Movatterモバイル変換


[0]ホーム

URL:


JP3345756B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3345756B2
JP3345756B2JP21707091AJP21707091AJP3345756B2JP 3345756 B2JP3345756 B2JP 3345756B2JP 21707091 AJP21707091 AJP 21707091AJP 21707091 AJP21707091 AJP 21707091AJP 3345756 B2JP3345756 B2JP 3345756B2
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor layer
gate insulating
region
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21707091A
Other languages
Japanese (ja)
Other versions
JPH0555255A (en
Inventor
光敏 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson CorpfiledCriticalSeiko Epson Corp
Priority to JP21707091ApriorityCriticalpatent/JP3345756B2/en
Publication of JPH0555255ApublicationCriticalpatent/JPH0555255A/en
Application grantedgrantedCritical
Publication of JP3345756B2publicationCriticalpatent/JP3345756B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアクティブマトリックス
液晶ディスプレイやイメージセンサー、三次元LSIデ
バイスなど、絶縁性物質上に作成される薄膜半導体装置
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film semiconductor device formed on an insulating material, such as an active matrix liquid crystal display, an image sensor, and a three-dimensional LSI device.

【0002】[0002]

【従来の技術】近年液晶ディスプレイの大画面化、高解
像度化に伴いその駆動方式は単純マトリックス方式から
アクティブマトリックス方式へと移行し、大容量の情報
を表示出来る様になりつつ有る。アクティブマトリック
ス方式は数十万を超える画素を有する液晶ディスプレイ
が可能で有り、各画素毎にスイッチング・トランジスタ
を形成する物で有る。
2. Description of the Related Art In recent years, as the screen size and resolution of liquid crystal displays have increased, the driving system has shifted from a simple matrix system to an active matrix system, and it has become possible to display a large amount of information. The active matrix method can provide a liquid crystal display having more than hundreds of thousands of pixels, and forms a switching transistor for each pixel.

【0003】これらのスイッチング素子は通常絶縁性物
質上に作成される薄膜トランジスタ(以下TFTと略
記)が用いられる。TFTの能動層としては、アモルフ
ァス・シリコンや多結晶シリコンが用いられるが、駆動
回路迄一体化してTFTで作成しようとする場合や画素
の高密度高精細化を進める場合には動作速度の速い多結
晶シリコンが有利である。こうした多結晶シリコンを用
いたTFTを画素のスイッチング素子として用いた時、
画素に対して信号を入力する所謂トランジスタのON状
態に於いてはアモルファス・シリコンTFTに比べて一
桁以上高いオン電流が得られる。
As these switching elements, thin film transistors (hereinafter abbreviated as TFTs) formed on an insulating material are usually used. As the active layer of the TFT, amorphous silicon or polycrystalline silicon is used. However, when the driving circuit is integrated with the TFT or when the pixel density is increased and the definition is advanced, the operation speed is high. Crystalline silicon is advantageous. When a TFT using such polycrystalline silicon is used as a pixel switching element,
In a so-called transistor ON state for inputting a signal to a pixel, an ON current higher by one digit or more than that of an amorphous silicon TFT can be obtained.

【0004】これに対して入力された信号を保持してい
るトランジスタのOFF状態では、多結晶シリコンを用
いたTFTはアモルファス・シリコンTFTに比べて多
量の漏洩電流IOFFが生じ、画質の低下を引き起こす原
因となっている。
On the other hand, when a transistor holding an input signal is in an OFF state, a TFT using polycrystalline silicon generates a larger amount of leakage current IOFF as compared with an amorphous silicon TFT. It hasbecome a cause.

【0005】従来この漏洩電流IOFF を減少させる為に
多結晶シリコンTFTに於いてソース・ドレイン領域に
添加するドナー又はアクセプターとなる不純物の濃度を
変えるライト・ドープ・ドレイン法(LDD法)が採用
されている(K.NAKAZAWA et al S1
D90digest 311’90)。即ちソース領域
及びドレイン領域内に於いて取り出し電極側の領域で不
純物濃度を高くし、チャンネル側の領域で低くする構造
としたTFTを作成して漏洩電流IOFF を減らしてい
る。
Conventionally, in order to reduce the leakage current IOFF , a light-doped drain method (LDD method) for changing the concentration of an impurity serving as a donor or an acceptor added to a source / drain region in a polycrystalline silicon TFT has been adopted. (K. NAKAZAWA et al S1
D90 digest 311'90). That is, in the source region and the drain region, a TFT having a structure in which the impurity concentration is increased in the region on the extraction electrode side and reduced in the region on the channel side ismanufactured to reduce the leakage current IOFF .

【0006】このLDD構造を有するTFTの従来技術
に依る製造方法を図2を用いて説明する。まず絶縁基板
201上に不純物が高濃度に添加されたソース・ドレイ
ン領域202を形成する。これは例えば燐添加された多
結晶シリコン膜を減圧気相化学堆積法(LPCVD法)
などで形成する。(図2a)次に真性シリコン膜203
を形成し、更にゲート絶縁膜204を堆積後ゲート電極
205を形成する。(図2b)その後ゲート電極205
をマスクとして不純物206を1×1015l/cm2
度以下打ち込みLDD領域208及びチャンネル部20
7を形成する。(図2c)その後必要に応じて層間絶縁
膜209を堆積し、不純物が高濃度に添加されたソース
・ドレイン領域にコンタクト・ホールを開口し、ソース
・ドレイン取り出し電極210を形成してTFTが完成
する。
A method of manufacturing a TFT having the LDD structure according to the prior art will be described with reference to FIG. First, a source / drain region 202 to which an impurity is added at a high concentration is formed on an insulating substrate 201. For example, a polycrystalline silicon film doped with phosphorus is formed by a low pressure chemical vapor deposition (LPCVD) method.
It forms with. (FIG. 2a) Next, the intrinsic silicon film 203
Is formed, and after a gate insulating film 204 is deposited, a gate electrode 205 is formed. (FIG. 2b) then gate electrode 205
The impurity 206 is implanted into the LDD region 208 and the channel portion 20 at a dose of about 1 × 1015 l / cm2 or less using
7 is formed. (FIG. 2c) Then, if necessary, an interlayer insulating film 209 is deposited, contact holes are opened in the source / drain regions to which impurities are added at a high concentration, and source / drain extraction electrodes 210 are formed to complete the TFT. I do.

【0007】[0007]

【発明が解決しようとする課題】しかしながら前述した
従来技術に依るLDD作成には幾つかの問題が有る。ま
ず第一に不純物が高濃度に添加されたソース・ドレイン
領域202を最初に形成する為、その存在に依りTFT
の微細化が困難となる。この結果画素部に於けるTFT
のしめる面積が大きくなり、開口率が低くなって暗い画
面の液晶ディスプレイとなったり、微細化出来ぬ事から
画素数を増大出来ず、高精細な画面を提供し得ないとの
問題点が出現する。加えて工程が長い為、歩留りの低下
や製品価格を低下出来ないとの問題が有る。更に、アラ
イメントの位置合わせの都合上LDD領域208の距離
が4〜5μmと大きくなり、この為LDD領域への添加
量が少な過ぎるとTFTに寄生抵抗が生じ、オン電流値
が低下したり、多過ぎるとLDDとならず、オフ漏洩電
流が増大して仕舞うとの問題点が有る。
However, there are some problems in the LDD fabrication according to the above-mentioned prior art. First, since the source / drain region 202 to which impurities are added at a high concentration is formed first, the presence of the
It becomes difficult to miniaturize. As a result, the TFT in the pixel section
There is a problem that the area to be covered is large, the aperture ratio is low and the LCD becomes a dark screen, and the number of pixels cannot be increased due to the inability to miniaturize, and a high-definition screen cannot be provided. I do. In addition, since the process is long, there is a problem that the yield cannot be reduced and the product price cannot be reduced. Further, the distance between the LDD regions 208 is increased to 4 to 5 μm for the sake of alignment. For this reason, if the addition amount to the LDD regions is too small, a parasitic resistance occurs in the TFT, and the on-current value is reduced. If it is too long, the LDD does not occur, and there is a problem that the off-leakage current increases and the operation ends.

【0008】そこで本発明はこの様な諸問題点の解決を
目指し、その目的とする所は工程を簡略化した上でTF
Tの微細化を進められ得るLDD構造のTFTの製造方
法を提供する事に有る。
Accordingly, the present invention aims to solve these problems, and the purpose thereof is to simplify the process and to improve the TF.
An object of the present invention is to provide a method of manufacturing a TFT having an LDD structure that can promote the miniaturization of T.

【0009】[0009]

【課題を解決するための手段】本発明は、少なくとも表
面が絶縁性物質である基板上に、半導体層を形成する工
程と、該半導体層上にゲート絶縁膜を形成した後、該ゲ
ート絶縁膜上にゲート電極を形成する工程と、前記ゲー
ト電極端部を覆うようにレジストマスクを形成して、前
記半導体層上のゲート絶縁膜を必要量だけ除去して、前
記レジストマスクに覆われていた領域は厚いゲート絶縁
膜領域、前記レジストマスクに覆われていなかった領域
は薄いゲート絶縁膜領域とするゲート絶縁膜除去工程
と、前記厚いゲート絶縁膜領域及び薄いゲート絶縁膜領
域を介し、且つ、前記ゲート電極をマスクとして不純物
イオンを前記半導体層に導入することにより、前記厚い
ゲート絶縁膜領域に対応する前記半導体層を低濃度半導
体層とし、前記薄いゲート絶縁膜領域に対応する前記半
導体層を不純物を高濃度半導体層とし、前記低濃度半導
体層と前記高濃度半導体層よりなるソース領域及びドレ
イン領域を形成する工程とを含み、前記ゲート絶縁膜除
去工程のゲート絶縁膜除去必要量はLSS理論に基づい
て高濃度半導体層への添加量と低濃度半導体層への添加
量、及び打ち込みエネルギー、及び不純物イオン種に応
じて定められることを特徴とする。
According to the present invention, there is provided a semiconductor device comprising a step of forming a semiconductor layer on a substrate having at least a surface made of an insulating material; a step of forming a gate insulating film on the semiconductor layer; Forming a gate electrode thereon, forming a resist mask so as to cover an end of the gate electrode, removing a necessary amount of a gate insulating film on the semiconductor layer, and covering the semiconductor layer with the resist mask. A region is a thick gate insulating film region, a region not covered with the resist mask is a thin gate insulating film region, a gate insulating film removing step, and the thick gate insulating film region and the thin gate insulating film region, and By introducing impurity ions into the semiconductor layer using the gate electrode as a mask, the semiconductor layer corresponding to the thick gate insulating film region is made a low-concentration semiconductor layer, Forming a source region and a drain region comprising the low-concentration semiconductor layer and the high-concentration semiconductor layer, wherein the semiconductor layer corresponding to the gate insulating film region is a high-concentration semiconductor layer containing impurities. The required amount of gate insulating film removal in the removal step is determined according to the amount of addition to the high concentration semiconductor layer and the amount of addition to the low concentration semiconductor layer, implantation energy, and impurity ion species based on the LSS theory. I do.

【0010】[0010]

【実施例】以下本発明に係るTFTの製造方法について
実施例に基づいて詳述するが、本発明が以下の実施例に
限定される物では無い。
EXAMPLES Hereinafter, a method for manufacturing a TFT according to the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.

【0011】図1(a)〜(d)は本発明に依るLDD
構造を有するMIS型電界効果トランジスタを形成する
TFTの製造工程を断面で示した図で有る。まず表面が
絶縁性物質で有る基板上にシリコン膜101を成膜す
る。この膜厚は1500Å程度以下が好ましいが、特に
限定される必要も無い。本実施例では500Åの膜厚に
堆積する。次にゲート絶縁膜102を堆積する。ここで
はゲート絶縁膜材として二酸化硅素(SiO2 )膜を選
び電子サイクロトロン共鳴プラズマCVD法(ECR−
PECVD法)で1250Åの膜厚に堆積する。この他
にも常圧CVD法(APCVD法)やスパッター法など
でもゲート絶縁膜は形成され得る。続いてゲート電極1
03を形成する。本実施例ではゲート電極材料として3
000Åの膜厚を有する燐添加多結晶シリコン膜を用い
たが、これ以外にも金属材料なども可能で有る。ゲート
電極材料堆積後パターニングを行い、ゲート電極103
を形成する(図1(a))。次に不純物を高濃度に添加
したい領域上のゲート絶縁膜を必要量丈エッチングし、
その領域上のゲート絶縁膜を薄くする(104)。本実
施例ではこの薄いゲート絶縁膜104の膜厚をゼロとし
た。即ち、不純物を高濃度に添加したい領域の上からゲ
ート絶縁膜を完全に取り除きシリコン面を露出させた。
しかしながらゲート絶縁膜102の膜厚と不純物イオン
種及び、打ち込みエネルギーと、添加濃度に応じて、薄
いゲート絶縁膜104の膜厚を任意に変え得る。次に添
加したいイオン種105を該基板に打ち込む(図1
(b))。本実施例では不純物イオンとして燐を選び+
31を60KeVで1×1016l/cm2 打ち込む。こ
の場合LSS理論(J.Lindhard et a
l.Mat.Fys.Medd.Dan.Vid.Se
lsk33,No14,1,1963)
FIGS. 1A to 1D show an LDD according to the present invention.
FIG. 4 is a cross-sectional view showing a manufacturing process of a TFT for forming a MIS field-effect transistor having a structure. First, a silicon film 101 is formed on a substrate whose surface is made of an insulating material. This film thickness is preferably about 1500 ° or less, but need not be particularly limited. In this embodiment, the film is deposited to a thickness of 500 °. Next, a gate insulating film 102 is deposited. Here, a silicon dioxide (SiO2 ) film is selected as a gate insulating film material, and electron cyclotron resonance plasma CVD (ECR-
The film is deposited to a thickness of 1250 ° by PECVD. In addition, the gate insulating film can be formed by a normal pressure CVD method (APCVD method), a sputtering method, or the like. Then, the gate electrode 1
03 is formed. In this embodiment, 3 is used as the gate electrode material.
Although a phosphorus-added polycrystalline silicon film having a thickness of 2,000 mm was used, other metal materials and the like can be used. After depositing the gate electrode material, patterning is performed to form the gate electrode 103.
Is formed (FIG. 1A). Next, the gate insulating film on the region where the impurity is to be added at a high concentration is etched to a required length,
The gate insulating film on that region is thinned (104). In this embodiment, the thickness of the thin gate insulating film 104 is set to zero. That is, the gate insulating film was completely removed from the region where the impurity was to be added at a high concentration to expose the silicon surface.
However, the thickness of the thin gate insulating film 104 can be arbitrarily changed according to the thickness of the gate insulating film 102, the impurity ion species, the implantation energy, and the added concentration. Next, ion species 105 to be added are implanted into the substrate (FIG. 1).
(B)). In the present embodiment selects phosphorus as an impurity ions+
The P31 at 60KeV implanted1 × 10 16 l / cm 2 . In this case, the LSS theory (J. Lindhard et a
l. Mat. Fys. Medd. Dan. Vid. Se
lsk33 , No14, 1, 1963)

【化1】に依って実効的な添加量を計算すると、シリコン中の投
影飛程RP =0.073μm、投影飛程分散△RP
0.0298μmでSiO2 中の投影飛程RP =0.0
586μm、投影飛程分散△RP =0.0216μmで
有る為、不純物を高濃度に添加した領域107では7.
8×1015l/cm2 相当の打ち込み量となり、LDD
領域106では1.1×1013l/cm2 相当の打ち込
みとなる(図1(c))。イオン打ち込み後、基板に5
00℃2時間程度の熱処理を加え、添加イオンを活性化
する。この活性化は本実施例の如く熱に依り行っても良
いし、又レーザー光照射やラピッド・サーマル・アニー
リング法などで行っても良い。又、不純物元素を水素化
物を原料として、質量分析装置の付いていないイオン打
ち込み装置で添加する場合、活性化熱処理は350℃2
時間程度で有っても構わない。例えば燐添加を試みる場
合、ホスフィン(PH3 )と水素の混合ガスを原料ガス
として、質量分析装置の付いていないイオン打ち込み装
置にてPHX+(X=0、1、2、3)やH+ 、H2+を同
時に打ち込む事で、活性化熱処理温度を350℃程度以
下へと低く押え、その熱処理時間も2時間程度以下と短
縮可能となる。不純物イオン活性化後、層間絶縁膜10
8を必要に応じて堆積し、コンタクト・ホールを開口し
てアルミニウムなどで配線109をし、LDD構造を有
するTFTが完成する(図1(d))。尚、コンタクト
・ホール開口前に質量分析装置の付いていないイオン打
ち込み装置に依り水素(H+ 、H2+)を適当量打ち込ん
で、トランジスタ特性を改善しても良い。本実施例では
80KeVのエネルギーで水素を5×1015l/cm2
打ち込んだ。
Embedded image When the effective addition amount is calculated according to the following equation, the projection range in silicon is RP = 0.073 μm, and the projection range dispersion △ RP =
At 0.0298 μm, the projection range RP in SiO2 = 0.0
Since it is 586 μm and the projection range dispersion ΔRP = 0.0216 μm, in the region 107 to which the impurity is added at a high concentration, 7.
The ejection amount is equivalent to 8 × 1015 l / cm2 , and the LDD
In the region 106, the implantation is equivalent to 1.1 × 1013 l / cm2 (FIG. 1C). After ion implantation, 5
A heat treatment at about 00 ° C. for about 2 hours is applied to activate the added ions. This activation may be performed by heat as in this embodiment, or may be performed by laser light irradiation, rapid thermal annealing, or the like. In addition, when an impurity element is added using a hydride as a raw material by an ion implantation apparatus without a mass spectrometer, the activation heat treatment is performed at 350 ° C.
It may be about an hour. For example, when attempting to add phosphorus, a mixed gas of phosphine (PH3 ) and hydrogen is used as a source gas, and PHx+ (X = 0, 1, 2, 3) or H 2 is used in an ion implantation apparatus without a mass spectrometer. By simultaneously implanting+ and H2+ , the activation heat treatment temperature can be kept low to about 350 ° C. or less, and the heat treatment time can be reduced to about 2 hours or less. After the activation of the impurity ions, the interlayer insulating film 10
8 is deposited as necessary, a contact hole is opened, and a wiring 109 is made of aluminum or the like, thereby completing a TFT having an LDD structure (FIG. 1D). The transistor characteristics may be improved by implanting an appropriate amount of hydrogen (H+ , H2+ ) using an ion implanter without a mass spectrometer before opening the contact hole. In this embodiment, hydrogen is supplied at 5 × 1015 l / cm2 at an energy of 80 KeV.
I typed it in.

【0012】以上説明した工程に依り製作したTFT特
性の一例Ids−Vgs曲線を図33−aに示した。本実施
例ではトランジスタ・サイズはL=W=10μmで、不
純物を高濃度に添加した領域107の長さが10μm、
LDD領域106の長さが2μmで有った。図33−b
には比較の為従来技術に依って製作したセルフ・アライ
ンTFTの電気的特性図を示した。図3より本発明のL
DD構造TFTはオン電流の低下は殆ど見られず、且つ
漏洩電流IOFF を大幅に低減させている様子が窺い知ら
れる。
[0012] One example Ids -Vgs curve of the fabricated TFT characteristics depending on the process described above are shown in FIG. 33-a. In this embodiment, the transistor size is L = W = 10 μm, the length of the region 107 doped with high concentration of impurities is 10 μm,
The length of the LDD region 106 was 2 μm. FIG. 33-b
FIG. 2 shows an electrical characteristic diagram of a self-aligned TFT manufactured according to the prior art for comparison. FIG.
It can be seen that in the TFT having the DD structure, the on-current is hardly reduced and the leakage current IOFF is greatly reduced.

【0013】本実施例では薄いゲート絶縁膜104の膜
厚をゼロとしたが、この膜厚はゲート絶縁膜の膜質、膜
厚、打ち込みイオン種とその量、打ち込みエネルギー、
及び不純物を高濃度に添加する領域107とLDD領域
106との濃度比に応じて変えられ、必ずしもゼロにす
る必要は無い。通常、ゲート絶縁膜102と層間絶縁膜
108の膜質が異なる為、ソース・ドレイン領域に配線
109を行う場合、最初に層間絶縁膜108にコンタク
ト・ホールを開口し、次にゲート絶縁膜102にコンタ
クト・ホールを開口した上で配線を行う等の二回の開口
作業が有り、本実施例ではそれらの内一回を薄いゲート
絶縁膜104の作成と兼行させた。こうした手法を取る
事に依り、余分な工程を加える事なく、安定なLDD構
造TFTを簡便な工程で作成し得る。
In this embodiment, the thickness of the thin gate insulating film 104 is set to zero. However, this thickness is determined by the film quality of the gate insulating film, the film thickness, the type and amount of implanted ions, the implantation energy,
In addition, the concentration can be changed according to the concentration ratio between the region 107 to which the impurity is added at a high concentration and the LDD region 106, and it is not necessarily required to be zero. Normally, since the film quality ofthe gate insulating film 102 and that of the interlayer insulating film 108 are different, when the wiring 109 is formed in the source / drain regions, first, a contact hole is opened in the interlayer insulating film 108, and then the gate insulating film 102 is contacted. There are two opening operations such as wiring after opening a hole. In this embodiment, one of these operations is also used for forming the thin gate insulating film 104. By adopting such a method, a stable LDD structure TFT can be formed by a simple process without adding an extra process.

【0014】[0014]

【発明の効果】以上述べてきたように、本発明によれ
ば、LDD構造を有するTFTを製造するにあたり、高
濃度半導体層上のゲート絶縁膜をLSS理論に基づいて
必要量だけ除去して薄くし、その後不純物イオンを打ち
込むことで、ゲート絶縁膜の膜厚に影響されることな
く、ソース領域及びドレイン領域の不純物高濃度領域及
び低濃度領域の濃度を自在に設定することが可能とな
り、これによって作成しようとするTFTの特性に応じ
常に最適の高濃度領域及び低濃度領域の不純物濃度及び
濃度比を有する半導体層を簡単な工程で形成することが
可能となり、しかもTFTの微細化も可能となった。し
たがって、本発明においては、液晶ディスプレイの開口
率を高めたり、高精細画素を提供出来る等、アクティブ
・マトリックス液晶ディスプレイの高性能化や低価格化
を実現することができると云う効果も有する。
Asdescribed above, according to the present invention,
For example, in manufacturing a TFT having an LDD structure,
Based on LSS theory
Remove only the required amount to make it thinner, and then strike with impurity ions.
Is not affected by the thickness of the gate insulating film.
High impurity concentration regions in the source and drain regions
And low-density areas can be set freely.
Depending on the characteristics of the TFT to be created.
Always optimal impurity concentration of high concentration region and low concentration region and
A semiconductor layer having a concentration ratio can be formed by a simple process.
It has become possible, and furthermore, the miniaturization of the TFT has become possible. I
Accordingly, the present inventionalso has theeffect of realizing higher performance and lower cost of the active matrix liquid crystal display, such as increasing the aperture ratio of the liquid crystal display and providing high definition pixels.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(d)は本発明の一実施例を示す薄膜
半導体装置製造の各工程に於ける素子断面図。
FIGS. 1A to 1D are cross-sectional views of an element in each step of manufacturing a thin-film semiconductor device according to an embodiment of the present invention.

【図2】(a)〜(d)は従来技術に依る薄膜半導体装
置製造の各工程に於ける素子断面図。
FIGS. 2A to 2D are cross-sectional views of elements in each step of manufacturing a thin-film semiconductor device according to a conventional technique.

【図3】本発明の効果を示す図。FIG. 3 is a diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

101 シリコン膜 102 ゲート絶縁膜 103 ゲート電極 104 薄いゲート絶縁膜 105 不純物イオン種打ち込み 106 LDD領域 107 不純物を高濃度に添加した領域 108 層間絶縁膜 109 配線 201 絶縁基板 202 不純物が高濃度に添加されたソース・ドレイン
領域 203 真正シリコン膜 204 ゲート絶縁膜 205 ゲート電極 206 不純物イオン種打ち込み 207 チャンネル部 208 LDD領域 209 層間絶縁膜 210 ソース・ドレイン取り出し電極
DESCRIPTION OF SYMBOLS 101 Silicon film 102 Gate insulating film 103 Gate electrode 104 Thin gate insulating film 105 Impurity ion implantation 106 LDD region 107 Highly doped region 108 Interlayer insulating film 109 Wiring 201 Insulating substrate 202 Highly doped impurity Source / drain region 203 Authentic silicon film 204 Gate insulating film 205 Gate electrode 206 Impurity ion species implantation 207 Channel portion 208 LDD region 209 Interlayer insulating film 210 Source / drain extraction electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 29/786 H01L 21/336──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl.7 , DB name) H01L 29/78 H01L 29/786 H01L 21/336

Claims (1)

Translated fromJapanese
(57)【特許請求の範囲】(57) [Claims]【請求項1】 少なくとも表面が絶縁性物質である基板
上に、半導体層を形成する工程と、 該半導体層上にゲート絶縁膜を形成した後、該ゲート絶
縁膜上にゲート電極を形成する工程と、 前記ゲート電極端部を覆うようにレジストマスクを形成
して、前記半導体層上のゲート絶縁膜を必要量だけ除去
して、前記レジストマスクに覆われていた領域は厚いゲ
ート絶縁膜領域、前記レジストマスクに覆われていなか
った領域は薄いゲート絶縁膜領域とするゲート絶縁膜除
去工程と、 前記厚いゲート絶縁膜領域及び薄いゲート絶縁膜領域を
介し、且つ、前記ゲート電極をマスクとして不純物イオ
ンを前記半導体層に導入することにより、前記厚いゲー
ト絶縁膜領域に対応する前記半導体層を低濃度半導体層
とし、前記薄いゲート絶縁膜領域に対応する前記半導体
層を不純物を高濃度半導体層とし、前記低濃度半導体層
と前記高濃度半導体層よりなるソース領域及びドレイン
領域を形成する工程とを含み、 前記ゲート絶縁膜除去工程のゲート絶縁膜除去必要量は
LSS理論に基づいて高濃度半導体層への添加量と低濃
度半導体層への添加量、及び打ち込みエネルギー、及び
不純物イオン種に応じて定められることを特徴とする薄
膜半導体装置の製造方法。
1. A step of forming a semiconductor layer on a substrate having at least a surface made of an insulating material; and forming a gate insulating film on the semiconductor layer and then forming a gate electrode on the gate insulating film. Forming a resist mask so as to cover the end of the gate electrode, removing a necessary amount of the gate insulating film on the semiconductor layer, a region covered with the resist mask is a thick gate insulating film region, A step of removing a region not covered by the resist mask into a thin gate insulating film region; and a step of removing impurity ions through the thick gate insulating film region and the thin gate insulating film region and using the gate electrode as a mask. Is introduced into the semiconductor layer so that the semiconductor layer corresponding to the thick gate insulating film region is a low-concentration semiconductor layer, and the semiconductor layer corresponding to the thin gate insulating film region is formed. Forming a source region and a drain region comprising the low-concentration semiconductor layer and the high-concentration semiconductor layer using the semiconductor layer as a high-concentration semiconductor layer, and removing the gate insulating film in the gate-insulating film removing step. A method for manufacturing a thin film semiconductor device, characterized in that the required amount is determined according to the amount of addition to the high concentration semiconductor layer and the amount of addition to the low concentration semiconductor layer, implantation energy, and impurity ion species based on the LSS theory. .
JP21707091A1991-08-281991-08-28 Method for manufacturing semiconductor deviceExpired - LifetimeJP3345756B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP21707091AJP3345756B2 (en)1991-08-281991-08-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP21707091AJP3345756B2 (en)1991-08-281991-08-28 Method for manufacturing semiconductor device

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
JP2001117186ADivisionJP3417402B2 (en)2001-04-162001-04-16 Method for manufacturing thin film semiconductor device

Publications (2)

Publication NumberPublication Date
JPH0555255A JPH0555255A (en)1993-03-05
JP3345756B2true JP3345756B2 (en)2002-11-18

Family

ID=16698366

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP21707091AExpired - LifetimeJP3345756B2 (en)1991-08-281991-08-28 Method for manufacturing semiconductor device

Country Status (1)

CountryLink
JP (1)JP3345756B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TW297142B (en)*1993-09-201997-02-01Handotai Energy Kenkyusho Kk
JP5323604B2 (en)*2009-07-302013-10-23株式会社ジャパンディスプレイ Display device and manufacturing method thereof
CN103472646B (en)*2013-08-302016-08-31京东方科技集团股份有限公司A kind of array base palte and preparation method thereof and display device

Also Published As

Publication numberPublication date
JPH0555255A (en)1993-03-05

Similar Documents

PublicationPublication DateTitle
JP3398453B2 (en) Method for manufacturing thin film transistor
US6599783B2 (en)Method of fabricating a thin film including a protective layer as a mask
US7122833B2 (en)Semiconductor integrated circuit and method of fabricating same
JPH05142577A (en)Matrix circuit driving device
JP4017886B2 (en) Thin film transistor device and manufacturing method thereof
JP3123252B2 (en) Active matrix display
JP3345756B2 (en) Method for manufacturing semiconductor device
JP2003149677A (en) Thin film transistor array substrate
JP3417402B2 (en) Method for manufacturing thin film semiconductor device
JP3398665B2 (en) Method for manufacturing thin film transistor
US6627489B1 (en)Method of producing CMOS transistors and related devices
JP3567130B2 (en) Method for manufacturing thin film transistor
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JP2002033480A (en) Thin film transistor, display element, projection display device, and method of manufacturing display element
JP3331642B2 (en) Method for manufacturing thin film transistor
JP3466165B2 (en) Method of manufacturing thin film transistor having LDD
JP2000124461A (en) Thin film transistor and method of manufacturing the same
JP2004303791A (en)Thin film transistor structure and its manufacturing method
JP3097229B2 (en) Thin film transistor element array and method of manufacturing the same
JPH07142739A (en) Method for manufacturing polycrystalline silicon thin film transistor
JP3221777B2 (en) Manufacturing method of thin film transistor
JP2001284597A (en) Semiconductor device and manufacturing method thereof
JP2716035B2 (en) Thin film field effect transistor
JP3362026B2 (en) Semiconductor device
JP2001345447A (en) Thin film transistor, liquid crystal display device, semiconductor device, and manufacturing method thereof

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080906

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080906

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090906

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090906

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100906

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100906

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110906

Year of fee payment:9

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp