【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内刃を動作させるモータの回転数を負荷変
動に拘らず一定化する回路を備えた充電式電気かみそり
に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable electric shaver provided with a circuit for stabilizing the rotation speed of a motor for operating an inner blade irrespective of load fluctuation.
モータの負荷変動に拘らず、その回転数を回路処理に
より一定化して、所期のひげそり性能を維持するように
したものは、従来特開昭61−62381号公報、特開昭62−7
9084号公報で知られている。Regarding motors in which the desired number of revolutions is kept constant by circuit processing to maintain the desired shaving performance irrespective of the load fluctuation of the motor, there are conventional Japanese Patent Application Laid-Open Nos. 61-62381 and 62-7-7.
It is known from 9084.
特開昭61−62381号公報のものは、モータの回転速度
を検出し、回転速度に対応した検出信号を発生する回路
速度検出部と、前記検出信号と設定回転速度に対応する
基準信号を比較し、両信号の差に対応した制御信号を発
生する比較部と、制御信号の入力と連動してモータの印
加電圧を変化させ、モータの回転速度を設定速度に維持
可能とする制御部とを備えた電気かみそりである。そし
て、この例における回転速度検出部は、モータの近傍に
配設されてモータの磁気変化を検出するピックアップコ
イルとオペアンプとから形成されるか、フォトカプラ
ー、又はリードスイッチ等を用いて形成されている。Japanese Patent Application Laid-Open No. 61-62381 discloses a circuit speed detecting unit that detects a rotation speed of a motor and generates a detection signal corresponding to the rotation speed, and compares the detection signal with a reference signal corresponding to a set rotation speed. A comparison unit that generates a control signal corresponding to the difference between the two signals, and a control unit that changes the voltage applied to the motor in conjunction with the input of the control signal and that can maintain the rotation speed of the motor at the set speed. Electric razor equipped. The rotation speed detector in this example is formed from a pickup coil and an operational amplifier that are disposed near the motor and detects a magnetic change of the motor, or is formed using a photocoupler, a reed switch, or the like. I have.
また、特開昭62−79084号公報のものは、駆動用モー
タの回転数を検出する回転数検出回路と、前記モータに
直列に接続された電圧コントロール回路と、該電圧コン
トロール回路を作動せしめるトランジスタドライバと、
前記回転数検出回路よりの検出信号に基づいて前記モー
タに印加される電圧を選択する信号を前記トランジスタ
ドライバに供給する演算部とを備え、モータの回転数を
一定に制御することを特徴とする電気かみそりである。
そして、この例における回転数検出は、モータの回転数
を磁束の変化を検出するホール素子で行うように構成さ
れている。Japanese Patent Application Laid-Open No. 62-79084 discloses a rotation speed detection circuit for detecting the rotation speed of a driving motor, a voltage control circuit connected in series to the motor, and a transistor for operating the voltage control circuit. Driver and
A calculation unit that supplies a signal for selecting a voltage applied to the motor based on a detection signal from the rotation speed detection circuit to the transistor driver, and controls the rotation speed of the motor to be constant. It is an electric razor.
The rotation speed detection in this example is configured so that the rotation speed of the motor is detected by a Hall element that detects a change in magnetic flux.
以上のように従来のものはモータの回転数を検出する
ことが必要不可欠であるため、モータの回転数を検出す
る手段として磁気的又は光学的な検出センサとともに、
その処理回路が必要であるから、回路構造が複雑である
という問題がある。そればかりでなく、磁気的又は光学
的な検出センサの取付け位置のばらつきや、かみそり使
用に伴う落下の際の衝撃等に基づくセンサ取付け位置の
ずれ、検出センサが光学式である場合には、使用中にお
けるセンサの汚れ、検出センサが磁気式である場合に
は、使用中における磁力の劣化等のおそれもあり、これ
らが原因となってモータの回転数の検出、ひいてはモー
タの回転を一定化させることについての信頼性が良くな
いという問題があった。As described above, since it is indispensable to detect the rotation speed of the motor in the conventional one, together with a magnetic or optical detection sensor as a means for detecting the rotation speed of the motor,
Since the processing circuit is required, there is a problem that the circuit structure is complicated. In addition, if the detection sensor is optical, use a magnetic or optical detection sensor with a variation in the mounting position, a shift in the sensor mounting position based on the impact of a razor, etc. If the detection sensor is of a magnetic type and the detection sensor is of a magnetic type, there is a risk of deterioration of the magnetic force during use, etc., which causes the detection of the rotation speed of the motor and the constant rotation of the motor. There was a problem that the reliability of things was not good.
本発明の目的は、回路構造を簡単化でき、モータの負
荷変動に拘らず、その回転数を一定化することの信頼性
を向上できるとともに、主スイッチが入ったままでもモ
ータを駆動することなく、しかも効率よく蓄電池に充電
でき、かつ、充電後の蓄電池の消耗が少ない充電式電気
かみそりを提供することにある。An object of the present invention is to simplify the circuit structure, improve the reliability of keeping the number of rotations constant irrespective of the load fluctuation of the motor, and without driving the motor even when the main switch is on. Another object of the present invention is to provide a rechargeable electric shaver that can efficiently charge a storage battery and that consumes less storage battery after charging.
