Movatterモバイル変換


[0]ホーム

URL:


JP3250438B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device

Info

Publication number
JP3250438B2
JP3250438B2JP31784495AJP31784495AJP3250438B2JP 3250438 B2JP3250438 B2JP 3250438B2JP 31784495 AJP31784495 AJP 31784495AJP 31784495 AJP31784495 AJP 31784495AJP 3250438 B2JP3250438 B2JP 3250438B2
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31784495A
Other languages
Japanese (ja)
Other versions
JPH08330629A (en
Inventor
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia CorpfiledCriticalNichia Corp
Priority to JP31784495ApriorityCriticalpatent/JP3250438B2/en
Publication of JPH08330629ApublicationCriticalpatent/JPH08330629A/en
Application grantedgrantedCritical
Publication of JP3250438B2publicationCriticalpatent/JP3250438B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード(LE
D)、レーザダイオード(LD)等に使用される窒化物
半導体(InaAlbGa1-a-bN、0≦a、0≦b、a+b
≦1)よりなる発光素子に係り、特にn型窒化物半導体
層とp型窒化物半導体層との間に活性層を有するダブル
へテロ構造の窒化物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (LE).
D), a nitride semiconductor used in the laser diode (LD), etc.(In a Al b Ga 1- ab N, 0 ≦ a, 0 ≦ b, a + b
≦ 1) The present invention relates to a light emitting device having a double hetero structure having an active layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.

【0002】[0002]

【従来の技術】紫外〜赤色に発光するLED、LD等の
発光素子の材料として窒化物半導体(InaAlbGa
1-a-bN、0≦a、0≦b、a+b≦1)が知られている。
我々はこの半導体材料を用いて、1993年11月に光
度1cdの青色LEDを発表し、1994年4月に光度
2cdの青緑色LEDを発表し、1994年10月には
光度2cdの青色LEDを発表した。これらのLEDは
全て製品化されて、現在ディスプレイ、道路信号等の実
用に供されている。
BACKGROUND ART LED that emits ultraviolet to red, nitride semiconductor as a material of the light emitting element LD, etc. (Ina Alb Ga
1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1) are known.
Using this semiconductor material, we announced a blue LED with a luminance of 1 cd in November 1993, a blue-green LED with a luminance of 2 cd in April 1994, and a blue LED with a luminance of 2 cd in October 1994. Announced. These LEDs have all been commercialized and are currently being put to practical use in displays, road signals, and the like.

【0003】図2に窒化物半導体よりなる従来の青色、
青緑色LEDの発光チップの構造を示す。基本的には、
基板21の上に、GaNよりなるバッファ層22、n型
GaNよりなるn型コンタクト層23と、n型AlGa
Nよりなるn型クラッド層24と、n型InGaNより
なる活性層25と、p型AlGaNよりなるp型クラッ
ド層26と、p型GaNよりなるp型コンタクト層27
とが順に積層されたダブルへテロ構造を有している。活
性層25のn型InGaNにはSi、Ge等のドナー不
純物および/またはZn、Mg等のアクセプター不純物
がドープされており、LED素子の発光波長は、その活
性層のInGaNのIn組成比を変更するか、若しくは
活性層にドープする不純物の種類を変更することで、紫
外〜赤色まで変化させることが可能となっている。現
在、活性層にドナー不純物とアクセプター不純物とが同
時にドープされた発光波長510nm以下のLEDが実
用化されている。
FIG. 2 shows a conventional blue color made of a nitride semiconductor.
1 shows a structure of a light emitting chip of a blue-green LED. Basically,
A buffer layer 22 made of GaN, an n-type contact layer 23 made of n-type GaN, and an n-type AlGa
N-type cladding layer 24 of N, active layer 25 of n-type InGaN, p-type cladding layer 26 of p-type AlGaN, and p-type contact layer 27 of p-type GaN
And have a double heterostructure in which layers are sequentially stacked. The n-type InGaN of the active layer 25 is doped with a donor impurity such as Si and Ge and / or an acceptor impurity such as Zn and Mg. The emission wavelength of the LED element changes the In composition ratio of InGaN of the active layer. Alternatively, by changing the type of impurities to be doped into the active layer, it is possible to change from ultraviolet to red. At present, an LED having an emission wavelength of 510 nm or less in which an active layer is simultaneously doped with a donor impurity and an acceptor impurity has been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】従来の青色LEDは順
方向電流(If)20mAで順方向電圧(Vf)が3.
6V〜3.8V、発光出力は3mW近くあり、SiCよ
りなる青色LEDと比較して20倍以上の発光出力を有
している。順方向電圧が低いのはp−n接合を形成して
いるためであり、発光出力が高いのはダブルへテロ構造
を実現しているためである。このように、現在実用化さ
れているLEDは非常に性能の高いものであるが、さら
に高性能なLED、LDのような発光素子が求められて
いる。例えばLEDのVfは前記のように3.6V〜
3.8Vという低い値を達成しているが、LDのように
電極幅や電極面積の小さい発光素子を実現するために
は、さらにVfを低下させる必要がある。
A conventional blue LED has a forward current (If) of 20 mA and a forward voltage (Vf) of 3.
6 V to 3.8 V, the light emission output is close to 3 mW, and the light emission output is 20 times or more as compared with the blue LED made of SiC. The forward voltage is low because a pn junction is formed, and the light emission output is high because a double heterostructure is realized. As described above, the LEDs currently in practical use have extremely high performance, but light emitting elements such as LEDs and LDs with higher performance are required. For example, the Vf of the LED is 3.6 V to
Although a low value of 3.8 V has been achieved, it is necessary to further reduce Vf in order to realize a light-emitting element having a small electrode width and a small electrode area such as an LD.

【0005】従って、本発明はこのような事情を鑑みて
成されたものであり、その目的とするところは、ダブル
へテロ構造の窒化物半導体よりなる発光素子の性能をさ
らに向上させることにあり、具体的には、発光素子のV
fをさらに低下させることにより発光効率に優れた素子
を提供することにある。
Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to further improve the performance of a light emitting device made of a nitride semiconductor having a double hetero structure. Specifically, V of the light emitting element
An object of the present invention is to provide a device having excellent luminous efficiency by further reducing f.

【0006】[0006]

【課題を解決するための手段】本発明の発光素子は、n
型窒化物半導体層とp型窒化物半導体層との間にIn
Ga1−xN(0≦X<1)よりなる井戸層のみの単一
量子井戸構造、若しくはInGa1−xN(0<X<
1)よりなる井戸層と、InGa1−YN(0≦Y<
1、Y<X)よりなる障壁層との多重量子井戸構造のIn
を含む活性層を有し、前記p型窒化物半導体層表面に正
電極が形成されてなる窒化物半導体発光素子において、
前記p型窒化物半導体層は正電極と接する側から順にア
クセプター不純物濃度の高い第一のp型窒化物半導体層
と、第一のp型窒化物半導体層よりもアクセプター不純
物の低い第二のp型窒化物半導体層とを含み、且つ前記
活性層はInを含むn型の窒化物半導体上に形成されダ
ブルへテロ構造を構成することを特徴とする。
The light emitting device according to the present invention has n
Inx between the type nitride semiconductor layer and a p-type nitride semiconductor layer
A single quantum well structure having only a well layer made of Ga1-x N (0 ≦ X <1) or Inx Ga1-x N (0 <X <
1) and the well layer madeof, In Y Ga 1-Y N (0 ≦ Y <
1, Y <X) with a barrier layer of multiple quantum well structure
A nitride semiconductor light-emitting device having an active layer containing: a positive electrode formed on the surface of the p-type nitride semiconductor layer;
The p-type nitride semiconductor layer has a first p-type nitride semiconductor layer having a higher acceptor impurity concentration and a second p-type nitride semiconductor layer having a lower acceptor impurity than the first p-type nitride semiconductor layer in order from the side in contact with the positive electrode. And the active layer is formed on an n-type nitride semiconductor containing In to form a double hetero structure.

