer performance is most noticeable. However, the method of improving the heat transfer performance itself on the sludge side is also very effective.

【0035】図8(a)は汚泥が流動する予熱器を構成す
る二重管式熱交換器30の内管31内部にねじれテープ
32を挿入して、流動状態が層流域にある汚泥側の伝熱
性能を向上する方法を示す。ねじれテープの挿入によっ
て挿入部における圧力損失は大幅に増大するが、ねじれ
テープの設置は汚泥の流動状態が層流となる予熱器上流
側だけでよいこと、およびねじれテープの挿入によって
予熱器長さを短くすることができることから、予熱器全
体の圧力損失の増大は小さく抑えられる。
In FIG. 8 (a), a twisting tape 32 is inserted into the inner pipe 31 of a double-tube heat exchanger 30 which constitutes a preheater in which sludge flows, and the sludge side is in the laminar flow region. A method for improving heat transfer performance will be shown. Although the pressure loss in the insertion part is significantly increased by inserting the twisting tape, the twisting tape can be installed only on the upstream side of the preheater where the sludge is in a laminar flow state, and by inserting the twisting tape, the length of the preheater can be increased. Since it can be shortened, the increase in the pressure loss of the entire preheater can be suppressed to a small level.

【0036】なお、ねじれテープを内管の内壁に熱的に
接するように設置すると、ねじれテープが伝熱面として
作用するため、汚泥側の伝熱面積が増大し、更に予熱器
の長さを短縮することができる。また、ねじれテープを
管軸を中心として回転可能に支持することにより、汚泥
の流体力によって回転を発生させ、管壁に付着する汚れ
を連続的にかきとる洗浄作用を持たせることができる。
If the twisted tape is installed so as to be in thermal contact with the inner wall of the inner tube, the twisted tape acts as a heat transfer surface, increasing the heat transfer area on the sludge side and further increasing the length of the preheater. It can be shortened. Further, by supporting the twisted tape so as to be rotatable around the pipe axis, it is possible to generate a rotation by the fluid force of the sludge and to have a cleaning action of continuously scraping off the dirt adhering to the pipe wall.

【0037】予熱器の汚泥上流側における交換熱量を大
きくするための他の実施例として、図8(b)に示すよう
に、二重管式熱交換器30の内管31の数を複数とし、
内管31の内部33を流動する汚泥4の伝熱性能を向上
させ、伝熱面積も同時に増大させる方法が有効である。
また、図8(c)に示すように内管31における流路34
の数を複数に分割することによっても、伝熱性能と伝熱
面積を大きくすることができるため、予熱器の長さを短
くすることが可能となる。
As another embodiment for increasing the amount of heat exchanged on the upstream side of the sludge in the preheater, as shown in FIG. 8 (b), the number of inner tubes 31 of the double-tube heat exchanger 30 is plural. ,
It is effective to improve the heat transfer performance of the sludge 4 flowing through the inside 33 of the inner pipe 31 and simultaneously increase the heat transfer area.
In addition, as shown in FIG.
The heat transfer performance and the heat transfer area can also be increased by dividing the number of A into a plurality, so that the length of the preheater can be shortened.

【0038】図9は本発明のさらに他の実施例に係わる
超臨界水を利用した有機物酸化処理システムを示す。本
実施例の特徴は、予熱器2で熱交換を行って温度低下し
た後の処理水6の有する熱エネルギーを熱交換器29を
介してポンプ30によって循環する熱媒体28で熱回収
し、汚泥供給ポンプ3の吸い込み側に設置した熱交換器
27を介して予熱器2に流入する汚泥4を加熱する点に
ある。
FIG. 9 shows an organic matter oxidation treatment system using supercritical water according to still another embodiment of the present invention. The feature of this embodiment is that the heat energy of the treated water 6 that has undergone heat exchange by the preheater 2 and has decreased in temperature is recovered by the heat medium 28 circulated by the pump 30 via the heat exchanger 29 and sludge. The point is to heat the sludge 4 flowing into the preheater 2 via the heat exchanger 27 installed on the suction side of the supply pump 3.

【0039】汚泥の粘度が大きいところでは、汚泥の流
れに伴う対流熱伝達が小さな値となるため、汚泥の加熱
には多くの伝熱面積が必要となる。そこで、本実施例に
示すように、予熱器2を200〜300℃で流出した処理水6
から、熱媒体28を用いて熱交換器29を介して100℃
以上の温度レベルの熱として回収し、汚泥側の圧力が大
気圧近くとなる熱交換器27を介して汚泥4を加熱す
る。この実施例により、汚泥中に含まれる水を沸騰させ
て熱伝達を行うことができるため、粘度の大きい領域に
おいても少ない伝熱面積で汚泥4の温度を上昇させるこ
とができる。この結果、予熱器2に流入する汚泥4の温
度が高くなり、予熱器2において汚泥4の粘度が低下す
る温度まで上昇させるために要する伝熱面積を少なくす
ることができるため、予熱器2の小型化あるいは熱回収
量の増大を図ることができる。また、熱交換器27を流
出する汚泥4の温度を汚泥側の圧力における水の沸点以
下の温度となるように熱媒体28の流量を制御すること
により、熱交換器27内で水の沸騰に伴って発生した気
泡を汚泥内で凝縮させて消滅せしめ、汚泥供給ポンプ3
への気泡の流入を防止することができる。
Where the sludge has a high viscosity, the convective heat transfer accompanying the sludge flow has a small value, and thus a large heat transfer area is required to heat the sludge. Therefore, as shown in this embodiment, the treated water 6 flowing out of the preheater 2 at 200 to 300 ° C.
From the heat exchanger 28 through the heat exchanger 29 at 100 ° C
The sludge 4 is heated through the heat exchanger 27, which is recovered as heat having the above temperature level and the pressure on the sludge side is close to the atmospheric pressure. According to this embodiment, the water contained in the sludge can be boiled for heat transfer, so that the temperature of the sludge 4 can be raised with a small heat transfer area even in a high viscosity region. As a result, the temperature of the sludge 4 flowing into the preheater 2 becomes high, and the heat transfer area required to raise the temperature of the sludge 4 in the preheater 2 to the temperature at which the viscosity of the sludge 4 decreases can be reduced. It is possible to reduce the size or increase the heat recovery amount. Further, by controlling the flow rate of the heat medium 28 so that the temperature of the sludge 4 flowing out of the heat exchanger 27 becomes equal to or lower than the boiling point of water at the pressure on the sludge side, the boiling of water in the heat exchanger 27 occurs. The air bubbles generated there are condensed in the sludge to disappear, and the sludge supply pump 3
It is possible to prevent the inflow of air bubbles into the air.

