【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、半導体集積回路あるい
は液晶表示素子等の製造工程で、回路パターンの転写に
利用される露光装置の一部である照明光学装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical apparatus which is a part of an exposure apparatus used for transferring a circuit pattern in a process of manufacturing a semiconductor integrated circuit or a liquid crystal display device.
【0002】[0002]
【従来の技術】半導体集積回路または液晶表示素子の露
光工程では、露光装置を用いてマスク上の回路パターン
を基板上に塗布したレジストに転写する。半導体素子等
は立体的構造を持つため、基板には段差が存在すること
が多い。基板段差部分に入射した光は斜め方向に反射す
るため、マスクで遮光した部分まで露光されてしまうと
いう問題が生じる。また、基板が平面的な場合でも基板
の反射率が大きいと定在波の影響によりレジスト形状が
劣化する。従来、これらの問題を解決するため、基板上
に反射防止膜を張る方法が知られている。また、ダイ入
りレジストを用ることにより、基板に到達する光を低下
させる方法も知られている。2. Description of the Related Art In an exposure process of a semiconductor integrated circuit or a liquid crystal display element, a circuit pattern on a mask is transferred to a resist applied on a substrate using an exposure apparatus. Since a semiconductor element or the like has a three-dimensional structure, a substrate often has a step. Since the light incident on the step portion of the substrate is reflected in an oblique direction, there arises a problem that the portion shielded by the mask is exposed. Further, even when the substrate is flat, if the reflectance of the substrate is large, the resist shape is deteriorated due to the effect of the standing wave. Heretofore, in order to solve these problems, a method of forming an antireflection film on a substrate has been known. There is also known a method of reducing light reaching a substrate by using a die-containing resist.
【0003】[0003]
【発明が解決しようとする課題】反射防止膜を用いる方
法は、工程によっては基板の汚染を生じるため使用でき
ない場合がある。また、反射防止膜を張るための工数が
増えてしまうという問題もある。ダイ入りレジストを用
いて基板に到達する光を大きく低下させるためには、レ
ジストの吸収率を大きくする必要がある。この結果、レ
ジストプロファイルが垂直で無くなってしまう問題が発
生する。The method using an anti-reflection film cannot be used depending on the process because of contamination of the substrate. There is also a problem that the number of steps for forming the antireflection film increases. In order to greatly reduce the light reaching the substrate using the die-containing resist, it is necessary to increase the absorptivity of the resist. As a result, there arises a problem that the resist profile is lost vertically.
【0004】本発明の目的は、上記の問題を解決し、基
板からの反射光を簡便な方法で低減する露光装置に使用
される照明光学装置を提供することにある。An object of the present invention is to solve the above-mentioned problems and to provide an illumination optical device used in an exposure apparatus for reducing reflected light from a substrate by a simple method.
【0005】[0005]
【課題を解決するための手段】本発明の証明光学装置
は、照明光学系からの照明光により物体上の所定領域を
均一に照明する照明光学装置において、光源から出た光
の偏光面を回転させる偏光回転素子と、回転軸が互いに
直交するように配置された回転機構と、前記回転機構に
取り付けられた反射鏡と、前記偏光回転素子と前記回転
機構と前記反射鏡により、照明光学系への照明光が常に
入射平面内で直線偏光となるように制御することを特徴
とする。また照明光の偏光が入射平面に対しP偏光であ
ることを特徴とする。また前記光源と前記偏光回転素子
の間に偏光素子を有することを特徴とする。SUMMARY OF THE INVENTION A proof optical device according to the present invention is an illumination optical device for uniformly illuminating a predetermined area on an object with illumination light from an illumination optical system, in which a polarization plane of light emitted from a light source is rotated. A polarization rotation element to berotated ,a rotation mechanism arranged so that rotation axes are orthogonal to each other, and
An attached reflector, the polarization rotation element and the rotation
The mechanism and the reflecting mirror control the illumination light to the illumination optical system to be always linearly polarized in the plane of incidence. Also, the illumination light is P-polarized with respect to the plane of incidence. Further, a polarization element is provided between the light source and the polarization rotation element.
【0006】[0006]
【作用】照明光はマスク上のパターンにより回折され
る。マスクパターンが微細になると回折角が大きくな
る。このため、図2(a)に示すように直入射照明光2
1では0次光25しか投影光学系27を通過しないため
ウエファ28上に像が形成されない。これに対し、図2
(b)のような斜入射照明光29の場合には0次光25
以外に+1次光26または−1次光24が投影光学系を
通過するためウエファ28上に像が形成される。The illumination light is diffracted by the pattern on the mask. As the mask pattern becomes finer, the diffraction angle increases. For this reason, as shown in FIG.
 In the case of 1, no image is formed on the wafer 28 because only the zero-order light 25 passes through the projection optical system 27. In contrast, FIG.
 In the case of the obliquely incident illumination light 29 as shown in FIG.
 In addition, since the + 1st-order light 26 or the -1st-order light 24 passes through the projection optical system, an image is formed on the wafer 28.
【0007】そこで、照明光学系の2次光源として図3
(a)、(b)に示される2種類のものを考える。Therefore, as a secondary light source of the illumination optical system, FIG.
 Consider two types shown in (a) and (b).
【0008】開口部31および32は2次光源30の中
心から離れているため、照明光はマスクに対し斜め方向
から入射する。開口部の位置は、通常用いられるコヒー
レント因子σで表した場合、σ=0.5〜0.6の部分
に相当する。図3(a)と図3(b)の違いは照明光の
偏光方向にある。図3(a)では開口部31を通過する
光は入射平面に対しP偏光となっているが、図3(b)
では開口部32を通過する光は入射平面に対しS偏光と
なっている。Since the openings 31 and 32 are apart from the center of the secondary light source 30, the illumination light enters the mask obliquely. The position of the opening corresponds to a portion where σ = 0.5 to 0.6 when represented by a commonly used coherent factor σ. The difference between FIG. 3A and FIG. 3B lies in the polarization direction of the illumination light. In FIG. 3A, the light passing through the opening 31 is P-polarized with respect to the plane of incidence, but FIG.
 In the figure, the light passing through the opening 32 is S-polarized with respect to the incident plane.
【0009】このような照明光を図4のマスクに照射
し、投影光学系により段差を持ったSi基板53上のレ
ジスト膜52に結像したときの電場強度分布51を図5
および図6に示す。段差方向は反射の影響が最も大きく
なる様に、照明光の入射平面と直交する方向に配置して
いる。図5はP偏光、図6はS偏光に対応している。図
4のマスク上の遮光部23および透明部41の幅は、ウ
エファ上に投影した場合に0.2μm となっている。ま
た、照明光はKrFエキシマレーザ光(波長248n
m)、投影光学系の開口数は0.6である。レジストは
電場に対し反応し、磁場はレジストの感光に寄与しない
ことが知られている。レジスト内の電場強度分布を見る
と、S偏光では反射光が遮光部分まで侵入してしまうの
に対し、P偏光では侵入していない。このため、図3
(a)の照明光学系を用いれば、基板反射の影響を低減
することができる。FIG. 5 shows an electric field intensity distribution 51 obtained when the mask shown in FIG. 4 is irradiated with such illumination light and an image is formed on a resist film 52 on a stepped Si substrate 53 by a projection optical system.
 And FIG. The step direction is arranged in a direction perpendicular to the plane of incidence of the illumination light so that the influence of reflection is greatest. FIG. 5 corresponds to P-polarized light, and FIG. 6 corresponds to S-polarized light. The width of the light shielding part 23 and the transparent part 41 on the mask in FIG. 4 is 0.2 μm when projected on a wafer. The illumination light is KrF excimer laser light (wavelength 248n).
 m), the numerical aperture of the projection optical system is 0.6. It is known that the resist reacts to an electric field and the magnetic field does not contribute to the exposure of the resist. Looking at the electric field intensity distribution in the resist, the reflected light penetrates to the light-shielded portion with S-polarized light, but does not penetrate with P-polarized light. For this reason, FIG.
 The use of the illumination optical system of (a) can reduce the influence of substrate reflection.
【0010】このような現象の生じる理由を以下に説明
する。光の反射率は偏光状態により大きく異なることが
知られている。例えば、吸収を持たない媒質にブリュー
スター角で光を入射すると、P偏光の反射率は0とな
る。半導体基板は一般的に光を吸収するのでブリュース
ター角は存在しないが、光が斜めに入射した場合、P偏
光の反射率はS偏光に比べずっと小さくなる。具体的に
レジスト(屈折率n=1.76、吸収係数k=0.01
2)とSi(n=1.41、k=3.35)との境界面
での反射率を計算した結果を図7に示す。計算に用いた
屈折率はKrFエキシマレーザの波長λ=248nmにお
ける値である。入射角が60度付近ではP偏光の反射率
はS偏光の半分程度に下がっている。物理的説明として
は、S偏光の場合には境界面で生じる誘導電流の向きと
電場の向きが一致するため大きな誘導電流が生じ反射率
が大きくなるが、P偏光の場合には一致しないため誘導
電流が生じ難くなり反射率が落ちる。図7の反射率の計
算は平面的な基板に斜め方向から光が入射した場合に相
当するが、段差を持った基板の場合にも誘導電流の向き
を考慮すると同様な現象が生じる。The reason why such a phenomenon occurs will be described below. It is known that the reflectivity of light varies greatly depending on the polarization state. For example, when light is incident on a medium having no absorption at a Brewster angle, the reflectance of P-polarized light becomes zero. Since the semiconductor substrate generally absorbs light, there is no Brewster angle. However, when light is incident obliquely, the reflectance of P-polarized light is much smaller than that of S-polarized light. Specifically, resist (refractive index n = 1.76, absorption coefficient k = 0.01)
 FIG. 7 shows the result of calculating the reflectance at the interface between 2) and Si (n = 1.41, k = 3.35). The refractive index used in the calculation is a value at a wavelength λ = 248 nm of a KrF excimer laser. When the incident angle is around 60 degrees, the reflectance of P-polarized light is reduced to about half that of S-polarized light. As a physical explanation, in the case of S-polarized light, the direction of the induced current generated at the boundary surface coincides with the direction of the electric field, so that a large induced current occurs and the reflectance increases. Current is hardly generated, and the reflectance decreases. The calculation of the reflectance in FIG. 7 corresponds to the case where light is incident on a planar substrate from an oblique direction. However, a similar phenomenon occurs in the case of a substrate having a step when the direction of the induced current is taken into consideration.
【0011】[0011]
【実施例】本発明の照明光学装置の原理を説明するため
の参考例を図8に示す。狭帯域化したKrFエキシマレ
ーザ光源81を出た光は直線偏光している。この光はコ
リメータレンズ82を通りフライアイレンズ83に入射
する。フライアイレンズ83の後ろに置かれた空間フィ
ルタ11により入射平面内に偏光回転された光はコンデ
ンサレンズ84を通りマスク85を照明する。空間フィ
ルタ11の上面図を図1に示す。フライアイレンズ83
に対応する小開口部には偏光方向がそれぞれの入射平面
内で直線偏光となるように1/2λ板12、13、14
がはめられている。空間フィルタ11の代わりに図9に
示す空間フィルタ91を用いると輪帯照明の効果により
解像力が向上する。図中の92〜95は1/2λ板であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Theprinciple of the illumination optical device of the present inventionwill be described.
 Showing areference example in FIG. The light emitted from the narrow band KrF excimer laser light source 81 is linearly polarized. This light passes through the collimator lens 82 and enters the fly-eye lens 83. The light polarized and rotated in the plane of incidence by the spatial filter 11 placed behind the fly-eye lens 83 passes through the condenser lens 84 to illuminate the mask 85. FIG. 1 shows a top view of the spatial filter 11. Fly eye lens 83
 Λλ plates 12, 13, and 14 are placed in the small apertures corresponding to so that the polarization direction is linearly polarized in each plane of incidence.
 Has been fitted. When the spatial filter 91 shown in FIG. 9 is used instead of the spatial filter 11, the resolving power is improved by the effect of annular illumination. Reference numerals 92 to 95 in the drawing denote 1 / 2λ plates.
【0012】図10は本発明の照明光学装置の第1の実
施例である。狭帯域化したKrFエキシマレーザ光源8
1を出た光は直線偏光している。この光は偏光回転素子
101を通ることにより偏光面が回転する。偏光回転量
は偏光回転制御部102により制御される。また、同時
に反射鏡103と105を回転機構104および106
によりそれぞれ直交方向に回転することにより、レーザ
光がフライアイレンズ83の全面あるいはその一部を走
査している。偏光回転制御部102と回転機構104お
よび106のタイミングを合わせることにより、フライ
アイレンズ83からの照明光が常に入射平面内で直線偏
光となるように制御されている。偏光回転素子101と
制御部102の組み合わせとしては、例えば1/2λ板
と回転機構などを用いることができる。[0012] FIG. 10 is afirst embodiment of the illumination optical apparatus of the present invention. Narrow band KrF excimer laser light source 8
 The light leaving 1 is linearly polarized. The polarization plane of this light is rotated by passing through the polarization rotation element 101. The polarization rotation amount is controlled by the polarization rotation control unit 102. At the same time, the reflecting mirrors 103 and 105 are rotated by the rotating mechanisms 104 and 106.
 , The laser light scans the entire surface of the fly-eye lens 83 or a part thereof. By adjusting the timing of the polarization rotation control unit 102 and the rotation mechanisms 104 and 106, the illumination light from the fly-eye lens 83 is controlled so as to always become linearly polarized light in the plane of incidence. As a combination of the polarization rotation element 101 and the control unit 102, for example, a 1 / 2λ plate and a rotation mechanism can be used.
【0013】なお、以上の実施例では光源としてKrF
エキシマレーザを用いたが、ArFエキシマレーザ、高
圧水銀ランプのi線、g線、あるいはX線などを代わり
に用いることもできる。光源が偏光していない場合に
は、偏光板などの偏光素子を光源と偏光回転素子の間に
挿入すれば良い。基板もSiに限らず、Al、SiO2
などあらゆるものに適用できる。In the above embodiment, the light source is KrF
 Although an excimer laser is used, an ArF excimer laser, an i-line, a g-line, or an X-ray of a high-pressure mercury lamp may be used instead. When the light source is not polarized, a polarizing element such as a polarizing plate may be inserted between the light source and the polarization rotating element. The substrate is not limited to Si, but Al, SiO2
 And so on.
【0014】[0014]
【発明の効果】以上詳述したように本発明の照明光学装
置によれば、反射防止膜やダイ入りレジストを用いずと
も、基板からの反射光を著しくかつ簡便に低減できる。As described in detail above, according to the illumination optical device of the present invention, the reflected light from the substrate can be reduced remarkably and easily without using an antireflection film or a die-containing resist.
【図1】本発明の原理を説明するための参考例である照
明光学装置に用いられる空間フィルタの第1の例を示す
図。FIG. 1 is a diagram showing a first example of a spatial filter used in an illumination optical device which isa reference example for explaining theprinciple of the present invention.
【図2】直入射照明と斜入射照明による回折光の進行方
向を示す図。FIG. 2 is a diagram showing traveling directions of diffracted light by normal incidence illumination and oblique incidence illumination.
【図3】斜入射照明における2次光源の形状と偏光方向
を示す図。FIG. 3 is a diagram showing the shape and polarization direction of a secondary light source in oblique incidence illumination.
【図4】遮光部および透明部よりなるマスク。FIG. 4 is a mask including a light shielding portion and a transparent portion.
【図5】P偏光による斜入射照明をした場合のレジスト
内電場強度分布図。FIG. 5 is an electric field intensity distribution diagram in a resist when oblique incidence illumination with P-polarized light is performed.
【図6】S偏光による斜入射照明をした場合のレジスト
内電場強度分布図。FIG. 6 is an electric field intensity distribution diagram in a resist when oblique incidence illumination with S-polarized light is performed.
【図7】反射光の偏光依存性を示す図。FIG. 7 is a diagram showing polarization dependence of reflected light.
【図8】本発明の原理を説明するための参考例である照
明光学装置を説明するための図。FIG. 8 is a view for explaining an illumination optical device which isa reference example for explaining theprinciple of the present invention.
【図9】本発明の原理を説明するための参考例である照
明光学装置に用いられる空間フィルタの第2の例を示す
図。FIG. 9 is a diagram showing a second example of a spatial filter used in an illumination optical device which isa reference example for explaining theprinciple of the present invention.
【図10】本発明の第1の実施例である照明光学装置を
説明するための図。FIG. 10 is a diagram for explaining an illumination optical device according to afirst embodiment of the present invention.
11 空間フィルタ 12、13、14 1/2λ板 21 直入射照明光 22 ガラス基板 23 遮光部 24 −1次光 25 0次光 26 +1次光 27 投影光学系 28 ウェファ 29 斜入射照明光 30 2次光源 31、32 開口部 41 透明部 51 電場強度分布 52 レジスト膜 53 Si基板 81 レーザ光源 82 コリメータレンズ 83 フライアイレンズ 84 コンデンサレンズ 85 マスク 91 空間フィルタ 92、93、94、95 1/2λ板 101 偏光回転素子 102 偏光回転制御部 103、105 反射鏡 104、106 回転機構 DESCRIPTION OF SYMBOLS 11 Spatial filter 12, 13, 14 1/2 (lambda) plate 21 Direct-incidence illumination light 22 Glass substrate 23 Shielding part 24 -First-order light 25 0th-order light 26 + 1st-order light 27 Projection optical system 28 Wafer 29 Oblique incidence illumination light 30 Secondary Light source 31, 32 Opening 41 Transparent part 51 Electric field intensity distribution 52 Resist film 53 Si substrate 81 Laser light source 82 Collimator lens 83 Fly-eye lens 84 Condenser lens 85 Mask 91 Spatial filter 92, 93, 94, 95 1 / 2λ plate 101 Polarized light Rotating element 102 Polarization rotation control unit 103, 105 Reflecting mirror 104, 106 Rotating mechanism
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP6099816AJP2836483B2 (en) | 1994-05-13 | 1994-05-13 | Illumination optics | 
| US08/394,942US5559583A (en) | 1994-02-24 | 1995-02-24 | Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer | 
| KR1019950003742AKR0173168B1 (en) | 1994-02-24 | 1995-02-24 | Exposure system for exposing resist film on wafer, illumination system and method used therefor | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP6099816AJP2836483B2 (en) | 1994-05-13 | 1994-05-13 | Illumination optics | 
| Publication Number | Publication Date | 
|---|---|
| JPH07307268A JPH07307268A (en) | 1995-11-21 | 
| JP2836483B2true JP2836483B2 (en) | 1998-12-14 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP6099816AExpired - LifetimeJP2836483B2 (en) | 1994-02-24 | 1994-05-13 | Illumination optics | 
| Country | Link | 
|---|---|
| JP (1) | JP2836483B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7072040B2 (en) | 2003-10-07 | 2006-07-04 | Kabushiki Kaisha Toshiba | Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE19535392A1 (en) | 1995-09-23 | 1997-03-27 | Zeiss Carl Fa | Radial polarization-rotating optical arrangement and microlithography projection exposure system with it | 
| KR101547077B1 (en) | 2003-04-09 | 2015-08-25 | 가부시키가이샤 니콘 | Exposure method and apparatus, and device manufacturing method | 
| JP4323903B2 (en) | 2003-09-12 | 2009-09-02 | キヤノン株式会社 | Illumination optical system and exposure apparatus using the same | 
| TWI573175B (en) | 2003-10-28 | 2017-03-01 | 尼康股份有限公司 | Optical illumination device, exposure device, exposure method and device manufacturing method | 
| TWI385414B (en) | 2003-11-20 | 2013-02-11 | 尼康股份有限公司 | Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method | 
| US20070019179A1 (en) | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element | 
| KR101165862B1 (en) | 2004-01-16 | 2012-07-17 | 칼 짜이스 에스엠티 게엠베하 | Polarization-modulating optical element | 
| TWI389174B (en) | 2004-02-06 | 2013-03-11 | 尼康股份有限公司 | Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method | 
| US7324280B2 (en) | 2004-05-25 | 2008-01-29 | Asml Holding N.V. | Apparatus for providing a pattern of polarization | 
| JP2006269853A (en)* | 2005-03-25 | 2006-10-05 | Sony Corp | Exposure apparatus and method of exposure | 
| KR20180128526A (en) | 2005-05-12 | 2018-12-03 | 가부시키가이샤 니콘 | Projection optical system, exposure apparatus and device manufacturing method | 
| EP1857879A1 (en)* | 2006-05-15 | 2007-11-21 | Advanced Mask Technology Center GmbH & Co. KG | An illumination system and a photolithography apparatus | 
| JP5267029B2 (en) | 2007-10-12 | 2013-08-21 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and device manufacturing method | 
| US8379187B2 (en) | 2007-10-24 | 2013-02-19 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | 
| US9116346B2 (en) | 2007-11-06 | 2015-08-25 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method | 
| JP5557188B2 (en)* | 2010-02-25 | 2014-07-23 | 株式会社ブイ・テクノロジー | Laser irradiation device | 
| US11131929B2 (en) | 2018-11-07 | 2021-09-28 | Waymo Llc | Systems and methods that utilize angled photolithography for manufacturing light guide elements | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2796005B2 (en)* | 1992-02-10 | 1998-09-10 | 三菱電機株式会社 | Projection exposure apparatus and polarizer | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7072040B2 (en) | 2003-10-07 | 2006-07-04 | Kabushiki Kaisha Toshiba | Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus | 
| Publication number | Publication date | 
|---|---|
| JPH07307268A (en) | 1995-11-21 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JP2836483B2 (en) | Illumination optics | |
| KR0173168B1 (en) | Exposure system for exposing resist film on wafer, illumination system and method used therefor | |
| US6965484B2 (en) | Optical imaging systems and methods using polarized illumination and coordinated pupil filter | |
| EP0602923B1 (en) | Exposure apparatus using a catadioptric projection system | |
| US7697117B2 (en) | Providing a pattern of polarization | |
| JP2796005B2 (en) | Projection exposure apparatus and polarizer | |
| JP2866243B2 (en) | Projection exposure apparatus and method of manufacturing semiconductor device | |
| US7548370B2 (en) | Layered structure for a tile wave plate assembly | |
| JPH07183201A (en) | Exposure device and method therefor | |
| JP2004258670A (en) | Fixation of high numerical aperture and dynamic radial transverse electric polarizer | |
| JP2001264696A (en) | Illumination optical system and exposure apparatus having the same | |
| US7029804B2 (en) | Non absorbing reticle and method of making same | |
| JPH1079337A (en) | Projection exposure equipment | |
| JPH07122469A (en) | Projection exposure device | |
| US7092134B1 (en) | Method and apparatus for recording a hologram from a mask pattern by the use of total internal reflection holography and hologram manufactured by the method | |
| JP2010060587A (en) | Polarizing element and method for producing the same | |
| JPH07297110A (en) | Projection exposure device | |
| US4666292A (en) | Projection optical apparatus and a photographic mask therefor | |
| JPH0815848A (en) | Photoreticle | |
| JP3110245B2 (en) | Reflective exposure mask and pattern forming method | |
| JP3173100B2 (en) | Projection exposure equipment | |
| JP2001100391A (en) | Semiconductor exposure reticle, method of manufacturing semiconductor exposure reticle, and semiconductor device | |
| JPH07235474A (en) | Aligner and aligning method | |
| JP3438730B2 (en) | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus | |
| JPH0792656A (en) | Exposure reticle for manufacturing semiconductor device, exposure apparatus and exposure method | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:19980908 |