【0007】さらに前記発光素子において、第一のp型
窒化物半導体の膜厚は0.1μm以下、さらに好ましく
は500オングストローム以下、最も好ましくは200
オングストローム以下に調整する。0.1μmよりも厚
いと結晶自体に不純物による結晶欠陥が多くなり、逆に
Vfが高くなる傾向にある。
Further, in the light emitting device, the thickness of the first p-type nitride semiconductor is 0.1 μm or less, more preferably 500 Å or less, and most preferably 200 Å or less.
Adjust to less than Angstrom. If the thickness is larger than 0.1 μm, crystal defects due to impurities in the crystal itself increase, and conversely, Vf tends to increase.

【0008】[0008]

【作用】p層を高キャリア濃度のp+型と低キャリア濃
度のp型とする技術が特開平6−151964号、特開
平6−151965号、特開平6−151966号等に
記載されている。これらの公報に開示される発光素子は
GaNのホモ接合により発光する。このためp−n接合
界面を基準として、この接合界面より遠ざかる方向にn
型GaN層を低キャリア濃度のn型と高キャリア濃度の
n+型とし、p型GaNを低キャリア濃度のp型と、高
キャリア濃度のp+型としている。そしてこれら二段の
キャリア濃度よりなるn層とp層とを組み合わせること
により、発光素子の長寿命と発光輝度の向上を図ってい
る。
A technique for forming the p layer into a p + type with a high carrier concentration and a p type with a low carrier concentration is described in JP-A-6-151964, JP-A-6-151965 and JP-A-6-151966. . The light emitting devices disclosed in these publications emit light by a homojunction of GaN. Therefore, based on the pn junction interface, n
The p-type GaN layers are of a low carrier concentration n-type and a high carrier concentration n + type, and the p-type GaN is of a low carrier concentration p-type and a high carrier concentration p + type. By combining the n-layer and the p-layer having the two-stage carrier concentration, long life of the light-emitting element and improvement of the light emission luminance are achieved.

【0009】一方、本発明の発光素子が前記公報と異な
るところは、ダブルへテロ構造の発光素子のp型層をア
クセプター不純物濃度の低い第二のp型層と、アクセプ
ター不純物濃度の高い第一のp型層とにしている点であ
る。ダブルへテロ構造の発光素子はホモ接合の発光素子
に比較して10倍以上発光出力が高い。従って、前記公
報のようにp型層をp+型とp型との組み合わせにして
も、出力の増加はほとんどない。むしろ本発明では発光
出力よりも、ダブルへテロ構造のVfを低下させ、発光
効率を改善している点が従来の技術と異なる。また、ア
クセプター不純物に関して、一般にキャリア濃度はアク
セプター不純物の濃度とおおよそ比例しているが、窒化
物半導体の場合、半導体層にアクセプター不純物をドー
プした後、400℃以上でアニーリングを行うことによ
り完全なp型として作用する。このためホールキャリア
濃度はアニーリング状態、アニール温度等により変動す
ることが多く、素子構造とした時の正確なキャリア濃度
を測定することは困難であるので、本発明ではアクセプ
ター不純物濃度で発光素子を特徴づけている。
On the other hand, the light emitting device of the present invention is different from the above publication in that a p-type layer of a light emitting device having a double hetero structure has a second p-type layer having a low acceptor impurity concentration and a first p-type layer having a high acceptor impurity concentration. Is a p-type layer. A light emitting element having a double heterostructure has a light emission output that is at least 10 times higher than a light emitting element having a homojunction. Therefore, even if the p-type layer is a combination of the p + -type and the p-type as in the above publication, there is almost no increase in output. Rather, the present invention differs from the prior art in that the Vf of the double heterostructure is reduced rather than the light emission output to improve the light emission efficiency. In addition, regarding the acceptor impurity, the carrier concentration is generally approximately proportional to the concentration of the acceptor impurity. However, in the case of a nitride semiconductor, after the semiconductor layer is doped with the acceptor impurity, annealing is performed at 400 ° C. or more to complete the p-type. Acts as a type. For this reason, the hole carrier concentration often fluctuates depending on the annealing state, the annealing temperature, and the like, and it is difficult to accurately measure the carrier concentration in the device structure. Therefore, in the present invention, the light emitting device is characterized by the acceptor impurity concentration. I have.

【0010】次に、本発明の発光素子は従来のようにp
−n接合界面を基準としているのではなく、正電極の接
触面を基準とし、この正電極と接する面を高不純物濃度
の第一のp型層として、その第一のp型層に接して低不
純物濃度の第二のp型層としている点で異なる。正電極
に接する層を基準としてp層を構成することにより、V
fを低下させることができる。
Next, the light emitting device of the present invention has a p
Rather than using the n-junction interface as a reference, the contact surface of the positive electrode is used as a reference, and the surface in contact with the positive electrode is used as a first p-type layer having a high impurity concentration and is in contact with the first p-type layer. The difference is that the second p-type layer has a low impurity concentration. By configuring the p-layer based on the layer in contact with the positive electrode, V
f can be reduced.

【0011】さらに前記公報に開示される発光素子と、
本発明の発光素子とが最も異なる点はp+層の膜厚であ
る。つまり、前記公報では高キャリア濃度のp+型の半
導体層の膜厚が0.2μm以上なければ発光素子の発光
出力が低下するが、本発明の発光素子では高不純物濃度
の第一のp型層の膜厚を0.2μm以上にすると、Vf
が高くなる。これは不純物ドープによる結晶性の悪化に
よるものである。逆に本発明の発光素子では高不純物濃
度の第一のp型層の膜厚は0.1μm以下であることが
好ましい。0.1μm以下とすることにより、効果的に
発光素子のVfを低下させることが可能である。
Further, a light emitting device disclosed in the above publication,
The most different point from the light emitting element of the present invention is the thickness of the p + layer. In other words, in the above publication, the light emitting output of the light emitting element is reduced unless the thickness of the high carrier concentration p + type semiconductor layer is 0.2 μm or more. When the thickness of the layer is 0.2 μm or more, Vf
Will be higher. This is due to deterioration of crystallinity due to impurity doping. Conversely, in the light emitting device of the present invention, the thickness of the first p-type layer having a high impurity concentration is preferably 0.1 μm or less. When the thickness is 0.1 μm or less, Vf of the light emitting element can be effectively reduced.

【0012】[0012]

【実施例】[実施例1] 以下、図面を元に本発明の発光素子を詳説する。図1は
本発明の一実施例の発光素子の構造を示す模式断面図で
ある。この発光素子は基板1の上にバッファ層2、n型
コンタクト層3、n型クラッド層4、活性層5、p型ク
ラッド層6、アクセプター不純物濃度の低い第二のp型
コンタクト層72、アクセプター不純物濃度が高い第一
のp型コンタクト層71を順に積層した構造を示してい
る。さらに第一のp型コンタクト層71には正電極9が
形成され、n型コンタクト層3には負電極8が形成され
ている。
[Example 1] Hereinafter, a light emitting device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention. This light-emitting device has a buffer layer 2, an n-type contact layer 3, an n-type cladding layer 4, an active layer 5, a p-type cladding layer 6, a second p-type contact layer 72 having a low acceptor impurity concentration, an acceptor This shows a structure in which first p-type contact layers 71 having a high impurity concentration are sequentially stacked. Further, a positive electrode 9 is formed on the first p-type contact layer 71, and a negative electrode 8 is formed on the n-type contact layer 3.

【0013】基板1にはサファイア(A面、C面、R面
を含む)の他、SiC(6H、4Hを含む)、ZnO、
Si、GaAsのような窒化物半導体と格子不整合の基
板、またNGO(ネオジウムガリウム酸化物)のような
酸化物単結晶よりなる窒化物半導体と格子定数の近い基
板等を使用することができる。
The substrate 1 includes sapphire (including A-plane, C-plane and R-plane), SiC (including 6H and 4H), ZnO,
A substrate having a lattice mismatch with a nitride semiconductor such as Si or GaAs, a substrate having a lattice constant similar to that of a nitride semiconductor made of an oxide single crystal such as NGO (neodymium gallium oxide), or the like can be used.

【0014】バッファ層2はGaN、AlN、GaAl
N等を例えば50オングストローム〜0.1μmの膜厚
で成長させることが好ましく、例えばMOVPE法によ
ると400℃〜600℃の低温で成長させることにより
形成できる。バッファ層2は基板1と窒化物半導体との
格子不整合を緩和するために設けられるが、SiC、Z
nOのような窒化物半導体と格子定数が近い基板、窒化
物半導体と格子整合した基板を使用する際にはバッファ
層が形成されないこともある。
The buffer layer 2 is made of GaN, AlN, GaAl
It is preferable to grow N or the like at a film thickness of, for example, 50 Å to 0.1 μm. For example, it can be formed by growing at a low temperature of 400 ° C. to 600 ° C. according to the MOVPE method. The buffer layer 2 is provided to alleviate lattice mismatch between the substrate 1 and the nitride semiconductor.
When a substrate such as nO having a lattice constant close to that of a nitride semiconductor or a substrate lattice-matched with a nitride semiconductor is used, a buffer layer may not be formed.

【0015】n型コンタクト層3は負電極8を形成する
層であり、GaN、AlGaN、InAlGaN等を例
えば1μm〜10μmの膜厚で成長させることが好まし
く、その中でもGaNを選択することにより負電極の材
料と好ましいオーミック接触を得ることができる。負電
極8の材料としては例えばTiとAl、TiとAu等を
好ましく用いることができる。
The n-type contact layer 3 is a layer for forming the negative electrode 8, and it is preferable to grow GaN, AlGaN, InAlGaN, or the like to a thickness of, for example, 1 μm to 10 μm. And a preferable ohmic contact with the above material can be obtained. As the material of the negative electrode 8, for example, Ti and Al, Ti and Au, or the like can be preferably used.

【0016】n型クラッド層4はGaN、AlGaN、
InAlGaN等を例えば500オングストローム〜
0.5μmの膜厚で成長させることが好ましく、その中
でもGaN、AlGaNを選択することにより結晶性の
良い層が得られる。また、n型クラッド層4、n型コン
タクト層3のいずれかを省略することも可能である。ど
ちらかを省略すると、残った層がn型クラッド層および
n型コンタクト層として作用する。
The n-type cladding layer 4 is made of GaN, AlGaN,
InAlGaN or the like is, for example, 500 angstroms or more.
It is preferable to grow the layer with a thickness of 0.5 μm. Among them, a layer having good crystallinity can be obtained by selecting GaN or AlGaN. Further, either the n-type cladding layer 4 or the n-type contact layer 3 can be omitted. If either is omitted, the remaining layers act as an n-type cladding layer and an n-type contact layer.

【0017】活性層5はクラッド層よりもバンドギャッ
プエネルギーが小さいInGaN、InAlGaN、A
lGaN等の窒化物半導体であれば良く、特に所望のバ
ンドギャップによってインジウムの組成比を適宜変更し
たInGaNにすることが好ましい。また活性層5を例
えばInGaN/GaN、InGaN/InGaN(組
成が異なる)等の組み合わせで、それぞれの薄膜を積層
した多重量子井戸構造としてもよい。単一量子井戸構
造、多重量子井戸構造いずれの活性層においても、活性
層はn型、p型いずれでもよいが、特にノンドープ(無
添加)とすることにより半値幅の狭いバンド間発光、励
起子発光、あるいは量子井戸準位発光が得られ、LED
素子、LD素子を実現する上で特に好ましい。活性層を
単一量子井戸(SQW:single quantum well)構造若
しくは多重量子井戸(MQW:multiquantum well)構
造とすると非常に出力の高い発光素子が得られる。SQ
W、MQWとはノンドープのInGaNによる量子準位
間の発光が得られる活性層の構造を指し、例えばSQW
では活性層を単一組成のInXGa1-XN(0≦X<1)
で構成した層であり、InXGa1-XNの膜厚を100オ
ングストローム以下、さらに好ましくは70オングスト
ローム以下とすることにより量子準位間の強い発光が得
られる。またMQWは組成比の異なるInXGa1-X
(この場合X=0、X=1を含む)の薄膜を複数積層した
多層膜とする。このように活性層をSQW、MQWとす
ることにより量子準位間発光で、約365nm〜660
nmまでの発光が得られる。量子構造の井戸層の厚さと
しては、前記のように70オングストローム以下が好ま
しい。多重量子井戸構造では井戸層はInXGa1-XNで
構成し、障壁層は同じくInYGa1-YN(Y<X、この場
合Y=0を含む)で構成することが望ましい。特に好ま
しくは井戸層と障壁層をInGaNで形成すると同一温
度で成長できるので結晶性のよい活性層が得られる。障
壁層の膜厚は150オングストローム以下、さらに好ま
しくは120オングストローム以下にすると高出力な発
光素子が得られる。また、活性層5にドナー不純物およ
び/またはアクセプター不純物をドープしてもよい。不
純物をドープした活性層の結晶性がノンドープと同じで
あれば、ドナー不純物をドープするとノンドープのもの
に比べてバンド間発光強度をさらに強くすることができ
る。アクセプター不純物をドープするとバンド間発光の
ピーク波長よりも約0.5eV低エネルギー側にピーク
波長を持っていくことができるが、半値幅は広くなる。
アクセプター不純物とドナー不純物を同時にドープする
と、アクセプター不純物のみドープした活性層の発光強
度をさらに大きくすることができる。特にアクセプター
不純物をドープした活性層を実現する場合、活性層の導
電型はSi等のドナー不純物を同時にドープしてn型と
することが好ましい。活性層5は例えば数オングストロ
ーム〜0.5μmの膜厚で成長させることができる。但
し、活性層を単一量子井戸構造若しくは多重量子井戸構
造として、活性層を構成する窒化物半導体層の膜厚を薄
くするときはn型クラッド層4と活性層5との間にIn
を含むn型の窒化物半導体よりなる第二のn型クラッド
層40を形成することが望ましい。
The active layer 5 has a band gap energy smaller than that of the cladding layer.
Any nitride semiconductor such as lGaN may be used, and it is particularly preferable to use InGaN in which the composition ratio of indium is appropriately changed according to a desired band gap. The active layer 5 may have a multiple quantum well structure in which respective thin films are stacked, for example, by a combination of InGaN / GaN, InGaN / InGaN (different in composition), or the like. In either the single quantum well structure or the multiple quantum well structure, the active layer may be either an n-type or a p-type. Light emission or quantum well level light emission
It is particularly preferable for realizing an element and an LD element. When the active layer has a single quantum well (SQW: single quantum well) structure or a multiple quantum well (MQW: multiquantum well) structure, a light-emitting element having an extremely high output can be obtained. SQ
W and MQW indicate the structure of an active layer in which light emission between quantum levels by non-doped InGaN is obtained, for example, SQW
In the above, the active layer is made of a single composition Inx Ga1 -xN (0 ≦ X <1).
By setting the thickness of Inx Ga1 -xN to 100 Å or less, more preferably 70 Å or less, strong light emission between quantum levels can be obtained. In addition, MQW has Inx Ga1 -xN having different composition ratios.
(In this case, X = 0 and X = 1 are included). When the active layer is made of SQW or MQW in this way, light emission between quantum levels of about 365 nm to
Light emission up to nm is obtained. As described above, the thickness of the well layer of the quantum structure is preferably 70 Å or less. Well layer is a multiple quantum well structure composed of InX Ga1-X N, the barrier layer alsoIn Y Ga 1-Y N ( Y <X, in this case including the Y = 0) it is desirable to configure at. Particularly preferably, when the well layer and the barrier layer are formed of InGaN, they can be grown at the same temperature, so that an active layer having good crystallinity can be obtained. When the thickness of the barrier layer is 150 Å or less, more preferably 120 Å or less, a high-output light-emitting element can be obtained. Further, the active layer 5 may be doped with a donor impurity and / or an acceptor impurity. If the crystallinity of the active layer doped with the impurity is the same as that of the non-doped layer, doping with the donor impurity can further increase the interband emission intensity as compared with the non-doped one. When an acceptor impurity is doped, the peak wavelength can be brought to a lower energy side by about 0.5 eV than the peak wavelength of the interband emission, but the half width becomes wider.
When the acceptor impurity and the donor impurity are simultaneously doped, the emission intensity of the active layer doped only with the acceptor impurity can be further increased. In particular, when an active layer doped with an acceptor impurity is realized, the conductivity type of the active layer is preferably n-type by simultaneously doping a donor impurity such as Si. The active layer 5 can be grown to a thickness of, for example, several angstroms to 0.5 μm. However, when the active layer has a single quantum well structure or a multiple quantum well structure and the thickness of the nitride semiconductor layer constituting the active layer is reduced, the In between the n-type cladding layer 4 and the active layer 5 is formed.
It is desirable to form the second n-type cladding layer 40 made of an n-type nitride semiconductor containing:

【0018】p型クラッド層6はGaN、AlGaN、
InAlGaN等を例えば500オングストローム〜
0.5μmの膜厚で成長させることが好ましく、その中
でもGaN、AlGaNを選択することにより結晶性の
良い層が得られる。なおこのp型クラッド層6を省略す
ることも可能である。
The p-type cladding layer 6 is made of GaN, AlGaN,
InAlGaN or the like is, for example, 500 angstroms or more.
It is preferable to grow the layer with a thickness of 0.5 μm. Among them, a layer having good crystallinity can be obtained by selecting GaN or AlGaN. The p-type cladding layer 6 can be omitted.