上記目的を達成するために、本発明の充電式電気かみ
そりにおいては、モータと、このモータに直列に接続さ
れた抵抗と、上記モータに直列に接続され上記モータを
通る駆動電流の大きさを調節するトランジスタと、上記
抵抗の両端間電圧と上記モータの両端間電圧とが夫々入
力されるとともに、これらの電圧比を内部電圧と比較し
てブリッジサーボ制御により上記モータの回転数を一定
化させる制御電流を上記トランジスタのベースに出力す
るモータ回転数制御用ICとを具備し、上記抵抗、モー
タ、およびトランジスタの直列回路を主スイッチを介し
て蓄電池の両端間に接続するとともに、上記蓄電池の両
端間を上記蓄電池の入力側が備える二次巻線にその一端
に接続されたダイオードを介して接続し、上記トランジ
スタのベース・エミッタ間に制御トランジスタのコレク
タ・エミッタ間を接続し、かつ、この制御トランジスタ
のベースを上記二次巻線の一端と上記ダイオードとの間
に接続したものである。In order to achieve the above object, in a rechargeable electric shaver of the present invention, a motor, a resistor connected in series to the motor, and a magnitude of a driving current passing through the motor connected in series to the motor are adjusted. And the voltage between both ends of the resistor and the voltage between both ends of the motor are inputted, respectively, and a ratio of these voltages is compared with an internal voltage to control the rotation speed of the motor to be constant by bridge servo control. A motor speed control IC for outputting a current to the base of the transistor; connecting a series circuit of the resistor, the motor, and the transistor across the storage battery via a main switch; Is connected to a secondary winding provided on the input side of the storage battery via a diode connected to one end of the secondary winding, and a base emitter of the transistor is connected. A connection between the collector and emitter of the control transistor during, and the base of the control transistor which are connected between one end and the diode in the secondary winding.
本発明において使用するモータ回転数制御用ICは、例
えばカセットテープレコーダーに使用されるモータの回
転数を一定化させるために開発された公知のものであ
る。このICは、その電源端子VDDと第1入力端子I1間に
対応して内部電圧を発生する内部抵抗を有しているとと
もに、第1入力端子I1と第2入力端子I2間に対応して内
部電圧を発生する内部抵抗を有している。そして、上記
電源端子VDDと第1の入力端子I1には、モータに直列接
続された抵抗の両端間の電圧が入力されるとともに、第
1入力端子I1と第2入力端子I2にはモータの両端間の電
圧が入力され、さらに、出力端子O1にはモータに直列接
続されたトランジスタのベースに接続されている。トラ
ンジスタは、そのベースに上記ICから供給される制御電
流の大きさに応じてモータに流れる電流の大きさを調節
するとともに、モータの駆動電流が上記ICを流されて、
このICに過大電流が流れることを防いでいる。このよう
なICは、これに入力される抵抗の両端間電圧とモータの
両端間電圧との比をICの内部電圧と比較して、その比較
電圧値が同じとなるようにするための制御電流を出力端
子O1から出力する。The motor rotation speed control IC used in the present invention is a known IC developed for stabilizing the rotation speed of a motor used in, for example, a cassette tape recorder. The IC has its with has the power supply terminal VDD and the internal resistance for generating an internal voltage in response between the first input terminal I1, corresponding to the space between the first input terminal I1 and the second input terminal I2 And an internal resistance for generating an internal voltage. Then, the voltage between both ends of the resistor connected in series to the motor is input to the power supply terminal VDD and the first input terminal I1, and the voltage is applied to the first input terminal I1 and the second input terminal I2 . is input the voltage across the motor, and is further connected to the base of the series connected transistors in the motor to the output terminal O1. The transistor adjusts the magnitude of the current flowing to the motor according to the magnitude of the control current supplied from the IC to its base, and the driving current of the motor flows through the IC,
This prevents excessive current from flowing through this IC. In such an IC, the ratio of the voltage across the resistor and the voltage across the motor input to this IC is compared with the internal voltage of the IC, and the control current is used to make the comparison voltage value equal. output from the output terminal O1.
したがって、かみそり使用中の負荷増大によりモータ
の回転が低下した(それに伴ってモータの両端間の電圧
が低下する。)場合には、上記ICはモータの回転を高め
るような大きさの制御電流をトランジスタのベースに供
給する。そうすると、トランジスタのオン状態は供給さ
れた制御電流の大きさに応じて、モータを通る駆動電流
の大きさを調節する。このように本発明ではモータの回
転数を検出することなくモータの回転数を一定化でき
る。Therefore, when the rotation of the motor decreases due to an increase in the load during use of the razor (the voltage between both ends of the motor decreases accordingly), the IC supplies a control current having a magnitude to increase the rotation of the motor. Supply to the base of the transistor. Then, the ON state of the transistor adjusts the magnitude of the drive current passing through the motor according to the magnitude of the supplied control current. As described above, in the present invention, the rotation speed of the motor can be made constant without detecting the rotation speed of the motor.
さらに、この充電式電気かみそりの蓄電池に充電をす
る時に誤って主スイッチがオン状態のままになっていて
も、制御トランジスタのベースに電源電圧が加えられ
て、このトランジスタがオンされる。このため、上記IC
の出力端子O1の制御電流をアースして、モータに接続さ
れたトランジスタをオフ状態とできる。また、蓄電池の
両端間は、この蓄電池から二次巻線側への放電を妨げる
ダイオードを介して二次巻線に接続されていて、このダ
イオードと二次巻線との間を制御トランジスタのベース
に接続したことにより、蓄電池に対する充電の際におい
ても、また充電後においても負荷側以外に蓄電池の放電
回路が形成されることがない。Furthermore, even if the main switch is accidentally left in the ON state when charging the rechargeable electric shaver storage battery, the power supply voltage is applied to the base of the control transistor, and this transistor is turned on. Therefore, the above IC
The control current to ground the output terminal O1, a transistor connected to the motor can be turned off. The both ends of the storage battery are connected to the secondary winding via a diode that prevents discharge from the storage battery to the secondary winding, and the base of the control transistor is connected between the diode and the secondary winding. , No discharge circuit of the storage battery is formed other than on the load side during and after charging the storage battery.
〔実施例〕 第1図および第2図を参照して本発明の一実施例を以
下説明する。Embodiment An embodiment of the present invention will be described below with reference to FIG. 1 and FIG.
第2図中1は充電式電気かみそりの本体ケースで、そ
の上部には外刃2を有した外刃体3が着脱可能に取付け
られている。本体ケース1には第1図に示した電気回路
を構成する各種部品が内蔵されている。次ぎに、第1図
の電気回路を説明する。In FIG. 2, reference numeral 1 denotes a main body case of a rechargeable electric razor, and an outer blade body 3 having an outer blade 2 is detachably mounted on an upper portion thereof. Various parts constituting the electric circuit shown in FIG. Next, the electric circuit of FIG. 1 will be described.
第1図中4は、その一次巻線4aが充電時に商用交流電
源に接続される降圧用のトランスで、このトランス4の
二次巻線4bの両端間には整流用ダイオード5を介して蓄
電池6が接続されている。蓄電池6の両端間には、主ス
イッチ7と、抵抗8と、モータ9と、トランジスタ10の
コレクタ・エミッタ間とを、その記載順に直列に接続し
てなるモータ駆動回路が接続されている。モータ9は上
記外刃2の内面に接して設けた図示しない内刃を動作さ
せるものであり、このモータ9にはコンデンサ11が並列
に接続されている。主スイッチ7はスライド式スイッチ
などからなり、その操作摘み7aは第2図に示すように本
体ケース1の外面に操作可能に設けられている。モータ
9の負極側端子に直列接続されたトランジスタ10は、電
圧を可変することによってモータ9を通る駆動電流の大
きさを調節する機能を有するものであり、本実施例の場
合にはパワートランジスタが用いられているが、これに
代えて電界効果形トランジスタ(FET)を使用してもよ
い。In FIG. 1, reference numeral 4 denotes a step-down transformer whose primary winding 4a is connected to a commercial AC power supply at the time of charging. 6 are connected. Connected between both ends of the storage battery 6 is a motor drive circuit in which a main switch 7, a resistor 8, a motor 9, and a collector-emitter of a transistor 10 are connected in series in the stated order. The motor 9 operates an inner blade (not shown) provided in contact with the inner surface of the outer blade 2, and a capacitor 11 is connected to the motor 9 in parallel. The main switch 7 is composed of a slide switch or the like, and an operation knob 7a is operably provided on the outer surface of the main body case 1 as shown in FIG. The transistor 10 connected in series to the negative terminal of the motor 9 has a function of adjusting the magnitude of the drive current passing through the motor 9 by changing the voltage. In the case of the present embodiment, the power transistor is Although used, a field effect transistor (FET) may be used instead.
そして、主スイッチ7と抵抗8の接続点とトランジス
タ10のエミッタと上記二次巻線4bとの接続点との間に
は、モータ回転数制御用IC12が接続されている。このIC
12は、カセットテープレコーダに使用されるモータの回
転数を一定化させるために開発されたもので、例えば商
品名TA7768F(株式会社東芝製)として知られているも
のである。このIC12は、電源端子VDD、アース端子GND、
第1入力端子I1、第2入力端子I2、出力端子O1を有して
いるだけでなく、この電源端子VDDと第1入力端子I1間
に対応して内部電圧を発生させる内部抵抗を有している
とともに、この内部抵抗と直列に接続されて第1入力端
子I1と第2入力端子I2間に対応して内部電圧を発生させ
る内部抵抗を有している。そして、IC12の電源端子VDD
は主スイッチ7と抵抗8との接続点に接続され、アース
端子GEDはトランジスタ10のエミッタと二次巻線4bとの
接続点に接続されている。また、IC12の第1入力端子I1
はモータ9とこの正極側に直列接続された抵抗8との接
続点に可変抵抗13を介して接続されているとともに、IC
12の第2入力端子I2はモータ9の負荷側端子とトランジ
スタ10のコレクタとの接続点に接続されている。さら
に、IC12の出力端子O1は抵抗14を介してトランジスタ10
のベースに接続されている。A motor speed control IC 12 is connected between a connection point between the main switch 7 and the resistor 8 and a connection point between the emitter of the transistor 10 and the secondary winding 4b. This IC
Reference numeral 12 is developed to stabilize the rotation speed of a motor used in a cassette tape recorder, and is known, for example, under the trade name TA7768F (manufactured by Toshiba Corporation). This IC12 has power supply terminal VDD, ground terminal GND,
Not only has a first input terminal I1 , a second input terminal I2 , and an output terminal O1 , but also an internal resistor for generating an internal voltage corresponding to between the power supply terminal VDD and the first input terminal I1 together have, it has an internal resistance that generates an internal voltage internal resistance and the first input terminal I1 are connected in series with the corresponding between the second input terminal I2. And the power supply terminal VDD of IC12
Is connected to the connection point between the main switch 7 and the resistor 8, and the ground terminal GED is connected to the connection point between the emitter of the transistor 10 and the secondary winding 4b. Also, the first input terminal I1 of the IC 12
Is connected via a variable resistor 13 to a connection point between a motor 9 and a resistor 8 connected in series to the positive electrode, and an IC
Twelve second input terminals I2 are connected to a connection point between the load side terminal of the motor 9 and the collector of the transistor 10. Further, the output terminal O1 of the IC 12 is connected to the transistor 10 via the resistor 14.
Connected to the base.
なお、上記可変抵抗13はモータ9やIC12の特性のばら
つきを補正してモータ9の回転数を調整するために使用
されている。この可変抵抗13は従来においては製造時に
調整されていたもので、使用者には触れられないように
本体ケース1に内蔵されていたものである。しかし、本
実施例においては、この可変抵抗13の操作摘み13aを第
2図に示すように本体ケース1外面に操作可能に設け
て、使用者が適宜操作できるようにしてある。それによ
り、製造時おける調整を不要にして、製造コストの低減
を図るとともに、使用者の好みに応じたモータ回転数を
適宜調整して得ることができる。The variable resistor 13 is used to correct the variation in the characteristics of the motor 9 and the IC 12 and adjust the rotation speed of the motor 9. The variable resistor 13 is conventionally adjusted at the time of manufacturing, and is built in the main body case 1 so as not to be touched by a user. However, in this embodiment, the operation knob 13a of the variable resistor 13 is operably provided on the outer surface of the main body case 1 as shown in FIG. This makes it possible to eliminate the need for adjustment at the time of manufacturing, reduce the manufacturing cost, and appropriately adjust the motor rotation speed according to the user's preference.
また、上記トランジスタ10にはスイッチ15が並列に接
続されている。このスイッチ15は例えばスライド式スイ
ッチからなり、その操作摘み15aは第2図に示すように
本体ケース1の外面に設けられている。そして、操作摘
み15aは通常第2図に示す「AUTO」位置(したがってス
イッチ15はオフ状態)に保持されるようになっている。A switch 15 is connected to the transistor 10 in parallel. The switch 15 is, for example, a slide switch, and an operation knob 15a is provided on the outer surface of the main body case 1 as shown in FIG. The operation knob 15a is normally held at the "AUTO" position shown in FIG. 2 (therefore, the switch 15 is turned off).
さらに、蓄電池6の入力側、例えば二次巻線4aの整流
用ダイオード5が接続された一端には、他のダイオード
16のアノードが接続され、このダイオード16のカソード
には抵抗17を介して制御トランジスタ18のベースが接続
されている。このトランジスタ18は、そのコレクタ・エ
ミッタ間をトランジスタ10のベース・エミッタ間に接続
して設けられている。Furthermore, another diode is connected to the input side of the storage battery 6, for example, one end of the secondary winding 4a to which the rectifying diode 5 is connected.
The anode of the control transistor 18 is connected to the cathode of the diode 16 via the resistor 17. The transistor 18 is provided with its collector and emitter connected between the base and emitter of the transistor 10.
このような構成の充電式電気かみそりにおいて、主ス
イッチ7を閉じて電源としての蓄電池6を投入すると、
まず、IC12の電源端子VDDと第1入力端子I1に、モータ
9の正極側端子に直列接続された抵抗8の両端間の電圧
が入力されるとともに、第1入力端子I1と第2入力端子
I2にモータ9の両端間の電圧が入力される。このため、
IC12はその内部電圧と上記両入力電圧の比とを比較し
て、この比較電圧値が同じとなるようにするための制御
電流を出力端子O1から出力する。そうすると、この制御
電流がトランジスタ10のベースに与えられて、このトラ
ンジスタ10がオン状態になるとともに、供給された制御
電流の大きさに応じて、モータ9を通る駆動電流の大き
さを調節するから、モータ9に適正な駆動電流が流され
て内刃が動作される。In the rechargeable electric shaver having such a configuration, when the main switch 7 is closed and the storage battery 6 as a power supply is turned on,
First, the power supply terminal VDD and the first input terminal I1 of the IC 12, positively electrode terminal with the voltage across the series connected resistor 8 is input, the first input terminal I1 and the second input of the motor 9 Terminal
Voltage across the motor 9 is input to the I2. For this reason,
IC12 compares the ratio of the internal voltage and the two input voltages and outputs a control current to the comparison voltage value is made to be the same from the output terminal O1. Then, the control current is supplied to the base of the transistor 10, and the transistor 10 is turned on. At the same time, the magnitude of the drive current passing through the motor 9 is adjusted according to the magnitude of the supplied control current. Then, an appropriate drive current is supplied to the motor 9 to operate the inner blade.
そして、モータ9の動作中においても、IC12は、既述
の電源端子VDDと第1入力端子I1間に入力される電圧
と、入力端子I1と入力端子I2間に入力される電圧の比
と、IC内部の内部抵抗に発生される内部電圧とを比較し
て、それに基づきモータ9の回転数が一定となるような
大きさの制御電流を出力するブリッジサーボ制御を継続
する。したがって、使用中の負荷増大によりモータ9の
回転が低下した(それに伴ってモータ9の両端間の電圧
が低下する。)場合には、上記IC12がモータ9の回転を
高めるような制御電流をトランジスタ10のベースに供給
する。このため、トランジスタ10は、オン状態のままで
供給された制御電流の大きさに応じてモータ9を通る駆
動電流の大きさを調節するから、それによって、モータ
9の回転数を一定化できる。Then, even during operation of the motor 9, IC 12 includes voltage and, for voltage input between the input terminal I1 and the input terminal I2 that is input between the aforementioned power supply terminal VDD and the first input terminal I1 The ratio and the internal voltage generated in the internal resistance of the IC are compared, and based on this, the bridge servo control for outputting a control current of such a magnitude that the rotation speed of the motor 9 becomes constant is continued. Therefore, when the rotation of the motor 9 decreases due to an increase in the load during use (the voltage across the motor 9 decreases accordingly), the IC 12 supplies a control current that increases the rotation of the motor 9 to a transistor. Supply to 10 bases. For this reason, the transistor 10 adjusts the magnitude of the drive current passing through the motor 9 in accordance with the magnitude of the control current supplied in the on state, whereby the rotation speed of the motor 9 can be made constant.
すなわち、以上のようにしてモータ9の回転数を検出
することなくモータ9の回転数を一定化できるから、磁
気的又は光学的な検出センサおよびこれに付随する回路
を不要とできる。このため、回路構造を簡単化できると
ともに、上記検出センサの使用に起因する信頼性低下の
問題点がなくなるから、モータ9の負荷変動に拘らず、
高い信頼性をもってモータ9の回転数を一定化できる。That is, since the rotation speed of the motor 9 can be made constant without detecting the rotation speed of the motor 9 as described above, a magnetic or optical detection sensor and a circuit associated therewith can be eliminated. For this reason, the circuit structure can be simplified, and the problem of reduced reliability due to the use of the detection sensor is eliminated.
The rotation speed of the motor 9 can be made constant with high reliability.
しかも、カセットテープレコーダ用のものとして開発
された上記IC12の制御電流は0.7アンペア程度と極少で
あるが、このIC12の出力端子O1にトランジスタ10を接続
して、モータ9の駆動電流(通常4〜5アンペア)がIC
12内を通過しない構成としてあるので、IC12に過大な電
流が流れて、このIC12が破壊することはない。Moreover, the control current of the IC12 was developed as a cassette tape recorder is very small and about 0.7 amps, by connecting a transistor 10 to the output terminal O1 of the IC12, the driving current of the motor 9 (usually 4 ~ 5 amps) is IC
Since the configuration does not pass through the inside of the IC 12, an excessive current flows through the IC 12 and the IC 12 is not broken.
また、使用者はトランジスタ10に並列なスイッチ15を
閉じて(操作摘み15を第2図中「POWER」位置にす
る。)モータ9を駆動できる。この場合には、モータ9
の駆動電流はスイッチ15を通りトランジスタ9をバイパ
スするから、上記IC12によるブリッジサーボ制御を受け
ることなく、モータ9を蓄電池6の電圧(電源電圧)で
直接に駆動できる。したがって、早ぞりを希望する時な
どに簡単に対応できるものである。Further, the user can drive the motor 9 by closing the switch 15 in parallel with the transistor 10 (turning the operation knob 15 to the “POWER” position in FIG. 2). In this case, the motor 9
Since the drive current passes through the switch 15 and bypasses the transistor 9, the motor 9 can be directly driven by the voltage of the storage battery 6 (power supply voltage) without being subjected to the bridge servo control by the IC 12. Therefore, it is possible to easily cope with a case where a quick traverse is desired.
さらに、蓄電池6に充電をする場合に、誤って主スイ
ッチ7がオン状態のままになっていても問題なく充電で
きる。つまり、トランス4の一次巻線4aを商用交流電源
に接続することにより、ダイオード16および抵抗17を通
して制御トランジスタ18のベースに電源電圧が加えられ
て、このトランジスタ18がオンされる。このため、上記
IC12の出力端子O1から出力される制御電流をアースし
て、モータ9に接続されたトランジスタ10をオフ状態と
できる。したがって、充電開始時にモータ9が動作され
ていても、その駆動を強制的に停止させて蓄電池6に対
する充電を行わせることができる。また、蓄電池6の両
端間を、この蓄電池6から二次巻線4a側への放電を妨げ
るダイオード5を介して二次巻線4aに接続し、このダイ
オード5と二次巻線4aとの間を制御トランジスタ18のベ
ースに接続したから、蓄電池6に対する充電の際におい
ても、また充電後においても負荷となるモータ9側以外
に蓄電池6の放電回路が形成されることがない。このよ
うに充電時中に放電回路が形成されることがないので、
効率よく蓄電池6に充電でき、また、充電後においても
放電回路が形成されることがないので、非使用時に無駄
に電力が費やされて蓄電池が消耗することを少なくでき
る。Furthermore, when charging the storage battery 6, even if the main switch 7 is kept on by mistake, the battery can be charged without any problem. That is, by connecting the primary winding 4a of the transformer 4 to a commercial AC power supply, a power supply voltage is applied to the base of the control transistor 18 through the diode 16 and the resistor 17, and the transistor 18 is turned on. Because of this,
Ground control current output from the output terminal O1 of the IC 12, a transistor 10 connected to the motor 9 can be turned off. Therefore, even when the motor 9 is operating at the start of charging, the driving of the motor 9 can be forcibly stopped to charge the storage battery 6. Further, the both ends of the storage battery 6 are connected to the secondary winding 4a via a diode 5 that prevents discharge from the storage battery 6 to the secondary winding 4a side, and between the diode 5 and the secondary winding 4a. Is connected to the base of the control transistor 18, so that a discharge circuit of the storage battery 6 is not formed except for the motor 9 serving as a load even when charging the storage battery 6 and after charging. Since a discharging circuit is not formed during charging as described above,
Since the storage battery 6 can be charged efficiently and a discharge circuit is not formed even after charging, it is possible to reduce the waste of power and the consumption of the storage battery when not in use.
本発明は以上説明したように構成されているので次に
記載する効果を奏する。Since the present invention is configured as described above, the following effects can be obtained.
この充電式電気かみそりにおいては、モータを通る駆
動電流の大きさを調節するトランジスタをモータに直列
に接続して、これをブリッジサーボ制御をなすモータ回
転数制御用ICを用いて制御し、モータの回転数を検出す
ることなくモータの回転数を一定化したから、回路構造
を簡単化できるとともに、モータの負荷変動に拘らず、
その回転数を一定化することの信頼性を向上できる。In this rechargeable electric shaver, a transistor for adjusting the magnitude of the drive current passing through the motor is connected in series to the motor, and this is controlled using a motor speed control IC that performs bridge servo control. Since the motor rotation speed is fixed without detecting the rotation speed, the circuit structure can be simplified, and regardless of the motor load fluctuation,
The reliability of keeping the rotation speed constant can be improved.
さらに、モータに直列なトランジスタのベース・エミ
ッタ間に制御トランジスタのコレクタ・エミッタ間を接
続して、このトランジスタのベースを蓄電池の入力側に
接続したから、充電時においては制御トランジスタがオ
ンして上記ICの出力端子の制御電流をアースでき、した
がって誤って主スイッチがオン状態のままになっていて
も、モータを駆動することなく蓄電池に充電できる。ま
た、制御トランジスタのベースの入力側の二次巻線とこ
の一端に接続されたダイオードとの間に接続して、負荷
側以外に蓄電池の放電回路が形成されないようにしたか
ら、充電時においては効率よく蓄電池に充電できるとと
もに、充電後の非使用時においても無駄に電力が費やさ
れて蓄電池が消耗することを少なくできる。Furthermore, the collector and emitter of the control transistor were connected between the base and emitter of the transistor in series with the motor, and the base of this transistor was connected to the input side of the storage battery. The control current of the output terminal of the IC can be grounded, so that the storage battery can be charged without driving the motor even if the main switch is accidentally left on. In addition, since it is connected between the secondary winding on the input side of the base of the control transistor and the diode connected to this one end so that the discharge circuit of the storage battery is not formed except for the load side, during charging, It is possible to efficiently charge the storage battery, and it is possible to reduce the waste of power and the consumption of the storage battery even when the battery is not used after the charging.
第1図および第2図は本発明の一実施例を示し、第1図
は電気回路図、第2図は電気かみそり全体の正面図であ
る。 6……蓄電池、7……主スイッチ、8……抵抗、9……
モータ、10……トランジスタ、12……IC、18……制御ト
ランジスタ。1 and 2 show an embodiment of the present invention. FIG. 1 is an electric circuit diagram, and FIG. 2 is a front view of the entire electric shaver. 6 ... storage battery, 7 ... main switch, 8 ... resistance, 9 ...
Motor, 10 transistor, 12 IC, 18 control transistor.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63258793AJP2625176B2 (en) | 1988-10-14 | 1988-10-14 | Rechargeable electric razor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63258793AJP2625176B2 (en) | 1988-10-14 | 1988-10-14 | Rechargeable electric razor |
| Publication Number | Publication Date |
|---|---|
| JPH02106189A JPH02106189A (en) | 1990-04-18 |
| JP2625176B2true JP2625176B2 (en) | 1997-07-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63258793AExpired - Fee RelatedJP2625176B2 (en) | 1988-10-14 | 1988-10-14 | Rechargeable electric razor |
| Country | Link |
|---|---|
| JP (1) | JP2625176B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2972030B2 (en)* | 1992-06-30 | 1999-11-08 | 松下電工株式会社 | Electric curtain drive |
| US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
| US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
| US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
| US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
| US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
| US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
| US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
| US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
| US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
| US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
| US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
| US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
| US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
| US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
| US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
| US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
| US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
| US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
| US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
| US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
| US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
| US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
| US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
| US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
| US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
| US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
| US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
| US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
| US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
| US7673782B2 (en) | 2007-03-15 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a releasable buttress material |
| US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
| US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
| US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
| US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
| US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
| JP5410110B2 (en) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Surgical cutting / fixing instrument with RF electrode |
| US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
| US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
| US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
| US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
| US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
| US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
| US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
| US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
| US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
| US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
| US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
| US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
| RU2525225C2 (en) | 2009-02-06 | 2014-08-10 | Этикон Эндо-Серджери, Инк. | Improvement of drive surgical suturing instrument |
| US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
| US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
| US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
| US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
| US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
| US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
| US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
| US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
| US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
| US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
| US9016542B2 (en) | 2010-09-30 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising compressible distortion resistant components |
| US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
| US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
| US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
| AU2012250197B2 (en) | 2011-04-29 | 2017-08-10 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
| US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
| MX358135B (en) | 2012-03-28 | 2018-08-06 | Ethicon Endo Surgery Inc | Tissue thickness compensator comprising a plurality of layers. |
| BR112014024098B1 (en) | 2012-03-28 | 2021-05-25 | Ethicon Endo-Surgery, Inc. | staple cartridge |
| US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
| US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
| BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
| US9408606B2 (en) | 2012-06-28 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Robotically powered surgical device with manually-actuatable reversing system |
| US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
| US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
| US12383267B2 (en) | 2012-06-28 | 2025-08-12 | Cilag Gmbh International | Robotically powered surgical device with manually-actuatable reversing system |
| JP6290201B2 (en) | 2012-06-28 | 2018-03-07 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Lockout for empty clip cartridge |
| BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
| RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
| US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
| US9826976B2 (en) | 2013-04-16 | 2017-11-28 | Ethicon Llc | Motor driven surgical instruments with lockable dual drive shafts |
| BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
| US9775609B2 (en) | 2013-08-23 | 2017-10-03 | Ethicon Llc | Tamper proof circuit for surgical instrument battery pack |
| MX369362B (en) | 2013-08-23 | 2019-11-06 | Ethicon Endo Surgery Llc | Firing member retraction devices for powered surgical instruments. |
| BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
| US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
| US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
| US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
| US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
| CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener Cartridge Including Extensions With Different Configurations |
| CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener Cartridge Assembly and Nail Retainer Cover Arrangement |
| US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
| BR112016023825B1 (en) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
| CN104166369B (en)* | 2014-07-17 | 2017-01-25 | 东莞市木牛马自动化科技有限公司 | Control method of intelligent assembling system of shaver head and intelligent assembling system |
| BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
| US10135242B2 (en) | 2014-09-05 | 2018-11-20 | Ethicon Llc | Smart cartridge wake up operation and data retention |
| US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
| US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
| US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
| CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttresses and auxiliary materials |
| US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
| US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
| US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
| US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
| US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
| MX389118B (en) | 2014-12-18 | 2025-03-20 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANVIL THAT CAN BE SELECTIVELY MOVED ON A DISCRETE, NON-MOBILE AXIS RELATIVE TO A STAPLE CARTRIDGE. |
| US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
| US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
| US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
| US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
| US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
| US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
| US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
| US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
| US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
| US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
| JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
| US10433844B2 (en) | 2015-03-31 | 2019-10-08 | Ethicon Llc | Surgical instrument with selectively disengageable threaded drive systems |
| US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
| US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
| US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
| US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
| US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
| US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
| US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
| US10265068B2 (en)* | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
| US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
| BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
| US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
| US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
| US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
| US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
| US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
| US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
| US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
| US10500000B2 (en) | 2016-08-16 | 2019-12-10 | Ethicon Llc | Surgical tool with manual control of end effector jaws |
| JP7010957B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
| US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
| US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
| JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
| US10542982B2 (en) | 2016-12-21 | 2020-01-28 | Ethicon Llc | Shaft assembly comprising first and second articulation lockouts |
| MX2019007295A (en) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout. |
| US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
| US10582928B2 (en) | 2016-12-21 | 2020-03-10 | Ethicon Llc | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
| US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
| JP2020501815A (en) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | Surgical stapling system |
| US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
| CN110087565A (en) | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | Surgical stapling system |
| US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
| JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
| US10973516B2 (en) | 2016-12-21 | 2021-04-13 | Ethicon Llc | Surgical end effectors and adaptable firing members therefor |
| US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
| US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
| US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
| US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
| US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
| US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
| US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
| US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
| US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
| US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
| US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
| USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
| US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
| EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
| US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
| US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
| US11484310B2 (en) | 2017-06-28 | 2022-11-01 | Cilag Gmbh International | Surgical instrument comprising a shaft including a closure tube profile |
| US10758232B2 (en) | 2017-06-28 | 2020-09-01 | Ethicon Llc | Surgical instrument with positive jaw opening features |
| US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
| US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
| US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
| US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
| US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
| US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
| US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
| US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
| US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
| US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
| US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
| US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
| US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
| US11179151B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a display |
| US12336705B2 (en) | 2017-12-21 | 2025-06-24 | Cilag Gmbh International | Continuous use self-propelled stapling instrument |
| US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
| US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
| US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
| US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
| US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
| US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
| US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
| US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
| US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
| US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
| US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
| US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
| US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
| US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
| US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
| US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
| US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
| US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
| US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
| US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
| US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
| US11361176B2 (en) | 2019-06-28 | 2022-06-14 | Cilag Gmbh International | Surgical RFID assemblies for compatibility detection |
| US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
| US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
| US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
| US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
| US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
| US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
| US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
| US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
| US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
| US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
| US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
| US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
| US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
| US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
| US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
| US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
| US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
| US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
| US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
| US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
| US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
| US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
| US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
| US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
| US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
| US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
| US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
| US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
| US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
| US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
| USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
| USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
| USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
| USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
| USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
| US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
| US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
| USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
| US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
| US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
| US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
| US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
| US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
| US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
| US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
| US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
| USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
| US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
| US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
| US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
| US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
| US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
| US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
| US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
| US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
| US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
| US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
| US12324580B2 (en) | 2021-02-26 | 2025-06-10 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
| US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
| US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
| US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
| US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
| US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
| US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
| US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
| US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
| US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
| US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
| US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
| US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
| US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
| US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
| US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
| US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
| US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
| US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
| US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
| US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
| US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
| US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
| US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
| US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
| US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
| US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
| US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
| US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
| US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
| US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
| US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
| US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
| US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
| US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
| US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
| US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
| US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
| US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
| US12432790B2 (en) | 2021-10-28 | 2025-09-30 | Cilag Gmbh International | Method and device for transmitting UART communications over a security short range wireless communication |
| US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5625392A (en)* | 1979-08-04 | 1981-03-11 | Sankyo Seiki Mfg Co Ltd | Speed controller for compact dc motor |
| JPS60177645U (en)* | 1984-05-04 | 1985-11-26 | 三洋電機株式会社 | battery charging device |
| JPS6165895U (en)* | 1984-10-02 | 1986-05-06 | ||
| JPS63198597A (en)* | 1987-02-10 | 1988-08-17 | Matsushita Electric Works Ltd | Motor drive circuit |
| Publication number | Publication date |
|---|---|
| JPH02106189A (en) | 1990-04-18 |
| Publication | Publication Date | Title |
|---|---|---|
| JP2625176B2 (en) | Rechargeable electric razor | |
| JPH05146009A (en) | Power supply for driving motor | |
| JPS5986499A (en) | Motor | |
| US4236187A (en) | Power supply voltage stabilizer | |
| JP2961009B2 (en) | Battery high-speed charge control circuit | |
| US4706009A (en) | Electronic switching power supply | |
| US12078685B2 (en) | Electric leakage determination device | |
| JP2002267698A (en) | Current detector | |
| JPH08140281A (en) | Charger | |
| US5654630A (en) | Contactless sensor driven by single power supply | |
| JPH11215885A (en) | Supply voltage variable current mode pwm driving device | |
| JPH09120316A (en) | Stabilized power unit | |
| JPH06284594A (en) | Chargeable power supply apparatus | |
| HK97289A (en) | Fixed frequency voltage regulator | |
| JP3416958B2 (en) | Charger with AC adapter | |
| JP3198215B2 (en) | Switching power supply device and power supply method thereof | |
| JPH07307166A (en) | Secondary battery charger | |
| JP3123869B2 (en) | Control device for DC shunt motor | |
| JPS5914822Y2 (en) | switching circuit | |
| JP2809391B2 (en) | Constant current / constant voltage charger | |
| JPH08103029A (en) | Battery pack, charger and charging adapter | |
| JP3726853B2 (en) | Charger | |
| JPS6222355B2 (en) | ||
| JP2988670B2 (en) | Secondary battery charge control method | |
| JPH0322833A (en) | Pwm charge controller for rechargeable battery |
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |