【0001】[0001]
【産業上の利用分野】この発明は半導体レーザに関し、
特に、活性層に垂直な方向にレーザ出力光を生ずる面発
光半導体レーザに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser,
 In particular, the present invention relates to a surface emitting semiconductor laser that generates laser output light in a direction perpendicular to the active layer.
【0002】[0002]
【従来の技術】一つの導電型のIII-V 族化合物半導体
(例えばn型GaAs)の基板の表面に、同一導電型の
下側反射膜、量子井戸から成る活性層、反対導電型の上
側反射膜、および金属膜をエピタキシャル成長により形
成し、基板と金属膜との間に直流電圧を印加して、基板
の下面(裏面)または上側反射膜の上面からその面と垂
直な方向にレーザ出力光を取り出す構成の面発光半導体
レーザが注目を集めている。この種の半導体レーザの構
造は、IC製造技術の応用により単一の基板に多数の微
小レーザを高度に集積化することを可能にするので、信
号伝送路の光スイッチや光コンピュータなどに広く応用
できるものと期待されている。2. Description of the Related Art A lower reflective film of the same conductivity type, an active layer composed of a quantum well, and an upper reflection type of the opposite conductivity type are formed on the surface of a III-V compound semiconductor (for example, n-type GaAs) of one conductivity type. A film and a metal film are formed by epitaxial growth, a DC voltage is applied between the substrate and the metal film, and laser output light is emitted from the lower surface (back surface) of the substrate or the upper surface of the upper reflective film in a direction perpendicular to the surface. Attention has been paid to a surface emitting semiconductor laser having a configuration for taking out light. This type of semiconductor laser structure enables a large number of microlasers to be highly integrated on a single substrate by applying IC manufacturing technology, so it is widely applied to optical switches in signal transmission lines, optical computers, etc. It is expected to be possible.
【0003】しかしながら、このような面発光半導体レ
ーザを実用的な形で実現するには消費電力を低減しなけ
ればならない。すなわち、微分量子効率(内部量子効率
とミラー損失対光共振器内損失比との積)を高めて閾値
電流を低減するとともに、上記基板と金属膜との間の電
気抵抗を下げて駆動電源電圧を低下させなければならな
い。However, in order to realize such a surface emitting semiconductor laser in a practical form, the power consumption must be reduced. That is, the differential quantum efficiency (the product of the internal quantum efficiency and the mirror loss to the loss ratio in the optical resonator) is increased to reduce the threshold current, and the electric resistance between the substrate and the metal film is reduced to reduce the driving power supply voltage. Must be reduced.
【0004】[0004]
【発明が解決しようとする課題】そこで、閾値電流およ
び電気抵抗の低減のためのいろいろの手法が提案されて
きた。まず、Electronics Letter
s,vol.25,pp,pp.1377−1378
(1989年)所載のJ.L.Jewellらの報告
は、上記下側反射膜および上側反射膜として多層GaA
s/AlAs膜による分布Bragg反射膜(Dist
ributed Bragg Reflectors,
以下DBR反射膜という)を採用することが閾値電流の
低下に非常に有効であることを示した。DBR反射膜の
採用は確かに閾値電流の低減をもたらすが、電気抵抗の
低減は充分でない。電気抵抗を下げる手段として、IE
EE Photonics Technologica
l Letters,vol.2,pp.234−23
6(1990年)所載のR.S.Geelsらの報告、
および上記J.L.Jewellらによる米国特許第
4,949,350号は、上記下側反射膜および上側反
射膜を構成するDBR反射膜のGaAs/AlAsヘテ
ロ接合部にグレーデット層を形成することを提案した。
DBR反射膜の高い電気抵抗が、そのDBR反射膜を構
成する多層GaAs/AlAs膜の各々のGaAs/A
lAsヘテロ接合の高抵抗に起因することに着目した提
案であるこの手法によって上述の抵抗値は従来の10分
の1程度に低減できる見通しである旨報告されている
が、それ以上の低減は困難とみられる。Therefore, various methods for reducing the threshold current and the electric resistance have been proposed. First, Electronics Letter
 s, vol. 25, pp, pp. 1377-1378
 (1989). L. Jewell et al. Reported that multilayer GaAs was used as the lower reflective film and the upper reflective film.
 Distributed Bragg reflection film (Dist) by s / AlAs film
 ribbed Bragg Reflectors,
 It is shown that the use of a DBR reflection film) is very effective in lowering the threshold current. Although the adoption of the DBR reflective film certainly reduces the threshold current, it does not sufficiently reduce the electric resistance. IE as a means to reduce electrical resistance
 EE Photonics Technology
 l Letters, vol. 2, pp. 234-23
 6 (1990). S. Reports by Geels et al.
 And J. above. L. U.S. Pat. No. 4,949,350 to Jewell et al. Proposed forming a graded layer at the GaAs / AlAs heterojunction of the DBR reflective film constituting the lower reflective film and the upper reflective film.
 The high electrical resistance of the DBR reflection film is due to the GaAs / A of each of the multilayer GaAs / AlAs films constituting the DBR reflection film.
 It has been reported that this technique, which is a proposal focusing on the high resistance of the lAs heterojunction, is expected to reduce the above-described resistance value to about one tenth of the conventional value, but further reduction is difficult. It seems to be.
【0005】電気抵抗を下げるもう一つの手法は、El
ectronics Letters,vol.27,
pp.951−916(1991年)所載のG.Has
nainらの報告にも記載されているとおり、DBR反
射膜を構成する多層GaAs/AlAs膜の不純物濃度
を上げる手法である。このアプローチによると、電気抵
抗は確かに下がるものの、光共振器内のフリーキャリア
による光の吸収が不可避的に大きくなり、微分量子効率
が下り、閾値電流を引き上げる。[0005] Another method for lowering the electric resistance is El.
 electronics Letters, vol. 27,
 pp. G. 951-916 (1991). Has
 As described in the report of Nain et al., this is a method of increasing the impurity concentration of the multilayer GaAs / AlAs film constituting the DBR reflection film. According to this approach, although the electrical resistance certainly decreases, the absorption of light by the free carriers in the optical resonator inevitably increases, the differential quantum efficiency decreases, and the threshold current increases.
【0006】この発明の目的は、微分量子効率の低下を
伴うことなく電気抵抗を低減したDBR反射膜ベースの
面発光半導体レーザを提供することにある。An object of the present invention is to provide a surface emitting semiconductor laser based on a DBR reflective film which has reduced electric resistance without lowering differential quantum efficiency.
【0007】[0007]
【課題を解決するための手段】この発明によるDBR反
射膜ベースの面発光半導体レーザにおいて、DBR反射
膜を構成する多層GaAs/AlAs膜の不純物濃度を
上記Hasnainらの提案のように均一に上げる代り
に、光共振器内に発生する活性層からの出力光の定在波
の電界強度が最小になる点のみにおいて選択的に上げ
る。出力光定在波の電界強度の最小値は光共振器の軸方
向、すなわち活性層面に垂直な方向に空間的に周期的に
現われるので、この空間的周期とDBR反射膜の多層G
aAs/AlAs膜の厚さとを一対一に対応させ、それ
ら多層GaAs/AlAs膜のGaAs/AlAsヘテ
ロ接合のうち、レーザ全体の順バイアス動作時に逆バイ
アス状態になるGaAs/AlAsヘテロ接合のみで不
純物濃度を高める。In the surface emitting semiconductor laser based on the DBR reflection film according to the present invention, instead of uniformly increasing the impurity concentration of the multilayer GaAs / AlAs film constituting the DBR reflection film as proposed by Hasnain et al. Then, the intensity is selectively increased only at the point where the electric field intensity of the standing wave of the output light from the active layer generated in the optical resonator is minimized. Since the minimum value of the electric field strength of the output light standing wave appears spatially and periodically in the axial direction of the optical resonator, that is, in the direction perpendicular to the active layer surface, this spatial period and the multilayer G of the DBR reflection film are considered.
 The thickness of the aAs / AlAs film is made to correspond to one-to-one, and among the GaAs / AlAs heterojunctions of the multilayer GaAs / AlAs films, only the GaAs / AlAs heterojunction which is in a reverse biased state when the laser as a whole is forward biased has an impurity concentration. Enhance.
【0008】[0008]
【作用】この発明の面発光半導体レーザのDBR反射膜
を形成する多層GaAs/AlAs膜は上述のとおり逆
バイアス状態なるヘテロ接合近傍で高濃度に不純物を含
むので、それらヘテロ接合に起因する高抵抗値を低減で
きる。また、上記光定在波の電界強度の高い点では不純
物濃度は低く抑えてあるので光共振器内フリーキャリア
による光の吸収損失を低減でき、微分量子効率の低下を
回避できる。すなわち、この発明によれば、微分量子効
率を害なうことなく電気抵抗を低減した面発光半導体レ
ーザが得られる。The multilayer GaAs / AlAs film forming the DBR reflection film of the surface emitting semiconductor laser according to the present invention contains impurities in high concentration near the hetero-junction in the reverse bias state as described above. Value can be reduced. Further, since the impurity concentration is kept low at the point where the electric field strength of the optical standing wave is high, the absorption loss of light due to free carriers in the optical resonator can be reduced, and a decrease in differential quantum efficiency can be avoided. That is, according to the present invention, it is possible to obtain a surface emitting semiconductor laser having reduced electric resistance without deteriorating differential quantum efficiency.
【0009】[0009]
【実施例】図1Aを参照すると、この図に縦断面図を示
した本発明の面発光半導体レーザは、n型GaAs基板
1の表面に、n型多層干渉反射膜4、活性領域3、p型
多層干渉反射膜4および位相制御層5を分子線エピタキ
シー(MBE)により順次エピタキシャル成長させて形
成した積層構造にAuZn膜を堆積したのち、この積層
構造物をドライエッチングにかけて、各々が直径1〜1
0μmを有し、基板1の1つの面に配置された多数の円
柱状の微小レーザに切り分けることによって製造する。
この積層構造物の形成のための製造工程は上述の従来技
術と実質的に共通であるので詳細な説明は省略する。な
お、電極用AuZn膜6の形成は、ドライエッチングに
よる微小レーザへの切分けの後に行っても差し支えな
い。GaAs基板1の下側の面(裏面)にはAuGeN
iから成る環状の電極7を形成する。この半導体レーザ
の駆動直流電圧は電極6を+、電極7を−として印加さ
れ、レーザ光8はGaAs基板1の上記裏面から取り出
される。FIG. 1A is a longitudinal sectional view of a surface emitting semiconductor laser according to the present invention. An n-type GaAs substrate 1 has an n-type multilayer interference reflection film 4, an active region 3, AuZn film is deposited on a multilayer structure formed by sequentially epitaxially growing the multilayer interference reflection film 4 and the phase control layer 5 by molecular beam epitaxy (MBE).
 It is manufactured by cutting into a large number of cylindrical microlasers having a thickness of 0 μm and arranged on one surface of the substrate 1.
 The manufacturing process for forming the laminated structure is substantially the same as that of the above-described conventional technology, and thus a detailed description is omitted. The formation of the electrode AuZn film 6 may be performed after separation into minute lasers by dry etching. AuGeN on the lower surface (back surface) of the GaAs substrate 1
 An annular electrode 7 made of i is formed. The driving DC voltage of the semiconductor laser is applied with the electrode 6 being positive and the electrode 7 being negative, and the laser light 8 is extracted from the back surface of the GaAs substrate 1.
【0010】活性領域3は、厚さ10nmで不純物を含
まないIn0.2Ga0.8Asから成る活性層10を、S
iで5×1016cm-3の濃度にドープされた厚さ143
nmのn型Al0.5Ga0.5層11と、Beで5×10
16cm-3の濃度にドープされた厚さ143nmのp型A
l0.5Ga0.5As層12とで挟んだサンドウィッチ構
造を備えている。The active region 3 includes an active layer 10 made of In0.2 Ga0.8 As and having a thickness of 10 nm and containing no impurities.
 a thickness 143 doped with i to a concentration of 5 × 1016 cm-3
 nm type Al0.5 Ga0.5 layer 11 and 5 × 10
 143 nm thick p-type A doped to a concentration of16 cm-3
 A sandwich structure sandwiched between the l0.5 Ga0.5 As layer 12 is provided.
【0011】位相制御層5は、活性領域3からの光の電
極6における反射に伴う位相変化を補償してp型多層干
渉反射膜4の反射率を最大にするための層であり、その
厚さは活性領域3からのレーザ光の波長λ0の0.16
倍を位相制御層5の屈折率で除した値に選ぶ。本実施例
においては、位相制御層5を構成するp型GaAs層の
屈折率は3.54416であり、波長λ0は950nm
であるので層5の厚さは42.88nmに選んである。The phase control layer 5 is a layer for maximizing the reflectivity of the p-type multilayer interference reflection film 4 by compensating for a phase change caused by the reflection of light from the active region 3 on the electrode 6, and having a thickness of Is 0.16 of the wavelength λ0 of the laser beam from the active region 3.
 Select a value obtained by dividing the magnification by the refractive index of the phase control layer 5. In this embodiment, the refractive index of the p-type GaAs layer constituting the phase control layer 5 is 3.554416, and the wavelength λ0 is 950 nm.
 Therefore, the thickness of the layer 5 was selected to be 42.88 nm.
【0012】n型多層干渉反射膜2は、それぞれSiで
従来技術による場合と同程度の濃度にドープしたn型G
aAs層13とn型AlAs層14とを交互に23周期
にわたり積層して形成したDBRである。同様に、p型
多層干渉反射膜4は、それぞれBeで従来技術による場
合と同程度の濃度にドープしたp型GaAs層15とp
型AlAs層16とを交互に15周期にわたり積層して
形成したDBRである。これらGaAs層およびAlA
s層の厚さは、それぞれλ0/nGaAs,λ0/nAlAsに
選ぶ。ここで、nGaAsおよびnAlAsは、それぞれGaA
sおよびAlAsの屈折率を表わす。nGaAsおよびn
AlAsは導電型にほぼ関係なく、それぞれ3.54416
および2.96091であるので、この実施例ではGa
As層の厚さは67nmに、AlAs層の厚さは80.
2nmにそれぞれ選んである。The n-type multilayer interference reflection film 2 is made of n-type G doped with Si at the same concentration as in the prior art.
 This is a DBR formed by alternately stacking aAs layers 13 and n-type AlAs layers 14 for 23 periods. Similarly, the p-type multilayer interference reflection film 4 is composed of a p-type GaAs layer 15 and a p-type GaAs layer 15 doped with Be at the same concentration as in the prior art.
 It is a DBR formed by alternately laminating the type AlAs layers 16 for 15 periods. These GaAs layer and AlA
 The thickness of the s layer is selected to be λ0 / nGaAs and λ0 / nAlAs , respectively. Here, nGaAs and nAlAs areGaAs , respectively.
 s and the refractive index of AlAs. nGaAs and n
AlAs is 3.554416 regardless of the conductivity type.
 And 2.96091, Ga in this embodiment.
 The thickness of the As layer is 67 nm, and the thickness of the AlAs layer is 80 nm.
 Each was selected to 2 nm.
【0013】次に、図1Bおよび図1Cを図1Aに併せ
て参照すると、多層干渉反射膜2および4の各々を構成
するGaAs層およびAlAs層は、上述の均一なドー
ピングに加えて、これら層の間のGaAs/AlAsヘ
テロ接合のうち、特定のヘテロ接合およびその近傍を高
濃度にドーピングする。すなわち、これらGaAs/A
lAsヘテロ接合のうち、多層干渉反射膜2および4か
らそれぞれ活性領域3に向って、小さい値から大きい値
に変化する禁制帯幅Egをもつヘテロ接合17およびそ
れら接合近傍において、Si(n型多層干渉反射膜2)
およびBe(p型多層干渉反射膜4)で高濃度にドープ
する。高濃度にドープされたこれらヘテロ接合17は、
この面発光半導体レーザの電極6および電極7の間に順
方向に直流電圧をかけた状態で逆バイアスになる接合で
あり、活性領域3、多層干渉反射膜2および4にわたっ
て発生するレーザ光の定在波の電界強度20の最小点に
位置する。この実施例におけるn型多層干渉反射膜で
は、n型AlAs onn型GaAsのヘテロ接合が、
また、p型多層板反射膜4ではp型GaAs onp型
AlAsのヘテロ接合が上記特定のヘテロ接合17を構
成する。これら特定のヘテロ接合17に形成される高濃
度ドープ領域18(図1C)は、n型およびp型多層干
渉反射膜2および4の両方共、60nmの厚さをもち、
前者で5×1018cm-3後者で1×1019cm-3の不純
物濃度をもつ(図1D)。これら高濃度ドープ領域18
以外の部分は多層干渉反射膜2および4ともに1×10
18cm-3に均一にドープしている。Next, referring to FIGS. 1B and 1C in conjunction with FIG. 1A, the GaAs layer and the AlAs layer constituting each of the multilayer interference reflection films 2 and 4 have these layers in addition to the above-mentioned uniform doping. In the GaAs / AlAs heterojunction between the above, a specific heterojunction and its vicinity are heavily doped. That is, these GaAs / A
 In the 1As heterojunction, a heterojunction 17 having a forbidden band width Eg that changes from a small value to a large value from the multilayer interference reflection films 2 and 4 toward the active region 3 respectively, and Si (n-type multilayer) near the junction. Interference reflection film 2)
 And Be (p-type multilayer interference reflection film 4) at a high concentration. These heavily doped heterojunctions 17
 This junction is reverse biased when a DC voltage is applied in the forward direction between the electrode 6 and the electrode 7 of the surface emitting semiconductor laser, and the constant of laser light generated over the active region 3 and the multilayer interference reflection films 2 and 4 is constant. It is located at the minimum point of the electric field strength 20 of the standing wave. In the n-type multilayer interference reflection film in this embodiment, the heterojunction of n-type AlAs on-type GaAs is
 Further, in the p-type multilayer board reflection film 4, the heterojunction of p-type GaAs on p-type AlAs constitutes the specific heterojunction 17. The heavily doped region 18 (FIG. 1C) formed in these specific heterojunctions 17 has a thickness of 60 nm for both the n-type and p-type multilayer interference reflection films 2 and 4, and
 The former has an impurity concentration of 5 × 1018 cm−3 and the latter has an impurity concentration of 1 × 1019 cm−3 (FIG. 1D). These heavily doped regions 18
 The other parts are 1 × 10 for both the multilayer interference reflection films 2 and 4.
 It is uniformly doped to18 cm-3 .
【0014】電極6および7を上述のとおり駆動電源
(図示していない)の陽極および陰極にそれぞれ接続す
ると、この半導体レーザはレーザ発振を起し、n型Ga
As基板1の裏面から出力光8を発生する。多層干渉反
射膜2および4を構成する上記DBRsのGaAs/A
lAsヘテロ接合は、この状態で1層ごとに交互に順バ
イアス状態および逆バイアス状態となる。一般に、逆バ
イアス状態にあるヘテロ接合は電流が流れにくく、高抵
抗になるが、本実施例では、これら逆バイアスになるヘ
テロ接合の近傍は高濃度に不純物でドープしてあるの
で、電流は流れ易く、上記高抵抗は回避できる。しか
も、高濃度ドープ領域18は上記光定在波の電界強度の
最小点の近傍に限って形成してあるので、それら高濃度
ドープ領域18のフリーキャリアによる光の吸収の影響
は最小限に抑えられ、微分量子効率の低下を招くことは
ない。When the electrodes 6 and 7 are connected to the anode and the cathode of a drive power supply (not shown), respectively, as described above, the semiconductor laser oscillates and n-type Ga
 The output light 8 is generated from the back surface of the As substrate 1. GaAs / A of the above DBRs constituting the multilayer interference reflection films 2 and 4
 In this state, the 1As heterojunction alternately becomes a forward bias state and a reverse bias state for each layer. In general, a heterojunction in a reverse bias state hardly allows a current to flow and has a high resistance. However, in the present embodiment, the vicinity of the reverse biased heterojunction is heavily doped with impurities. It is easy to avoid the high resistance. Moreover, since the heavily doped region 18 is formed only in the vicinity of the minimum point of the electric field intensity of the light standing wave, the influence of light absorption by free carriers in the heavily doped region 18 is minimized. Therefore, the differential quantum efficiency does not decrease.
【0015】本実施例において、閾値電流密度は900
A/cm2になり、従来技術による値(1.5KA/c
m2)に比べて大幅に改善されている。また、多層干渉
反射膜のシート電気抵抗ρsは、従来技術による多層干
渉反射膜10周期の構成で2.3×10-4Ω・cm2で
あったものが、1/2程度になる。In this embodiment, the threshold current density is 900
 A / cm2, which is a value obtained by the conventional technology (1.5 KA / c
 m2 ). Further, the sheet electric resistance ρs of the multilayer interference reflection film is about1/2 , which is 2.3 × 10−4 Ω · cm2 in the configuration of the conventional multilayer interference reflection film having 10 periods.
【0016】下側反射膜2のn型DBRを28.5周
期、上側反射膜4のp型DBRを23周期とし、上記高
濃度ドープ領域18の不純物濃度を上側反射膜4で5×
1018cm-3、下側反射膜2で2×1018cm-3とし、
上記高濃度ドープ領域18以外の均一ドープ領域の不純
物濃度を5×1017cm-3とし、エッチングにより20
μm×20μmの角柱に加工して構成した本実施例によ
るサンプルでは、室温CW発振で閾値電流1.8mA、
閾値電流密度450A/cm2、微分量子効率0.1m
W/mAをそれぞれ記録した。閾値電流および電気抵抗
について上述の改善がみられたほか、微分量子効率も従
来技術によった場合に比べて10倍程度改善されている
ことがわかる。The n-type DBR of the lower reflective film 2 is 28.5 periods, the p-type DBR of the upper reflective film 4 is 23 periods, and the impurity concentration of the heavily doped region 18 is 5 × in the upper reflective film 4.
 1018 cm-3, and 2 × 1018 cm-3 in the downside reflecting film 2,
 The impurity concentration of the uniformly doped region other than the highly doped region 18 was set to 5 × 1017 cm−3 ,
 In the sample according to the present embodiment formed into a prism having a size of μm × 20 μm, the threshold current is 1.8 mA at room temperature CW oscillation, and the threshold current is 1.8 mA.
 Threshold current density 450 A / cm2 , differential quantum efficiency 0.1 m
 W / mA was recorded respectively. It can be seen that, in addition to the above-mentioned improvements in the threshold current and the electric resistance, the differential quantum efficiency has been improved about 10 times as compared with the case of the prior art.
【0017】本実施例においては、p型多層干渉反射膜
4およびn型多層干渉反射膜2の両方において、上記高
濃度ドープ領域18を形成したが、これら反射膜2およ
び4のいずれか一方だけに形成しても差し支えない。そ
の場合は、p型多層干渉反射膜4に高濃度ドープ領域1
8を形成するのが、好ましい。なぜなら、p型多層干渉
反射膜4の方が直列抵抗が1桁程度高く、かつ、フリー
キャリア損失も大きいからである。また、この発明によ
る周期的高濃度ドープ領域18の形成を上記の従来技術
によるGaAs/AlAs接合部でのグレーデット層の
形成に併せて行うこともできる。その場合は、直列抵抗
の低減効果がさらに高まる。また、活性領域3に2つ以
上の量子井戸活性層を含めることもでき、また、pnp
n構造にすることもできる。後者の場合には、pnpn
構造特有のスイッチング特性が生じ、レーザ発振とスイ
ッチングの2つの機能を有する面発光半導体レーザが得
られる。また、本実施例では、ドーパントとしてSiお
よびBeを用いたが、Sn,Te,Mn,Mg,Zn等
も同様に用いる事ができる。また、本発明に用いられる
III-V 族半導体材料は、実施例では、GaAs,AlA
sに限ったが、InGaAsP/InP系等のIII-V 族
半導体材料も同様に用いることができる。また、基板裏
面からレーザ光を取り出す構造としたが、上側DBR反
射膜上面からレーザ光を取り出す構造にしても差し支え
ない。In this embodiment, the heavily doped region 18 is formed in both the p-type multilayer interference reflection film 4 and the n-type multilayer interference reflection film 2, but only one of these reflection films 2 and 4 is formed. May be formed. In that case, the heavily doped region 1
 Preferably, 8 is formed. This is because the p-type multilayer interference reflection film 4 has a higher series resistance by about one digit and a larger free carrier loss. In addition, the formation of the periodically heavily doped region 18 according to the present invention can be performed simultaneously with the formation of the graded layer at the GaAs / AlAs junction according to the above-described prior art. In that case, the effect of reducing the series resistance is further enhanced. Further, the active region 3 can include two or more quantum well active layers, and the pnp
 An n-structure can also be used. In the latter case, pnpn
 A switching characteristic peculiar to the structure occurs, and a surface emitting semiconductor laser having two functions of laser oscillation and switching can be obtained. Further, in the present embodiment, Si and Be are used as dopants, but Sn, Te, Mn, Mg, Zn and the like can be used in the same manner. Also used in the present invention
 In the embodiment, the III-V group semiconductor material is GaAs, AlA.
 Although limited to s, III-V group semiconductor materials such as InGaAsP / InP can be used in the same manner. Further, although the structure is such that the laser light is extracted from the back surface of the substrate, the structure may be such that the laser light is extracted from the upper surface of the upper DBR reflective film.
【0018】[0018]
【発明の効果】以上説明したように、本発明において
は、光定在波の節となる位置と前述した逆バイアスとな
るヘテロ接合位置が一致している事を利用して、このヘ
テロ接合部にのみ不純物を多量にドープする事によって
微分量子効率を悪化させる事なく電気抵抗を低減する事
が出来る。As described above, in the present invention, by utilizing the fact that the position of the node of the optical standing wave coincides with the position of the heterojunction which becomes the reverse bias, the heterojunction portion is used. By doping a large amount of the impurity only, the electrical resistance can be reduced without deteriorating the differential quantum efficiency.
【図1】Aは発明の一実施例の面発光半導体レーザの構
造を模式的に示す縦断面図、BはAの半導体レーザの動
作状態でその内部に発生する光定在波の電界強度のAの
半導体レーザ軸方向位置に対する分布を示す図、CはA
の半導体レーザを構成する多層干渉反射膜及び活性領域
の各々に対応する禁制帯幅と上記多層干渉反射膜の高不
純物濃度領域との関係を模式的に示す図、Dは上記多層
干渉反射膜の不純物濃度のBと同様の軸方向位置に対す
る分布の一例を示す図である。FIG. 1A is a longitudinal sectional view schematically showing a structure of a surface emitting semiconductor laser according to one embodiment of the invention, and FIG. 1B is a graph showing the electric field intensity of a light standing wave generated inside the semiconductor laser of FIG. FIG. 4 shows a distribution of A with respect to a position in a semiconductor laser axial direction, and FIG.
 FIG. 4 schematically shows a relationship between a band gap corresponding to each of the multilayer interference reflection film and the active region constituting the semiconductor laser of the present invention and a high impurity concentration region of the multilayer interference reflection film. It is a figure which shows an example of the distribution with respect to the axial position similar to B of an impurity concentration.
1 半導体基板 2 n型DBR反射膜 3 活性領域 4 p型DBR反射膜 5 位相制御層 6 電極 7 電極 17 高濃度ドープのヘテロ接合 18 高濃度領域 20 光定在波 REFERENCE SIGNS LIST 1 semiconductor substrate 2 n-type DBR reflection film 3 active region 4 p-type DBR reflection film 5 phase control layer 6 electrode 7 electrode 17 heavily doped heterojunction 18 high concentration region 20 light standing wave
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 JICSTファイル(JOIS)──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl.6 , DB name) H01S 3/18 JICST file (JOIS)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP3329099AJP2757633B2 (en) | 1990-12-28 | 1991-12-12 | Surface emitting semiconductor laser | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP41693090 | 1990-12-28 | ||
| JP2-416930 | 1990-12-28 | ||
| JP3329099AJP2757633B2 (en) | 1990-12-28 | 1991-12-12 | Surface emitting semiconductor laser | 
| Publication Number | Publication Date | 
|---|---|
| JPH0629611A JPH0629611A (en) | 1994-02-04 | 
| JP2757633B2true JP2757633B2 (en) | 1998-05-25 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP3329099AExpired - LifetimeJP2757633B2 (en) | 1990-12-28 | 1991-12-12 | Surface emitting semiconductor laser | 
| Country | Link | 
|---|---|
| JP (1) | JP2757633B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2009064018A1 (en) | 2007-11-14 | 2009-05-22 | Ricoh Company, Ltd. | Surface emitting laser, surface emitting laser array, optical scanning device, image forming apparatus, optical transmission module and optical transmission system | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE19523181A1 (en)* | 1994-07-05 | 1996-01-11 | Motorola Inc | Controlling selected carbon@ doping concn. | 
| WO2003063310A1 (en)* | 2002-01-25 | 2003-07-31 | Infineon Technologies Ag | Laser diode comprising a vertical resonator and a method for the production thereof | 
| JP4651002B2 (en)* | 2004-08-12 | 2011-03-16 | ローム株式会社 | Semiconductor light emitting device | 
| KR100810230B1 (en)* | 2005-12-29 | 2008-03-07 | 삼성전자주식회사 | Fabrication method of vertical surface emitting laser light source and vertical surface emitting laser using the same | 
| US8755422B2 (en) | 2010-07-22 | 2014-06-17 | Furukawa Electric Co., Ltd. | Surface emitting laser, light source, and optical module | 
| WO2023171150A1 (en)* | 2022-03-11 | 2023-09-14 | ソニーセミコンダクタソリューションズ株式会社 | Vertical resonator surface emission laser | 
| Title | 
|---|
| ELECTRONICS LETTERS VOL.27,NO.21 PP.1984−1985(1991.10.10) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2009064018A1 (en) | 2007-11-14 | 2009-05-22 | Ricoh Company, Ltd. | Surface emitting laser, surface emitting laser array, optical scanning device, image forming apparatus, optical transmission module and optical transmission system | 
| US8208511B2 (en) | 2007-11-14 | 2012-06-26 | Ricoh Company, Ltd. | Surface emitting laser, surface emitting laser array, optical scanning device, image forming apparatus, optical transmission module and optical transmission system | 
| Publication number | Publication date | 
|---|---|
| JPH0629611A (en) | 1994-02-04 | 
| Publication | Publication Date | Title | 
|---|---|---|
| US5212706A (en) | Laser diode assembly with tunnel junctions and providing multiple beams | |
| US5903586A (en) | Long wavelength vertical cavity surface emitting laser | |
| EP0709939B1 (en) | Light emitting device and its fabrication method | |
| US6026111A (en) | Vertical cavity surface emitting laser device having an extended cavity | |
| US5892787A (en) | N-drive, p-common light-emitting devices fabricated on an n-type substrate and method of making same | |
| US5943359A (en) | Long wavelength VCSEL | |
| US5978398A (en) | Long wavelength vertical cavity surface emitting laser | |
| JPH03236295A (en) | Vertical cavity semiconductor laser device | |
| KR910003465B1 (en) | Optical semiconductor device | |
| US5012486A (en) | Vertical cavity semiconductor laser with lattice-mismatched mirror stack | |
| JPH0553317B2 (en) | ||
| JP2001036191A (en) | Optical semiconductor device equipped with tunable wavelength resonance cavity and application to modulation of light intensity | |
| JPH06196681A (en) | Light receiving and emitting integrated device | |
| JPH05283808A (en) | Surface light-emitting layser having low-resistance bragg reflection layer | |
| JPH04211186A (en) | Vertical semiconductor laser | |
| JP2757633B2 (en) | Surface emitting semiconductor laser | |
| JPH07288362A (en) | Vertical cavity surface emitting laser diode | |
| JPH0629612A (en) | Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture | |
| JP4134366B2 (en) | Surface emitting laser | |
| JPH05211346A (en) | Surface light emitting element | |
| JP2758598B2 (en) | Semiconductor laser | |
| JP2901921B2 (en) | Semiconductor laser device | |
| Choi et al. | Room‐temperature continuous operation of GaAs/AlGaAs lasers grown on Si by organometallic vapor‐phase epitaxy | |
| JPH05243678A (en) | Semiconductor laser and manufacturing method of the same | |
| JPH05327121A (en) | Surface emitting type semiconductor laser | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:19980210 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080313 Year of fee payment:10 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090313 Year of fee payment:11 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090313 Year of fee payment:11 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100313 Year of fee payment:12 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100313 Year of fee payment:12 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110313 Year of fee payment:13 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110313 Year of fee payment:13 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120313 Year of fee payment:14 | |
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120313 Year of fee payment:14 |