【0019】次に、本発明の特徴であるコンタクト層7
1、72について述べる。このコンタクト層71、72
は正電極9を形成して、正電極9と好ましいオーミック
接触を得る層であり完全なオーミックに近ければ近いほ
ど、発光素子のVfを低下させることができる。そのた
め、このコンタクト層は、正電極9に接する層をアクセ
プター不純物濃度が高い第一の窒化物半導体層である第
一のp型コンタクト層71と、その第一のp型コンタク
ト層よりもアクセプター不純物濃度が低い第二の窒化物
半導体である第二のp型コンタクト層72とで構成され
ている。
Next, the contact layer 7 which is a feature of the present invention is described.
1 and 72 will be described. These contact layers 71 and 72
Is a layer that forms a positive electrode 9 and obtains a favorable ohmic contact with the positive electrode 9. The closer to a perfect ohmic, the lower the Vf of the light emitting element can be. Therefore, this contact layer includes a first p-type contact layer 71 that is a first nitride semiconductor layer having a high acceptor impurity concentration and a layer that is in contact with the positive electrode 9 with an acceptor impurity higher than the first p-type contact layer. And a second p-type contact layer 72 which is a second nitride semiconductor having a low concentration.

【0020】第一のp型コンタクト層71、および第二
のp型コンタクト層72は同一組成の窒化物半導体で形
成することが望ましく、例えばGaN、AlGaN、I
nAlGaN等を成長させることができる。その中でも
GaNを選択することにより正電極9の材料と好ましい
オーミック接触を得ることができる。
The first p-type contact layer 71 and the second p-type contact layer 72 are desirably formed of nitride semiconductors having the same composition. For example, GaN, AlGaN, I
nAlGaN or the like can be grown. Among them, by selecting GaN, a preferable ohmic contact with the material of the positive electrode 9 can be obtained.

【0021】高濃度の第一のp型コンタクト層71のア
クセプター不純物濃度は1×1017〜5×1021/cm3
に調整することが望ましい。1×1017/cm3よりも低
いと、電極とオーミック接触を得ることが難しく、5×
1021/cm3よりも高いと不純物により窒化物半導体の
結晶性が悪くなり、Vfが高くなる傾向にある。
The high-concentration first p-type contact layer 71 has an acceptor impurity concentration of 1 × 1017 to 5 × 1021 / cm3.
It is desirable to adjust to. If it is lower than 1 × 1017 / cm3 , it is difficult to obtain ohmic contact with the electrode, and it is difficult to obtain 5 ×
If it is higher than 1021 / cm3, the crystallinity of the nitride semiconductor will be deteriorated due to impurities, and Vf tends to increase.

【0022】一方、低濃度の第二のp型コンタクト層7
2のアクセプター不純物濃度は2×1015〜5×1020
/cm3の範囲に調整することが望ましい。2×1015/c
m3よりも低いと、p型としての抵抗が高くなるのでVf
が高くなる傾向にある。5×1020/cm3よりも高いと
高濃度の第一のp型コンタクト層71とのバランスが取
りにくく、Vfの向上があまり望めなくなる傾向にあ
る。
On the other hand, the low concentration second p-type contact layer 7
2 has an acceptor impurity concentration of 2 × 1015 to 5 × 1020.
/ Cm3 is desirable. 2 × 1015 / c
Below the m3, the resistance of the p-type is high Vf
Tend to be higher. If it is higher than 5 × 1020 / cm3, it is difficult to balance with the first p-type contact layer 71 having a high concentration, and the improvement of Vf tends to be hardly expected.

【0023】コンタクト層71、72のホールキャリア
濃度は前にも述べたように、窒化物半導体にドープする
アクセプター不純物の濃度を変化させるか、あるいはア
クセプター不純物をドープしたコンタクト層71、72
を、400℃以上でアニーリングすることにより調整で
きるが、正確な値を測定することは困難である。おおよ
その値としては、前記アクセプター不純物濃度で400
℃以上のアニールを行うことにより、例えばホールキャ
リア濃度およそ1×1016〜5×1019/cm3の第一の
p型コンタクト層71が得られ、同じくホールキャリア
濃度およそ1×1015〜1×1019/cm3の第二のp型
コンタクト層72が得られる。
As described above, the hole carrier concentration of the contact layers 71 and 72 changes the concentration of the acceptor impurity doped into the nitride semiconductor or the contact layers 71 and 72 doped with the acceptor impurity.
Can be adjusted by annealing at 400 ° C. or higher, but it is difficult to measure an accurate value. As an approximate value, the acceptor impurity concentration is 400
By performing annealing at a temperature of not less than C., for example, the first p-type contact layer 71 having a hole carrier concentration of about 1 × 1016 to 5 × 1019 / cm3 is obtained, and the hole carrier concentration is also about 1 × 1015 to 1 × 1019 / cm3 . A second p-type contact layer 72 of × 1019 / cm3 is obtained.

【0024】第一のp型コンタクト層71と好ましいオ
ーミックが得られる正電極9の材料としてはNiおよび
Auを含む金属を用いることができる。NiおよびAu
を含む正電極は特にp型GaNと好ましいオーミックを
得ることができる。
As a material of the first p-type contact layer 71 and the positive electrode 9 that can obtain a preferable ohmic, a metal containing Ni and Au can be used. Ni and Au
The positive electrode containing in particular can obtain a preferable ohmic with p-type GaN.

【0025】本発明の発光素子は例えばMOVPE(有
機金属気相成長法)、MBE(分子線気相成長法)、H
DVPE(ハイドライド気相成長法)等の気相成長法を
用いて、基板上にInaAlbGa1-a-bN(0≦a、0≦
b、a+b≦1)をn型、p型等の導電型で積層すること
によって得られる。n型の窒化物半導体はノンドープの
状態でも得られるが、Si、Ge、S等のドナー不純物
を結晶成長中に半導体層中に導入することによって得ら
れる。
The light emitting device of the present invention can be manufactured by MOVPE (metal organic chemical vapor deposition), MBE (molecular beam chemical vapor deposition), H
DVPE by a vapor deposition method (hydride vapor phase epitaxy) or the like, In the substratea Al b Ga 1-ab N (0 ≦ a, 0 ≦
b, a + b ≦ 1) can be obtained by laminating n-type, p-type and other conductive types. An n-type nitride semiconductor can be obtained even in a non-doped state, but can be obtained by introducing a donor impurity such as Si, Ge, or S into a semiconductor layer during crystal growth.

【0026】一方、p型の窒化物半導体層はMg、Z
n、Cd、Ca、Be、C等のアクセプター不純物を同
じく結晶成長中に半導体層中に導入することにより得ら
れるが、前にも述べたように、アクセプター不純物導入
後400℃以上でアニーリングを行うことにより、さら
に好ましいp型が得られる。
On the other hand, the p-type nitride semiconductor layer is made of Mg, Z
It is also obtained by introducing an acceptor impurity such as n, Cd, Ca, Be, or C into the semiconductor layer during the crystal growth. As described above, annealing is performed at 400 ° C. or more after the introduction of the acceptor impurity. Thereby, a more preferable p-type is obtained.

【0027】次に図1の発光素子を具体的に述べる。以
下の実施例はMOVPE法による成長方法を示してい
る。
Next, the light emitting device shown in FIG. 1 will be specifically described. The following example shows a growth method by the MOVPE method.

【0028】まず、TMG(トリメチルガリウム)とN
3とを用い、反応容器にセットしたサファイア基板1
のC面に500℃でGaNよりなるバッファ層2を50
0オングストロームの膜厚で成長させる。
First, TMG (trimethylgallium) and N
Sapphire substrate 1 set in a reaction vessel using H3
Buffer layer 2 made of GaN at 500 ° C.
It is grown to a thickness of 0 Å.

【0029】次に温度を1050℃まで上げ、TMG、
NH3に加えシランガスを用い、Siドープn型GaN
よりなるn型コンタクト層23を4μmの膜厚で成長さ
せる。
Next, the temperature is increased to 1050 ° C., and TMG,
Si-doped n-type GaN using silane gas in addition to NH3
An n-type contact layer 23 is grown to a thickness of 4 μm.

【0030】続いて原料ガスにTMA(トリメチルアル
ミニウム)を加え、同じく1050℃でSiドープn型
Al0.3Ga0.7層よりなるn型クラッド層4を0.1
μmの膜厚で成長させる。
Subsequently, TMA (trimethylaluminum) was added to the raw material gas, and the Si-doped n-type was
The n-type cladding layer 4 made ofAl0.3Ga0.7N
It is grown to a thickness of μm.

【0031】次に温度を800℃に下げ、TMG、TM
I(トリメチルインジウム)、NH3、シランガス、D
EZ(ジエチルジンク)を用い、Si+Znドープn型
In0.05Ga0.95よりなる活性層5を0.1μmの膜
厚で成長させる。
Next, the temperature was lowered to 800 ° C., and TMG, TM
I (trimethylindium), NH3 , silane gas, D
Si + Zn doped n-type using EZ (diethyl zinc)
An active layer 5 ofIn0.05Ga0.95N is grown to a thickness of 0.1 μm.

【0032】次に温度を1050℃に上げ、TMG、T
MA、NH3、Cp2Mg(シクロペンタジエニルマグネ
シウム)を用い、Mgドープp型Al0.3Ga0.7より
なるp型クラッド層6を0.1μmの膜厚で成長させ
る。
Next, the temperature was raised to 1050 ° C., and TMG, T
Using MA, NH3 , and Cp 2 Mg (cyclopentadienyl magnesium), a p-type cladding layer 6 made of Mg-doped p-typeAl0.3Ga0.7N is grown to a thickness of 0.1 μm.

【0033】次に1050℃でTMG、NH3、Cp2M
gを用い、Mgドープp型GaNよりなる第二のp型コ
ンタクト層72を0.5μmの膜厚で成長させる。なお
この第二のp型コンタクト層のMg濃度は1×1018
cm3であった。
Next, at 1050 ° C., TMG, NH3 , Cp2M
Using g, a second p-type contact layer 72 of Mg-doped p-type GaN is grown to a thickness of 0.5 μm. The Mg concentration of the second p-type contact layer is 1 × 1018 /
It was cm3.

【0034】続いて1050℃でCp2Mgの流量を多
くして、Mgドープp型GaNよりなる第一のp型コン
タクト層71を200オングストロームの膜厚で成長さ
せる。なおこの第一のp型コンタクト層71のMg濃度
は2×1019/cm3であった。
Subsequently, the flow rate of Cp 2 Mg is increased at 1050 ° C., and a first p-type contact layer 71 made of Mg-doped p-type GaN is grown to a thickness of 200 Å. The Mg concentration of the first p-type contact layer 71 was 2 × 1019 / cm3 .

【0035】反応終了後、温度を室温まで下げてウェー
ハを反応容器から取り出し、700℃でウェーハのアニ
ーリングを行い、p型層をさらに低抵抗化する。次に最
上層のp型コンタクト層7の表面に所定の形状のマスク
を形成し、n型コンタクト層3の表面が露出するまでエ
ッチングする。エッチング後、n型コンタクト層3の表
面にTiとAlよりなる負電極8、第一のp型コンタク
ト層71の表面にNiとAuよりなる正電極9を形成す
る。電極形成後、ウェーハを350μm角のチップに分
離した後、LED素子とした。このLED素子はIf2
0mAで、Vf3.1V、発光ピーク波長450nm、
半値幅70nmの青色発光を示し、発光出力は3mWで
あった。
After the completion of the reaction, the temperature is lowered to room temperature, the wafer is taken out of the reaction vessel, and the wafer is annealed at 700 ° C. to further reduce the resistance of the p-type layer. Next, a mask having a predetermined shape is formed on the surface of the uppermost p-type contact layer 7, and etching is performed until the surface of the n-type contact layer 3 is exposed. After the etching, a negative electrode 8 made of Ti and Al is formed on the surface of the n-type contact layer 3, and a positive electrode 9 made of Ni and Au is formed on the surface of the first p-type contact layer 71. After the electrodes were formed, the wafer was separated into chips of 350 μm square, and then used as LED elements. This LED element is If2
At 0 mA, Vf 3.1 V, emission peak wavelength 450 nm,
The device exhibited blue light emission with a half-value width of 70 nm, and the light emission output was 3 mW.

【0036】[実施例2] 実施例1において第一のp型コンタクト層71の膜厚を
500オングストロームとする他は同様にして発光素子
を得たところ、If20mAにおいて、Vf3.2V、
発光出力はほぼ同一であった。
Example 2 A light emitting device was obtained in the same manner as in Example 1 except that the thickness of the first p-type contact layer 71 was changed to 500 Å.
The light emission output was almost the same.

【0037】[実施例3] 実施例1において第一のp型コンタクト層71の膜厚を
0.1μmとする他は同様にして発光素子を得たとこ
ろ、If20mAにおいて、Vfが3.3V、発光出力
2.9mWであった。
Example 3 A light-emitting device was obtained in the same manner as in Example 1 except that the thickness of the first p-type contact layer 71 was changed to 0.1 μm. At 20 mA If, Vf was 3.3 V, The light emission output was 2.9 mW.

【0038】[実施例4] 実施例1において第一のp型コンタクト層71の膜厚を
0.3μmとする他は同様にして発光素子を得たとこ
ろ、If20mAにおいてVfは3.7Vとなり、発光
出力は2.8mWであった。
Example 4 A light-emitting device was obtained in the same manner as in Example 1 except that the thickness of the first p-type contact layer 71 was changed to 0.3 μm, and Vf was 3.7 V at If 20 mA. The light emission output was 2.8 mW.

【0039】[実施例5] 実施例1において、第二のp型コンタクト層72のMg
濃度を5×1017/cm3とし、第一のp型コンタクト層
71のMg濃度を1×1019/cm3とする他は、同様に
してLED素子を得たところ、実施例1とほぼ同一の特
性を示した。
Fifth Embodiment In the first embodiment, the second p-type contact layer 72 is made of Mg.
An LED element was obtained in the same manner as in Example 1 except that the concentration was set to 5 × 1017 / cm3 and the Mg concentration of the first p-type contact layer 71 was set to 1 × 1019 / cm3. It showed the same characteristics.

【0040】[実施例6] 図3は実施例5に係る発光素子の構造を示す模式的な断
面図である。この発光素子が図1の発光素子と異なると
ころは、n型クラッド層4と活性層5との間に新たなバ
ッファ層としてInを含むn型の窒化物半導体よりなる
第二のn型クラッド層40を形成しているところであ
る。この第二のクラッド層40は10オングストローム
以上、0.1μm以下の膜厚で形成することが望まし
く、さらに第二のn型クラッド層40と活性層5の膜厚
を300オングストローム以上にすると、Inを含む
二のn型クラッド層40とInを含む活性層5とがバッ
ファ層として作用し、n型クラッド層4、p型クラッド
層6にクラックが入らず結晶性良く成長できる。さら
に、この第二のn型クラッド層40を成長させることに
より、不純物をドープしない量子構造の活性層が実現で
き、半値幅が狭く、出力の高い発光を得ることができ
る。なおこの第二のn型クラッド層40はGaNでもよ
い。
Example 6 FIG. 3 is a schematic sectional view showing the structure of a light emitting device according to Example 5. This light emitting device is different from the light emitting device of FIG. 1 in that a second n-type cladding layer made of an n-type nitride semiconductor containing In as a new buffer layer is provided between the n-type cladding layer 4 and the active layer 5. 40 is being formed. This second cladding layer 40 is desirably formed with a thickness of 10 Å or more and 0.1 μm or less. When the thicknesses of the second n-type cladding layer 40 and the active layer 5 are made 300 Å or more, Insecond, including the
The two n-type cladding layers 40 and the active layer 5 containing In act as a buffer layer, and the n-type cladding layer 4 and the p-type cladding layer 6 can be grown with good crystallinity without cracks. Further, by growing this second n-type cladding layer 40, an active layer having a quantum structure without impurity doping can be realized, and light emission with a narrow half-value width and high output can be obtained. Note that the second n-type cladding layer 40 may be GaN.

【0041】この第二のn型クラッド層40は、活性層
5とAlとGaとを含むn型クラッド層4との間のバッ
ファ層として作用する。つまりInとGaとを含む第二
のn型クラッド層40が結晶の性質として柔らかい性質
を有しているので、AlとGaとを含むn型クラッド層
4と活性層5との格子定数不整と熱膨張係数差によって
生じる歪を吸収する働きがある。従って活性層を単一量
子井戸構造、若しくは多重量子井戸構造として、活性層
を構成する窒化物半導体層の膜厚を薄くしても、活性層
5、n型クラッド層4にクラックが入らないので、活性
層が弾性的に変形し、活性層の結晶欠陥が少なくなる。
つまり活性層を量子井戸構造としたことにより、活性層
の結晶性が良くなるので発光出力が増大する。さらに、
活性層を量子井戸構造とすると、量子効果および励起子
効果により発光出力が増大する。言い換えると、従来の
発光素子では活性層の膜厚を例えば1000オングスト
ローム以上と厚くすることにより、クラッド層、活性層
にクラックが入るのを防止していた。しかしながら活性
層には常に熱膨張係数差、格子不整による歪が係ってお
り、従来の発光素子では活性層の厚さが弾性的に変形可
能な臨界膜厚を超えているので、弾性的に変形すること
ができず、活性層中に多数の結晶欠陥を生じ、バンド間
発光ではあまり光らない。この第二のn型クラッド層4
0を形成することにより、活性層が量子構造の状態にお
いて、発光素子の発光出力を飛躍的に向上させることが
可能である。
The second n-type cladding layer 40 functions as a buffer layer between the active layer 5 and the n-type cladding layer 4 containing Al and Ga. That is, since the second n-type cladding layer 40 containing In and Ga has a soft property as a crystalline property, the lattice constant irregularity between the n-type cladding layer 4 containing Al and Ga and the active layer 5 is reduced. It has the function of absorbing the strain caused by the difference in thermal expansion coefficient. Therefore, even if the active layer has a single quantum well structure or a multiple quantum well structure, the active layer 5 and the n-type clad layer 4 do not crack even if the thickness of the nitride semiconductor layer constituting the active layer is reduced. In addition, the active layer is elastically deformed, and crystal defects of the active layer are reduced.
In other words, when the active layer has the quantum well structure, the crystallinity of the active layer is improved, so that the light emission output is increased. further,
When the active layer has a quantum well structure, the light emission output increases due to the quantum effect and the exciton effect. In other words, in the conventional light emitting device, cracks are prevented from being formed in the cladding layer and the active layer by increasing the thickness of the active layer to, for example, 1000 Å or more. However, the active layer is always strained due to the difference in thermal expansion coefficient and lattice irregularity. In the conventional light emitting device, the thickness of the active layer exceeds the critical thickness that can be elastically deformed. It cannot be deformed, causes many crystal defects in the active layer, and does not emit much light in interband emission. This second n-type cladding layer 4
By forming 0, the light emitting output of the light emitting element can be remarkably improved in a state where the active layer has a quantum structure.

【0042】具体的には、実施例1においてn型クラッ
ド層4を成長させた後、温度を800℃に下げ、TM
G、TMI(トリメチルインジウム)、NH3、シラン
ガスを用い、Siドープn型In0.01Ga0.99よりな
る第二のn型クラッド層40を500オングストローム
の膜厚で成長させる。
Specifically, after growing the n-type cladding layer 4 in Example 1, the temperature was lowered to 800 ° C.
G, TMI (trimethylindium), NH3 , and silane gas are used to grow a second n-type cladding layer 40 of Si-doped n-typeIn0.01Ga0.99N with a thickness of 500 Å.

【0043】続いてTMG、TMI、NH3を用い80
0℃でノンドープn型In0.05Ga0.95よりなる活性
層5を80オングストロームの膜厚で成長させる。後は
実施例1と同様にして、p型クラッド層6、第二のp型
コンタクト層72、第一のp型コンタクト層71を成長
させてLED素子としたところ、このLED素子は、I
f20mAでVf3.1V、発光ピーク波長400nm
の青色発光を示し、発光出力は12mWであった。さら
に、発光スペクトルの半値幅は20nmであり、非常に
色純度の良い発光を示した。
Subsequently, TMG, TMI, NH3
At 0 ° C., an active layer 5 made of non-doped n-typeIn0.05Ga0.95N is grown to a thickness of 80 Å. After that, the p-type cladding layer 6, the second p-type contact layer 72, and the first p-type contact layer 71 were grown to form an LED element in the same manner as in Example 1.
Vf 3.1 V at f20 mA, emission peak wavelength 400 nm
And emitted light of 12 mW. Further, the half width of the light emission spectrum was 20 nm, and light emission with very good color purity was exhibited.

【0044】[実施例7] 実施例6において、活性層5の組成をノンドープIn
0.05Ga0.95よりなる井戸層を25オングストローム
と、ノンドープIn0.01Ga0.99よりなる障壁層を5
0オングストロームの膜厚で成長させる。この操作を2
6回繰り返し、最後に井戸層を積層して総厚約2000
オングストロームの活性層6を成長させた。後は実施例
6と同様にして、LED素子としたところ、このLED
素子も、If20mAでVf3.1V、発光ピーク波長
400nmの青色発光を示し、発光出力は12mWであ
った。さらに、発光スペクトルの半値幅は20nmであ
り、非常に色純度の良い発光を示した。
Example 7 In Example 6, the composition of the active layer 5 was changed to non-dopedIn.
A well layer made of0.05Ga0.95N is 25 Å, and a barrier layer made of non-dopedIn0.01Ga0.99N is 5 Å.
It is grown to a thickness of 0 Å. This operation 2
Repeat 6 times and finally stack well layers to a total thickness of about 2000
An active layer 6 of Angstrom was grown. After that, as in Example 6, an LED element was obtained.
The device also emitted blue light with a Vf of 3.1 V and an emission peak wavelength of 400 nm at If 20 mA, and an emission output of 12 mW. Further, the half width of the light emission spectrum was 20 nm, and light emission with very good color purity was exhibited.

【0045】[0045]

【発明の効果】以上説明したように、本発明の発光素子
はダブルへテロ構造の発光素子において、正電極を形成
するp型層を高アクセプター不純物濃度の第一のp型層
と、低不純物濃度の第二のp型層とすることにより、V
fを低下させることができるので発光効率が向上する。
従ってLEDを大量に用いた大型ディスプレイ、屋外広
告板等を実現した際には消費電力の少ないデバイスを実
現でき、その産業上の利用価値は大きい。
As described above, in the light emitting device of the present invention, in a light emitting device having a double hetero structure, the p-type layer forming the positive electrode is formed by the first p-type layer having a high acceptor impurity concentration and the low impurity By providing a second p-type layer having a concentration of
Since f can be reduced, the luminous efficiency is improved.
Therefore, when realizing a large display using a large amount of LEDs, an outdoor billboard, or the like, a device with low power consumption can be realized, and its industrial utility value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention.