【0040】図9に示す実施例では、熱媒体28を用い
て処理水6の有する熱エネルギーを回収する方法を示し
たが、図10に示すように予熱器2を流出した処理水6
を熱交換器34に直接導入する方法も有効である。この
場合、熱交換器34をバイパスする流量を調整するバル
ブ35を設置し、このバルブ35を用いて熱交換器34
をバイパスする流量を調整することによって、流入する
汚泥4の流量や性状が変動する場合に対しても熱回収量
の制御が行えることになる。
In the embodiment shown in FIG. 9, the method of recovering the heat energy of the treated water 6 using the heat medium 28 is shown, but as shown in FIG. 10, the treated water 6 flowing out of the preheater 2 is treated.
A method of directly introducing the heat exchanger into the heat exchanger 34 is also effective. In this case, a valve 35 that adjusts the flow rate that bypasses the heat exchanger 34 is installed, and this valve 35 is used to heat the heat exchanger 34.
By adjusting the flow rate of bypassing, the heat recovery amount can be controlled even when the flow rate and properties of the inflowing sludge 4 change.

【0041】なお、汚泥4と熱交換した後の処理水6の
有する熱エネルギーを、図9に示す実施例では熱媒体2
4と熱交換器25、図10に示す実施例では熱交換器3
6を用いて、供給酸素8の予熱に用いることにより、前
記有機物酸化処理システム全体の熱回収率を高めること
ができ、ランニングコストの低減を図ることができる。
The heat energy of the treated water 6 after heat exchange with the sludge 4 is changed to the heat medium 2 in the embodiment shown in FIG.
4 and the heat exchanger 25, the heat exchanger 3 in the embodiment shown in FIG.
By using 6 to preheat the supplied oxygen 8, the heat recovery rate of the entire organic matter oxidation treatment system can be increased, and the running cost can be reduced.

【0042】図11は本発明のさらに他の実施例に係わ
る超臨界水を利用した有機物酸化処理装置を示す。本実
施例は、該有機物酸化処理装置の起動および洗浄に関す
るものであり、汚泥供給ポンプ3に水10を供給できる
ようにした点に特徴がある。
FIG. 11 shows an organic substance oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention. The present embodiment relates to starting and cleaning of the organic substance oxidation treatment apparatus, and is characterized in that water 10 can be supplied to the sludge supply pump 3.

【0043】前記有機物酸化処理装置を起動する際に
は、まず水10のみの供給を開始し、電気ヒータ20に
電気入力を与えて水10の温度を上昇させる。電気ヒー
タ20の電気入力は予熱器2で熱回収されるため、起動
からの時間の経過に伴って該有機物酸化処理装置内の温
度は徐々に上昇していく。該有機物酸化処理装置内の温
度が所定の温度に達した後、汚泥4と酸素8の供給を開
始し、反応器1出口の温度が設定温度となるように電気
ヒータ20の電気入力を制御しながら、汚泥4および酸
素8の流量を徐々に増大させると同時に水10の流量を
減少させる。供給する水10の流量が少なくなるにした
がい、汚泥の酸化に伴う反応熱の熱回収による自立運転
が開始され、電気ヒータ20への電気入力は必要なくな
り、処理水6のバイパス弁24の開放により、反応器1
出口の温度制御が行われる。この後、汚泥4および酸素
8を必要とする処理流量まで徐々に増大させることによ
り、起動運転は完了する。
When activating the organic substance oxidation treatment apparatus, first, only the supply of the water 10 is started and an electric input is given to the electric heater 20 to raise the temperature of the water 10. Since the electric input of the electric heater 20 is recovered by the preheater 2, the temperature in the organic substance oxidation treatment apparatus gradually rises with the lapse of time from the start. After the temperature in the organic substance oxidation treatment apparatus reaches a predetermined temperature, the supply of sludge 4 and oxygen 8 is started, and the electric input of the electric heater 20 is controlled so that the temperature of the outlet of the reactor 1 becomes a set temperature. However, the flow rates of the sludge 4 and the oxygen 8 are gradually increased, and at the same time, the flow rate of the water 10 is decreased. As the flow rate of the supplied water 10 decreases, the self-sustaining operation by the heat recovery of the reaction heat accompanying the oxidation of sludge is started, the electric input to the electric heater 20 is not required, and the bypass valve 24 of the treated water 6 is opened. , Reactor 1
The outlet temperature is controlled. After that, the start-up operation is completed by gradually increasing the sludge 4 and oxygen 8 to the required processing flow rate.

【0044】運転開始後から、予熱器2の汚泥側の伝熱
管壁面には熱分解によって生じる油等の有機物、予熱器
2の汚泥下流側や反応器1の壁面には超臨界水に対する
溶解度が低い無機塩等が付着する。この結果、予熱器
2、反応器1を流れる汚泥4に対する流動抵抗が大きく
なり、予熱器2および反応器1出入口の圧力差が増大す
る。圧力差は予熱器2および反応器1に設置した圧力セ
ンサー(図示せず)によって監視されるが、この圧力差
が所定の圧力差を上回った場合には、前記有機物酸化処
理装置の洗浄運転を開始する。
After the start of operation, organic substances such as oil produced by thermal decomposition are formed on the wall surface of the heat transfer tube on the sludge side of the preheater 2, and the solubility of supercritical water on the sludge downstream side of the preheater 2 and the wall surface of the reactor 1 is high. Low inorganic salts etc. adhere. As a result, the flow resistance to the sludge 4 flowing through the preheater 2 and the reactor 1 increases, and the pressure difference between the inlet and outlet of the preheater 2 and the reactor 1 increases. The pressure difference is monitored by a pressure sensor (not shown) installed in the preheater 2 and the reactor 1. When the pressure difference exceeds a predetermined pressure difference, the cleaning operation of the organic substance oxidation treatment apparatus is performed. Start.

【0045】洗浄運転では、まず汚泥4と酸素8の供給
を徐々に減少させ、水10の供給を開始する。次に、汚
泥4と酸素8の供給が停止したところで、反応器1出口
の処理水温度の設定値を臨界温度以下として、電気ヒー
タ20の電気入力によって温度制御を行う。超臨界水に
対して不溶となる無機塩類が付着する予熱器2および反
応器1に亜臨界状態の水を流動させることによって、伝
熱管内に付着した無機塩類を溶解して管壁から除去する
ことができる。
In the cleaning operation, first, the supply of sludge 4 and oxygen 8 is gradually reduced and the supply of water 10 is started. Next, when the supply of the sludge 4 and the oxygen 8 is stopped, the temperature of the treated water at the outlet of the reactor 1 is set to the critical temperature or lower, and the temperature is controlled by the electric input of the electric heater 20. By flowing water in a subcritical state to the preheater 2 and the reactor 1 to which the inorganic salts that become insoluble in supercritical water adhere, the inorganic salts that adhere to the heat transfer tube are dissolved and removed from the tube wall. be able to.

【0046】予熱器2の汚泥上流側に付着した油等の汚
れは、この領域に有機物に対する溶解度が大きくなる超
臨界状態の水を流動させることで除去することができ
る。図11に示す実施例では、電気ヒータ20によって
予熱器2の外管に流入する水10を臨界温度以上に調整
し予熱器2の内管を流動する水10と熱交換させる、お
よび予熱器2と汚泥供給ポンプ3との間に電気ヒータ2
2を設置して予熱器2に流入する水10を臨界温度以上
に加熱することによって、予熱器2の汚泥上流側を流動
する水10を超臨界状態とすることができる。
Contamination such as oil adhering to the upstream side of the sludge of the preheater 2 can be removed by flowing water in a supercritical state in which the solubility of organic matter becomes large in this region. In the embodiment shown in FIG. 11, the water 10 flowing into the outer pipe of the preheater 2 is adjusted to a critical temperature or higher by the electric heater 20 to cause heat exchange with the flowing water 10 in the inner pipe of the preheater 2, and the preheater 2 Electric heater 2 between the sludge supply pump 3 and
By installing 2 and heating the water 10 flowing into the preheater 2 to a critical temperature or higher, the water 10 flowing on the upstream side of the sludge of the preheater 2 can be brought into a supercritical state.

【0047】なお、洗浄時に予熱器2から除去され超臨
界水中に溶解した油等の有機物は、水10の温度が臨界
温度以下に冷却されるところで再び析出し壁面に付着す
る場合がある。この再付着による汚れの発生を防止する
ため、洗浄時に汚泥供給ポンプ3の吐出側にバルブ38
を調整して酸素8を供給し、超臨界状態の水中に溶解し
た有機物を酸化させる方法が有効である。
The organic matter such as oil removed from the preheater 2 during the cleaning and dissolved in the supercritical water may be deposited again and adhere to the wall surface when the temperature of the water 10 is cooled below the critical temperature. In order to prevent the generation of dirt due to this reattachment, a valve 38 is provided on the discharge side of the sludge supply pump 3 during cleaning.
Is adjusted to supply oxygen 8 to oxidize the organic matter dissolved in the water in the supercritical state.

【0048】また、図12に示すように、反応器1から
流出した処理水6をまず予熱器2の汚泥上流側に流入さ
せ、その後汚泥下流側に流入させる図6に示した実施例
と同様な構成とすることにより、電気ヒータ20の電気
入力によって臨界温度以上に昇温した水10を予熱器2
の汚泥上流側の外管に流入させ、予熱器の内管を流動す
る水10と熱交換させることによって、予熱器の汚泥上
流側で超臨界状態を形成することができるため、図11
に示す電気ヒータ22が不要となる。また、図12に示
す構成では、予熱器2の汚泥上流側の外管を流出した水
10が熱交換により臨界温度を下回る温度となるように
水10の流量を調整すると、予熱器2の内管を流動する
水10を汚泥上流側で超臨界状態、汚泥下流側で亜臨界
状態に形成できるため、洗浄運転を簡略化し洗浄に要す
る時間を短縮することができる。
Further, as shown in FIG. 12, the treated water 6 flowing out of the reactor 1 is first made to flow into the sludge upstream side of the preheater 2 and then to the sludge downstream side, as in the embodiment shown in FIG. With such a configuration, the water 10 heated to a temperature equal to or higher than the critical temperature by the electric input of the electric heater 20 is supplied to the preheater 2
11 can be formed because the supercritical state can be formed on the upstream side of the sludge in the preheater by flowing the water into the outer pipe on the upstream side of the sludge and exchanging heat with the flowing water 10 in the inner pipe of the preheater.
The electric heater 22 shown in is unnecessary. In addition, in the configuration shown in FIG. 12, when the flow rate of the water 10 that flows out of the outer pipe on the upstream side of the sludge of the preheater 2 is adjusted to a temperature below the critical temperature by heat exchange, the inside of the preheater 2 is adjusted. Since the water 10 flowing through the pipe can be formed in the supercritical state on the upstream side of the sludge and in the subcritical state on the downstream side of the sludge, the cleaning operation can be simplified and the time required for cleaning can be shortened.

【0049】図13は本発明のさらに他の実施例に係わ
る超臨界水を利用した有機物酸化処理装置を示す。本実
施例は、該有機物酸化処理装置の洗浄に関するものであ
り、洗浄運転時に予熱器2および反応器1を流れる水1
0の流れ方向を反転させ、予熱器2および反応器1にブ
ラシを流動させる点に特徴がある。
FIG. 13 shows an organic substance oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention. This example relates to cleaning of the organic substance oxidation treatment apparatus, and water 1 flowing through the preheater 2 and the reactor 1 during the cleaning operation.
It is characterized in that the flow direction of 0 is reversed and the brush is made to flow through the preheater 2 and the reactor 1.

【0050】洗浄運転では、まず汚泥4と酸素8の供給
を徐々に減少させながら水10の供給を開始し、次に汚
泥4と酸素8の供給が停止したところで、バルブ44を
開放してバルブ42を閉じ、その後バルブ43を開放し
てバルブ41を閉状態とすることにより、予熱器2およ
び反応器1を流れる水10の流れ方向を反転させる。反
応器1の端部47には洗浄用のブラシ(図示せず)が設
置されており、水10の流れ方向が反転することによっ
てブラシが反応器1、予熱器2の順に流動し、反応器
1、予熱器2の内壁に付着した汚れを物理的に除去す
る。
In the cleaning operation, first, the supply of water 10 is started while gradually reducing the supply of sludge 4 and oxygen 8, and then, when the supply of sludge 4 and oxygen 8 is stopped, the valve 44 is opened and the valve is opened. 42 is closed and then the valve 43 is opened and the valve 41 is closed to reverse the flow direction of the water 10 flowing through the preheater 2 and the reactor 1. A brush (not shown) for cleaning is installed at the end portion 47 of the reactor 1, and when the flow direction of the water 10 is reversed, the brush flows in the reactor 1 and the preheater 2 in that order. 1. Physically remove dirt adhering to the inner wall of the preheater 2.

【0051】図14には反応器1の端部47に設置され
るブラシ45とそのブラシを保持するブラシホルダー4
6の詳細を示す。ブラシ45、ブラシホルダー46は水
10および汚泥4に対して不活性な材料で形成され、ブ
ラシホルダー46は水10および汚泥4が通過できるよ
うに網目状の材料から構成される。図13に示す予熱器
2の端部48にも、同様な構造のブラシホルダーが設置
され、流れの反転によって流動するブラシ45が予熱器
2を流出した後にブラシホルダーに捕獲できるようにな
っている。
FIG. 14 shows a brush 45 installed at the end 47 of the reactor 1 and a brush holder 4 for holding the brush 45.
6 shows the details. The brush 45 and the brush holder 46 are made of a material inert to the water 10 and the sludge 4, and the brush holder 46 is made of a mesh-like material so that the water 10 and the sludge 4 can pass through. A brush holder having a similar structure is also installed at the end portion 48 of the preheater 2 shown in FIG. 13 so that the brush 45 flowing by reversing the flow can be captured by the brush holder after flowing out of the preheater 2. .

【0052】バルブ41〜44の開閉により、水10の
流動方向が反転し、ブラシが反応器1の端部47から予
熱器2の端部48に移動する。ブラシの移動が確認され
た後、バルブ48を開放、バルブ43を閉止し、バルブ
42を開状態、バルブ44を閉状態に操作することによ
って、水10の流れ方向を順方向に戻す。ブラシは、予
熱器2、反応器1を通過して反応器1の端部47に設置
されたブラシホルダーに捕獲される。汚れの除去が1回
の動作で行われない場合は、これらの動作を複数回行
う。ブラシによる洗浄が完了した後、前記実施例と同様
の動作を行うことによって、洗浄運転は完了する。
By opening and closing the valves 41 to 44, the flow direction of the water 10 is reversed, and the brush moves from the end portion 47 of the reactor 1 to the end portion 48 of the preheater 2. After the movement of the brush is confirmed, the valve 48 is opened, the valve 43 is closed, the valve 42 is opened, and the valve 44 is closed to return the flow direction of the water 10 to the forward direction. The brush passes through the preheater 2 and the reactor 1 and is captured by a brush holder installed at the end 47 of the reactor 1. If the dirt is not removed in one operation, these operations are performed multiple times. After the cleaning with the brush is completed, the cleaning operation is completed by performing the same operation as in the above embodiment.

【0053】なお、水10の流動方向を反転させた後、
電気ヒータ20によって予熱器2に流入する水10の状
態を超臨界状態とすることによって、熱分解によって発
生する油等の有機物の汚れが付着しやすい予熱器の内管
を洗浄することができる。この場合、バルブ37を調整
して酸素8を注入することにより、超臨界水中に溶融し
た有機物を酸化することができるため、有機物の再付着
を防止することができる。
After reversing the flow direction of the water 10,
By setting the state of the water 10 flowing into the preheater 2 by the electric heater 20 to a supercritical state, it is possible to clean the inner tube of the preheater to which dirt of organic matter such as oil generated by thermal decomposition easily adheres. In this case, by adjusting the valve 37 and injecting oxygen 8, the organic substance melted in the supercritical water can be oxidized, so that the redeposition of the organic substance can be prevented.

【0054】[0054]

【発明の効果】本発明によれば、予熱器に流入する粘度
の大きい有機汚泥は、該予熱器で反応器を流出した温度
の高い処理水と熱交換を行ってその温度を上昇させるこ
とができるため、少ない伝熱面積で熱回収が可能となる
該予熱器を備えた超臨界水を用いた有機物酸化処理装置
が達成できる。また、汚泥中の有機物濃度が低い場合で
も、熱回収によるランニングコストの低減が可能とな
る。
According to the present invention, the high-viscosity organic sludge flowing into the preheater can heat-exchange with the high-temperature treated water flowing out of the reactor in the preheater to raise its temperature. Therefore, it is possible to achieve an organic substance oxidation treatment apparatus using supercritical water equipped with the preheater, which enables heat recovery with a small heat transfer area. Further, even if the concentration of organic substances in the sludge is low, the running cost can be reduced by recovering the heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる超臨界水を用いた有機
物酸化処理装置の系統図。
FIG. 1 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to an embodiment of the present invention.

【図2】本発明の他の実施例に係わる超臨界水を用いた
有機物酸化処理装置の系統図。
FIG. 2 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to another embodiment of the present invention.

【図3】本発明のさらに他の実施例に係わる超臨界水を
用いた有機物酸化処理装置の系統図。
FIG. 3 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図4】本発明のさらに他の実施例に係わる超臨界水を
用いた有機物酸化処理装置の系統図。
FIG. 4 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図5】本発明のさらに他の実施例に係わる超臨界水を
用いた有機物酸化処理装置の系統図。
FIG. 5 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図6】本発明のさらに他の実施例に係わる超臨界水を
用いた有機物酸化処理装置の系統図。
FIG. 6 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図7】予熱器における汚泥および処理水の温度分布
図。
FIG. 7 is a temperature distribution diagram of sludge and treated water in the preheater.

【図8】本発明の実施例に係わる予熱器の構造図。FIG. 8 is a structural diagram of a preheater according to an embodiment of the present invention.

【図9】本発明のさらに他の実施例に係わる超臨界水を
用いた有機物酸化処理装置の系統図。
FIG. 9 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図10】本発明のさらに他の実施例に係わる超臨界水
を用いた有機物酸化処理装置の系統図。
FIG. 10 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図11】本発明のさらに他の実施例に係わる超臨界水
を用いた有機物酸化処理装置図。
FIG. 11 is a diagram of an organic substance oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図12】本発明のさらに他の実施例に係わる超臨界水
を用いた有機物酸化処理装置の系統図。
FIG. 12 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図13】本発明のさらに他の実施例に係わる超臨界水
を用いた有機物酸化処理装置の系統図。
FIG. 13 is a system diagram of an organic matter oxidation treatment apparatus using supercritical water according to still another embodiment of the present invention.

【図14】本発明のさらに他の実施例に係わる洗浄用ブ
ラシの保持機構図。
FIG. 14 is a holding mechanism diagram of a cleaning brush according to still another embodiment of the present invention.

【図15】従来の超臨界水を用いた有機物酸化処理装置
の系統図。
FIG. 15 is a system diagram of a conventional organic matter oxidation treatment apparatus using supercritical water.

【符号の説明】[Explanation of symbols]

1…反応器、2…予熱器、3…汚泥供給、4…汚泥、6
…処理水、7…酸素供給ポンプ、8…酸素、11…気固
液分離器、12、13…背圧弁、15…酸素注入点、2
0…電気ヒータ、33…ねじれテープ、45…ブラシ、
46…ブラシホルダー
1 ... Reactor, 2 ... Preheater, 3 ... Sludge supply, 4 ... Sludge, 6
... Treated water, 7 ... Oxygen supply pump, 8 ... Oxygen, 11 ... Gas-solid separator, 12, 13 ... Back pressure valve, 15 ... Oxygen injection point, 2
0 ... electric heater, 33 ... twisted tape, 45 ... brush,
46 ... Brush holder

─────────────────────────────────────────────────────フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 11/08 C02F 11/08 (72)発明者 麻生 伸二 東京都千代田区内神田一丁目1番14号 日立プラント建設株式会社内(72)発明者 川尻 斎 東京都千代田区内神田一丁目1番14号 日立プラント建設株式会社内 (56)参考文献 特開 平9−94456(JP,A) 特開 昭62−206357(JP,A) 特開 昭63−100927(JP,A) 実開 昭62−88186(JP,U) 国際公開95/019323(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 - 3/04 B01J 19/00 C02F 11/08─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl.7 Identification code FI C02F 11/08 C02F 11/08 (72) Inventor Shinji Aso 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Hitachi Plant Construction Co., Ltd. (72) Inventor Sai Kawajiri 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Hitachi Plant Construction Co., Ltd. (56) Reference JP-A-9-94456 (JP, A) JP-A-62-206357 (JP , A) JP-A-63-100927 (JP, A) Actually developed 62-88186 (JP, U) International publication 95/019323 (WO, A1) (58) Fields investigated (Int.Cl.7 , DB name) ) B01J 3/00-3/04 B01J 19/00 C02F 11/08

Claims (6)

Translated fromJapanese
(57)【特許請求の範囲】(57) [Claims]【請求項1】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物と流体とからなる混合物流体を流体の
臨界圧力以上に加圧し供給する混合物供給装置、該酸素
を流体の臨界圧力以上に加圧し供給する酸素供給装置、
該混合物流体を予熱するために該混合物流体が流動する
複数の流路と、該流路の外側に反応後の混合物処理流体
を前記混合物流体の流れ方向と逆方向に流れる流路を備
えた予熱器、超臨界状態の流路中で有機物と酸素とを反
応させる反応器、および反応生成物を含む混合物処理流
体から気相、固液相を分離するための気固液分離器で構
成し、さらに該反応器を流出した混合物処理流体と該予
熱器を流動する該混合物流体とを該予熱器の伝熱面を介
して熱交換させて、該予熱器を流動する該混合物流体を
加熱することを特徴とする超臨界流体を用いた有機物酸
化処理装置。
1. A device for oxidizing an organic matter by reacting an organic matter with oxygen in a fluid in a supercritical state, and supplying a mixture fluid consisting of the organic matter, the inorganic matter and the fluid under a pressure higher than the critical pressure of the fluid. A mixture supply device for supplying oxygen, and an oxygen supply device for supplying the oxygen by pressurizing it to a pressure equal to or higher than a critical pressure of a fluid,
A plurality of flow paths through which themixture fluid flows to preheat the mixture fluid, and a flow path through which themixed treatmentfluid after the reaction flows outside the flow path in a direction opposite to the flow direction of the mixturefluid Equipped with a preheater, a reactor for reacting organic substances and oxygen in a flow path in a supercritical state, and a gas-solid separator for separating a gas phase and asolid-liquid phase from a mixture treatment fluid containing a reaction product. And heat-exchanging the mixture processing fluid flowing out of the reactor with the mixture fluid flowing through the preheater through the heat transfer surface of the preheater, and the mixture fluid flowing through the preheater. An organic matter oxidation treatment apparatus using a supercritical fluid, which is characterized by heating a gas.
【請求項2】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物と流体とからなる混合物流体を流体の
臨界圧力以上に加圧し供給する混合物供給装置、該酸素
を流体の臨界圧力以上に加圧し供給する酸素供給装置、
該混合物流体を予熱するための予熱器、超臨界状態の流
路中で有機物と酸素とを反応させる反応器、および反応
生成物を含む混合物処理流体から気相、固液相を分離す
るための気固液分離器で構成し、該予熱器では前記反応
器から流出した混合物処理流体と、流体の臨界圧力以上
に加圧する以前の混合物流体とを該予熱器の伝熱面を介
して熱交換させ、該混合物流体中に含まれる流体を沸騰
させて該混合物流体を加熱することを特徴とする超臨界
流体を用いた有機物酸化処理装置。
2. A device for oxidizing an organic substance by reacting an organic substance with oxygen in a fluid in a supercritical state, and supplying a mixture fluid consisting of the organic substance, the inorganic substance and the fluid under a pressure higher than the critical pressure of the fluid. A mixture supply device for supplying oxygen, and an oxygen supply device for supplying the oxygen by pressurizing it to a pressure equal to or higher than a critical pressure of a fluid,
A preheater for preheating the mixture fluid, a reactor for reacting organic matter and oxygen in a flow path in a supercritical state, and a separator for separating a gas phase and asolid-liquid phase from a mixture treatment fluid containing a reaction product. The preheater comprises a gas-solid separator, in which heat is exchanged between the mixture treatment fluid flowing out from the reactor and the mixture fluid before being pressurized to a pressure higher than the critical pressure of the fluid through the heat transfer surface of the preheater. And heating the mixture fluid by boiling the fluid contained in the mixture fluid to heat the mixture fluid.
【請求項3】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物と流体とからなる混合物流体を流体の
臨界圧力以上に加圧し供給する混合物供給装置、該酸素
を流体の臨界圧力以上に加圧し供給する酸素供給装置、
該混合物流体を予熱するための予熱器、超臨界状態の流
路中で有機物と酸素とを反応させる反応器、および反応
生成物を含む混合物処理流体から気相、固液相を分離す
るための気固液分離器で構成し、さらに該反応器を流出
した混合物処理流体と該予熱器を流動する該混合物流体
とを該予熱器の伝熱面を介して熱交換させて、該予熱器
を流動する該混合物流体を加熱し、該反応器と該予熱器
の間に設置した電気ヒータと該予熱器をバイパスする該
混合物処理流体の流量を調整する弁によって、該反応器
の温度を所定の温度に制御することを特徴とする超臨界
流体を用いた有機物酸化処理装置。
3. An apparatus for reacting an organic substance with oxygen in a fluid in a supercritical state to oxidize the organic substance, wherein a mixture fluid comprising the organic substance, the inorganic substance and the fluid is pressurized to a pressure equal to or higher than the critical pressure of the fluid and supplied. A mixture supply device for supplying oxygen, and an oxygen supply device for supplying the oxygen by pressurizing it to a pressure equal to or higher than a critical pressure of a fluid,
Preheater for preheating the mixturefluid, the reactor is reacted with organic matter and oxygen flow path in a supercritical state, and the gas phase from the mixture processing fluid containing the reaction product, for separatingsolid-liquid phase A gas-solid separator is provided, and the mixture treatment fluid flowing out of the reactor and the mixture fluid flowing in the preheater are heat-exchanged via the heat transfer surface of the preheater, thereby preheating the preheater. Heating the flowing mixture fluid and bypassing the preheater with an electric heater installed between the reactor and the preheater;
An organic matter oxidation treatment apparatus using a supercritical fluid, wherein the temperature of the reactor is controlled to a predetermined temperature by a valve that adjusts the flow rate of themixture treatment fluid.
【請求項4】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物と流体よりなる混合物流体を流体の臨
界圧力以上に加圧し供給する汚泥供給ポンプを備えた混
合物供給装置、該酸素を流体の臨界圧力以上に加圧し供
給する酸素供給装置、該混合物流体を予熱するための予
熱器、超臨界状態の流路中で有機物と酸素とを反応させ
る反応器、および反応生成物を含む混合物処理流体から
気相、固液相を分離するための気固液分離器で構成し、
さらに該反応器を流出した混合物処理流体と該予熱器を
流動する該混合物流体とを該予熱器の伝熱面を介して熱
交換させて、該予熱器を流動する該混合物流体を加熱
し、該予熱器と該反応器の間に設置した電気ヒータある
いは該予熱器と該汚泥供給ポンプの間に設置した電気ヒ
ータを用いて、該予熱器および該反応器内の流体を亜臨
界状態および超臨界状態に調整することにより、該予熱
器および該反応器に付着した無機塩類および油等の有機
物を除去する洗浄運転を行うことを特徴とする超臨界流
体を用いた有機物酸化処理装置。
4. An apparatus for reacting an organic substance and oxygen in a fluid in a supercritical state to oxidize the organic substance, and supplies a mixture fluid consisting of the organic substance, the inorganic substance and the fluid by pressurizing the fluid to a critical pressure or higher. A mixture supply device equipped with a sludge supply pump, an oxygen supply device that pressurizes and supplies the oxygen to a pressure higher than the critical pressure of the fluid, a preheater for preheating the mixture fluid, organic matter and oxygen in the flow path in the supercritical state. And a gas-solid separator for separating a gas phase and asolid-liquid phase from a mixture processing fluid containing a reaction product.
Further, the mixture treatment fluid flowing out of the reactor and the mixture fluid flowing in the preheater are heat-exchanged via the heat transfer surface of the preheater to heat the mixture fluid flowing in the preheater, By using an electric heater installed between the preheater and the reactor or an electric heater installed between the preheater and the sludge supply pump, the fluid inside the preheater and the reactor is placed in a subcritical state or a supercritical state. by adjusting the critical state, organic oxidation processing apparatus using a supercritical fluid and performing a cleaning operation for removing the organic substances such asnon-machine salts and oilsadhered to the preheater and the reactor.
【請求項5】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物と流体とからなる混合物流体を流体の
臨界圧力以上に加圧し供給する混合物供給装置、該酸素
を流体の臨界圧力以上に加圧し供給する酸素供給装置、
該混合物流体を予熱するための予熱器、超臨界状態の流
路中で有機物と酸素とを反応させる反応器、および反応
生成物を含む混合物処理流体から気相、固液相を分離す
るための気固液分離器で構成し、さらに該反応器を流出
した混合物処理流体と該予熱器を流動する該混合物流体
とを該予熱器の伝熱面を介して熱交換させて、該予熱器
を流動する該混合物流体を加熱するように構成すると共
に、洗浄運転時に、該予熱器及び反応器における流動方
向を反転させることによってブラシを流動させて、該予
熱器および該反応器に付着した無機塩類および油等の有
機物を物理的に除去することを特徴とする超臨界流体を
用いた有機物酸化処理装置。
5. An apparatus for reacting an organic substance with oxygen in a fluid in a supercritical state to oxidize the organic substance, wherein a mixture fluid comprising the organic substance, the inorganic substance and the fluid is pressurized to a pressure higher than the critical pressure of the fluid and supplied. A mixture supply device for supplying oxygen, and an oxygen supply device for supplying the oxygen by pressurizing it to a pressure equal to or higher than a critical pressure of a fluid,
A preheater for preheating the mixture fluid, a reactor for reacting organic matter and oxygen in a flow path in a supercritical state, and a separator for separating a gas phase and asolid-liquid phase from a mixture treatment fluid containing a reaction product. A gas-solid separator is provided, and the mixture treatment fluid flowing out of the reactor and the mixture fluid flowing in the preheater are heat-exchanged via the heat transfer surface of the preheater, thereby preheating the preheater. It is configured to heat the flowing mixture fluid, and during the cleaning operation, the brushes are made to flow by reversing the flow direction in the preheater and the reactor to cause thepreheating.
An organic substance oxidation treatment apparatus using a supercritical fluid, which physically removes organic substances such as inorganic salts and oiladhering to the heater and the reactor .
【請求項6】超臨界状態の流体中で有機物と酸素とを反
応させ、該有機物を酸化処理する装置において、該有機物と無機物および水の混合物流体を流体の臨界圧
力以上に加圧し供給する混合物供給装置、該酸素を流体
の臨界圧以上に加圧し供給する酸素供給装置、該混合物
流体を予熱するための予熱器、超臨界状態の流路中で有
機物と酸素とを反応させる反応器、および反応生成物を
含む混合物処理流体を減圧する機構を有し、減圧された
混合物処理流体から気相、固液相を分離するための気固
液分離器で構成し、該予熱器を二重管式熱交換器で構成
し、該二重管式熱交換器の内管を有機物と無機物および
水の混合物流体を流し、内管と外管の間に混合物処理流
体を前記混合物流体の流れに対向するように流動させ、
有機物の酸化剤となる酸素を該予熱器と反応器の間に供
給し、該反応器と該予熱器との間に設置した電気ヒータ
と、該予熱器をバイパスする該混合物処理流体の流量を
調整する弁によって、該反応器の温度を所定の温度に制
御すること特徴とする超臨界流体を用いた有機物酸化処
理装置。
6. A device for reacting an organic substance with oxygen in a fluid in a supercritical state to oxidize the organic substance, wherein a mixture of the organic substance, the inorganic substance and water is pressurized to a critical pressure of the fluid or higher and supplied. A supply device, an oxygen supply device that pressurizes and supplies the oxygen to a pressure higher than the critical pressure of the fluid, a preheater for preheating the mixture fluid, a reactor for reacting an organic substance and oxygen in a flow path in a supercritical state, and A gas / solid separator for separating a gas phase and asolid-liquid phase from the depressurized mixture processing fluid, which has a mechanism for depressurizing the mixture processing fluid containing a reaction product, and the preheater is a double tube. Type heat exchanger, the inner tube of the double-tube heat exchanger is
Flowing a mixture flowof water and the mixture treated fluid between the inner and outer tubes to flow so as to face the flow of the mixture flow body,
Oxygen serving as an oxidant for organic matter is supplied between the preheater and the reactor, an electric heater installed between the reactor and the preheater, and a flow rate of the mixture processing fluid that bypasses the preheater are set. An organic matter oxidation treatment apparatus using a supercritical fluid, characterized in that the temperature of the reactor is controlled to a predetermined temperature by a regulating valve.
JP30395197A1997-11-061997-11-06 Organic oxidation treatment equipment using supercritical fluidCeasedJP3400691B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP30395197AJP3400691B2 (en)1997-11-061997-11-06 Organic oxidation treatment equipment using supercritical fluid

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP30395197AJP3400691B2 (en)1997-11-061997-11-06 Organic oxidation treatment equipment using supercritical fluid

Publications (2)

Publication NumberPublication Date
JPH11138198A JPH11138198A (en)1999-05-25
JP3400691B2true JP3400691B2 (en)2003-04-28

Family

ID=17927260

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP30395197ACeasedJP3400691B2 (en)1997-11-061997-11-06 Organic oxidation treatment equipment using supercritical fluid

Country Status (1)

CountryLink
JP (1)JP3400691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2021204609A1 (en)*2020-04-062021-10-14Scfi LimitedProcess for the supercritical oxidation of sewage sludge and other waste streams

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP4502633B2 (en)*2003-12-012010-07-14メタウォーター株式会社 High temperature and high pressure treatment method for organic waste
JP2006036977A (en)*2004-07-282006-02-09Jgc CorpMethod of modifying biomass and modification equipment
JP5767047B2 (en)*2011-07-252015-08-19メタウォーター株式会社 Hydrothermal treatment method and hydrothermal treatment apparatus
JP4898970B1 (en)*2011-07-252012-03-21メタウォーター株式会社 Hydrothermal treatment equipment
JP5767046B2 (en)*2011-07-252015-08-19メタウォーター株式会社 Hydrothermal treatment method and hydrothermal treatment apparatus
JP6250293B2 (en)*2013-03-262017-12-20中国電力株式会社 Biomass gasification system using supercritical water and its operation method
JP2015144990A (en)*2014-02-032015-08-13株式会社リコー Waste liquid treatment equipment
EP3088368A1 (en)*2015-04-292016-11-02SCW Systems B.V.Apparatus for and method of processing a slurry containing organic components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2021204609A1 (en)*2020-04-062021-10-14Scfi LimitedProcess for the supercritical oxidation of sewage sludge and other waste streams
US20230348306A1 (en)*2020-04-062023-11-02Scfi LimitedProcess for the supercritical oxidation of sewage sludge and other waste streams

Also Published As

Publication numberPublication date
JPH11138198A (en)1999-05-25

Similar Documents

PublicationPublication DateTitle
JP3297680B2 (en) Supercritical reactor and method
US6709601B2 (en)Hydrothermal treatment system and method
JP3400691B2 (en) Organic oxidation treatment equipment using supercritical fluid
US5057231A (en)Method for starting up and controlling operating temperature of a wet oxidation process
CN105600914B (en)A kind of indirect heat exchange type supercritical water oxidation system of organic liquid waste and sludge
CN105601017B (en)The near-zero release processing system and method for a kind of high concentrated organic wastewater and sludge
JPH11504254A (en) Flow reversal supercritical reactor and method of operating the reactor
WO2012151795A1 (en)Supercritical water oxidation reaction system using auxiliary fuel to supply energy
CN101987749A (en)Supercritical water treatment system for high-salinity organic waste water
WO1995033693A1 (en)Method and apparatus to remove inorganic scale from a supercritical water oxidation reactor
JPH088982B2 (en) Oxidation method of substances dissolved or suspended in aqueous solution
JP2004508179A (en) How to treat waste by thermal hydroxylation
JP2003181273A (en) Hydrothermal treatment apparatus and treatment method
CN109305722B (en)Supercritical water oxidation system for graded oxygen injection and wastewater and/or sludge treatment method based on system
CN205442932U (en)Near zero emission processing system of high concentration organic waste water and mud
CN111491699B (en)Systems, methods, and techniques for waste treatment
US6056883A (en)Method and apparatus to remove inorganic scale from a supercritical water oxidation reactor
JP2000033355A (en) Organic waste treatment method using high temperature and high pressure steam
JP2000126798A (en) Waste treatment equipment by supercritical water oxidation method
CN106573227A (en)Non-scaling wet air oxidation system and process
JP3405295B2 (en) Animal and plant residue processing equipment by hydrothermal reaction
CN205442756U (en)Indirect heat exchange type supercritical water oxidation system of organic waste liquid and mud
JP2002355697A (en)Supercritical water oxidative decomposition apparatus and method
CN209602186U (en) A device for treating organic waste liquid by supercritical water oxidation
KR100787811B1 (en) Incineration Flue Gas Cooling Water Heat Bed

Legal Events

DateCodeTitleDescription
RVOPCancellation by post-grant opposition

[8]ページ先頭

©2009-2025 Movatter.jp