Movatterモバイル変換


[0]ホーム

URL:


JP2017215485A - Optical system, exposure apparatus, and article manufacturing method - Google Patents

Optical system, exposure apparatus, and article manufacturing method
Download PDF

Info

Publication number
JP2017215485A
JP2017215485AJP2016109641AJP2016109641AJP2017215485AJP 2017215485 AJP2017215485 AJP 2017215485AJP 2016109641 AJP2016109641 AJP 2016109641AJP 2016109641 AJP2016109641 AJP 2016109641AJP 2017215485 AJP2017215485 AJP 2017215485A
Authority
JP
Japan
Prior art keywords
optical system
light emitting
optical member
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016109641A
Other languages
Japanese (ja)
Other versions
JP6700982B2 (en
Inventor
祐介 松村
Yusuke Matsumura
祐介 松村
森 堅一郎
Kenichiro Mori
堅一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon IncfiledCriticalCanon Inc
Priority to JP2016109641ApriorityCriticalpatent/JP6700982B2/en
Publication of JP2017215485ApublicationCriticalpatent/JP2017215485A/en
Application grantedgrantedCritical
Publication of JP6700982B2publicationCriticalpatent/JP6700982B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

PROBLEM TO BE SOLVED: To provide such technology advantageous for efficiently guiding light from a plurality of solid light-emitting elements to an illumination target region.SOLUTION: An optical system includes: a light source part having a plurality of solid light-emitting elements arranged at a first pitch along a first direction; an optical member having a pair of first reflection surfaces disposed to oppose to each other and spaced from each other in the first direction; and a condensing optical system disposed between the light source part and the optical member. The light source part, the condensing optical system and the optical member are disposed in such a manner that light emitting from each of the plurality of solid light-emitting elements enters an incident end of the optical member and exits from an exit end of the optical member and that respective images of the plurality of solid light-emitting elements overlap one another at the exit end.SELECTED DRAWING: Figure 9

Description

Translated fromJapanese

本発明は、光学系、該光学系を含む露光装置、および、該露光装置を用いて物品を製造する物品製造方法に関する。  The present invention relates to an optical system, an exposure apparatus including the optical system, and an article manufacturing method for manufacturing an article using the exposure apparatus.

LED(発光ダイオード)およびLD(レーザーダイオード)などの固体発光素子は、超高圧水銀ランプなどの他の光源素子に比べて、小型で、エネルギー使用量が少なく、寿命が長いため、多くの照明装置において使用されつつある。固体発光素子は、固体物質に電気などのエネルギーを供給し、励起させることにより発光する光源素子である。  Solid state light emitting devices such as LEDs (light emitting diodes) and LDs (laser diodes) are more compact than other light source devices such as ultra-high pressure mercury lamps. Is being used. A solid light-emitting element is a light source element that emits light by supplying energy such as electricity to a solid substance and exciting it.

しかし、固体発光素子は、超高圧水銀ランプに比べて発光輝度が小さいという課題がある。特に、半導体デバイス等のデバイスを製造するための露光装置に組み込まれる照明装置においては、高い生産性を実現するために、高い輝度が要求される。したがって、発光輝度が小さいことは、露光装置において固体発光素子を使用するにあたって、大きな障壁となる。  However, the solid-state light emitting device has a problem that the light emission luminance is smaller than that of the ultrahigh pressure mercury lamp. In particular, in an illumination apparatus incorporated in an exposure apparatus for manufacturing a device such as a semiconductor device, high luminance is required in order to realize high productivity. Therefore, the low emission luminance is a big barrier when using the solid state light emitting device in the exposure apparatus.

特許文献1には、高い照明輝度を得るために複数のLED素子を用いることが記載されている。より具体的には、特許文献1には、複数のLED素子と、光の入射面が複数のLED素子のそれぞれに対応し、光の出射面が近接、接触又は一体化されて一纏まりに配置された複数のロッドの集合体であるロッド集合体とを備えたLED照明装置が記載されている。  Patent Document 1 describes the use of a plurality of LED elements in order to obtain high illumination brightness. More specifically, in Patent Document 1, a plurality of LED elements and a light incident surface correspond to each of the plurality of LED elements, and a light emission surface is adjacent, contacted, or integrated and arranged together. An LED lighting device including a rod assembly which is an assembly of a plurality of rods is described.

特開2015−88410号公報Japanese Patent Laying-Open No. 2015-88410

複数の固体発光素子が発生する光を合成することによって高い輝度を有する照明光を得ることができる。しかし、露光装置に使用される照明装置においては、被照明面の所望の照明領域を所望の入射角度分布で照明する必要がある。一方、Helmholtz-Lagrangeの不変量は保存もしくは大きくしかならない。この原理により、光源が発生した光のうち被照明面の照明領域と最大入射角度とで決まるHelmholtz-Lagrange量よりも小さい光しか被照明面に到達することができない。したがって、光源が発生した光のHelmholtz-Lagrange量を増加させることなく集光することが求められる。  By combining the light generated by the plurality of solid state light emitting elements, illumination light having high luminance can be obtained. However, in an illuminating device used for an exposure apparatus, it is necessary to illuminate a desired illumination area on a surface to be illuminated with a desired incident angle distribution. On the other hand, Helmholtz-Lagrange invariants can only be preserved or large. Based on this principle, only light smaller than the Helmholtz-Lagrange amount determined by the illumination area of the illuminated surface and the maximum incident angle among the light generated by the light source can reach the illuminated surface. Therefore, it is required to collect light without increasing the Helmholtz-Lagrange amount of the light generated by the light source.

しかし、例えば、特許文献1に記載された発明では、ロッドが傾けて配置されているため、固体発光素子が発生した光の角度分布がロッドの射出面で傾くため、合成された光の最大角度が、固体発光素子が発生した光の角度より大きくなってしまう。  However, for example, in the invention described in Patent Document 1, since the rod is disposed at an inclination, the angular distribution of the light generated by the solid state light emitting element is inclined at the exit surface of the rod, so the maximum angle of the synthesized light However, the angle of light generated by the solid state light emitting device becomes larger.

本発明は、複数の固体発光素子からの光を効率よく被照明領域に導光するために有利な技術を提供することを目的とする。  It is an object of the present invention to provide an advantageous technique for efficiently guiding light from a plurality of solid state light emitting elements to an illuminated area.

本発明の1つの側面は、光学系に係り、前記光学系は、第1方向に沿って第1ピッチで配置された複数の固体発光素子を有する光源部と、互いに対向するように前記第1方向に離隔して配置された一対の第1反射面を有する光学部材と、前記光源部と前記光学部材との間に配置された集光光学系と、を備え、前記光源部、前記集光光学系および前記光学部材は、前記複数の固体発光素子がそれぞれ発生した光が前記光学部材の入射端に入射し前記光学部材の射出端から射出され、かつ、前記複数の固体発光素子のそれぞれの像が前記射出端において重なるように配置されている。  One aspect of the present invention relates to an optical system, and the optical system includes a light source unit including a plurality of solid state light emitting elements arranged at a first pitch along a first direction so as to face each other. An optical member having a pair of first reflecting surfaces disposed apart from each other in a direction; and a condensing optical system disposed between the light source unit and the optical member, the light source unit and the condensing unit In the optical system and the optical member, light generated by each of the plurality of solid state light emitting elements is incident on an incident end of the optical member and is emitted from an exit end of the optical member, and each of the plurality of solid state light emitting elements is The images are arranged so as to overlap at the exit end.

本発明によれば、複数の固体発光素子からの光を効率よく被照明領域に導光するために有利な技術が提供される。  ADVANTAGE OF THE INVENTION According to this invention, the technique advantageous in order to guide the light from a several solid light emitting element efficiently to a to-be-illuminated area | region is provided.

本発明の一実施形態の露光装置の構成を示す図。1 is a diagram showing the configuration of an exposure apparatus according to an embodiment of the present invention.本発明の一実施形態の光学系の構成を示す図。The figure which shows the structure of the optical system of one Embodiment of this invention.本発明の一実施形態の原理を説明する図。The figure explaining the principle of one Embodiment of this invention.本発明の一実施形態の原理を説明する図。The figure explaining the principle of one Embodiment of this invention.本発明の一実施形態の原理を説明する図。The figure explaining the principle of one Embodiment of this invention.本発明の一実施形態の光源部および合成光源像を示す図。The figure which shows the light source part and synthetic | combination light source image of one Embodiment of this invention.本発明の他の実施形態の光源部を例示する図。The figure which illustrates the light source part of other embodiment of this invention.本発明の他の実施形態の光学系の構成を示す図。The figure which shows the structure of the optical system of other embodiment of this invention.本発明の他の実施形態の光学系における複数の光源像の合成を説明する図。The figure explaining the synthesis | combination of the several light source image in the optical system of other embodiment of this invention.

以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。  Hereinafter, the present invention will be described through exemplary embodiments thereof with reference to the accompanying drawings.

図1には、本発明の一実施形態の露光装置EXの構成が示されている。露光装置EXは、照明光学系1と、原版2を保持する原版ステージRSと、基板4を保持する基板ステージSSと、原版2のパターンを感光材が塗布された基板4に投影し該基板4を露光する投影光学系3とを備える。照明光学系1は、光源部001を含む光学系OSと、原版2が配置される原版面RPと光学系OSとの間に配置されたオプティカルインテグレータ15と、オプティカルインテグレータ15と原版面RPとの間に配置されたコンデンサレンズ16とを含みうる。また、照明光学系1は、光学系OSとオプティカルインテグレータ15との間に配置された波長フィルター14を含みうる。また、照明光学系1は、光学系OSとオプティカルインテグレータ15との間に配置されたリレー光学系13を含みうる。リレー光学系13は、例えば、変倍機能を有しうる。また、照明光学系1は、コンデンサレンズ16と原版面RPとの間にマスキングブレード17およびリレー光学系18を有しうる。  FIG. 1 shows the configuration of an exposure apparatus EX according to an embodiment of the present invention. The exposure apparatus EX projects the illumination optical system 1, the original stage RS that holds the original 2, the substrate stage SS that holds the substrate 4, and the pattern of the original 2 onto the substrate 4 coated with a photosensitive material. And a projectionoptical system 3 that exposes. The illumination optical system 1 includes an optical system OS including alight source unit 001, anoptical integrator 15 disposed between the original surface RP on which the original plate 2 is disposed, and the optical system OS, and theoptical integrator 15 and the original surface RP. And a condenser lens 16 disposed therebetween. The illumination optical system 1 can include a wavelength filter 14 disposed between the optical system OS and theoptical integrator 15. The illumination optical system 1 can include a relay optical system 13 disposed between the optical system OS and theoptical integrator 15. The relay optical system 13 can have, for example, a magnification function. Further, the illumination optical system 1 can include amasking blade 17 and a relayoptical system 18 between the condenser lens 16 and the original plate surface RP.

光学系OSは、光源部001と、光学部材12と、光源部001と光学部材12との間に配置された集光光学系11とを含みうる。光源部001は、複数の固体発光素子10を有する。なお、複数の固体発光素子10を相互に区別する場合には、10a、10bのように符号10の後ろに添え字を付けて説明する。固体発光素子10は、例えば、LED(発光ダイオード)またはLD(レーザーダイオード)でありうる。複数の固体発光素子10は、X方向(第1方向)に沿って第1ピッチで配置され、光学部材12は、互いに対向するようにX方向(第1方向)に離隔して配置された一対の第1反射面121、122を有する。光学部材12は、例えば、ガラスロッドまたは中空ミラーでありうる。ガラスロッドは、ガラスで構成された中実のロッドであり、ガラスロッドの入射端004に入射した光は、ガラス媒質を通過して射出端005に至る。ガラスロッドにおいて、一対の反射面121、122は、ガラスロッドとその外側にある媒質(例えば、空気)との境界によって構成される。ガラスロッドでは、以下で説明される屈折率Nは、ガラス媒質の屈折率である。中空ミラーでは、入射端004と射出端005との間の空間が空気等の気体または真空であり、一対の反射面は、該空間と接する部材(ミラー)によって構成される。中空ミラーでは、以下で説明される屈折率Nは、気体または真空の屈折率である。集光光学系11は、光源部001の複数の固体発光素子10からの光を集光する。光源部001、集光光学系11、光学部材12は、複数の固体発光素子10のそれぞれで発生した光が光学部材12の入射端に入射し光学部材12の射出端から射出され、かつ、複数の固体発光素子10のそれぞれの像が該射出端において重なるように配置されうる。  The optical system OS may include alight source unit 001, anoptical member 12, and a condensingoptical system 11 disposed between thelight source unit 001 and theoptical member 12. Thelight source unit 001 includes a plurality of solid statelight emitting elements 10. In addition, when distinguishing the some solidlight emitting element 10 from each other, it attaches | subjects the suffix after the code |symbol 10 like 10a, 10b, and demonstrates. The solid statelight emitting device 10 may be, for example, an LED (light emitting diode) or an LD (laser diode). The plurality of solid statelight emitting devices 10 are disposed at a first pitch along the X direction (first direction), and theoptical members 12 are disposed at a distance in the X direction (first direction) so as to face each other. The first reflectingsurfaces 121 and 122 are provided. Theoptical member 12 can be, for example, a glass rod or a hollow mirror. The glass rod is a solid rod made of glass, and light incident on theincident end 004 of the glass rod passes through the glass medium and reaches theexit end 005. In the glass rod, the pair of reflectingsurfaces 121 and 122 is constituted by a boundary between the glass rod and a medium (for example, air) outside the glass rod. In the glass rod, the refractive index N described below is the refractive index of the glass medium. In the hollow mirror, the space between theentrance end 004 and theexit end 005 is a gas such as air or a vacuum, and the pair of reflecting surfaces are configured by members (mirrors) in contact with the space. In the hollow mirror, the refractive index N described below is a refractive index of gas or vacuum. The condensingoptical system 11 condenses light from the plurality of solid statelight emitting elements 10 of thelight source unit 001. In thelight source unit 001, the condensingoptical system 11, and theoptical member 12, the light generated by each of the plurality of solid statelight emitting elements 10 is incident on the incident end of theoptical member 12, and is emitted from the emission end of theoptical member 12. The respective solid-statelight emitting elements 10 can be arranged so as to overlap each other at the exit end.

光学系OS(光学部材12の射出端005)から射出された光は、リレー光学系13によってオプティカルインテグレータ15に投影される。波長フィルター14は、光学系OS(光源部001)からの光のうち基板4を露光するために使用する波長の光のみを透過する。投影光学系3で良好に色収差が補正されている波長帯域幅は、通常は、数十nm程度である。したがって、光源部001の固体発光素子10の発光スペクトルが広帯域である場合、波長フィルター14によって光が狭帯域化される。また、温度などによる環境変化や、使用時間によって、固体発光素子10の発光スペクトルが変化する場合がある。このような場合にも、波長フィルター14によって所望の波長帯域のみを取り出すことで、良好な結像性能を得ることができる。波長フィルター14は、複数のフィルターを含んでもよく、この場合、該複数のフィルターの中から要求される結像性能に応じたフィルターが選択して使用されうる。例えば、太い線幅のパターンを形成する場合には、透過波長帯域が広いフィルターを使用することで、高い照度を実現して生産性を高めることができる。一方、細い線幅のパターンを形成する場合には、透過波長帯域が狭いフィルターを使用することで、投影光学系3の色収差の発生量を小さくすることができる。  The light emitted from the optical system OS (theemission end 005 of the optical member 12) is projected onto theoptical integrator 15 by the relay optical system 13. The wavelength filter 14 transmits only light having a wavelength used for exposing the substrate 4 out of light from the optical system OS (light source unit 001). The wavelength bandwidth in which the chromatic aberration is corrected favorably in the projectionoptical system 3 is usually about several tens of nm. Therefore, when the emission spectrum of the solid statelight emitting device 10 of thelight source unit 001 is a wide band, the light is narrowed by the wavelength filter 14. Further, the emission spectrum of the solid statelight emitting device 10 may change depending on the environmental change due to temperature or the like and the usage time. Even in such a case, good imaging performance can be obtained by extracting only a desired wavelength band by the wavelength filter 14. The wavelength filter 14 may include a plurality of filters. In this case, a filter corresponding to the imaging performance required from the plurality of filters can be selected and used. For example, when a pattern with a thick line width is formed, high illuminance can be realized and productivity can be increased by using a filter having a wide transmission wavelength band. On the other hand, when a pattern with a narrow line width is formed, the amount of chromatic aberration generated in the projectionoptical system 3 can be reduced by using a filter having a narrow transmission wavelength band.

オプティカルインテグレータ15は、例えば、ハエノメレンズで構成されうる。オプティカルインテグレータ15は、光源部001からの光を波面分割し、オプティカルインテグレータ15の射出面に複数の2次光源を形成する。オプティカルインテグレータ15は、例えば、複数のロッドレンズの集合体、複数の短冊状のシリンドリカルレンズの集合体、または、マイクロレンズアレイで構成されうる。コンデンサレンズ16は、オプティカルインテグレータ15の射出面に形成された複数の2次光源からの光を重畳的に重ね合わせることによって、マスキングブレード17が配置された面に均一な光強度分布を形成する。リレー光学系18は、マスキングブレード17が配置された面と、原版2が配置される原版面RPと、を光学的に共役な関係にする。  Theoptical integrator 15 can be composed of, for example, a haenome lens. Theoptical integrator 15 wave-divides the light from thelight source unit 001 and forms a plurality of secondary light sources on the exit surface of theoptical integrator 15. Theoptical integrator 15 can be configured by, for example, an assembly of a plurality of rod lenses, an assembly of a plurality of strip-shaped cylindrical lenses, or a microlens array. The condenser lens 16 forms a uniform light intensity distribution on the surface on which themasking blade 17 is disposed by superimposing light from a plurality of secondary light sources formed on the exit surface of theoptical integrator 15. The relayoptical system 18 has an optically conjugate relationship between the surface on which themasking blade 17 is disposed and the original surface RP on which the original 2 is disposed.

照明光学系1の光路には、ハーフミラー19が配置されうる。ハーフミラー19は、光路中の光の一部をセンサ20に向けて分岐させる。センサ20は、基板4の露光中に光量をモニターするために使用されうる。例えば、センサ20によって検出された値に基づいて基板4の露光量が制御されうる。例えば、露光装置EXがステップ・アンド・リピート方式の場合、基板4の露光開始時に光源部001(複数の固体発光素子10)を点灯させ、その後、センサ20によって光量を積算し、積算値が目標露光量に到達するタイミングで光源部001を消灯させる。消灯の制御に時間遅れが発生する場合には、積算値が目標露光量より当該時間遅れ分だけ小さい値に到達した時点で光源部001の消灯の制御を開始すればよい。また、露光量制御は、シャッターを用いてなされてもよい。この場合には、光源部001(固体発光素子10)を点灯した状態として、不図示のシャッターの開閉動作により露光量が制御されうる。露光装置EXが、走査型露光装置(ステップ・アンド・スキャン方式)の場合には、センサ20による測定値が一定になるように、光源部の複数の固体発光素子10に供給する電力が制御されうる。目標露光量が小さく、最大走査速度で露光できない場合には、複数の固体発光素子10のうちの一部を消灯したり、複数の固体発光素子10に対して供給する電力を小さくしたりすることによって露光量が調整されうる。  A half mirror 19 can be disposed in the optical path of the illumination optical system 1. The half mirror 19 branches a part of the light in the optical path toward thesensor 20. Thesensor 20 can be used to monitor the amount of light during exposure of the substrate 4. For example, the exposure amount of the substrate 4 can be controlled based on the value detected by thesensor 20. For example, when the exposure apparatus EX is a step-and-repeat method, the light source unit 001 (a plurality of solid state light emitting elements 10) is turned on at the start of exposure of the substrate 4, and then the amount of light is integrated by thesensor 20, and the integrated value is the target. Thelight source unit 001 is turned off at the timing of reaching the exposure amount. When a time delay occurs in the turn-off control, thelight source unit 001 may be turned off when the integrated value reaches a value smaller than the target exposure amount by the time delay. The exposure amount control may be performed using a shutter. In this case, the exposure amount can be controlled by opening and closing the shutter (not shown) with the light source unit 001 (solid light emitting element 10) turned on. When the exposure apparatus EX is a scanning exposure apparatus (step-and-scan method), the power supplied to the plurality of solid statelight emitting elements 10 of the light source unit is controlled so that the measurement value by thesensor 20 becomes constant. sell. When the target exposure amount is small and exposure cannot be performed at the maximum scanning speed, a part of the plurality of solid statelight emitting elements 10 is turned off or the power supplied to the plurality of solid statelight emitting elements 10 is reduced. Can adjust the exposure amount.

以下、図2を参照しながら光学系OSの構成を例示的に説明する。光源部001を構成する複数の固体発光素子10は、X方向(第1方向)に沿って第1ピッチL1で配置される。図2には、簡単化のために、2つの固体発光素子10が10a、10bとして示されている。ピッチとは、複数の固体発光素子10の配置周期を意味し、例えば、隣り合う固体発光素子10の中心間距離を等しい。各固体発光素子10の配光分布のうち光学部材12で光を取り込むべき配光分布の範囲を±θとする。つまり、固体発光素子10の表面に対する法線に対して±θの角度範囲(−θから+θの範囲)の光が光学部材12によって取り込まれるものとする。  Hereinafter, an exemplary configuration of the optical system OS will be described with reference to FIG. The plurality of solid statelight emitting elements 10 constituting thelight source unit 001 are arranged at the first pitch L1 along the X direction (first direction). In FIG. 2, two solid state light emittingdevices 10 are shown as 10a and 10b for the sake of simplicity. The pitch means an arrangement period of the plurality of solid statelight emitting elements 10 and, for example, the distance between the centers of adjacent solid statelight emitting elements 10 is equal. Of the light distribution of each solid-statelight emitting element 10, the range of the light distribution that should be captured by theoptical member 12 is ± θ. That is, light in an angle range of ± θ (range from −θ to + θ) with respect to the normal to the surface of the solid state light emittingdevice 10 is taken in by theoptical member 12.

集光光学系11は、上下方向の矢印で示されている。集光光学系11の焦点距離をfとする。集光光学系11の瞳面は、光源部001の発光面(複数の固体発光素子10の発光面)からf+aの距離に配置される。なお、発光面は、光が射出される面を意味する。光源部001の複数の固体発光素子10がそれぞれ発生した光は、光学部材12の入射端004に入射し、光学部材12の射出端005から射出される。光源部001、集光光学系11および光学部材12は、光学部材12の射出端005が光源部001の発光面(複数の固体発光素子10の発光面)と共役になるように配置される。別の観点で表現すると、光源部001、集光光学系11および光学部材12は、複数の固体発光素子10のそれぞれの像が光学部材12の射出端005において重なるように配置されうる。  The condensingoptical system 11 is indicated by an up and down arrow. Let f be the focal length of the condensingoptical system 11. The pupil plane of the condensingoptical system 11 is disposed at a distance of f + a from the light emitting surface of the light source unit 001 (the light emitting surfaces of the plurality of solid state light emitting elements 10). The light emitting surface means a surface from which light is emitted. The light generated by each of the plurality of solid statelight emitting elements 10 of thelight source unit 001 enters theincident end 004 of theoptical member 12 and is emitted from theemission end 005 of theoptical member 12. Thelight source unit 001, the condensingoptical system 11, and theoptical member 12 are arranged so that theemission end 005 of theoptical member 12 is conjugate with the light emitting surface of the light source unit 001 (the light emitting surfaces of the plurality of solid state light emitting elements 10). In other words, thelight source unit 001, the condensingoptical system 11, and theoptical member 12 can be arranged such that the images of the plurality of solid statelight emitting elements 10 overlap at theexit end 005 of theoptical member 12.

以下、図3−5を参照しながら、距離a、焦点距離f、光学部材12の長さ、および光学部材12の一対の反射面121、122の間隔Dの好ましい関係を説明する。ただし、ここで説明する関係は、理想的な関係であり、実際の光学系OSでは、このような理想的な関係に対して、要求仕様を満たす範囲での誤差を有すること、あるいは、設計上の制約等に応じた修正がなされることが許容される。  Hereinafter, a preferable relationship among the distance a, the focal length f, the length of theoptical member 12, and the distance D between the pair of reflectingsurfaces 121 and 122 of theoptical member 12 will be described with reference to FIGS. However, the relationship described here is an ideal relationship, and the actual optical system OS has an error within a range satisfying the required specifications with respect to such an ideal relationship, or in design. It is permissible to make corrections according to the restrictions and the like.

集光光学系11の光軸上に存在する固体発光素子10aから射出される光線は、図3に示されるように光学部材12の射出端005上の点005aに集光する。光学部材12の屈折率(光線が通過する部分の屈折率)をN、光軸方向における光学部材12の長さをMとすると、光源部001の発光面と集光光学系11の前側焦点との距離a、集光光学系11の焦点距離fの間には、M/N=f×f/aの関係がある。  The light beam emitted from the solidlight emitting element 10a existing on the optical axis of the condensingoptical system 11 is condensed at apoint 005a on theemission end 005 of theoptical member 12 as shown in FIG. If the refractive index of the optical member 12 (the refractive index of the portion through which the light beam passes) is N, and the length of theoptical member 12 in the optical axis direction is M, the light emitting surface of thelight source unit 001 and the front focal point of the condensingoptical system 11 There is a relationship of M / N = f × f / a between the distance a and the focal length f of the condensingoptical system 11.

光学部材12の一対の反射面121、122の間隔Dは、図4に示されるように、固体発光素子10aに隣接する固体発光素子10bの像が光学部材12の射出端005の点005aに形成されるように決定される。つまり、集光光学系11の倍率β=f÷a、隣接する固体発光素子10a、10bのピッチL1、および、間隔D1が、D1=β×L1の関係を満たすように間隔Dが決定される。このとき、図4に示されているように、ピッチL1で配置された固体発光素子10a、10bからそれぞれ射出される光線が1つの点005aに集光する。つまり、ピッチLで配置された固体発光素子10a、10bのそれぞれの像の中心が1つの点005aで重なる。  As shown in FIG. 4, the distance D between the pair of reflectingsurfaces 121 and 122 of theoptical member 12 forms an image of the solidlight emitting element 10b adjacent to the solidlight emitting element 10a at apoint 005a of theemission end 005 of theoptical member 12. To be determined. That is, the distance D is determined so that the magnification β = f ÷ a of the condensingoptical system 11, the pitch L1 of the adjacent solidlight emitting elements 10a and 10b, and the distance D1 satisfy the relationship D1 = β × L1. . At this time, as shown in FIG. 4, the light beams respectively emitted from the solidlight emitting elements 10a and 10b arranged at the pitch L1 are collected at onepoint 005a. That is, the centers of the images of the solid state light emittingdevices 10a and 10b arranged at the pitch L overlap at onepoint 005a.

上記のような配置により、図5に例示されるように、X方向(第1方向)に沿ってピッチL1で配置された全ての固体発光素子10(10a、10b、10c)から射出される光線が光学部材12の射出端005の1つの点005aで重なる。  With the above arrangement, as illustrated in FIG. 5, light beams emitted from all the solid state light emitting devices 10 (10 a, 10 b, 10 c) arranged at the pitch L <b> 1 along the X direction (first direction). Overlap at onepoint 005a of theexit end 005 of theoptical member 12.

また、固体発光素子10の配光分布のうち±θの角度範囲の光を光学部材12の入射端004で取り込むためには、f×sinθ=D1÷2を満たす必要がある。  Further, in order to capture light in an angle range of ± θ in the light distribution of the solid state light emittingdevice 10 at theincident end 004 of theoptical member 12, it is necessary to satisfy f × sin θ = D1 / 2.

以上をまとめると、以下の式で示される条件が満たされることが好ましい。  Summarizing the above, it is preferable that the conditions shown by the following expressions are satisfied.

D1=β×L1
D1=2×f×sinθ
a=f×L1÷D1=L1÷(2×sinθ)
M=2×(sinθ)×N×f×f÷L1
以上のような構成によれば、複数の固体発光素子10のそれぞれの光源像が光学部材12の射出端005で合成されて合成光源像が形成される。合成光源像は、光学部材12の射出端005の全域ではなく、一部分に形成されうる。
D1 = β × L1
D1 = 2 × f × sin θ
a = f × L1 ÷ D1 = L1 ÷ (2 × sin θ)
M = 2 × (sin θ) × N × f × f ÷ L1
According to the above configuration, the respective light source images of the plurality of solid statelight emitting elements 10 are combined at theemission end 005 of theoptical member 12 to form a combined light source image. The combined light source image can be formed not on the entire area of theemission end 005 of theoptical member 12 but on a part thereof.

以上の原理は、二次元配列を構成するように配置された複数の固体発光素子10で構成される光源部001を使用する場合にも適用される。図6(a)には、X方向(第1方向)に関して第1ピッチL1を有し、X方向に直交するY方向(第2方向)に関して第2ピッチL2(=L1)を有するように複数の固体発光素子10が配置されて構成される光源部001が例示されている。各固体発光素子10は、発光領域101を有する。複数の発光領域101は、X方向(第1方向)に関して第1ピッチL1を有し、Y方向(第2方向)に関して第2ピッチL2を有するように配置されている。この例では、第1ピッチL1と第2ピッチL2とが等しい。即ち、L1=L2である。  The above principle is applied also when using thelight source part 001 comprised by the several solidlight emitting element 10 arrange | positioned so that a two-dimensional arrangement | sequence may be comprised. In FIG. 6A, a plurality of pitches have a first pitch L1 in the X direction (first direction) and a second pitch L2 (= L1) in the Y direction (second direction) orthogonal to the X direction. Illustrated is alight source unit 001 in which the solid-statelight emitting element 10 is arranged. Each solid state light emittingdevice 10 has alight emitting region 101. The plurality oflight emitting regions 101 are arranged to have a first pitch L1 in the X direction (first direction) and a second pitch L2 in the Y direction (second direction). In this example, the first pitch L1 and the second pitch L2 are equal. That is, L1 = L2.

図6(b)には、光学部材12が例示されている。光学部材12は、互いに対向するようにX方向(第1方向)に離隔して配置された一対の第1反射面121、122と、互いに対向するようにY方向(第2方向)に離隔して配置された一対の第2反射面123、124とを有する。一対の第1反射面121、122の間隔はD1であり、一対の第1反射面121、122の間隔はD2であるが、D2はD1と等しい。光学部材12の射出端には、二次元配列を構成するように配置された複数の固体発光素子10のそれぞれの光源像(発光領域101の像)が合成された合成光源像LSIが形成される。合成光源像LSIの外側の部分は、隣接する発光領域101の間の部分(光強度が0の部分)に対応する。  FIG. 6B illustrates theoptical member 12. Theoptical member 12 is spaced apart in the Y direction (second direction) so as to be opposed to the pair of first reflectingsurfaces 121 and 122 disposed so as to be opposed to each other in the X direction (first direction). And a pair of second reflectingsurfaces 123 and 124. The distance between the pair of first reflection surfaces 121 and 122 is D1, and the distance between the pair of first reflection surfaces 121 and 122 is D2, but D2 is equal to D1. At the exit end of theoptical member 12, a combined light source image LSI is formed by combining the light source images (images of the light emitting region 101) of the plurality of solid statelight emitting elements 10 arranged to form a two-dimensional array. . A portion outside the combined light source image LSI corresponds to a portion between adjacent light emitting regions 101 (a portion where the light intensity is 0).

リレー光学系13は、合成光源像LSIを光源として利用する。これにより、固体発光素子10の発光領域101の隙間によるHelmholtz-Lagrangeの不変量の増加をなくすことができ、複数の固体発光素子10からの光を効率よく被照明領域に導光することができる。  The relay optical system 13 uses the combined light source image LSI as a light source. Thereby, the increase in the invariant of Helmholtz-Lagrange due to the gap between thelight emitting regions 101 of the solid state light emittingdevice 10 can be eliminated, and the light from the plurality of solid state light emittingdevices 10 can be efficiently guided to the illuminated region. .

一例において、L1=L2=1.2mmで配置された複数の固体発光素子10の配光分布の±60度の角度範囲を利用する場合、焦点距離f=5mmの集光光学系11を使用すると、a=0.69mmの位置に光源部001が配置されうる。幅D1、D2=8.7mm、長さM=54.1mm、屈折率N=1.5のガラスロッドが光学部材12として配置されうる。  In one example, when using an angle range of ± 60 degrees of the light distribution of the plurality of solid state light emittingdevices 10 arranged with L1 = L2 = 1.2 mm, the condensingoptical system 11 with a focal length f = 5 mm is used. , Alight source unit 001 can be arranged at a = 0.69 mm. A glass rod having a width D1, D2 = 8.7 mm, a length M = 54.1 mm, and a refractive index N = 1.5 can be disposed as theoptical member 12.

光源部001の発光面、集光光学系11および光学部材12の射出端0005は、光源部001の発光面と光学部材12の射出端005とが共役な位置になるような配置を有することが好ましい。しかしながら、該配置が要求仕様に応じた誤差を有すること、あるいは、該配置に対して設計上の制約等に応じた修正がなされることは許容されうる。ここで、光源部001(固体発光素子10)を集光光学系11の光軸方向にΔzずらして配置すると、Δz×tanθだけ固体発光素子10からの光線が広がる。ここで、θは、前述のように、固体発光素子10の配光分布のうち光学部材12で光を取り込むべき配光分布の範囲を示す。ピッチL1に対して上記の光線の広がりΔz×tanθが十分に小さければ、Δzによる性能低下を許容することができる。例えば、Δz≦L÷tanθ÷10であれば、一般的に、要求仕様を満足することができる。つまり、集光光学系11によって定義される光学部材12の射出端005の共役面(つまり、集光光学系11の瞳面からの距離がf+aの面)と光源部001の発光面との距離がL1÷tanθ÷10以内であることが好ましい。  The light emitting surface of thelight source unit 001, the condensingoptical system 11, and the emission end 0005 of theoptical member 12 may have an arrangement such that the light emitting surface of thelight source unit 001 and theemission end 005 of theoptical member 12 are in a conjugate position. preferable. However, it is permissible for the layout to have an error according to the required specification, or for the layout to be modified according to design constraints or the like. Here, when the light source unit 001 (solid light-emitting element 10) is arranged with a shift of Δz in the optical axis direction of the condensingoptical system 11, the light beam from the solid light-emittingelement 10 spreads by Δz × tan θ. Here, θ represents the range of the light distribution that should be taken in by theoptical member 12 in the light distribution of the solid state light emittingdevice 10 as described above. If the above-mentioned light spread Δz × tan θ is sufficiently small with respect to the pitch L1, it is possible to tolerate a decrease in performance due to Δz. For example, if Δz ≦ L ÷ tan θ ÷ 10, generally, the required specifications can be satisfied. That is, the distance between the conjugate surface of theexit end 005 of theoptical member 12 defined by the condensing optical system 11 (that is, the surface having a distance f + a from the pupil surface of the condensing optical system 11) and the light emitting surface of thelight source unit 001. Is preferably within L1 ÷ tan θ ÷ 10.

図6を参照しながら説明した例では、L1=L2であった。しかしながら、本発明は、L1とL2とが異なる場合にも適用可能である。図7には、X方向(第1方向)に関して第1ピッチL1を有し、X方向に直交するY方向(第2方向)に関して第2ピッチL2(≠L1)を有するように複数の固体発光素子10が配置されて構成される光源部001が例示されている。各固体発光素子10は、発光領域101を有する。複数の発光領域101は、X方向(第1方向)に関して第1ピッチL1を有し、X方向に直交するY方向(第2方向)に関して第2ピッチL2を有するように配置されている。この例では、第1ピッチL1と第2ピッチL2とが異なる。即ち、L1≠L2である。  In the example described with reference to FIG. 6, L1 = L2. However, the present invention is also applicable when L1 and L2 are different. FIG. 7 shows a plurality of solid state light emission having a first pitch L1 with respect to the X direction (first direction) and a second pitch L2 (≠ L1) with respect to the Y direction (second direction) orthogonal to the X direction. Illustrated is alight source unit 001 in which theelement 10 is arranged. Each solid state light emittingdevice 10 has alight emitting region 101. The plurality oflight emitting regions 101 are arranged so as to have a first pitch L1 in the X direction (first direction) and a second pitch L2 in the Y direction (second direction) orthogonal to the X direction. In this example, the first pitch L1 and the second pitch L2 are different. That is, L1 ≠ L2.

図8には、光源部001、集光光学系11および光学部材12の配置が示されている。光学部材12は、互いに対向するようにX方向(第1方向)に離隔して配置された一対の第1反射面121、122と、互いに対向するようにY方向(第2方向)に離隔して配置された一対の第2反射面123、124とを有する。一対の第1反射面121、122の間隔はD1であり、一対の第2反射面123、124の間隔はD2であり、D2はD1と異なる。  FIG. 8 shows the arrangement of thelight source unit 001, the condensingoptical system 11, and theoptical member 12. Theoptical member 12 is spaced apart in the Y direction (second direction) so as to be opposed to the pair of first reflectingsurfaces 121 and 122 disposed so as to be opposed to each other in the X direction (first direction). And a pair of second reflectingsurfaces 123 and 124. The distance between the pair of first reflection surfaces 121 and 122 is D1, the distance between the pair of second reflection surfaces 123 and 124 is D2, and D2 is different from D1.

光源部001の発光面(複数の固体発光素子10の発光面)と集光光学系11との間の距離はf+a、集光光学系11の焦点距離はfである。各固体発光素子10のX方向に関する配光分布のうち光学部材12で光を取り込むべき配光分布の角度範囲を±θ1、各固体発光素子10のY方向に関する配光分布のうち光学部材12で光を取り込むべき配光分布の角度範囲を±θ2とする。また、光学部材12の屈折率(光線が通過する部分の屈折率)をN、光軸方向における光学部材12の長さをMとする。この定義において、上記と同様の考え方に基づいて、以下の式で示される条件を満たすことが好ましい。  The distance between the light emitting surface of the light source unit 001 (the light emitting surfaces of the plurality of solid state light emitting elements 10) and the condensingoptical system 11 is f + a, and the focal length of the condensingoptical system 11 is f. The angle range of the light distribution to be taken in by theoptical member 12 among the light distributions in the X direction of each solidlight emitting element 10 is ± θ1, and theoptical member 12 in the light distribution in the Y direction of each solidlight emitting element 10. The angle range of the light distribution to which light is to be taken is ± θ2. Further, the refractive index of the optical member 12 (the refractive index of the portion through which the light beam passes) is N, and the length of theoptical member 12 in the optical axis direction is M. In this definition, it is preferable that the condition represented by the following formula is satisfied based on the same idea as described above.

D1=β×L1
D2=β×L2
D1=2×f×sinθ1
D2=2×f×sinθ2
a=f×L1÷D1=L1÷(2×sinθ1)
a=f×L2÷D2=L2÷(2×sinθ2)
M=2×(sinθ1)×N×f×f÷L1
M=2×(sinθ2)×N×f×f÷L2
上記条件を満たすことにより、図9に示されているようにX、Y方向に互いに異なるピッチで複数の固体発光素子10が配置される場合においても、複数の固体発光素子10のそれぞれの光源像が光学部材12の射出端005で合成されて合成光源像が形成される。このような構成においても、集光光学系11によって定義される光学部材12の射出端005の共役面(つまり、集光光学系11の瞳面からの距離がf+aの面)と光源部001の発光面との距離が、
L1÷tanθ1÷10以内、かつ、L2÷tanθ2÷10以内
という条件を満たすことが好ましい。
D1 = β × L1
D2 = β × L2
D1 = 2 × f × sin θ1
D2 = 2 × f × sin θ2
a = f × L1 ÷ D1 = L1 ÷ (2 × sin θ1)
a = f × L2 ÷ D2 = L2 ÷ (2 × sin θ2)
M = 2 × (sin θ1) × N × f × f ÷ L1
M = 2 × (sin θ2) × N × f × f ÷ L2
By satisfying the above conditions, even when a plurality of solidlight emitting elements 10 are arranged at different pitches in the X and Y directions as shown in FIG. Are combined at theexit end 005 of theoptical member 12 to form a combined light source image. Even in such a configuration, the conjugate surface of theexit end 005 of theoptical member 12 defined by the condensing optical system 11 (that is, the surface having a distance from the pupil plane of the condensingoptical system 11 is f + a) and thelight source unit 001. The distance from the light emitting surface is
It is preferable to satisfy the conditions of L1 ÷ tan θ1 ÷ 10 or less and L2 ÷ tanθ2 ÷ 10 or less.

以下、上記の露光装置を用いた物品製造方法を説明する。物品製造方法は、塗布工程、露光装置、現像工程および処理工程を含みうる。塗布工程では、基板の上にフォトレジストが塗布される。露光工程では、塗布工程を経た基板の上のフォトレジストが上記の露光装置によって露光されうる。現像工程では、露光工程を経た基板の上のフォトレジストが現像されレジストパターンが形成されうる。処理工程では、現像工程を経た基板が処理されうる。この処理は、例えば、エッチング、イオン注入または酸化を含みうる。  Hereinafter, an article manufacturing method using the above exposure apparatus will be described. The article manufacturing method may include a coating process, an exposure apparatus, a developing process, and a processing process. In the coating process, a photoresist is coated on the substrate. In the exposure process, the photoresist on the substrate after the coating process can be exposed by the exposure apparatus. In the development process, the photoresist on the substrate that has undergone the exposure process may be developed to form a resist pattern. In the processing step, the substrate that has undergone the development step can be processed. This treatment may include, for example, etching, ion implantation or oxidation.

1:照明光学系、2:原版、3:投影光学系、4:基板、OS:光学系、001:光源部、10:固体発光素子、11:集光光学系、12:光学部材、121〜124:反射面、13:リレー光学系、14 波長フィルター、15:オプティカルインテグレータ、16:コンデンサレンズ、17:マスキングブレード、18:リレー光学系、004:入射端、005:射出端、L1、L2:ピッチ1: illumination optical system, 2: original plate, 3: projection optical system, 4: substrate, OS: optical system, 001: light source unit, 10: solid-state light emitting element, 11: condensing optical system, 12: optical member, 121- 124: reflecting surface, 13: relay optical system, 14 wavelength filter, 15: optical integrator, 16: condenser lens, 17: masking blade, 18: relay optical system, 004: entrance end, 005: exit end, L1, L2: pitch

Claims (12)

Translated fromJapanese
第1方向に沿って第1ピッチで配置された複数の固体発光素子を有する光源部と、
互いに対向するように前記第1方向に離隔して配置された一対の第1反射面を有する光学部材と、
前記光源部と前記光学部材との間に配置された集光光学系と、を備え、
前記光源部、前記集光光学系および前記光学部材は、前記複数の固体発光素子がそれぞれ発生した光が前記光学部材の入射端に入射し前記光学部材の射出端から射出され、かつ、前記複数の固体発光素子のそれぞれの像が前記射出端において重なるように配置されている、
ことを特徴とする光学系。
A light source unit having a plurality of solid state light emitting devices arranged at a first pitch along a first direction;
An optical member having a pair of first reflecting surfaces that are spaced apart from each other in the first direction so as to face each other;
A condensing optical system disposed between the light source unit and the optical member,
In the light source unit, the condensing optical system, and the optical member, the light generated by each of the plurality of solid state light emitting elements is incident on an incident end of the optical member, and is emitted from an exit end of the optical member. Each solid-state light emitting element is disposed so as to overlap at the exit end,
An optical system characterized by that.
前記第1ピッチをL1、各固体発光素子の配光分布のうち前記光学部材で光を取り込むべき配光分布の範囲を±θとしたときに、前記集光光学系によって定義される前記射出端の共役面と前記光源部の発光面との距離が、L1÷tanθ÷10以内である、
ことを特徴とする請求項1に記載の光学系。
The exit end defined by the condensing optical system when the first pitch is L1, and the range of the light distribution to be taken in by the optical member is ± θ among the light distribution of each solid state light emitting device. The distance between the conjugate surface of the light source and the light emitting surface of the light source unit is within L1 ÷ tan θ ÷ 10.
The optical system according to claim 1.
前記集光光学系の倍率をβ、前記一対の第1反射面の距離をD1としたときに、D1=β×L1を満たす、
ことを特徴とする請求項2に記載の光学系。
When the magnification of the condensing optical system is β and the distance between the pair of first reflecting surfaces is D1, D1 = β × L1 is satisfied.
The optical system according to claim 2.
前記複数の固体発光素子は、二次元配列を構成するように配置され、前記二次元配列は、前記第1方向に関して前記第1ピッチを有し、前記第1方向に直交する第2方向に関して第2ピッチを有し、
前記光学部材は、互いに対向するように前記第2方向に離隔して配置された一対の第2反射面を更に有する、
ことを特徴とする請求項1に記載の光学系。
The plurality of solid state light emitting devices are arranged to form a two-dimensional array, and the two-dimensional array has the first pitch with respect to the first direction and has a second direction with respect to a second direction orthogonal to the first direction. 2 pitches,
The optical member further includes a pair of second reflecting surfaces that are spaced apart from each other in the second direction so as to face each other.
The optical system according to claim 1.
前記第1ピッチをL1、前記第2ピッチをL2、各固体発光素子の前記第1方向に関する配光分布のうち前記光学部材で光を取り込むべき配光分布の範囲を±θ1、各固体発光素子の前記第2方向に関する配光分布のうち前記光学部材で光を取り込むべき配光分布の範囲を±θ2としたときに、前記集光光学系によって定義される前記射出端の共役面と前記光源部の発光面との距離が、L1÷tanθ1÷10以内、かつ、L2÷tanθ2÷10以内である、
ことを特徴とする請求項4に記載の光学系。
The first pitch is L1, the second pitch is L2, and the range of the light distribution to be taken in by the optical member among the light distributions of the solid light emitting elements in the first direction is ± θ1, and each solid light emitting element When the range of the light distribution to be taken in by the optical member is ± θ2 in the light distribution in the second direction, the conjugate surface of the exit end defined by the condensing optical system and the light source The distance from the light emitting surface of the portion is within L1 ÷ tan θ1 ÷ 10 and within L2 ÷ tan θ2 ÷ 10.
The optical system according to claim 4.
前記集光光学系の倍率をβ、前記一対の第1反射面の距離をD1、前記一対の第2反射面の距離をD2としたときに、D1=β×L1、かつ、D2=β×L2を満たす、
ことを特徴とする請求項5に記載の光学系。
When the magnification of the condensing optical system is β, the distance between the pair of first reflecting surfaces is D1, and the distance between the pair of second reflecting surfaces is D2, D1 = β × L1 and D2 = β ×. Satisfy L2
The optical system according to claim 5.
L1とL2とが等しい、
ことを特徴とする請求項5又は6に記載の光学系。
L1 and L2 are equal,
The optical system according to claim 5 or 6, wherein
L1とL2とが異なる、
ことを特徴とする請求項5又は6に記載の光学系。
L1 and L2 are different.
The optical system according to claim 5 or 6, wherein
前記複数の固体発光素子がLEDである、
ことを特徴とする請求項1乃至8のいずれか1項に記載の光学系。
The plurality of solid state light emitting devices are LEDs;
The optical system according to claim 1, wherein the optical system is an optical system.
前記光学部材がガラスロッドまたは中空ミラーである、
ことを特徴とする請求項1乃至9のいずれか1項に記載の光学系。
The optical member is a glass rod or a hollow mirror;
The optical system according to claim 1, wherein:
原版を照明する照明光学系と、原版のパターンを基板に投影する投影光学系とを備える露光装置であって、
前記照明光学系は、請求項1乃至10のいずれか1項に記載の光学系と、前記原版が配置される原版面と前記光学系との間に配置されたオプティカルインテグレータと、前記オプティカルインテグレータと前記原版面との間に配置されたコンデンサレンズとを含む、
ことを特徴とする露光装置。
An exposure apparatus comprising an illumination optical system that illuminates an original and a projection optical system that projects a pattern of the original onto a substrate,
The illumination optical system includes: the optical system according to any one of claims 1 to 10; an optical integrator disposed between an original plate surface on which the original plate is disposed and the optical system; and the optical integrator; Including a condenser lens disposed between the original plate surface,
An exposure apparatus characterized by that.
基板の上にフォトレジストを塗布する塗布工程と、
前記塗布工程を経た前記基板の上の前記フォトレジストを請求項11に記載の露光装置によって露光する露光工程と、
前記露光工程を経た前記基板の上の前記フォトレジストを現像してレジストパターンを形成する現像工程と、
前記現像工程を経た前記基板を処理する処理工程と、
を含むことを特徴とする物品製造方法。
A coating process for coating a photoresist on the substrate;
An exposure step of exposing the photoresist on the substrate that has undergone the coating step with an exposure apparatus according to claim 11;
A development step of developing the photoresist on the substrate that has undergone the exposure step to form a resist pattern;
A processing step of processing the substrate after the development step;
An article manufacturing method comprising:
JP2016109641A2016-06-012016-06-01 Optical system, exposure apparatus, and article manufacturing methodActiveJP6700982B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2016109641AJP6700982B2 (en)2016-06-012016-06-01 Optical system, exposure apparatus, and article manufacturing method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2016109641AJP6700982B2 (en)2016-06-012016-06-01 Optical system, exposure apparatus, and article manufacturing method

Publications (2)

Publication NumberPublication Date
JP2017215485Atrue JP2017215485A (en)2017-12-07
JP6700982B2 JP6700982B2 (en)2020-05-27

Family

ID=60576933

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2016109641AActiveJP6700982B2 (en)2016-06-012016-06-01 Optical system, exposure apparatus, and article manufacturing method

Country Status (1)

CountryLink
JP (1)JP6700982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20200017359A (en)*2018-08-082020-02-18캐논 가부시끼가이샤Illumination optical system, exposure apparatus, and method of manufacturing article

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006171427A (en)*2004-12-162006-06-29Fuji Photo Film Co LtdIllumination optical system and exposure apparatus using same
JP2007114603A (en)*2005-10-212007-05-10Matsushita Electric Ind Co Ltd Illumination device and projection-type image display device
US20080037260A1 (en)*2006-08-082008-02-14Compal Communications, Inc.Illuminant device for projecting system
JP2011039395A (en)*2009-08-172011-02-24Canon IncIlluminator and image display device having the same
JP2014002212A (en)*2012-06-152014-01-09Ushio IncLight irradiation device and exposure device
JP2015088410A (en)*2013-11-012015-05-07株式会社サーマプレシジョン LED lighting device
JP2017111287A (en)*2015-12-162017-06-22株式会社リコー Projection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006171427A (en)*2004-12-162006-06-29Fuji Photo Film Co LtdIllumination optical system and exposure apparatus using same
JP2007114603A (en)*2005-10-212007-05-10Matsushita Electric Ind Co Ltd Illumination device and projection-type image display device
US20080037260A1 (en)*2006-08-082008-02-14Compal Communications, Inc.Illuminant device for projecting system
JP2011039395A (en)*2009-08-172011-02-24Canon IncIlluminator and image display device having the same
JP2014002212A (en)*2012-06-152014-01-09Ushio IncLight irradiation device and exposure device
JP2015088410A (en)*2013-11-012015-05-07株式会社サーマプレシジョン LED lighting device
JP2017111287A (en)*2015-12-162017-06-22株式会社リコー Projection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20200017359A (en)*2018-08-082020-02-18캐논 가부시끼가이샤Illumination optical system, exposure apparatus, and method of manufacturing article
KR102554101B1 (en)2018-08-082023-07-12캐논 가부시끼가이샤Illumination optical system, exposure apparatus, and method of manufacturing article

Also Published As

Publication numberPublication date
JP6700982B2 (en)2020-05-27

Similar Documents

PublicationPublication DateTitle
JP2946950B2 (en) Illumination apparatus and exposure apparatus using the same
EP0564264B1 (en)Illumination device for projection exposure apparatus
KR101448339B1 (en)Illumination optical system, exposure apparatus, and method of manufacturing device
JP6529809B2 (en) Light irradiation apparatus and exposure apparatus
JPH1154426A (en) Illumination apparatus and projection exposure apparatus using the same
TWI509370B (en) Light lithography process illuminator based on light-emitting diode with high light-receiving efficiency
JP6651124B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JPH032284B2 (en)
JP7020859B2 (en) Manufacturing method of illumination optical system, exposure equipment and articles
KR100823405B1 (en) Exposure apparatus and device manufacturing method
JP6806236B2 (en) Lighting equipment and methods, exposure equipment and methods, and device manufacturing methods
TW201506548A (en)Light source device and exposure device
JP6700982B2 (en) Optical system, exposure apparatus, and article manufacturing method
WO2017138523A1 (en)Light source device
JP2015191998A (en) Solid light source, illumination optical system, and exposure apparatus
JP5843905B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2006208682A (en)Lighting optical device and optical device
JP2540744B2 (en) Exposure illumination device using a laser
KR101999553B1 (en)Illumination optical device, exposure apparatus, and method of manufacturing article
KR100456436B1 (en)Illumination system
US5406351A (en)Photolithography system with improved illumination
KR101782672B1 (en)Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP2002350620A (en) Optical member, illumination device and exposure device using the optical member
KR20190046920A (en) Lighting apparatus, exposure apparatus and manufacturing method of article
JPH07113735B2 (en) Lighting optics

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20190603

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20200305

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20200313

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20200501

R151Written notification of patent or utility model registration

Ref document number:6700982

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R151


[8]ページ先頭

©2009-2025 Movatter.jp