【図2】 従来の発光素子の構造を示す模式断面図。FIG. 2 is a schematic cross-sectional view illustrating a structure of a conventional light-emitting element.

【図3】 本発明の他の実施例に係る発光素子の構造を
示す模式断面図。
FIG. 3 is a schematic sectional view showing the structure of a light emitting device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・バッファ層 3・・・・n型コンタクト層 4・・・・n型クラッド層 5・・・・活性層 6・・・・p型クラッド層 72・・・・第二のp型コンタクト層 71・・・・第一のp型コンタクト層 8・・・・負電極 9・・・・正電極 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Buffer layer 3 ... N-type contact layer 4 ... N-type cladding layer 5 ... Active layer 6 ... P-type cladding layer 72 ... ..Second p-type contact layer 71... First p-type contact layer 8... Negative electrode 9.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/00 - 5/50Continuation of the front page (58) Field surveyed (Int.Cl.7 , DB name) H01L 33/00 H01S 5/00-5/50

Claims (5)

Translated fromJapanese
(57)【特許請求の範囲】(57) [Claims]【請求項1】 n型窒化物半導体層とp型窒化物半導体
層との間に、InGa1−xN(0<X<1)よりな
る井戸層のみの単一量子井戸構造、若しくはInGa
1−xN(0<X<1)よりなる井戸層とInGa
1−YN(0≦Y<1、Y<X)よりなる障壁層との多重
量子井戸構造のInを含む活性層を有し、前記p型窒化
物半導体層表面に正電極が形成されてなる窒化物半導体
発光素子において、 前記p型窒化物半導体層は正電極と接する側から順にア
クセプター不純物濃度の高い第一のp型窒化物半導体層
と、第一のp型窒化物半導体層よりもアクセプター不純
物の低い第二のp型窒化物半導体層とを含み、且つ前記
活性層はInを含むn型の窒化物半導体上に形成されダ
ブルへテロ構造を構成することを特徴とする窒化物半導
体発光素子。
Between 1. A n-type nitride semiconductor layer and a p-type nitride semiconductor layer, In xGa 1-xN single quantum well structure(0 <X <1) than become well layer only or Inx Ga
1-x N (0 <X <1) than become well layer andan In Y Ga
A barrier layer made of1-YN (0 ≦ Y <1, Y <X) and an active layer containing In of a multiple quantum well structure, and a positive electrode formed on the surface of the p-type nitride semiconductor layer In the nitride semiconductor light-emitting device, the p-type nitride semiconductor layer has a higher acceptor impurity concentration than the first p-type nitride semiconductor layer and the first p-type nitride semiconductor layer in order from the side in contact with the positive electrode. A second p-type nitride semiconductor layer having a low acceptor impurity, wherein the active layer is formed on an n-type nitride semiconductor containing In to form a double heterostructure. Light emitting element.
【請求項2】 前記第一のp型窒化物半導体層の膜厚
は、0.1μm以下である請求項1に記載の窒化物半導
体発光素子。
2. The nitride semiconductor light emitting device according to claim 1, wherein said first p-type nitride semiconductor layer has a thickness of 0.1 μm or less.
【請求項3】 前記正電極は、ニッケル及び金を含む請
求項1又は請求項2に記載の窒化物半導体発光素子。
3. The nitride semiconductor light emitting device according to claim 1, wherein said positive electrode contains nickel and gold.
【請求項4】 前記Inを含む活性層は、ノンドープI
Ga1−xN(0<X<1)よりなる70Å以下の
井戸層のみの単一量子井戸構造、若しくはノンドープI
Ga1−xN(0<X<1)よりなる70Å以下の
井戸層と、InGa1−YN(0≦Y<1、Y<X)よ
りなる障壁層との多重量子井戸構造である請求項1乃至
3に記載の窒化物半導体素子。
4. The non-doped active layer containing In
nx Ga1-x N single quantum well structure (0 <X <1) 70Å less well layer made of only, or non-doped I
n x Ga 1-x N ( 0 <X <1) and 70Å following well layer made ofmultiple quantum well withIn Y Ga 1-Y N ( 0 ≦ Y <1, Y <X) than becomes a barrier layer 4. The nitride semiconductor device according to claim 1, which has a structure.
【請求項5】 前記第一のp型窒化物半導体層のアクセ
プター不純物は、1×1017〜5×1021/cm
濃度のMgであり、前記第二のp型窒化物半導体層のア
クセプター不純物は2×1015〜5×1020/cm
濃度のMgである請求項1乃至請求項4に記載の窒化
物半導体発光素子。
5. The acceptor impurity of the first p-type nitride semiconductor layer is 1 × 1017 to 5 × 1021 / cm3.
Concentration of Mg, and the acceptor impurity of the second p-type nitride semiconductor layer is 2 × 1015 to 5 × 1020 / cm.
The nitride semiconductor light emitting device according to claim 1, wherein the concentration of Mg isthree .
JP31784495A1995-03-291995-12-06 Nitride semiconductor light emitting deviceExpired - Fee RelatedJP3250438B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP31784495AJP3250438B2 (en)1995-03-291995-12-06 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP70989951995-03-29
JP7-709891995-03-29
JP31784495AJP3250438B2 (en)1995-03-291995-12-06 Nitride semiconductor light emitting device

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
JP2001238146ADivisionJP3890930B2 (en)1995-03-292001-08-06 Nitride semiconductor light emitting device

Publications (2)

Publication NumberPublication Date
JPH08330629A JPH08330629A (en)1996-12-13
JP3250438B2true JP3250438B2 (en)2002-01-28

Family

ID=26412100

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP31784495AExpired - Fee RelatedJP3250438B2 (en)1995-03-291995-12-06 Nitride semiconductor light emitting device

Country Status (1)

CountryLink
JP (1)JP3250438B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2008153130A1 (en)2007-06-152008-12-18Rohm Co., Ltd.Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
WO2011108703A1 (en)2010-03-052011-09-09並木精密宝石株式会社Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method
WO2011108706A1 (en)2010-03-052011-09-09並木精密宝石株式会社Single crystal substrate, production method for single crystal substrate, production method for single crystal substrate with multilayer film, and device production method
WO2011108698A1 (en)2010-03-052011-09-09並木精密宝石株式会社Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
US8395165B2 (en)2011-07-082013-03-12Bridelux, Inc.Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en)2009-11-252013-09-03Toshiba Techno Center, Inc.LED with improved injection efficiency
US8536601B2 (en)2009-06-102013-09-17Toshiba Techno Center, Inc.Thin-film LED with P and N contacts electrically isolated from the substrate
US8552465B2 (en)2011-11-092013-10-08Toshiba Techno Center Inc.Method for reducing stress in epitaxial growth
US8558247B2 (en)2011-09-062013-10-15Toshiba Techno Center Inc.GaN LEDs with improved area and method for making the same
US8564010B2 (en)2011-08-042013-10-22Toshiba Techno Center Inc.Distributed current blocking structures for light emitting diodes
US8581267B2 (en)2011-11-092013-11-12Toshiba Techno Center Inc.Series connected segmented LED
US8624482B2 (en)2011-09-012014-01-07Toshiba Techno Center Inc.Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664747B2 (en)2008-04-282014-03-04Toshiba Techno Center Inc.Trenched substrate for crystal growth and wafer bonding
US8686430B2 (en)2011-09-072014-04-01Toshiba Techno Center Inc.Buffer layer for GaN-on-Si LED
US8865565B2 (en)2011-08-022014-10-21Kabushiki Kaisha ToshibaLED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en)2011-07-292014-12-23Kabushiki Kaisha ToshibaBoron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en)2011-09-032015-03-31Kabushiki Kaisha ToshibaLed that has bounding silicon-doped regions on either side of a strain release layer
US9012939B2 (en)2011-08-022015-04-21Kabushiki Kaisha ToshibaN-type gallium-nitride layer having multiple conductive intervening layers
US9130068B2 (en)2011-09-292015-09-08Manutius Ip, Inc.Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en)2011-08-022015-09-22Kabushiki Kaisha ToshibaHigh temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en)2011-08-032015-10-13Kabushiki Kaisha ToshibaLED on silicon substrate using zinc-sulfide as buffer layer
US9343641B2 (en)2011-08-022016-05-17Manutius Ip, Inc.Non-reactive barrier metal for eutectic bonding process
US9490392B2 (en)2011-09-292016-11-08Toshiba CorporationP-type doping layers for use with light emitting devices
US10174439B2 (en)2011-07-252019-01-08Samsung Electronics Co., Ltd.Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0772247B1 (en)*1994-07-212004-09-15Matsushita Electric Industrial Co., Ltd.Semiconductor light-emitting device and production method thereof
US6057565A (en)*1996-09-262000-05-02Kabushiki Kaisha ToshibaSemiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof
JP4492013B2 (en)*1997-02-172010-06-30日亜化学工業株式会社 Nitride semiconductor device
JP3681540B2 (en)*1997-06-162005-08-10松下電器産業株式会社 Semiconductor manufacturing method, semiconductor device manufacturing method, and semiconductor substrate manufacturing method
CN100426545C (en)*1998-03-122008-10-15日亚化学工业株式会社Nitride semiconductor device
EP2273571A3 (en)1998-03-122012-06-27Nichia CorporationA nitride semiconductor device
KR100499117B1 (en)*1998-05-082005-07-04삼성전자주식회사Method for activating compound semiconductor layer
JP4166885B2 (en)1998-05-182008-10-15富士通株式会社 Optical semiconductor device and manufacturing method thereof
US6657300B2 (en)1998-06-052003-12-02Lumileds Lighting U.S., LlcFormation of ohmic contacts in III-nitride light emitting devices
US6838705B1 (en)*1999-03-292005-01-04Nichia CorporationNitride semiconductor device
JP2003046127A (en)*2001-05-232003-02-14Sanyo Electric Co LtdNitride semiconductor light-emitting element
SG115549A1 (en)2002-07-082005-10-28Sumitomo Chemical CoEpitaxial substrate for compound semiconductor light emitting device, method for producing the same and light emitting device
WO2004013916A1 (en)2002-08-012004-02-12Nichia CorporationSemiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US7345297B2 (en)2004-02-092008-03-18Nichia CorporationNitride semiconductor device
WO2005106979A1 (en)*2004-04-282005-11-10Mitsubishi Cable Industries, Ltd.Nitride semiconductor light emitting element
JP4341702B2 (en)2007-06-212009-10-07住友電気工業株式会社 Group III nitride semiconductor light emitting device
US9312432B2 (en)*2012-03-132016-04-12Tsmc Solid State Lighting Ltd.Growing an improved P-GaN layer of an LED through pressure ramping
JP2013258231A (en)2012-06-122013-12-26Disco Abrasive Syst LtdMethod for processing optical device
JP6025410B2 (en)2012-06-122016-11-16株式会社ディスコ Optical device processing method
JP2015170803A (en)2014-03-102015-09-28住友電気工業株式会社GROUP III NITRIDE SEMICONDUCTOR ELEMENT, p-TYPE CONTACT STRUCTURE AND GROUP III NITRIDE SEMICONDUCTOR ELEMENT MANUFACTURING METHOD

Cited By (34)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2008153130A1 (en)2007-06-152008-12-18Rohm Co., Ltd.Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US8664747B2 (en)2008-04-282014-03-04Toshiba Techno Center Inc.Trenched substrate for crystal growth and wafer bonding
US8536601B2 (en)2009-06-102013-09-17Toshiba Techno Center, Inc.Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en)2009-06-102014-10-28Kabushiki Kaisha ToshibaThin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en)2009-06-102015-09-22Kabushiki Kaisha ToshibaThin-film LED with P and N contacts electrically isolated from the substrate
US8546832B2 (en)2009-06-102013-10-01Toshiba Techno Center Inc.Thin-film LED with p and n contacts electrically isolated from the substrate
US8684749B2 (en)2009-11-252014-04-01Toshiba Techno Center Inc.LED with improved injection efficiency
US9012953B2 (en)2009-11-252015-04-21Kabushiki Kaisha ToshibaLED with improved injection efficiency
US8525221B2 (en)2009-11-252013-09-03Toshiba Techno Center, Inc.LED with improved injection efficiency
WO2011108703A1 (en)2010-03-052011-09-09並木精密宝石株式会社Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method
WO2011108698A1 (en)2010-03-052011-09-09並木精密宝石株式会社Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
WO2011108706A1 (en)2010-03-052011-09-09並木精密宝石株式会社Single crystal substrate, production method for single crystal substrate, production method for single crystal substrate with multilayer film, and device production method
US8395165B2 (en)2011-07-082013-03-12Bridelux, Inc.Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en)2011-07-252019-01-08Samsung Electronics Co., Ltd.Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en)2011-07-292014-12-23Kabushiki Kaisha ToshibaBoron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en)2011-08-022014-10-21Kabushiki Kaisha ToshibaLED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en)2011-08-022015-09-22Kabushiki Kaisha ToshibaHigh temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en)2011-08-022016-05-17Manutius Ip, Inc.Non-reactive barrier metal for eutectic bonding process
US9012939B2 (en)2011-08-022015-04-21Kabushiki Kaisha ToshibaN-type gallium-nitride layer having multiple conductive intervening layers
US9159869B2 (en)2011-08-032015-10-13Kabushiki Kaisha ToshibaLED on silicon substrate using zinc-sulfide as buffer layer
US9070833B2 (en)2011-08-042015-06-30Kabushiki Kaisha ToshibaDistributed current blocking structures for light emitting diodes
US8564010B2 (en)2011-08-042013-10-22Toshiba Techno Center Inc.Distributed current blocking structures for light emitting diodes
US8624482B2 (en)2011-09-012014-01-07Toshiba Techno Center Inc.Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8981410B1 (en)2011-09-012015-03-17Kabushiki Kaisha ToshibaDistributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en)2011-09-032015-03-31Kabushiki Kaisha ToshibaLed that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en)2011-09-062013-10-15Toshiba Techno Center Inc.GaN LEDs with improved area and method for making the same
US9018643B2 (en)2011-09-062015-04-28Kabushiki Kaisha ToshibaGaN LEDs with improved area and method for making the same
US8686430B2 (en)2011-09-072014-04-01Toshiba Techno Center Inc.Buffer layer for GaN-on-Si LED
US9130068B2 (en)2011-09-292015-09-08Manutius Ip, Inc.Light emitting devices having dislocation density maintaining buffer layers
US9490392B2 (en)2011-09-292016-11-08Toshiba CorporationP-type doping layers for use with light emitting devices
US9123853B2 (en)2011-11-092015-09-01Manutius Ip, Inc.Series connected segmented LED
US8581267B2 (en)2011-11-092013-11-12Toshiba Techno Center Inc.Series connected segmented LED
US9391234B2 (en)2011-11-092016-07-12Toshiba CorporationSeries connected segmented LED
US8552465B2 (en)2011-11-092013-10-08Toshiba Techno Center Inc.Method for reducing stress in epitaxial growth

Also Published As

Publication numberPublication date
JPH08330629A (en)1996-12-13

Similar Documents

PublicationPublication DateTitle
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3551101B2 (en) Nitride semiconductor device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2735057B2 (en) Nitride semiconductor light emitting device
JP3744211B2 (en) Nitride semiconductor device
JP3135041B2 (en) Nitride semiconductor light emitting device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2780691B2 (en) Nitride semiconductor light emitting device
KR20020021121A (en)Nitride Semiconductor Device
JP3835225B2 (en) Nitride semiconductor light emitting device
JP3651260B2 (en) Nitride semiconductor device
JP3620292B2 (en) Nitride semiconductor device
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2001298215A (en) Light emitting element
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20071116

Year of fee payment:6

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20081116

Year of fee payment:7

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20081116

Year of fee payment:7

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20091116

Year of fee payment:8

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20091116

Year of fee payment:8

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20091116

Year of fee payment:8

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20101116

Year of fee payment:9

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20101116

Year of fee payment:9

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20111116

Year of fee payment:10

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20111116

Year of fee payment:10

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20121116

Year of fee payment:11

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20121116

Year of fee payment:11

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20131116

Year of fee payment:12

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp