








本願発明は、宅地造成や、道路、河川堤防などにおいて構築される盛土に関する技術であり、より具体的には、測定した含水比に応じた転圧条件(振動ローラの起振力及び走行速度を含む)を決定する移動式含水比測定装置と、これを用いた転圧方法に関するものである。 The present invention relates to a technique relating to embankment constructed on a residential land development, a road, a river embankment, and the like. More specifically, the present invention relates to a compaction condition (excitation force and running speed of a vibrating roller in accordance with a measured water content). The present invention relates to a mobile moisture content measuring device for determining the water content ratio and a rolling method using the same.
盛土は、宅地造成や、道路、河川堤防などその用途に応じてあらかじめ要求性能(強度や、変形・圧縮特性、透水性など)が設定されており、この要求性能を満足するため盛土は適切な締固めが行われる。具体的には、盛土材をあらかじめ定めた所定厚(以下、「計画撒き出し厚」という。)だけ撒き出し、これを振動ローラなどの転圧機械があらかじめ定めた回数(以下、「計画転圧回数」という。)だけ転圧する。 The required performance (strength, deformation / compression characteristics, water permeability, etc.) of the embankment is set in advance according to the intended use, such as residential land development, roads, river embankments, etc. Compaction is performed. Specifically, the embankment material is scattered by a predetermined thickness (hereinafter, referred to as a “planned spreading thickness”), and is scattered by a rolling machine such as a vibrating roller for a predetermined number of times (hereinafter, “planned rolling compaction”). The number of times).
転圧は、要求性能を満たす盛土となるように行われるが、この要求性能を直接的に確認することは難しく、一般的には転圧された盛土の品質として締固めの程度を確認している。締固めの程度を表すには、乾燥単位体積重量(乾燥密度)が用いられることが多く、この値が大きいほど強度が増大し、透水係数は小さくなり、すなわち締固めの程度が向上する。同じ締固め条件でも含有する水量によって得られる乾燥単位体積重量は異なるため、最大の乾燥単位体積重量を与える最適含水比を基準とした品質管理を行うこともある。あるいは、施工現場での乾燥密度を最大乾燥密度で除した「締固め度」という概念で品質管理を行うこともあり。例えば締固め度が90%以上であれば要求品質を満たすとするケースもある。 Rolling is performed so that the embankment satisfies the required performance, but it is difficult to directly confirm this required performance, and in general, check the degree of compaction as the quality of the compacted embankment. I have. In order to express the degree of compaction, dry unit volume weight (dry density) is often used. As this value increases, the strength increases and the water permeability decreases, that is, the degree of compaction improves. Even under the same compaction conditions, since the obtained dry unit volume weight varies depending on the amount of water contained, quality control may be performed based on the optimum water content ratio that gives the maximum dry unit volume weight. Alternatively, quality control is sometimes performed based on the concept of "compaction degree", which is the dry density at the construction site divided by the maximum dry density. For example, there are cases where the required quality is satisfied if the degree of compaction is 90% or more.
また、転圧後の盛土の品質(施工乾燥密度や締固め度など)を確認することなく、工法規定方式によって盛土の品質管理を行うことも多い。この工程規定方式は、試験施工を行うことによって、盛土の転圧作業に用いる転圧機械や、計画撒き出し厚、計画転圧回数といった施工法そのものを規定する方法であり、これらの仕様で転圧を行えば目的の品質が達成されると考えるわけである。 In addition, the quality of the embankment is often controlled by a method stipulating a construction method without confirming the quality of the embankment after compaction (construction dry density, compaction degree, etc.). This process definition method is a method of defining the rolling machine used for the compaction work of the embankment and the construction method itself such as the planned spreading thickness and the planned number of times of compaction by performing test construction. We believe that the desired quality can be achieved by applying pressure.
盛土の品質管理を行う手法としては、工法規定方式のほかにも様々な手法がこれまで提案されている。例えば特許文献1では、あらかじめ試験施工を行うことにより補正係数を求め、この補正係数を用いて締固め後の盛土層の密度を算出し、目標密度と照らし合わせることで品質管理を行う技術について提案している。 Various methods have been proposed for quality control of the embankment in addition to the method specifying the construction method. For example,
振動ローラで転圧を行う場合、盛土の締固めの程度、すなわち盛土の品質は、振動ローラの締固め性能(走行速度や起振力、振幅など)と盛土材の含水比の組み合わせによって大きく異なることが知られている。ところが工法規定方式をはじめとする従来手法では、試験施工によって振動ローラの規格や計画撒き出し厚、計画転圧回数を規定するに留まり、振動ローラの締固め性能を規定することはなかった。振動ローラの締固め性能は、重機オペレータの感覚に委ねているのが現状であり、そのため盛土の品質が一定しないという問題が指摘されていた。 When compacting with a vibrating roller, the degree of compaction of the embankment, that is, the quality of the embankment, varies greatly depending on the combination of the compacting performance of the vibrating roller (running speed, vibrating force, amplitude, etc.) and the water content of the embankment material. It is known. However, in the conventional method including the method of defining the method of construction, the specification of the vibrating roller, the planned spreading thickness, and the number of times of rolling compaction are only specified by the test and execution, and the compaction performance of the vibrating roller is not specified. At present, the compaction performance of the vibrating roller is left to the sensation of the operator of the heavy equipment, and therefore, the problem that the quality of the embankment is not constant has been pointed out.
また含水比に関しても、従来手法では、試験施工等で測定された値をそのまま本施工の盛土に適用して品質管理を行っており、しかも本施工の盛土全体が同じ含水比として扱う品質管理が主流であった。しかしながら試験施工における盛土の含水比と本施工における盛土の含水比は相違することも多く、特に施工の盛土全体が同じ含水比となることはむしろ稀である。そのため実際の施工現場では、過転圧や転圧不足が生じた、いわば品質不良の盛土が構築されることも少なくなかった。 Regarding the water content, the conventional method controls the quality by applying the value measured in the test construction etc. as it is to the embankment of this construction as it is, and quality control that treats the entire embankment of this construction as the same moisture content It was mainstream. However, the water content of the embankment in the test construction and the water content of the embankment in this construction often differ, and it is rather rare that the entire embankment of the construction has the same water content. For this reason, in actual construction sites, over-pressing and insufficient rolling were generated, so-called poor-quality embankments were often built.
このように、盛土の品質が、振動ローラの締固め性能と盛土材の含水比の組み合わせに依存するにもかかわらず、従来手法では、本施工における盛土の含水比分布を測定することも、事前に振動ローラの締固め性能を計画することも、ましてや含水比分布に応じて振動ローラの締固め性能を適宜設定することも行われることはなかった。 Thus, despite the fact that the quality of the embankment depends on the combination of the compaction performance of the vibrating roller and the water content of the embankment material, the conventional method makes it possible to measure the water content distribution of the embankment in this construction, There has been no attempt to plan the compaction performance of the vibratory roller, nor to properly set the compaction performance of the vibratory roller according to the water content ratio distribution.
本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち盛土の含水比分布を測定するとともに、含水比分布に応じて振動ローラなど転圧機械の締固め性能を適宜設定することができる移動式含水比測定装置と、これを用いた転圧方法を提供することである。 An object of the present invention is to solve the problems of the prior art, that is, to measure the water content distribution of the embankment, and to appropriately set the compaction performance of a compaction machine such as a vibration roller according to the water content distribution. The present invention is to provide a mobile moisture content measuring device capable of performing the above method and a rolling method using the same.
本願発明は、含水比測定手段によって盛土の含水比を移動測定し、あらかじめ設定した転圧条件と盛土材の含水比との関係に基づいて、施工領域ごとに転圧機械の転圧条件を決定する、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。 The present invention moves and measures the water content of the embankment by the water content measurement means, and determines the rolling condition of the rolling machine for each construction area based on the relationship between the preset rolling condition and the water content of the embankment material. This is an invention made based on an unprecedented idea.
本願発明の移動式含水比測定装置は、撒き出された盛土の含水比を移動しながら測定する移動式含水比測定装置であって、盛土上を移動し得る移動体と、移動体に搭載された含水比測定手段、そして転圧条件決定手段を備えたものである。このうち含水比測定手段は、非接触で盛土の含水比を測定する手段である。また転圧条件決定手段は、含水比測定手段で測定された盛土の含水比に応じて転圧機械の転圧条件(起振力及び走行速度を含む)を決定する手段であり、より詳しくは、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて、含水比測定手段で測定された盛土の含水比から転圧機械の転圧条件を施工領域(盛土の全体領域を複数に分割した領域)ごとに決定する手段である。 The mobile water content measurement device of the present invention is a mobile water content measurement device that measures while moving the water content of the embankment that has been scattered, and a mobile body that can move on the embankment, and is mounted on the mobile body. And a compaction condition determining means. Among them, the water content measuring means is a means for measuring the water content of the embankment in a non-contact manner. The rolling condition determining means is means for determining the rolling condition (including the vibrating force and the running speed) of the rolling machine according to the water content of the embankment measured by the water content measuring means. Based on the preset "relation between the compaction condition and the water content of the embankment", the compaction condition of the compacting machine is determined from the moisture content of the embankment measured by the moisture content measuring means in the construction area (overall area of the embankment). Is determined for each of a plurality of divided areas.
本願発明の移動式含水比測定装置は、小領域含水比設定手段と施工領域設定手段をさらに備えたものとすることもできる。このうち小領域含水比設定手段は、含水比測定手段で測定された盛土の含水比に基づいて、小領域(盛土の全体領域を複数に分割した領域)ごとに含水比を設定する手段である。また施工領域設定手段は、含水比測定手段で測定された盛土の含水比に応じて施工領域を設定する手段であり、より詳しくは、隣接する2以上の小領域であって、近似する(同一も含む)含水比が測定された2以上の小領域を、1の施工領域として設定する手段である。また施工領域設定手段は、盛土の全体領域における含水比のばらつき(分散や標準偏差)に応じて施工領域の数を決定したうえで、施工領域を設定することもできる。 The mobile moisture content measuring device of the present invention may further include a small area moisture content setting means and a construction area setting means. The small area moisture content setting means is means for setting the moisture content for each small area (area obtained by dividing the entire area of the embankment into a plurality) based on the moisture content of the embankment measured by the moisture content measuring means. . The construction area setting means is means for setting the construction area in accordance with the water content of the embankment measured by the water content measurement means. This is a means for setting two or more small areas where the water content ratio is measured as one construction area. The construction area setting means can also set the construction area after determining the number of construction areas according to the variation (dispersion or standard deviation) of the water content in the entire embankment area.
本願発明の移動式含水比測定装置は、振動ローラを移動体とするものとすることもできる。振動ローラは、転圧条件決定手段によって決定された転圧条件で盛土の転圧を行う。 The mobile water content measuring device of the present invention can also use a vibrating roller as a moving body. The vibrating roller performs the compaction of the embankment under the compaction condition determined by the compaction condition determining means.
本願発明の転圧方法は、撒き出された盛土の含水比を移動測定した結果に応じて盛土の転圧を行う方法であって、含水比測定工程と転圧条件決定工程を備えた方法である。このうち含水比測定工程では、移動体で移動しながら含水比測定手段によって非接触で盛土の含水比を測定する。また転圧条件決定工程では、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて、含水比測定工程で測定された盛土の含水比から転圧機械の転圧条件(起振力及び走行速度を含む)を施工領域ごとに決定する。そして、転圧条件決定工程で決定された転圧条件で、転圧機械が盛土の転圧を行う。 The compaction method of the present invention is a method of compacting the embankment in accordance with the result of moving and measuring the water content of the embankment that has been scattered, and includes a moisture content measurement step and a compaction condition determining step. is there. In the water content ratio measurement step, the water content ratio of the embankment is measured in a non-contact manner by the water content ratio measurement means while moving with the moving body. In the compaction condition determining step, the compaction condition of the compacting machine is determined from the water content of the embankment measured in the moisture content measurement step, based on a preset relationship between the compaction condition and the water content of the embankment material. (Including vibrating force and running speed) for each construction area. Then, the compacting machine compacts the embankment under the compacting condition determined in the compacting condition determining step.
本願発明の転圧方法は、試験転圧工程と適応転圧条件設定工程をさらに備えた方法とすることもできる。このうち試験転圧工程では、異なる含水比を有する2種類以上の試験盛土材に対して、それぞれ異なる転圧条件で転圧機械が試験盛土材の転圧を行うとともに、転圧後における試験盛土材の品質を測定する。また適応転圧条件設定工程では、試験転圧工程で得られた「試験盛土材の品質と転圧条件と含水比との関係」から、要求品質を満たす適応転圧条件を含水比ごとに定める。この場合、転圧条件決定工程では、適応転圧条件設定工程で定められた含水比ごとの適応転圧条件に基づいて、転圧条件を決定する。 The rolling method of the present invention may be a method further including a test rolling step and an adaptive rolling condition setting step. In the test compaction process, the rolling machine performs the compaction of the test fill material under different compaction conditions for two or more kinds of test fill materials having different water contents, and the test fill material after compaction. Measure the quality of the material. In the adaptive compaction condition setting process, the adaptive compaction conditions that satisfy the required quality are determined for each moisture content from the "relationship between the quality of test embankment material, compaction conditions, and water content" obtained in the test compaction process. . In this case, in the compacting condition determining step, the compacting condition is determined based on the adaptive compacting condition for each water content ratio determined in the adaptive compacting condition setting step.
本願発明の移動式含水比測定装置、及び転圧方法には、次のような効果がある。
(1)含水比に適した締固め性能で転圧を行うことができる。その結果、従来に比べ過転圧や転圧不足を回避することができ、より高品質の盛土を構築することができる。
(2)盛土上を移動しながら含水比を測定することから、リアルタイムかつ面的に含水比を得ることができる。これにより、含水比分布に応じて適切な締固め性能を選択しながら転圧することができ、従来に比べ高い品質の盛土を構築することができる。
(3)高精度かつ短時間で含水比分布に応じた適切な締固め性能を決定することができることから、低品質や出来形不足による施工の手戻りを防ぐことができるうえ、品質保証(トレーサビリティ)を確保することができる。The mobile moisture content measuring device and the compaction method of the present invention have the following effects.
(1) Rolling can be performed with compaction performance suitable for the water content ratio. As a result, it is possible to avoid over-pressurization and insufficient compaction as compared with the related art, and to build a higher quality embankment.
(2) Since the water content is measured while moving on the embankment, the water content can be obtained in real time and in a plane. As a result, it is possible to perform compaction while selecting an appropriate compaction performance in accordance with the water content ratio distribution, and it is possible to construct an embankment of higher quality than before.
(3) Since it is possible to determine an appropriate compaction performance according to the water content distribution with high accuracy and in a short time, it is possible to prevent rework of construction due to low quality or lack of work quality, and quality assurance (traceability) ) Can be secured.
本願発明の移動式含水比測定装置、及び転圧方法の実施形態の例を図に基づいて説明する。なお本願発明は、種々の転圧機械を対象としてその転圧条件を決定することができるが、便宜上ここでは、転圧機械が振動ローラの場合で説明することとする。 An example of an embodiment of a mobile moisture content measuring device and a rolling method according to the present invention will be described with reference to the drawings. In the present invention, the compaction conditions can be determined for various compaction machines. However, here, for the sake of convenience, the case where the compaction machine is a vibrating roller will be described.
1.全体概要
本願発明は、撒き出された盛土を振動ローラで転圧するに当たって、あらかじめ振動ローラの転圧条件を決定することをひとつの技術的特徴としている。ここで振動ローラの「転圧条件」とは、振動ローラの転圧性能である走行速度や起振力、振幅を含み、そのほか転圧回数や撒き出し厚などを含めることもできる。1. Overall Overview One technical feature of the present invention is to determine the rolling condition of the vibrating roller before rolling the embankment with the vibrating roller. Here, the “rolling condition” of the vibrating roller includes the running speed, the vibrating force, and the amplitude, which are the rolling performance of the vibrating roller, and may also include the number of times of rolling, the thickness of spreading, and the like.
既述したとおり、締固め度等で表される盛土の品質は、振動ローラの締固め性能と盛土の含水比の組み合わせに大きく依存する。そのため本願発明では、撒き出された盛土の含水比を測定し、その結果に応じて転圧条件を決定することとした。さらに本願発明では、盛土全体に対して1通りの転圧条件を決定するのではなく、盛土の含水比分布に応じた転圧条件を決定することとしている。つまり、同一の転圧条件で盛土全体を転圧するのではなく、盛土のうち含水比が大きい領域と小さい領域で転圧条件を変えて転圧できるようにしたわけである。なお転圧条件は、盛土の全体領域(以下、単に「盛土全体」という。)を2以上に分割した領域ごとに決定され、便宜上ここでは転圧条件が決定される領域のことを「施工領域」ということとする。換言すれば、盛土全体は2以上の施工領域によって構成される。 As described above, the quality of the embankment expressed by the degree of compaction or the like greatly depends on the combination of the compaction performance of the vibrating roller and the water content of the embankment. For this reason, in the present invention, the water content ratio of the laid embankment is measured, and the compaction condition is determined according to the result. Further, in the present invention, a single compaction condition is not determined for the entire embankment, but a compaction condition according to the water content distribution of the embankment is determined. That is, instead of compacting the entire embankment under the same compaction condition, the compaction conditions can be changed between a region having a high water content and a region having a small water content in the fill. The compaction condition is determined for each of two or more divided regions of the entire embankment (hereinafter, simply referred to as “entire embankment”). For convenience, the region where the compaction condition is determined is referred to as “construction region”. " In other words, the whole embankment is constituted by two or more construction areas.
2.移動式含水比測定装置
本願発明の移動式含水比測定装置について、図を参照しながら詳しく説明する。なお、本願発明の転圧方法は、本願発明の移動式含水比測定装置を用いて転圧を行う方法であり、したがってまずは本願発明の移動式含水比測定装置について説明し、その後に本願発明の転圧方法について説明することとする。2. Mobile water content ratio measuring device The mobile water content ratio measuring device of the present invention will be described in detail with reference to the drawings. The rolling method of the present invention is a method of performing rolling using the mobile moisture content measuring device of the present invention.Therefore, first, the mobile moisture content measuring device of the present invention will be described. The rolling method will be described.
図1は、本願発明の移動式含水比測定装置100の主な構成を示すブロック図である。この図に示すように本願発明の移動式含水比測定装置100は、移動体101と含水比測定手段102、転圧条件決定手段103を含んで構成され、さらに測位手段104や含水比データ記憶手段105、小領域含水比設定手段106、小領域記憶手段107、施工領域設定手段108、施工領域記憶手段109、施工領域含水比設定手段110、適応転圧条件記憶手段111、ディスプレイやプリンタといった出力手段112を含んで構成することもできる。 FIG. 1 is a block diagram showing a main configuration of a mobile moisture
移動式含水比測定装置100のうち転圧条件決定手段103と小領域含水比設定手段106、施工領域設定手段108、施工領域含水比設定手段110は、専用のものとして製造することもできるし、汎用的なコンピュータ装置を利用することもできる。このコンピュータ装置は、パーソナルコンピュータ(PC)や、iPad(登録商標)といったタブレット型PC、スマートフォンを含む携帯端末、あるいはPDA(Personal Data Assistance)などによって構成することができる。コンピュータ装置は、CPU等のプロセッサ、ROMやRAMといったメモリを具備しており、さらにマウスやキーボード等の入力手段やディスプレイを含むものもある。また、含水比データ記憶手段105と小領域記憶手段107、施工領域記憶手段109、適応転圧条件記憶手段111は、例えばデータベースサーバに構築することができ、ローカルなネットワーク(LAN:Local Area Network)に置くこともできるし、インターネット経由(つまり無線通信)で保存するクラウドサーバとすることもできる。 The compaction condition determining means 103 and the small area moisture content setting means 106, the construction area setting means 108, and the construction area moisture content setting means 110 of the mobile moisture
以下、移動式含水比測定装置100を構成する主な要素ごとに説明する。 Hereinafter, each of the main elements constituting the mobile water content
(移動体)
図2は、振動ローラを移動体101とした移動式含水比測定装置100を示す図であり、(a)はその斜視図、(b)はその正面図と側面図である。この図に示すように移動式含水比測定装置100を構成する移動体101は、振動ローラを利用することができる。振動ローラを利用することによって、移動式含水比測定装置100を移動させる移動体101としての機能と、実際に盛土の転圧を行う転圧機械としての機能を兼用することができるわけである。もちろん、撒き出された盛土上を移動することができれば、ダンプトラックやバックホウなど種々のものを移動式含水比測定装置100の移動体101として利用することができる。(Mobile)
FIGS. 2A and 2B are views showing a mobile water
図2(a)に示すように移動体101には、測位手段104を設置することができる。この測位手段104は、移動体101の現在位置を計測する手段であり、例えば測位衛星STからの電波を受信するGNSS(Global Navigation Satellite System)受信機を利用するとよい。あるいは、移動体101の走行距離をカウントする距離計や、トータルステーションのターゲット(ミラー)など、移動体101の位置を測定するための様々な機器を測位手段104として用いることができる。 As shown in FIG. 2A, a
転圧機械としての振動ローラ(この場合、移動体101としてではない)のオペレータには、転圧条件決定手段103によって決定された転圧条件が示される。図2(a)では、転圧条件決定手段103が構築されたコンピュータPCが、振動ローラとは異なる場所に配置されており、そして無線通信によってコンピュータPCから転圧条件が振動ローラの受信手段に送信されるとともに、受信した転圧条件を振動ローラ内の出力手段112で表示している。これに限らず、転圧条件決定手段103が構築されたコンピュータPCを振動ローラ内に配置し、そのコンピュータPCが有する出力手段112に転圧条件を表示することもできる。 The operator of the vibrating roller (not the moving
(含水比測定手段)
含水比測定手段102は、撒き出された盛土の含水比を測定し得る手段であり、移動体101に搭載される。すなわち、移動体101の移動に伴って任意位置の含水比を取得することができ、そのため測定した含水比の値とその測定位置は関連付けて記録するとよい。例えば、含水比測定手段102で測定した時刻と、測位手段104が移動体101の現在位置(つまり測定位置)を計測した時刻に基づいて(例えば同期させて)、含水比の値と測定位置を関連付けて記録することができる。便宜上ここでは、含水比の値と測定位置を関連付けた情報のことを「含水比データ(図1)」ということとする。この含水比データは、含水比データ記憶手段105に記憶される。(Water content ratio measuring means)
The water content ratio measuring means 102 is a means capable of measuring the water content ratio of the embankment scattered, and is mounted on the moving
含水比測定手段102は、移動体101に搭載された状態で盛土の含水比を測定し、すなわち移動しながら盛土の含水比を測定する。そのため、移動式含水比測定装置100で利用される含水比測定手段102は、非接触形式のものが望ましい。例えば図(b)では、電磁波を利用した含水比測定手段102を示しており、発信側含水比測定手段102aから出力された電磁波を、受信側含水比測定手段102bで受信し、その受信信号から含水比を推定している。 The moisture content measuring means 102 measures the moisture content of the embankment while being mounted on the moving
また、含水比測定手段102としてスペクトルカメラを利用することもできる。以下、スペクトルカメラを利用して盛土材の含水比を推定する手法について説明する。まず種々の含水比を有する盛土試料を用意し、それぞれの盛土試料に対してスペクトルカメラでスペクトル強度を取得する。さらにその結果を分析することで、スペクトル強度と盛土材の含水比との関係を示す含水比推定式を設定する。そして、実際に撒き出された盛土のスペクトル強度をスペクトルカメラで取得し、含水比推定式に基づいて、スペクトル強度から盛土の含水比を推定するわけである。なお、本願発明者らがスペクトルカメラを利用した含水比測定手段102で盛土材の含水比を測定したところ、図3に示すように、その測定値が実際の含水比と極めて高い相関(相関係数の2乗が0.9447)を示すことを確認することができた。 In addition, a spectrum camera can be used as the water content ratio measuring means 102. Hereinafter, a method of estimating the water content of the embankment using a spectrum camera will be described. First, embankment samples having various water content ratios are prepared, and the spectrum intensity of each embankment sample is acquired with a spectrum camera. Further, by analyzing the result, a water content estimation formula indicating the relationship between the spectrum intensity and the water content of the embankment material is set. Then, the spectrum intensity of the actually laid embankment is acquired by a spectrum camera, and the water content of the embankment is estimated from the spectrum intensity based on the water content estimation formula. Note that when the inventors of the present application measured the water content of the embankment material using the water content ratio measuring means 102 using a spectrum camera, as shown in FIG. 3, the measured value showed a very high correlation with the actual water content (phase relation). It was confirmed that the square of the number showed 0.9447).
移動式含水比測定装置100を構成する含水比測定手段102は、移動しながら盛土の含水比を非接触で測定することができるものであれば、電磁波を利用したものや、スペクトルカメラを利用したもののほか、レーダーを利用したものや、加速度応答値CCV(Compaction Control Value)を利用したものなど、様々な方式のものを利用することができる。 The water content ratio measuring means 102 constituting the mobile water content
(小領域と小領域含水比)
一般的に、転圧対象となる盛土は比較的広い範囲で計画されることから、移動しながら含水比測定手段102で測定していくと多数の含水比データが得られ、しかもこれら含水比データの測定点は不規則な配置となることが多い。そこで、含水比データの取り扱いを容易にするため、盛土全体を複数に分割した領域を設定し、その分割された領域ごとに含水比を与えるとよい。なお便宜上ここでは、盛土全体が分割された領域のことを「小領域」ということとし、小領域ごとに付与された含水比のことを「小領域含水比」ということとする。以下、小領域と小領域含水比を設定する処理について詳しく説明する。(Small area and small area water content)
Generally, the embankment to be compacted is planned in a relatively wide range, so that a large number of moisture content data can be obtained by measuring the moisture content while moving while using the moisture content measurement means 102. Measurement points are often arranged irregularly. Therefore, in order to facilitate the handling of the water content data, it is preferable to set an area obtained by dividing the whole embankment into a plurality, and to give the water content to each of the divided areas. Here, for convenience, a region obtained by dividing the entire embankment is referred to as a “small region”, and a water content ratio given to each small region is referred to as a “small region water content ratio”. Hereinafter, the process of setting the small area and the small area water content will be described in detail.
まず小領域含水比設定手段106が、盛土全体の形状と寸法に基づいて設定された小領域を、小領域記憶手段107から読み出す。あるいは小領域含水比設定手段106が、小領域を設定する仕様としてもよい。例えば図4では、盛土全体Awをいわゆるメッシュ分割することで複数(図では8×11)の小領域Msを設定している。この小領域Msは、数10cm×数10cm(例えば50cm×50cm)程度で設定することができるが、これに限らず施工現場の状況に応じて任意寸法の小領域Msを設定することもできるし、図4に示す形状に限らず種々の形状で小領域Msを設定することができる。 First, the small area moisture content setting means 106 reads the small area set based on the shape and dimensions of the entire embankment from the small area storage means 107. Alternatively, the specification may be such that the small area water content ratio setting means 106 sets a small area. For example, in FIG. 4, a plurality (8 × 11 in the figure) of small regions Ms are set by dividing the whole embankment Aw into a so-called mesh. The small area Ms can be set to about several tens cm × several tens of cm (for example, 50 cm × 50 cm). However, the present invention is not limited to this, and a small area Ms having an arbitrary size can be set according to the situation of the construction site. The small area Ms can be set in various shapes other than the shape shown in FIG.
小領域記憶手段107から小領域Msを読み出すと、小領域含水比設定手段106は、小領域Ms内に含まれる含水比データに基づいて小領域含水比を設定する。このとき、小領域Ms内に1のみの含水比データが含まれる場合はその含水比データの含水比を小領域含水比とし、小領域Ms内に2以上含水比データが含まれる場合は平均値や中央値、最頻値など種々の統計値に基づいて小領域含水比を設定することができる。なお、小領域Ms内に含水比データが含まれない場合は、周辺の小領域Msで設定された小領域含水比を利用するとよい。盛土全体Aw内にある小領域Msに対して小領域含水比を設定すると、盛土全体Awにおける含水比の分布を示す「含水比分布図」としてディスプレイ等の出力手段112に出力し、振動ローラのオペレータに示すとよい。 When the small area Ms is read from the small area storage means 107, the small area moisture content setting means 106 sets the small area moisture content based on the moisture content data included in the small area Ms. At this time, when only one moisture content data is included in the small area Ms, the moisture content of the moisture content data is set to the small area moisture content, and when two or more moisture content data are included in the small area Ms, the average value is used. The small area water content can be set based on various statistical values such as the median value, the mode value, and the mode value. If the water content ratio data is not included in the small area Ms, the small area water content set in the surrounding small area Ms may be used. When the small area moisture content is set for the small area Ms in the whole embankment Aw, the small area water content is output to the output means 112 such as a display as a “water content distribution map” indicating the distribution of the moisture content in the entire embankment Aw, It should be shown to the operator.
(施工領域と施工領域含水比)
本願発明の移動式含水比測定装置100は盛土全体の含水比分布に応じた転圧条件を適宜決定するわけであるが、通常の振動ローラは相当の転圧幅を有することから、例えば50cm×50cmで設定された小領域ごとに転圧条件を決定するのは現実的でない。そこで本願発明では、振動ローラの施工寸法を勘案した「施工領域」を設定し、この施工領域ごとに転圧条件を設定することとしている。したがって施工領域は、振動ローラの走行方向(転圧方向)における幅寸法を、振動ローラの転圧幅(つまり転圧レーンの幅)と同程度、あるいはそれ以上として設定するとよい。(Construction area and construction area water content ratio)
The mobile water
施工領域を設定する手法としては、盛土全体の形状と寸法に基づいて設定する手法と、含水比測定手段102が測定した含水比に応じて設定する手法に大別することができる。以下、それぞれの設定手法について説明する。 Methods for setting the construction area can be broadly classified into a method for setting based on the shape and dimensions of the entire embankment and a method for setting in accordance with the water content measured by the water content measuring means 102. Hereinafter, each setting method will be described.
図5は、盛土全体の形状と寸法に基づいて設定された施工領域Adを説明する平面図である。この図では、長方形の盛土全体Awを縦横に2等分して4つの施工領域Adを設定している。もちろん盛土全体Awの大きさに応じて、6等分や9等分あるいはそれ以上に等分した分とした施工領域Adを設定することもできるし、盛土全体Awが不規則な形状である場合などそれぞれの寸法や形状が異なるように複数の施工領域Adを設定することもできる。 FIG. 5 is a plan view illustrating a construction area Ad set based on the shape and dimensions of the entire embankment. In this drawing, the entire rectangular embankment Aw is equally divided vertically and horizontally to set four construction areas Ad. Of course, depending on the size of the entire embankment Aw, the construction area Ad can be set to be equally divided into 6 equal parts, 9 equal parts, or more, and when the entire embankment Aw has an irregular shape. It is also possible to set a plurality of construction areas Ad such that the respective dimensions and shapes are different.
図6は、含水比測定手段102が測定した含水比に応じて設定された施工領域Adを説明する平面図である。含水比に応じて施工領域Adを設定する場合、隣接する(周辺にある)こと、小領域含水比が同一又は近似する(以下、「同等の」という。)値であること、という2つの条件を満足する小領域Msをまとめて1の施工領域Adを設定する。なお「近似する値」とは、小領域含水比の差が事前に設定した閾値未満となる値のことである。図6では、網掛けされた18個の小領域Msがそれぞれ同等の小領域含水比を示しており、その結果、これら18個の小領域Msを含む20個の小領域Ms(破線で示す領域)をまとめて施工領域Adを設定している。このように、周囲の小領域Msとは異なる(同等ではない)小領域含水比を示す小領域Ms(図6では施工領域Ad内の網掛けされていない2個の小領域Ms)であっても、周囲に同等の小領域含水比を示す小領域Msが数多く配置されていれば(あるいは囲まれていれば)、同等ではない小領域含水比を示す小領域Msを含めて施工領域Adを設定することもできる。これにより振動ローラによる転圧施工が容易となり好適である。 FIG. 6 is a plan view illustrating a construction area Ad set according to the water content ratio measured by the water content
また、含水比に応じて施工領域Adを設定する場合、「設定する施工領域Adの数」をあらかじめ定めておくこともできる。具体的には、盛土全体Awにある小領域Msの小領域含水比に基づいて、分散や標準偏差といったばらつきを示す統計値を求め、その標準偏差等に応じて施工領域Adの設定数を定める。例えば、事前に標準偏差等を「ばらつきが大きいレンジ」と「ばらつきが中程度のレンジ」、「ばらつきが小さいレンジ」の3つのレンジに分けておき、実際に得られた標準偏差等が「ばらつきが中程度のレンジ」であれば標準的な設定数とし、「ばらつきが大きいレンジ」であればそれより多い設定数、「ばらつきが小さいレンジ」であればそれより少ない設定数とする。盛土全体Awをみたとき、含水比がばらついていればよりこまめに転圧条件を変更して転圧し、含水比がばらついていなければそれほど転圧条件を変更することなく転圧できるようにするわけである。もちろん、事前に分ける標準偏差等のレンジ数や、レンジに応じた施工領域Adの設定数は、施工現場に合わせて適宜設計することができる。 When the construction area Ad is set according to the water content ratio, the “number of construction areas Ad to be set” can be determined in advance. Specifically, based on the small area water content of the small area Ms in the entire embankment Aw, a statistical value indicating a variation such as dispersion or standard deviation is obtained, and the set number of the construction area Ad is determined according to the standard deviation or the like. . For example, the standard deviation and the like are divided in advance into three ranges of “a range with large variation”, “a range with medium variation”, and “range with small variation”, and the actually obtained standard deviation and the like are divided into three ranges. Is a medium range, the standard number is set. If the range is large, the set number is larger. If the range is small, the set number is smaller. When looking at the entire embankment Aw, if the water content ratio varies, the rolling conditions are changed more frequently and rolling is performed. If the water content ratio does not vary, rolling can be performed without changing the rolling conditions so much. It is. Of course, the number of ranges, such as standard deviations, to be divided in advance, and the set number of construction areas Ad according to the ranges can be appropriately designed according to the construction site.
盛土全体Awに対して設定された施工領域Adは、小領域記憶手段107に記憶される。そして、施工領域含水比設定手段110が、この小領域記憶手段107から施工領域Adを読み出し、それぞれの施工領域Adに対して代表的な含水比(以下、「施工領域含水比」という。)を設定する。具体的には、施工領域Ad内にある複数の小領域Msの小領域含水比(あるいは含水比データ)から、平均値や中央値、最頻値など種々の統計値を求め、その値を施工領域含水比として設定することができる。 The construction area Ad set for the entire embankment Aw is stored in the small
(転圧条件決定手段)
転圧条件決定手段103は、盛土全体Aw内の施工領域Adごとに転圧条件を決定する手段である。なお既述したとおり転圧条件は、振動ローラが転圧する際の施工条件であり、振動ローラの転圧性能である走行速度や起振力、振幅を含み、そのほか転圧回数や撒き出し厚などを含めることもできる。以下、転圧条件決定手段103が転圧条件を決定する処理について詳しく説明する。(Means for determining rolling condition)
The rolling condition determining means 103 is a means for determining a rolling condition for each construction area Ad in the entire embankment Aw. As described above, the rolling condition is the working condition when the vibrating roller is rolled, and includes the running speed, the vibrating force, and the amplitude, which are the rolling performance of the vibrating roller. Can also be included. Hereinafter, the process in which the rolling
転圧条件決定手段103は、施工領域含水比設定手段110で設定された施工領域含水比に基づいて施工領域Adごとに転圧条件を決定する。例えば、適応転圧条件記憶手段111に対して施工領域含水比を照会することによって、その施工領域含水比に適した転圧条件を取得し、これを当該施工領域Adにおける転圧条件として決定する。ここで、施工領域含水比に適した転圧条件は、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて選定することができる。 The rolling condition determining means 103 determines a rolling condition for each working area Ad based on the working area water content set by the working area water content setting means 110. For example, by querying the working area water content to the adaptive rolling condition storage means 111, a rolling condition suitable for the working area water content is acquired, and this is determined as the rolling condition in the working area Ad. . Here, the compaction condition suitable for the construction area moisture content can be selected based on a preset “relation between the compaction condition and the moisture content of the embankment material”.
「転圧条件と盛土材の含水比との関係」は、試験施工を行うなどあらかじめ設定されるものであり、例えば図7に示す手順で設定することができる。この場合、まず試験盛土材を用意する(Step101)。このとき、それぞれ含水比が異なる2種類以上の試験盛土材を用意する。試験盛土材を用意すると、そのうちの1の試験盛土材を撒き出し(Step102)、その状態でその試験盛土材の含水比を測定する(Step103)。ただし、あらかじめ用意した試験盛土材の含水比が既知であり、撒き出した後もその値が大きく変わらないと判断できるときは、試験盛土材の含水比測定工程(Step103)を省略してもよい。 The "relationship between the compaction condition and the water content of the embankment material" is set in advance, such as by performing test construction, and can be set, for example, by the procedure shown in FIG. In this case, first, a test embankment material is prepared (Step 101). At this time, two or more types of test embankment materials having different moisture contents are prepared. When the test embankment material is prepared, one of the test embankment materials is scattered out (Step 102), and in this state, the water content of the test embankment material is measured (Step 103). However, if the water content of the test embankment prepared in advance is known and it can be determined that the value does not significantly change even after being scattered, the step of measuring the water content of the test embankment (Step 103) may be omitted. .
試験盛土材を撒き出すと、転圧条件を変えながら試験盛土材に対して転圧を行う(Step104〜Step105)。このとき、本施工で転圧する際に可変条件としたい条件を転圧条件に含めるとよい。例えば、本施工において走行速度と起振力を変更しながら転圧しようとするときは、ここでの転圧工程(Step104〜Step105)でも走行速度と起振力の組み合わせを変えながら転圧を行い、本施工において走行速度と起振力に加え振幅も変更しながら転圧しようとするときは、ここでの転圧工程でも走行速度と起振力と振幅からなる組み合わせを変えながら転圧を行うとよい。あるいは、転圧機械の規格や撒き出し厚、転圧回数といった条件を変えながら、ここでの転圧工程を行うこともできる。 When the test embankment material is scattered, rolling is performed on the test embankment material while changing the rolling conditions (Step 104 to Step 105). At this time, it is preferable to include, in the rolling condition, a condition that is desired to be a variable condition when the rolling is performed in the present construction. For example, in the present construction, when rolling is to be performed while changing the traveling speed and the vibrating force, the rolling is performed while changing the combination of the traveling speed and the vibrating force in the rolling step (Step 104 to Step 105). In this construction, when the rolling is to be performed while changing the amplitude in addition to the traveling speed and the vibrating force, the rolling is performed while changing the combination of the traveling speed, the vibrating force, and the amplitude in the rolling step. Good. Alternatively, the rolling step here can be performed while changing the conditions such as the specification of the rolling machine, the thickness of spread, and the number of times of rolling.
当該転圧条件で試験盛土材に対して転圧を行うと、転圧後の盛土の品質を確認する(Step106)。具体的には、施工乾燥密度や締固め度などを用いた評価手法により、「最もよく締まる」、「締まる」、「締まりが弱い」、「締まらない」のように段階的にその品質を評価することができる。当該転圧条件で転圧後の盛土の品質を確認すると、次の転圧条件に変更して(Step104)、転圧工程(Step105)〜品質確認工程(Step106)を行う。 When the test embankment is rolled under the rolling conditions, the quality of the embankment after the rolling is confirmed (Step 106). Specifically, the quality is evaluated in stages, such as "best tightening", "tightening", "weak tightening", and "not tightening", by an evaluation method using the construction dry density, compaction degree, etc. can do. When the quality of the embankment after compaction is confirmed under the compaction conditions, the condition is changed to the next compaction condition (Step 104), and the compaction process (Step 105) to the quality confirmation process (Step 106) are performed.
1の試験盛土材に対して予定したすべての転圧条件で一連の工程(Step104〜Step106)を行うと、次の試験盛土材に対して試験盛土材の撒き出し工程(Step102)〜品質確認工程(Step106)を繰り返し行う。そして予定したすべての試験盛土材に対して一連の工程(Step102〜Step106)を行うと、用意した試験盛土材の含水比に適した転圧条件を設定する。ここで設定される転圧条件のことを、便宜上ここでは「適応転圧条件」ということとする。すなわち「転圧条件と盛土材の含水比との関係」は、換言すれば「その含水比における適応転圧条件を定めたもの」である。 When a series of steps (Step 104 to Step 106) are performed on all the predetermined rolling conditions for the first test embankment material, a test embankment dispersing step (Step 102) to a quality check process is performed on the next test embankment material. (Step 106) is repeated. When a series of steps (Step 102 to Step 106) are performed on all the planned test embankment materials, rolling conditions suitable for the water content of the prepared test embankment materials are set. The rolling condition set here is referred to as “adaptive rolling condition” for convenience. That is, the "relationship between the compaction condition and the water content of the embankment material" is, in other words, "a condition in which the adaptive compaction condition at the water content is determined".
適応転圧条件は、それぞれ試験盛土材で確認した品質に基づいて設定される。図8は、適応転圧条件を設定する過程を説明するための図であり、(a)は4パターンの転圧条件と締固め度の関係を示すグラフ図、(b)は4パターンの転圧条件と試験盛土材の品質との関係を示す説明図である。なお、図8(a)と図8(b)は、特定の含水比における関係を示すものである。したがって図8(a)と図8(b)は、用意された試験盛土材の数(つまり含水比の数)だけ作成される。また図8(a)と図8(b)の例では、転圧条件として走行速度と起振力が選択されており、さらに走行速度は高速と低速に、起振力はLowとHighに変更可能であるとされ、すなわち4パターンの転圧条件で行われた結果に基づいて作成されたものである。 The adaptive compaction conditions are set based on the quality confirmed with the test embankment material. FIGS. 8A and 8B are diagrams for explaining the process of setting the adaptive compaction condition. FIG. 8A is a graph showing the relationship between the compaction condition and compaction degree of four patterns, and FIG. It is explanatory drawing which shows the relationship between a pressure condition and the quality of a test embankment material. FIGS. 8A and 8B show the relationship at a specific water content. Therefore, FIGS. 8A and 8B are created by the number of prepared test embankment materials (that is, the number of water content ratios). In the examples of FIGS. 8A and 8B, the running speed and the vibrating force are selected as the rolling conditions, and the running speed is changed to a high speed and a low speed, and the vibrating force is changed to a Low and a High. It is made possible, that is, created based on the results obtained under four types of rolling conditions.
要求される締固め度と、計画された転圧回数が与えられると、その含水比における適応転圧条件が設定される。例えば図8(a)において、要求される締固め度が95%以上、計画転圧回数が4回とされた場合、第1の転圧条件(起振力High−低速)と第3の転圧条件(起振力Low−低速)は要求品質(締固め度が95%以上)を満たしているが、第2の転圧条件(起振力High−高速)と第4の転圧条件(起振力Low−高速)は要求品質を満たしていないことが分かる。そして、この結果をまとめた 図8(b)を見ると、第1の転圧条件は「最もよく締まる」と評価されており、第2の転圧条件は「締まりが悪い」、第3の転圧条件は「締まる」、第4の転圧条件は「締まらない」とそれぞれ評価されている。 Given the required degree of compaction and the planned number of compactions, the adaptive compaction conditions for that water content are set. For example, in FIG. 8A, if the required degree of compaction is 95% or more and the planned number of rollings is four, the first rolling condition (vibration force High-low speed) and the third rolling condition The pressure condition (excitation force Low-low speed) satisfies the required quality (compacting degree is 95% or more), but the second compression condition (excitation force High-high speed) and the fourth compression condition ( It can be seen that the excitation force (Low-high speed) does not satisfy the required quality. 8B, which summarizes the results, the first compaction condition is evaluated as “best tightening”, the second compaction condition is “bad tightening”, and the third compaction condition is “bad”. The rolling condition is evaluated as "tightening" and the fourth rolling condition is evaluated as "not tightening".
適応転圧条件を設定するときの要件は、施工現場の条件に応じて適宜設計できる。例えば「最もよく締まる」を適応転圧条件の設定要件とした場合、図8の例では、その含水比における適応転圧条件としては第1の転圧条件(起振力High−低速)が設定される。また、「締まる」を適応転圧条件の設定要件とした場合、その含水比における適応転圧条件としては第3の転圧条件(起振力Low−低速)が設定される。このように適応転圧条件の設定要件として「最もよく締まる」ではなく「締まる」を採用することもできるし、場合によっては「締りが弱い」を採用することもできる。施工性や経済性を考えたとき、必ずしも最高の転圧条件(最高性能)が最善の転圧条件とはならないからである。 The requirements for setting the adaptive compaction conditions can be appropriately designed according to the conditions of the construction site. For example, when “best tightening” is set as the adaptive rolling condition setting requirement, in the example of FIG. 8, the first rolling condition (excitation force High-low speed) is set as the adaptive rolling condition at the water content. Is done. When “tightening” is set as the setting condition of the adaptive rolling condition, the third rolling condition (excitation force Low-low speed) is set as the adaptive rolling condition for the water content. As described above, “tightening” may be adopted instead of “best tightening” as a setting requirement of the adaptive compaction condition, and “weakness” may be adopted in some cases. This is because the highest rolling condition (highest performance) is not always the best rolling condition when considering workability and economy.
ここまで説明したように「転圧条件と盛土材の含水比との関係」、すなわち「その含水比における適応転圧条件」が設定される。そして転圧条件決定手段103は、施工領域含水比設定手段110で設定された施工領域Adごとの施工領域含水比から、それぞれの含水比に対応する適応転圧条件を抽出し、施工領域Adごとに転圧条件を決定する。 As described above, the "relation between the compaction condition and the water content of the embankment material", that is, the "adaptive compaction condition at the moisture content" is set. Then, the rolling condition determining means 103 extracts adaptive rolling conditions corresponding to the respective water content ratios from the working area water content ratios for each working area Ad set by the working area water content ratio setting means 110, and To determine the rolling conditions.
(出力手段)
施工領域Adごとに決定された転圧条件は、ディスプレイ等の出力手段112に出力され、転圧機械としての振動ローラ(この場合、移動体101としてではない)のオペレータに示される。このとき、測位手段104によって計測された振動ローラの位置情報を利用し、音声によって転圧条件を出力することもできる。具体的には、振動ローラの位置情報と施工領域(位置情報)を照らし合わせ、現在の施工領域Adから出ようとするときに(あるいは出る直前に)、後続の(次工程の)の施工領域Adの転圧条件をオペレータに案内するわけである。(Output means)
The rolling condition determined for each construction area Ad is output to an
3.転圧方法
次に本願発明の転圧方法について図を参照しながら説明する。なお、本願発明の転圧方法は、ここまで説明した移動式含水比測定装置100を使用して行う方法であり、したがって移動式含水比測定装置100で説明した内容と重複する説明は避け、本願発明の転圧方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.移動式含水比測定装置」で説明したものと同様である。3. Rolling Method Next, the rolling method of the present invention will be described with reference to the drawings. Note that the rolling method of the present invention is a method performed using the mobile moisture
図9は、本願発明の転圧方法の主な工程を示すフロー図である。この図に示すように、まず盛土全体Awに盛土材を撒き出し(Step201)、そして本願発明の移動式含水比測定装置100で移動しながら、盛土全体Awにわたって含水比を測定する(Step202)。ここで測定された含水比は、測位手段104によって計測された測定位置と関連付けた含水比データとして記録するとよい。 FIG. 9 is a flowchart showing main steps of the rolling method according to the present invention. As shown in this figure, first, an embankment material is scattered over the entire embankment Aw (Step 201), and the water content is measured over the entire embankment Aw while being moved by the mobile moisture
盛土全体Awにわたって含水比を測定すると、小領域Msごとに小領域含水比を設定し(Step203)、小領域含水比や含水比データに基づいて(あるいは盛土全体Awの形状と寸法に基づいて)施工領域Adを設定するとともに(Step204)、施工領域Adごとに施工領域含水比を設定し(Step205)、さらに施工領域Adごとに転圧条件を決定する(Step206)。なお、施工領域Adごとの転圧条件を決定するにあたっては、図7に示す手順によって「転圧条件と盛土材の含水比との関係」、すなわち「その含水比における適応転圧条件」をあらかじめ設定しておくとよい。 When the water content is measured over the entire embankment Aw, the small area water content is set for each small area Ms (Step 203), and based on the small area water content and the water content data (or based on the shape and size of the entire embankment Aw). The construction area Ad is set (Step 204), the construction area water content is set for each construction area Ad (Step 205), and the compaction condition is determined for each construction area Ad (Step 206). In determining the rolling condition for each construction area Ad, the "relation between the rolling condition and the water content of the embankment material", that is, the "adaptive rolling condition at the water content" is determined in advance by the procedure shown in FIG. It is good to set.
施工領域Adごとの転圧条件が決定されると、いよいよ本施工を行う。まずオペレータが最初の施工領域Adに対応する転圧条件を設定した(Step207)うえで、当該施工領域Adの転圧を行う(Step208)。そして測位手段104によって振動ローラの位置情報を計測し(Step209)、施工領域(位置情報)と照らし合わせることで、当該施工領域Adの転圧作業が完了したと判断されると、オペレータは後続の(次工程の)の施工領域Adの転圧条件に変更して(Step207)、その施工領域Adの転圧を行う(Step208)。そして、すべての施工領域Adに対して、計画された回数だけ転圧が行われると、その施工領域Adにおける転圧施工が完了する。 When the rolling compaction conditions for each construction area Ad are determined, the final construction is finally performed. First, the operator sets a rolling condition corresponding to the first construction area Ad (Step 207), and then performs compaction of the construction area Ad (Step 208). Then, the position information of the vibrating roller is measured by the positioning means 104 (Step 209), and is compared with the construction area (position information). The rolling condition of the construction area Ad (in the next process) is changed (Step 207), and the compaction of the construction area Ad is performed (Step 208). Then, when the compaction is performed for all the construction areas Ad for the planned number of times, the compaction construction in the construction area Ad is completed.
本願発明の移動式含水比測定装置、及び転圧方法は、造成盛土に利用できるほか、道路、河川堤防、海岸堤防、ダム、堰堤などの盛土構造物や地盤改良等に広く利用することができる。本願発明が、社会インフラストラクチャーとして高品質の土構造物を提供することを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。 The mobile water content measurement device and the compaction method of the present invention can be used for embankment embankment, road, river embankment, coastal embankment, dam, embankment, etc. . Considering that the present invention provides a high-quality earth structure as a social infrastructure, it can be said that the present invention can be used not only industrially but also can greatly contribute to society.
100 移動式含水比測定装置
101 (移動式含水比測定装置の)移動体
102 (移動式含水比測定装置の)含水比測定手段
103 (移動式含水比測定装置の)転圧条件決定手段
104 (移動式含水比測定装置の)測位手段
105 (移動式含水比測定装置の)含水比データ記憶手段
106 (移動式含水比測定装置の)小領域含水比設定手段
107 (移動式含水比測定装置の)小領域記憶手段
108 (移動式含水比測定装置の)施工領域設定手段
109 (移動式含水比測定装置の)施工領域記憶手段
110 (移動式含水比測定装置の)施工領域含水比設定手段
111 (移動式含水比測定装置の)適応転圧条件記憶手段
112 (移動式含水比測定装置の)出力手段
PC コンピュータ
ST 測位衛星
Aw 盛土全体
Ms 小領域
Ad 施工領域REFERENCE SIGNS
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018127271AJP7113684B2 (en) | 2018-07-04 | 2018-07-04 | Mobile water content measuring device and rolling compaction method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018127271AJP7113684B2 (en) | 2018-07-04 | 2018-07-04 | Mobile water content measuring device and rolling compaction method |
| Publication Number | Publication Date |
|---|---|
| JP2020007730Atrue JP2020007730A (en) | 2020-01-16 |
| JP7113684B2 JP7113684B2 (en) | 2022-08-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018127271AActiveJP7113684B2 (en) | 2018-07-04 | 2018-07-04 | Mobile water content measuring device and rolling compaction method |
| Country | Link |
|---|---|
| JP (1) | JP7113684B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021258742A1 (en)* | 2020-06-24 | 2021-12-30 | 福建省铁拓机械股份有限公司 | Asphalt foaming system |
| CN114016521A (en)* | 2021-11-22 | 2022-02-08 | 中建鸿腾建设集团有限公司 | Vibrating compaction device and vibrating compaction method for backfill area in building construction |
| JP2022104801A (en)* | 2020-12-29 | 2022-07-11 | ノバトロン オサケ ユキチュア | Methods for compacting soil, and soil compaction machines |
| CN114813509A (en)* | 2022-04-21 | 2022-07-29 | 西南石油大学 | A method for determining the compaction correction coefficient for calculating rock porosity by using acoustic time difference |
| JP2023058265A (en)* | 2021-10-13 | 2023-04-25 | 日本国土開発株式会社 | Compaction method |
| JP7529540B2 (en) | 2020-11-02 | 2024-08-06 | 株式会社安藤・間 | Moisture content measuring device, moisture content estimation formula setting program, and moisture content measuring method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000352044A (en)* | 1999-06-09 | 2000-12-19 | Ohbayashi Corp | Banking rolling compaction control system |
| JP2002327429A (en)* | 2001-05-02 | 2002-11-15 | Fudo Constr Co Ltd | Compaction management method |
| JP2003193416A (en)* | 2001-12-27 | 2003-07-09 | Maeda Corp | Method and device for controlling banking rolling |
| JP2003253663A (en)* | 2002-03-04 | 2003-09-10 | Ohbayashi Corp | Compaction control system in earth work |
| JP2004257171A (en)* | 2003-02-27 | 2004-09-16 | Tokyo Electric Power Co Inc:The | Method and apparatus for managing rolling pressure on a raised surface |
| JP2005030073A (en)* | 2003-07-04 | 2005-02-03 | Fudo Constr Co Ltd | Compaction quality control method |
| JP2009114691A (en)* | 2007-11-05 | 2009-05-28 | Hazama Corp | Management method of embankment density |
| JP2018154975A (en)* | 2017-03-15 | 2018-10-04 | 株式会社安藤・間 | Soil quality control method and soil quality monitoring system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000352044A (en)* | 1999-06-09 | 2000-12-19 | Ohbayashi Corp | Banking rolling compaction control system |
| JP2002327429A (en)* | 2001-05-02 | 2002-11-15 | Fudo Constr Co Ltd | Compaction management method |
| JP2003193416A (en)* | 2001-12-27 | 2003-07-09 | Maeda Corp | Method and device for controlling banking rolling |
| JP2003253663A (en)* | 2002-03-04 | 2003-09-10 | Ohbayashi Corp | Compaction control system in earth work |
| JP2004257171A (en)* | 2003-02-27 | 2004-09-16 | Tokyo Electric Power Co Inc:The | Method and apparatus for managing rolling pressure on a raised surface |
| JP2005030073A (en)* | 2003-07-04 | 2005-02-03 | Fudo Constr Co Ltd | Compaction quality control method |
| JP2009114691A (en)* | 2007-11-05 | 2009-05-28 | Hazama Corp | Management method of embankment density |
| JP2018154975A (en)* | 2017-03-15 | 2018-10-04 | 株式会社安藤・間 | Soil quality control method and soil quality monitoring system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021258742A1 (en)* | 2020-06-24 | 2021-12-30 | 福建省铁拓机械股份有限公司 | Asphalt foaming system |
| JP7529540B2 (en) | 2020-11-02 | 2024-08-06 | 株式会社安藤・間 | Moisture content measuring device, moisture content estimation formula setting program, and moisture content measuring method |
| JP2022104801A (en)* | 2020-12-29 | 2022-07-11 | ノバトロン オサケ ユキチュア | Methods for compacting soil, and soil compaction machines |
| JP2023058265A (en)* | 2021-10-13 | 2023-04-25 | 日本国土開発株式会社 | Compaction method |
| JP7591482B2 (en) | 2021-10-13 | 2024-11-28 | 日本国土開発株式会社 | Compaction method |
| CN114016521A (en)* | 2021-11-22 | 2022-02-08 | 中建鸿腾建设集团有限公司 | Vibrating compaction device and vibrating compaction method for backfill area in building construction |
| CN114813509A (en)* | 2022-04-21 | 2022-07-29 | 西南石油大学 | A method for determining the compaction correction coefficient for calculating rock porosity by using acoustic time difference |
| CN114813509B (en)* | 2022-04-21 | 2024-06-11 | 西南石油大学 | Compaction correction coefficient determination method for calculating rock porosity by using acoustic wave time difference |
| Publication number | Publication date |
|---|---|
| JP7113684B2 (en) | 2022-08-05 |
| Publication | Publication Date | Title |
|---|---|---|
| JP2020007730A (en) | Movable measuring device of water content, and rolling compaction method | |
| US9903077B2 (en) | System and method for performing a compaction operation | |
| JP3460224B2 (en) | Embankment compaction management system | |
| Xu et al. | Development of a systematic method for intelligent compaction data analysis and management | |
| CN109958034A (en) | System and method for being compacted building site surface | |
| JP2018154975A (en) | Soil quality control method and soil quality monitoring system | |
| JP5371732B2 (en) | Concrete compaction management method | |
| Tian et al. | Development of real-time visual monitoring system for vibration effects on fresh concrete | |
| JP7465999B2 (en) | Retrofit intelligent compaction analysis device | |
| JP2020176401A (en) | Compaction management method and compaction management system | |
| Gong et al. | Real-time tracking of concrete vibration effort for intelligent concrete consolidation | |
| JP2018154975A5 (en) | ||
| JP2015052205A (en) | Compaction management method and compaction management system | |
| JP2003193416A (en) | Method and device for controlling banking rolling | |
| JP6309715B2 (en) | Automatic soil volume calculation system for upright construction | |
| JP6965489B2 (en) | Rolling count prediction system and rolling method | |
| DE102020128820A1 (en) | SYSTEM FOR MEASURING SOIL MATERIAL DENSITY | |
| JP2005030073A (en) | Compaction quality control method | |
| Jahanger et al. | Local and global granular mechanical characteristics of grain–structure interactions | |
| JP4340978B2 (en) | GPS banking construction management method | |
| JP7529540B2 (en) | Moisture content measuring device, moisture content estimation formula setting program, and moisture content measuring method | |
| Prokopev et al. | Concept of a new method for continuous non-destructive control of asphalt road pavements compaction | |
| JP2009102894A (en) | Material management system, material management method, and material management program | |
| JP2023525413A (en) | METHOD OF OPERATING MOBILE COMPRESSION DEVICE DURING MATERIAL COMPRESSION OPERATION | |
| CN107268400A (en) | A kind of construction quality of pavement detection method and system |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20210323 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20220125 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20220201 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20220328 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20220719 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20220726 | |
| R150 | Certificate of patent or registration of utility model | Ref document number:7113684 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 |