Movatterモバイル変換


[0]ホーム

URL:


JP2017176264A - Biological information measuring device and biological information measuring program - Google Patents

Biological information measuring device and biological information measuring program
Download PDF

Info

Publication number
JP2017176264A
JP2017176264AJP2016064455AJP2016064455AJP2017176264AJP 2017176264 AJP2017176264 AJP 2017176264AJP 2016064455 AJP2016064455 AJP 2016064455AJP 2016064455 AJP2016064455 AJP 2016064455AJP 2017176264 AJP2017176264 AJP 2017176264A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
biological information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016064455A
Other languages
Japanese (ja)
Inventor
英之 梅川
Hideyuki Umekawa
英之 梅川
逆井 一宏
Kazuhiro Sakai
一宏 逆井
赤松 学
Manabu Akamatsu
学 赤松
友暁 小嶋
Tomoaki Kojima
友暁 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co LtdfiledCriticalFuji Xerox Co Ltd
Priority to JP2016064455ApriorityCriticalpatent/JP2017176264A/en
Priority to US15/226,371prioritypatent/US10376223B2/en
Priority to US15/228,074prioritypatent/US20170273631A1/en
Priority to US15/229,192prioritypatent/US10492732B2/en
Priority to CN201610806366.7Aprioritypatent/CN107233100A/en
Priority to CN201610808043.1Aprioritypatent/CN107233089B/en
Priority to CN201610810705.9Aprioritypatent/CN107233073A/en
Publication of JP2017176264ApublicationCriticalpatent/JP2017176264A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromJapanese

【課題】複数の生体情報を精度よく測定する。
【解決手段】互いに波長の異なる光を照射する発光素子LD1及び発光素子LD2と、受光素子3と、を備える生体情報測定装置10は、発光素子LD1の発光期間より発光素子LD2の発光期間を短くすると共に、望ましくは発光素子LD2が発光を停止している期間に発光素子LD1が連続して発光するように、発光素子LD1及び発光素子LD2の発光期間を制御し、発光素子LD1の発光期間毎に受光素子3で複数回受光した、発光素子LD1による光の受光量と、発光素子LD1による光の受光量及び発光素子LD2による光の受光量とから、複数の生体情報を測定する。
【選択図】図9
A plurality of pieces of biological information are accurately measured.
A biological information measuring device 10 includes a light emitting element LD1 and a light emitting element LD2 that emit light having different wavelengths and a light receiving element 3. The light emitting period of the light emitting element LD2 is shorter than the light emitting period of the light emitting element LD1. In addition, preferably, the light emission periods of the light emitting element LD1 and the light emitting element LD2 are controlled so that the light emitting element LD1 emits light continuously during the period in which the light emitting element LD2 stops emitting light, and the light emitting element LD1 is controlled for each light emitting period. A plurality of pieces of biological information are measured from the amount of light received by the light emitting element LD1 and the amount of light received by the light emitting element LD1 and the amount of light received by the light emitting element LD2 received by the light receiving element 3 a plurality of times.
[Selection] Figure 9

Description

Translated fromJapanese

本発明は、生体情報測定装置、及び生体情報測定プログラムに関する。  The present invention relates to a biological information measuring device and a biological information measuring program.

特許文献1には、基板と、前記基板上に配置されており、波長の相異なる複数の光を、被検体に対し少なくとも部分的に相互に重なるように照射する照射部と、前記基板上に配置されており、前記照射された複数の光に起因する前記被検体からの光を、前記波長別に検出する受光部とを備えることを特徴とする自発光型センサ装置が開示されている。  In Patent Document 1, a substrate, an irradiation unit that is arranged on the substrate and irradiates a subject with a plurality of lights having different wavelengths so as to at least partially overlap each other, and on the substrate There is disclosed a self-luminous sensor device comprising: a light receiving unit that is disposed and detects light from the subject caused by the plurality of irradiated light for each wavelength.

特許文献2には、第1の波長の光を発生する第1の発光素子と、第2の波長の光を発生する第2の発光素子と、前記第1および第2の発光素子をそれぞれ異なる時期に発光させる駆動回路と、前記第1および第2の発光素子の光が照射される位置に生体組織を配置されたときに前記第1の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように配置された第1の受光素子と、前記第1および第2の発光素子からの光であって前記生体組織を透過または散乱した光を受光するように前記第1の受光素子から所定距離離れた位置に配置された第2の受光素子と、前記第1および第2の発光素子からの光による前記第2の受光素子の出力に基づいて前記生体組織の血液中の酸素飽和度を計算する酸素飽和度計算手段と、前記第1の発光素子からの光による前記第1および第2の受光素子の出力の相互相関関数に基づいて前記生体組織の血液の流速を計算する血流計算手段とを具備する酸素飽和度および血流測定装置が開示されている。  In Patent Document 2, a first light emitting element that generates light having a first wavelength, a second light emitting element that generates light having a second wavelength, and the first and second light emitting elements are different from each other. A driving circuit that emits light at a time, and light from the first light emitting element that is transmitted through the living tissue when the living tissue is disposed at a position where the light of the first and second light emitting elements is irradiated Alternatively, the first light-receiving element arranged to receive the scattered light and the first light-receiving element and the first light-emitting element and the first light-emitting element so as to receive the light transmitted or scattered through the living tissue. A second light receiving element disposed at a predetermined distance from the one light receiving element, and blood of the living tissue based on an output of the second light receiving element by light from the first and second light emitting elements. Oxygen saturation calculation means for calculating the oxygen saturation in the A blood flow calculating means for calculating a blood flow velocity of the living tissue based on a cross-correlation function of outputs of the first and second light receiving elements by light from the first light emitting element; A flow measuring device is disclosed.

特許第4475601号公報Japanese Patent No. 4475601特開平7−265284号公報JP-A-7-265284

血中の酸素飽和度及び血流情報といった複数の生体情報を測定する場合、異なる波長の光を照射する複数の発光素子を生体に向けて交互に発光させ、生体で透過又は反射した光の受光量の変化から生体情報を測定する手法が用いられることがある。  When measuring multiple biological information such as blood oxygen saturation and blood flow information, multiple light-emitting elements that emit light of different wavelengths are alternately emitted toward the living body, and light that is transmitted or reflected by the living body is received. A technique for measuring biological information from a change in quantity may be used.

この場合に、生体情報の変動に含まれる高周波成分を測定するためには、例えば交互に発光を繰り返す各発光素子の単位時間あたりの点滅回数を増加し、生体で反射した光の受光量のサンプリング周期を短くすることが好ましい。  In this case, in order to measure the high-frequency component included in the fluctuation of the biological information, for example, the number of flashes per unit time of each light emitting element that alternately emits light is increased, and the amount of received light reflected by the living body is sampled. It is preferable to shorten the cycle.

しかしながら、各発光素子の点滅回数を増加するに従って、各発光素子に対するオンオフ指示に発光素子のオンオフ動作が追従しなくなっていく状況が発生しやすくなる。また、受光素子においても、生体で透過又は反射した光の受光量のサンプリング周期を短くするに従って、受光素子に対する受光量の取得動作が追従しなくなる状況が発生しやすくなる。  However, as the number of blinks of each light emitting element increases, a situation in which the on / off operation of the light emitting element does not follow the on / off instruction for each light emitting element tends to occur. Also in the light receiving element, as the sampling period of the received light amount of light transmitted or reflected by the living body is shortened, a situation in which the operation of acquiring the received light amount with respect to the light receiving element does not follow easily occurs.

すなわち、発光素子及び受光素子等の応答性能によって、単位時間あたりの発光素子における点滅回数、及び単位時間あたりの受光素子における受光量取得回数の上限が制限され、生体情報の変動に含まれる高周波成分の測定が困難になる場合が発生する。  That is, the upper limit of the number of blinks in the light emitting element per unit time and the number of times the received light amount is acquired in the light receiving element per unit time is limited by the response performance of the light emitting element and the light receiving element, etc. There are cases where it becomes difficult to measure.

本発明は、異なる波長の光を照射する複数の発光素子を交互に発光させて生体情報を測定する場合と比較して、複数の生体情報を精度よく測定することを目的とする。  An object of the present invention is to measure a plurality of pieces of biological information with higher accuracy than a case where a plurality of light emitting elements that irradiate light of different wavelengths are caused to emit light alternately to measure biological information.

上記目的を達成するために、請求項1記載の生体情報測定装置は、互いに波長の異なる光を照射する第1発光素子及び第2発光素子と、前記第1発光素子及び前記第2発光素子から照射される各々の光を受光する受光素子と、前記第1発光素子の連続発光期間より前記第2発光素子の連続発光期間が短くなるように、前記第1発光素子及び前記第2発光素子の発光期間を制御する制御手段と、前記受光素子で受光した光の各々から、複数の生体情報を測定する測定手段と、を備える。  In order to achieve the above object, the biological information measuring apparatus according to claim 1 includes a first light emitting element and a second light emitting element that irradiate light having different wavelengths, and the first light emitting element and the second light emitting element. A light receiving element that receives each of the irradiated light, and a continuous light emitting period of the second light emitting element that is shorter than a continuous light emitting period of the first light emitting element. Control means for controlling the light emission period and measurement means for measuring a plurality of pieces of biological information from each of the light received by the light receiving element.

請求項2記載の発明は、前記測定手段は、前記第1発光素子の発光期間毎に前記受光素子で複数回受光した前記第1発光素子による光の受光量と、前記第1発光素子の発光期間と隣接する前記第2発光素子の発光期間における光の受光量と、を用いて複数の生体情報を測定する。  According to a second aspect of the present invention, the measuring means receives the amount of light received by the first light emitting element received by the light receiving element a plurality of times for each light emission period of the first light emitting element, and the light emission of the first light emitting element. A plurality of pieces of biological information are measured using the light reception amount of light in the light emission period of the second light emitting element adjacent to the period.

請求項3記載の発明は、前記制御手段は、前記第1発光素子及び前記第2発光素子の発光期間が重複しないように、前記第1発光素子及び前記第2発光素子の発光期間を制御する。  According to a third aspect of the present invention, the control means controls the light emission periods of the first light emitting element and the second light emitting element so that the light emission periods of the first light emitting element and the second light emitting element do not overlap. .

請求項4記載の発明は、前記測定手段は、前記受光素子で受光した前記第1発光素子による光の受光量に対する周波数スペクトル、並びに、前記受光素子で受光した前記第1発光素子による光の受光量及び前記第2発光素子による光の受光量から、前記複数の生体情報を測定する。  According to a fourth aspect of the present invention, the measuring means receives a frequency spectrum with respect to the amount of light received by the first light emitting element received by the light receiving element, and light reception by the first light emitting element received by the light receiving element. The plurality of pieces of biological information are measured from the amount of light received by the second light emitting element.

請求項5記載の発明は、前記測定手段は、前記第1発光素子の発光期間及び前記第2発光素子の発光期間の少なくとも一方の発光期間において、前記受光素子から受光量を複数回取得し、取得した各々の受光量の平均値を、複数回に亘って前記受光素子から受光量を取得した発光期間における光の受光量とする。  According to a fifth aspect of the present invention, the measuring means acquires the amount of light received from the light receiving element a plurality of times in at least one of the light emitting period of the first light emitting element and the light emitting period of the second light emitting element, The average value of the respective received light amounts is set as the received light amount in the light emission period in which the received light amounts are acquired from the light receiving element over a plurality of times.

請求項6記載の発明は、前記測定手段は、血流量、血流速度、及び血液量の少なくとも1つと、血中の酸素飽和度と、を含む生体情報を前記複数の生体情報として測定する。  According to a sixth aspect of the present invention, the measuring means measures biological information including at least one of a blood flow volume, a blood flow velocity, and a blood volume, and oxygen saturation in the blood as the plurality of biological information.

請求項5記載の生体情報測定プログラムは、コンピュータを、請求項1〜請求項6の何れか1項に記載の制御手段及び測定手段として機能させる。  A biological information measurement program according to a fifth aspect causes a computer to function as the control means and the measurement means according to any one of the first to sixth aspects.

請求項1、請求項4、及び請求項7記載の発明によれば、異なる波長の光を照射する複数の発光素子を交互に発光させて生体情報を測定する場合と比較して、複数の生体情報を精度よく測定することができる。  According to the first, fourth, and seventh aspects of the present invention, a plurality of living bodies are compared with a case where biological information is measured by alternately emitting a plurality of light emitting elements that emit light of different wavelengths. Information can be measured accurately.

請求項2記載の発明によれば、隣接していない発光期間における受光量を用いる場合と比較して、生体情報を精度よく測定することができる。  According to invention of Claim 2, compared with the case where the light reception amount in the light emission period which is not adjacent is used, biometric information can be measured with a sufficient precision.

請求項3記載の発明によれば、第1発光素子及び第2発光素子の発光期間を重複させる場合と比較して、生体情報を精度よく測定することができる。  According to invention ofClaim 3, compared with the case where the light emission period of a 1st light emitting element and a 2nd light emitting element overlaps, biometric information can be measured with a sufficient precision.

請求項5記載の発明によれば、発光期間に受光量を1回取得する場合と比較して、生体情報を精度よく測定することができる。  According to the fifth aspect of the present invention, biometric information can be measured with higher accuracy than when the amount of received light is acquired once during the light emission period.

請求項6記載の発明によれば、複数の生体情報を個別に測定する場合と比較して、測定時間を短縮することができる。  According to invention ofClaim 6, compared with the case where several biological information is measured separately, measurement time can be shortened.

血流情報及び血中の酸素飽和度の測定例を示す模式図である。It is a schematic diagram which shows the example of a blood flow information and the measurement of the oxygen saturation in blood.生体からの反射光による受光量の変化の一例を示すグラフである。It is a graph which shows an example of change of the amount of received light by reflected light from a living body.血管にレーザ光を照射した場合に生じるドップラーシフトの説明に供する模式図である。It is a schematic diagram with which it uses for description of the Doppler shift produced when a laser beam is irradiated to the blood vessel.血管にレーザ光を照射した場合に生じるスペックルの説明に供する模式図である。It is a schematic diagram with which it uses for description of the speckle which arises when a blood vessel is irradiated with a laser beam.受光量の変化に対するスペクトル分布の一例を示すグラフである。It is a graph which shows an example of the spectrum distribution with respect to the change of received light quantity.血流量の変化の一例を示すグラフである。It is a graph which shows an example of a change of blood flow.生体に吸収される光の吸光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the light absorption amount of the light absorbed by the biological body.発光素子の印加電圧の波形の一例を示す図である。It is a figure which shows an example of the waveform of the applied voltage of a light emitting element.生体情報測定装置の構成例を示す図である。It is a figure which shows the structural example of a biometric information measuring apparatus.発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a light emitting element and a light receiving element.発光素子及び受光素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a light emitting element and a light receiving element.生体情報測定装置の電気系統の要部構成例を示す図である。It is a figure which shows the principal part structural example of the electric system of a biological information measuring device.生体情報測定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a biometric information measurement process.IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element.IR光を照射する発光素子及び赤色光を照射する発光素子を交互に点滅させる場合の受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light reception timing in the case of making the light emitting element which irradiates IR light, and the light emitting element which irradiates red light blink alternately.IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element.IR光を照射する発光素子及び赤色光を照射する発光素子の発光タイミング及び受光素子による受光タイミングの一例を示すタイミングチャートである。It is a timing chart which shows an example of the light emission timing of the light emitting element which irradiates IR light, and the light emitting element which irradiates red light, and the light reception timing by a light receiving element.

以下、図面を参照して、本発明を実施するための形態例を詳細に説明する。なお、作用又は機能が同じ働きを担う構成要素には、全図面を通して同じ符合を付与し、重複する説明を省略する。  DETAILED DESCRIPTION Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is provided to the component which an action or a function bears the same function through all the drawings, and the overlapping description is abbreviate | omitted.

まず、図1を参照して、生体情報のうち、特に血液に関する生体情報の一例である血流情報及び血中の酸素飽和度の測定方法について説明する。  First, a method for measuring blood flow information and oxygen saturation in blood, which is an example of biological information related to blood, among biological information, will be described with reference to FIG.

図1に示すように、血流情報及び血中の酸素飽和度は、患者の体(生体8)に向けて発光素子1から光を照射し、受光素子3で受光した、患者の体内に張り巡らされている動脈4、静脈5、及び毛細血管6等で反射又は透過した光の強さ、すなわち反射光又は透過光の受光量を用いて測定される。  As shown in FIG. 1, blood flow information and blood oxygen saturation are stretched in the patient's body that is irradiated with light from the light emitting element 1 toward the patient's body (living body 8) and received by thelight receiving element 3. It is measured using the intensity of light reflected or transmitted by the circulating artery 4, vein 5, capillary 6 or the like, that is, the amount of reflected or transmitted light received.

(血流情報の測定)
図2は、受光素子3で受光した反射光の受光量を示すグラフ80の一例である。なお、図2のグラフ80の横軸は時間の経過を表し、縦軸は受光素子3の出力、すなわち受光素子3の受光量を表している。
(Measurement of blood flow information)
FIG. 2 is an example of agraph 80 showing the amount of reflected light received by thelight receiving element 3. 2 represents the passage of time, and the vertical axis represents the output of the light receivingelement 3, that is, the amount of light received by the lightreceiving element 3.

図2に示すように、受光素子3の受光量は時間の経過に伴って変化するが、これは血管を含む生体8への光の照射に対して現われる3つの光学現象の影響を受けるためであると考えられる。  As shown in FIG. 2, the amount of light received by thelight receiving element 3 changes with time, because this is influenced by three optical phenomena that appear when light is applied to the living body 8 including blood vessels. It is believed that there is.

1つ目の光学現象として、脈動によって、測定している血管内に存在する血液量が変化することによる光の吸収の変化が考えられる。血液には、例えば赤血球等の血球細胞が含まれ、毛細血管6等の血管内を移動するため、血液量が変化することによって血管内を移動する血球細胞の数も変化し、受光素子3での受光量に影響を与えることがある。  As a first optical phenomenon, a change in light absorption due to a change in the amount of blood existing in the blood vessel being measured due to pulsation can be considered. The blood contains blood cells such as red blood cells, and moves in blood vessels such as thecapillaries 6, so that the number of blood cells moving in the blood vessels changes as the blood volume changes. May affect the amount of light received.

2つ目の光学現象として、ドップラーシフトによる影響が考えられる。  As the second optical phenomenon, the influence of the Doppler shift can be considered.

図3に示すように、例えばレーザ光のような周波数ω0のコヒーレント光40を発光素子1から血管の一例である毛細血管6を含む領域に照射した場合、毛細血管6を移動する血球細胞で散乱した散乱光42は、血球細胞の移動速度により決まる差周波Δω0を有するドップラーシフトを生じることになる。一方、血球細胞等の移動体を含まない皮膚等の組織(静止組織)で散乱した散乱光42の周波数は、照射したレーザ光の周波数と同じ周波数ω0を維持する。したがって、毛細血管6等の血管で散乱したレーザ光の周波数ω0+Δω0と、静止組織で散乱したレーザ光の周波数ω0とが互いに干渉し、差周波Δω0を有するビート信号が受光素子3で観測され、受光素子3の受光量が時間の経過に伴って変化する。なお、受光素子3で観測されるビート信号の差周波Δω0は血球細胞の移動速度に依存するが、約数十kHzを上限とした範囲に含まれる。As shown in FIG. 3, for example, when a region including acapillary vessel 6, which is an example of a blood vessel, is irradiated from a light emitting element 1 withcoherent light 40 having a frequency ω0 such as a laser beam, blood cells that move through thecapillary vessel 6 are used. The scattered scattered light 42 causes a Doppler shift having a difference frequency Δω0 determined by the moving speed of blood cells. On the other hand, the frequency of the scattered light 42 scattered by a tissue such as skin (stationary tissue) that does not include a moving body such as a blood cell maintains the same frequency ω0 as the frequency of the irradiated laser light. Therefore, the frequency ω0 + Δω0 of the laser light scattered by the blood vessel such as thecapillary 6 interferes with the frequency ω0 of the laser light scattered by the stationary tissue, and the beat signal having the difference frequency Δω0 is received by thelight receiving element 3. And the amount of light received by thelight receiving element 3 varies with time. Note that the difference frequency Δω0 of the beat signal observed by thelight receiving element 3 depends on the moving speed of the blood cell, but is included in a range having an upper limit of about several tens of kHz.

また、3つ目の光学現象として、スペックルによる影響が考えられる。  As a third optical phenomenon, the influence of speckle is considered.

図4に示すように、レーザ光のようなコヒーレント光40を、発光素子1から血管中を矢印44の方向に移動する赤血球等の血球細胞7に照射した場合、血球細胞7にぶつかったレーザ光は様々な方向に散乱する。散乱光は位相が異なるためにランダムに干渉し合う。これによりランダムな斑点模様の光強度分布を生じる。このようにして形成される光強度の分布パターンは「スペックルパターン」と呼ばれる。  As shown in FIG. 4, whencoherent light 40 such as laser light is applied to blood cell 7 such as red blood cells moving in the direction ofarrow 44 from light emitting element 1, laser light hitting blood cell 7. Scatters in various directions. Since the scattered lights have different phases, they interfere with each other randomly. This produces a random spotted light intensity distribution. The light intensity distribution pattern thus formed is called a “speckle pattern”.

既に説明したように、血球細胞7は血管中を移動するため、血球細胞7における光の散乱状態が変化し、スペックルパターンが時間の経過と共に変動する。したがって、受光素子3の受光量が時間の経過に伴って変化する。  As already described, since the blood cell 7 moves in the blood vessel, the light scattering state in the blood cell 7 changes, and the speckle pattern changes with the passage of time. Therefore, the amount of light received by thelight receiving element 3 changes with time.

次に、血流情報の求め方の一例について説明する。図2に示す時間経過に伴う受光素子3の受光量が得られた場合、予め定めた単位時間T0の範囲に含まれるデータを切り出し、当該データに対して、例えば高速フーリエ変換(Fast Fourier Transform:FFT)を実行することで、周波数ω毎のスペクトル分布が得られる。図5に、単位時間T0における周波数ω毎のスペクトル分布を示すグラフ82の一例を示す。なお、図5のグラフ82の横軸は周波数ωを表し、縦軸はスペクトル強度を表す。Next, an example of how to obtain blood flow information will be described. When the amount of light received by thelight receiving element 3 with the passage of time shown in FIG. 2 is obtained, data included in a predetermined unit time T0 is cut out, and, for example, fast Fourier transform (Fast Fourier Transform) is performed on the data. : FFT), the spectral distribution for each frequency ω can be obtained. FIG. 5 shows an example of agraph 82 showing the spectrum distribution for each frequency ω in the unit time T0 . 5 represents the frequency ω, and the vertical axis represents the spectral intensity.

ここで、血液量はグラフ82の横軸と縦軸とで囲まれた斜線領域84で表されるパワースペクトルの面積を全光量で規格化した値に比例する。また、血流速度はグラフ82で表されるパワースペクトルの周波数平均値に比例するため、周波数ωと周波数ωにおけるパワースペクトルの積を周波数ωについて積分した値を斜線領域84の面積で除算した値に比例する。  Here, the blood volume is proportional to the value obtained by normalizing the area of the power spectrum represented by the hatchedarea 84 surrounded by the horizontal axis and the vertical axis of thegraph 82 with the total light quantity. Further, since the blood flow velocity is proportional to the frequency average value of the power spectrum represented by thegraph 82, a value obtained by dividing the product of the frequency ω and the power spectrum at the frequency ω with respect to the frequency ω by the area of the hatchedregion 84. Is proportional to

なお、血流量は血液量と血流速度の積で表わされるため、上記血液量と血流速度の算出式より求める事が可能である。血流量、血流速度、血液量は血流情報の一例であり、血流情報はこれに限定されない。  In addition, since the blood flow volume is represented by the product of the blood volume and the blood flow velocity, it can be obtained from the calculation formula for the blood volume and the blood flow velocity. Blood flow volume, blood flow velocity, and blood volume are examples of blood flow information, and blood flow information is not limited to this.

図6は、算出した単位時間T0あたりの血流量の変化を示すグラフ86の一例である。なお、図6のグラフ86の横軸は時間を表し、縦軸は血流量を表す。FIG. 6 is an example of agraph 86 showing a change in blood flow per unit time T0 calculated. Note that the horizontal axis of thegraph 86 in FIG. 6 represents time, and the vertical axis represents blood flow.

図6に示すように、血流量は時間と共に変動するが、その変動の傾向は2つの種類に分類される。例えば図6の区間Tにおける血流量の変動幅88に比べて、区間Tにおける血流量の変動幅90は大きい。これは、区間Tにおける血流量の変化が、主に脈の動きに伴う血流量の変化であるのに対して、区間Tにおける血流量の変化は、例えばうっ血等の原因に伴う血流量の変化を示しているためであると考えられる。As shown in FIG. 6, the blood flow volume varies with time, but the variation tendency is classified into two types. For example, compared to thefluctuation range 88 of the blood flow rate in the interval T1 of the FIG. 6, thefluctuation range 90 of the blood flow in the interval T2 are large. This is because the change in the blood flow volume in the section T1 is mainly a change in the blood flow volume accompanying the movement of the pulse, whereas the change in the blood flow volume in the section T2 is a blood flow volume caused by causes such as congestion. It is thought that this is because of the change of.

(酸素飽和度の測定)
次に、血中の酸素飽和度の測定について説明する。血中の酸素飽和度とは、血液中のヘモグロビンがどの程度酸素と結合しているかを示す指標であり、血中の酸素飽和度が低下するにつれ、貧血等の症状が発生しやすくなる。
(Measurement of oxygen saturation)
Next, measurement of blood oxygen saturation will be described. The blood oxygen saturation is an index indicating how much hemoglobin in the blood is bound to oxygen, and symptoms such as anemia are likely to occur as the blood oxygen saturation decreases.

図7は、例えば生体8に吸収される光量の変化を示す概念図である。図7に示すように、生体8における吸光量は、時間の経過と共に変動する傾向が見られる。  FIG. 7 is a conceptual diagram showing changes in the amount of light absorbed by the living body 8, for example. As shown in FIG. 7, the light absorption amount in the living body 8 tends to vary with time.

更に、生体8における吸光の変動に関する内訳について見てみると、主に動脈4によって吸光量が変動し、静脈5及び静止組織を含むその他の組織では、動脈4に比べて吸光量が変動しないとみなせる程度の変動量であることが知られている。これは、心臓から拍出された動脈血は脈波を伴って血管内を移動するため、動脈4が動脈4の断面方向に沿って経時的に伸縮し、動脈4の厚みが変化するためである。なお、図7において、矢印94で示される範囲が、動脈4の厚みの変化に対応した吸光量の変動量を示す。  Further, looking at the breakdown of the change in light absorption in the living body 8, the light absorption amount mainly fluctuates by the artery 4, and the light absorption amount does not fluctuate compared to the artery 4 in other tissues including the vein 5 and the stationary tissue. It is known that the amount of fluctuation can be considered. This is because arterial blood pumped out of the heart moves in the blood vessel with a pulse wave, so that the artery 4 expands and contracts with time along the cross-sectional direction of the artery 4 and the thickness of the artery 4 changes. . In FIG. 7, the range indicated by thearrow 94 indicates the amount of fluctuation of the light absorption corresponding to the change in the thickness of the artery 4.

図7において、時刻taにおける受光量をIa、時刻tbにおける受光量をIbとすれば、動脈4の厚みの変化による光の吸光量の変化量ΔAは、(1)式で表される。In FIG. 7, assuming that the amount of received light at time ta is Ia and the amount of received light at time tb is Ib , the amount of change ΔA in the amount of light absorption due to the change in the thickness of the artery 4 can beexpressed by equation (1). Is done.

(数1)
ΔA=ln(Ib/Ia)・・・(1)
(Equation 1)
ΔA = ln (Ib / Ia ) (1)

一方、動脈4を流れる酸素と結合したヘモグロビン(酸化ヘモグロビン)は、特に約880nm近辺の波長を有する赤外線(infrared:IR)領域の光を吸収しやすく、酸素と結合していないヘモグロビン(還元ヘモグロビン)は、特に約665nm近辺の波長を有する赤色領域の光を吸収しやすいことが知られている。更に、酸素飽和度は、異なる波長における吸光量の変化量ΔAの比率と比例関係があることが知られている。  On the other hand, hemoglobin (oxygenated hemoglobin) combined with oxygen flowing through the artery 4 easily absorbs light in an infrared (IR) region having a wavelength of about 880 nm, and hemoglobin (reduced hemoglobin) not bonded to oxygen. Is known to easily absorb light in the red region having a wavelength of around 665 nm. Furthermore, it is known that the oxygen saturation is proportional to the ratio of the amount of change ΔA in the amount of absorption at different wavelengths.

したがって、他の波長の組み合わせに比べて。酸化ヘモグロビンと還元ヘモグロビンとで吸光量の差が現われやすい赤外光(IR光)と赤色光を用いて、IR光を生体8に照射した場合の吸光量の変化量ΔAIRと、赤色光を生体8に照射した場合の吸光量の変化量ΔARedとの比率をそれぞれ算出することで、(2)式によって酸素飽和度Sが算出される。なお、(2)においてkは比例定数である。Therefore, compared to other wavelength combinations. Using infrared light (IR light) and red light, in which the difference in light absorption between oxidized hemoglobin and reduced hemoglobin is likely to appear, the amount of change ΔAIR in the amount of light absorption when IR light is irradiated on the living body 8, and the red light By calculating the ratio of the amount of change ΔARed in the amount of light absorbed when the living body 8 is irradiated, the oxygen saturation S is calculated by the equation (2). In (2), k is a proportionality constant.

(数2)
S=k(ΔARed/ΔAIR)・・・(2)
(Equation 2)
S = k (ΔARed / ΔAIR ) (2)

すなわち、血中の酸素飽和度を算出する場合、それぞれ異なる波長の光を照射する複数の発光素子1、具体的には、IR光を照射する発光素子1と赤色光を照射する発光素子1とを一部の発光期間が重複しても良いが、望ましくは発光期間が重複しないよう発光させる。そして、各々の発光素子1による反射光又は透過光を受光素子3で受光して、各受光時点における受光量から(1)式及び(2)式、又は、これらの式を変形して得られる公知の式を算出することで、酸素飽和度が測定される。  That is, when calculating oxygen saturation in blood, a plurality of light emitting elements 1 that irradiate light of different wavelengths, specifically, a light emitting element 1 that irradiates IR light and a light emitting element 1 that irradiates red light, However, it is desirable to emit light so that the light emission periods do not overlap. Then, the reflected light or transmitted light from each light emitting element 1 is received by thelight receiving element 3 and is obtained by modifying the expressions (1) and (2) or these expressions from the amount of light received at each light reception time point. The oxygen saturation is measured by calculating a known formula.

上記(1)式を変形して得られる公知の式として、例えば(1)式を展開して、光の吸光量の変化量ΔAを(3)式のように表してもよい。  As a well-known equation obtained by modifying the above equation (1), for example, the equation (1) may be developed and the amount of change ΔA in the amount of light absorption may be expressed as in equation (3).

(数3)
ΔA=lnIb−lnIa・・・(3)
(Equation 3)
ΔA = lnIb −lnIa (3)

また、(1)式は(4)式のように変形することができる。  Further, the expression (1) can be modified as the expression (4).

(数4)
ΔA=ln(Ib/Ia)=ln(1+(Ib-Ia)/Ia) ・・・(4)
(Equation 4)
ΔA = ln (Ib / Ia ) = ln (1+ (Ib −Ia ) / Ia ) (4)

通常、(Ib-Ia)≪Iaであることから、ln(Ib/Ia)≒(Ib-Ia)/Iaが成り立つため、(1)式の代わりに、光の吸光量の変化量ΔAとして(5)式を用いてもよい。Usually, because it is(I b -I a) «I a , ln order to(I b / I a) ≒ (I b -I a) / I a is satisfied, instead of equation (1), light Equation (5) may be used as the amount of change ΔA in the amount of light absorption.

(数5)
ΔA≒(Ib-Ia)/Ia ・・・(5)
(Equation 5)
ΔA≈ (Ib −Ia ) / Ia (5)

なお、IR光を照射する発光素子1と赤色光を照射する発光素子1とを区別して説明する必要がある場合、以降では、IR光を照射する発光素子1を「発光素子LD1」といい、赤色光を照射する発光素子1を「発光素子LD2」というようにする。また、一例として、発光素子LD1を血流量の算出で使用する発光素子1とし、発光素子LD1及び発光素子LD2を、血中の酸素飽和度の算出で利用する発光素子1とする。  When it is necessary to distinguish between the light emitting element 1 that emits IR light and the light emitting element 1 that emits red light, the light emitting element 1 that emits IR light is hereinafter referred to as “light emitting element LD1”. The light emitting element 1 that emits red light is referred to as a “light emitting element LD2”. In addition, as an example, the light emitting element LD1 is used as the light emitting element 1 used for calculating blood flow, and the light emitting element LD1 and the light emitting element LD2 are used as light emitting element 1 used for calculating oxygen saturation in blood.

既に説明したように、血流量の測定では、受光素子3で観測されるビート信号の差周波Δω0は約数十kHzを上限とした範囲に含まれることから、少なくとも差周波Δω0の2倍以上の周波数で発光素子LD1を点滅させ、発光素子LD1からIR光が照射されている発光期間毎に、発光素子LD1による反射光を受光素子3で取得する手法が用いられる場合がある。As already described, in the measurement of the blood flow rate, the difference frequency Δω0 of the beat signal observed by thelight receiving element 3 is included in a range having an upper limit of about several tens of kHz, and therefore at least twice the difference frequency Δω0 . There is a case in which the light-emitting element LD1 is blinked at the above frequency, and the reflected light from the light-emitting element LD1 is acquired by the light-receivingelement 3 every light emission period in which IR light is emitted from the light-emitting element LD1.

この際、図5に示した受光素子3の受光量の変化に対するスペクトル分布のうち、より高い周波数領域におけるスペクトル分布に血流量に関連した重要な生体情報が含まれる場合が多いことから、受光素子3における受光量のサンプリング周期をできるだけ短くすることが好ましい。そのためには、発光素子LD1の単位時間あたりの点滅回数を増加し、発光素子LD1の発光期間に合わせて、生体8で反射した発光素子LD1の受光量を受光素子3で受光すればよい。  At this time, since the biological distribution related to the blood flow is often included in the spectral distribution in the higher frequency region in the spectral distribution with respect to the change in the amount of light received by thelight receiving element 3 shown in FIG. 3 is preferably as short as possible. For this purpose, the number of flashes per unit time of the light emitting element LD1 is increased, and thelight receiving element 3 receives the amount of light received by the light emitting element LD1 reflected by the living body 8 in accordance with the light emitting period of the light emitting element LD1.

しかし、実際には、発光素子LD1に電圧を印加して、発光素子LD1の印加電圧が発光に必要な電圧に達するまでのタイムラグと、発光素子LD1への印加電圧を停止して、発光素子LD1の印加電圧が0Vになるまでのタイムラグと、が存在する。したがって、発光素子LD1に印加される電圧波形は方形波ではなく、例えば図8に示すように、なだらかに変化する傾向が見られる。  However, in practice, a voltage is applied to the light emitting element LD1 to stop the time lag until the applied voltage of the light emitting element LD1 reaches a voltage necessary for light emission, and the applied voltage to the light emitting element LD1 to stop the light emitting element LD1. There is a time lag until the applied voltage reaches 0V. Therefore, the voltage waveform applied to the light emitting element LD1 is not a square wave, and tends to change gently as shown in FIG.

このように、供給電圧のオン及びオフにどの程度のタイムラグで追従するかを表す電子デバイスの性能を「応答性能」といい、応答性能の高い電子デバイス(この場合、発光素子LD1)ほど、図8に示した波形が方形波に近づき、方形波の上辺では、印加電圧の変動量が予め定めた範囲内に収まるため、安定した光量を有するIR光が照射されることになる。  As described above, the performance of an electronic device that indicates how much time lag it follows to turn on and off the supply voltage is referred to as “response performance”, and the higher the response performance of the electronic device (in this case, the light emitting element LD1), The waveform shown in FIG. 8 approaches a square wave, and the amount of fluctuation of the applied voltage falls within a predetermined range on the upper side of the square wave, so that IR light having a stable light amount is irradiated.

一方、応答性能が悪い電子デバイス(この場合、発光素子LD1)ほど、供給電圧のオン及びオフに伴う波形が乱れやすくなり、安定した光量を有するIR光を生体8に照射することが困難になる。したがって、受光素子3で発光素子LD1からの正しい受光量を取得することが困難になり、血流量の測定の精度を低下させる場合がある。  On the other hand, an electronic device with a poor response performance (in this case, the light emitting element LD1) has a tendency to disturb the waveform associated with turning on and off the supply voltage, and it becomes difficult to irradiate the living body 8 with IR light having a stable light amount. . Therefore, it becomes difficult for thelight receiving element 3 to acquire the correct amount of light received from the light emitting element LD1, and the accuracy of blood flow measurement may be reduced.

なお、上記では発光素子LD1を例にして、電子デバイスの応答性能による血流量の測定精度への影響について説明したが、受光素子3等の電子デバイス又は他の電子回路の応答性能が低い場合も、発光素子LD1と同様に血流量の測定精度を低下させる場合がある。  In the above, the light emitting element LD1 is taken as an example to explain the influence of the response performance of the electronic device on the blood flow measurement accuracy. However, the response performance of the electronic device such as thelight receiving element 3 or other electronic circuit may be low. As with the light emitting element LD1, the blood flow measurement accuracy may be lowered.

したがって、発光素子LD1の単位時間あたりの点滅回数を増加しようとしても、例えば発光素子LD1等の電子デバイスの応答性能が制約事項となり、生体情報を精度よく測定することが困難になることが多い。  Therefore, even if the number of blinks per unit time of the light emitting element LD1 is increased, for example, the response performance of an electronic device such as the light emitting element LD1 becomes a restriction, and it is often difficult to accurately measure biological information.

なお、血中の酸素飽和度を測定する場合、受光量の測定周波数は約30Hzから1000Hz程度で十分であることが知られているため、発光素子LD2の1秒あたりの点滅回数を表す発光周波数は約30Hzから1000Hz程度で十分である。すなわち、発光素子LD2の発光周波数を発光素子LD1の発光周波数に合わせ、発光素子LD1と発光素子LD2を交互に発光させる必要はなく、発光素子LD2の発光周波数を、発光素子LD1の発光周波数より低くしてもよい。したがって、血中の酸素飽和度の測定に関しては、血流量の測定に比べて、発光素子LD1の応答性能による測定精度への影響度合いが低くなる。  Note that when measuring the oxygen saturation in the blood, it is known that the measurement frequency of the amount of received light is about 30 Hz to about 1000 Hz. Therefore, the light emission frequency representing the number of blinks per second of the light emitting element LD2 About 30 Hz to about 1000 Hz is sufficient. That is, it is not necessary to match the light emission frequency of the light emitting element LD2 with the light emission frequency of the light emitting element LD1 and cause the light emitting element LD1 and the light emitting element LD2 to emit light alternately, and the light emitting element LD2 has a light emitting frequency lower than the light emitting frequency of the light emitting element LD1. May be. Therefore, regarding the measurement of the oxygen saturation in the blood, the degree of influence on the measurement accuracy by the response performance of the light emitting element LD1 is lower than the measurement of the blood flow rate.

以降では、発光素子LD1及び発光素子LD2を交互に発光させる場合に比べて、複数の生体情報を精度よく測定する生体情報測定装置について説明する。  In the following, a biological information measuring apparatus that measures a plurality of biological information with higher accuracy than when the light emitting elements LD1 and LD2 emit light alternately will be described.

図9は、本実施の形態に係る生体情報測定装置10の構成例を示す図である。  FIG. 9 is a diagram illustrating a configuration example of the biologicalinformation measuring apparatus 10 according to the present embodiment.

図9に示すように、生体情報測定装置10は、制御部12、駆動回路14、増幅回路16、A/D(Analog/Digital)変換回路18、測定部20、発光素子LD1、発光素子LD2、及び受光素子3を備える。  As shown in FIG. 9, the biologicalinformation measuring apparatus 10 includes acontrol unit 12, adrive circuit 14, anamplification circuit 16, an A / D (Analog / Digital)conversion circuit 18, ameasurement unit 20, a light emitting element LD1, a light emitting element LD2, And alight receiving element 3.

制御部12は、発光素子LD1及び発光素子LD2に駆動電力を供給する電力供給回路を含む駆動回路14に、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御信号を出力する。  Thecontrol unit 12 outputs a control signal for controlling the light emission period and the light emission period of the light emitting element LD1 and the light emitting element LD2 to the drivingcircuit 14 including a power supply circuit that supplies driving power to the light emitting element LD1 and the light emitting element LD2.

駆動回路14は、制御部12からの制御信号を受け付けると、制御信号で指示された発光周期及び発光期間に従って、発光素子LD1及び発光素子LD2に駆動電力を供給し、発光素子LD1及び発光素子LD2を駆動する。  When receiving the control signal from thecontrol unit 12, the drivingcircuit 14 supplies driving power to the light emitting element LD1 and the light emitting element LD2 according to the light emission cycle and the light emitting period instructed by the control signal, and the light emitting element LD1 and the light emitting element LD2 are supplied. Drive.

増幅回路16は、受光素子3で受光した光の強さに応じた電圧を、A/D変換回路18の入力電圧範囲として規定される電圧レベルまで増幅する。なお、ここでは一例として、受光素子3は受光した光の強さに応じた電圧を出力する素子とするが、受光素子3は受光した光の強さに応じた電流を出力してもよく、この場合、増幅回路16は、A/D変換回路18の入力電流範囲として規定される電流レベルまで、受光素子3が出力する電流を増幅する。  Theamplifier circuit 16 amplifies a voltage corresponding to the intensity of light received by thelight receiving element 3 to a voltage level defined as an input voltage range of the A /D conversion circuit 18. Here, as an example, thelight receiving element 3 is an element that outputs a voltage according to the intensity of received light, but thelight receiving element 3 may output a current according to the intensity of received light, In this case, theamplifier circuit 16 amplifies the current output from thelight receiving element 3 to the current level defined as the input current range of the A /D conversion circuit 18.

A/D変換回路18は、増幅回路16で増幅した電圧を入力として、当該電圧の大きさで表される受光素子3の受光量を数値化して出力する。  The A /D conversion circuit 18 receives the voltage amplified by theamplifier circuit 16 as an input, converts the received light amount of thelight receiving element 3 represented by the magnitude of the voltage into a numerical value, and outputs it.

測定部20は、A/D変換回路18で数値化された受光量を入力として、発光素子LD1によって照射された光の受光量に対してFFT処理を行って周波数ω毎のスペクトル分布を算出し、周波数ωと当該周波数ωにおけるスペクトル強度の積を周波数ωについて積分することで、血流量を測定する。  Themeasurement unit 20 calculates the spectral distribution for each frequency ω by performing an FFT process on the amount of light received by the light emitting element LD1 using the amount of light received by the A /D conversion circuit 18 as an input. The blood flow rate is measured by integrating the product of the frequency ω and the spectral intensity at the frequency ω with respect to the frequency ω.

また、測定部20は、A/D変換回路18で数値化された受光量を入力として、発光素子LD1及び発光素子LD2によって照射された光の受光量を、それぞれ時系列順に管理する。そして、測定部20は、発光素子LD1の吸光量の変化量ΔAIR、及び発光素子LD2の吸光量の変化量ΔARedを(1)式に従って算出し、吸光量の変化量ΔAIRに対する吸光量の変化量ΔARedの割合を(2)式に従って算出することで、酸素飽和度を測定する。In addition, themeasurement unit 20 receives the light reception amount quantified by the A /D conversion circuit 18 and manages the light reception amounts of light emitted by the light emitting element LD1 and the light emitting element LD2 in time series. Then, the measuringunit 20 calculates the change amount ΔAIR of the light absorption amount of the light emitting element LD1 and the change amount ΔARed of the light absorption amount of the light emitting element LD2 according to the equation (1), and the light absorption amount with respect to the change amount ΔAIR of the light absorption amount. The oxygen saturation is measured by calculating the ratio of the change amount ΔARed in accordance with the equation (2).

図10に、生体情報測定装置10における発光素子LD1、発光素子LD2、及び受光素子3の配置例を示す。図10に示すように、発光素子LD1、発光素子LD2、及び受光素子3は、生体8の一方の面に向かって並べて配置される。この場合、受光素子3は、生体8で反射された発光素子LD1及び発光素子LD2の光を受光する。  FIG. 10 shows an arrangement example of the light emitting element LD 1, the light emitting element LD 2, and thelight receiving element 3 in the biologicalinformation measuring apparatus 10. As shown in FIG. 10, the light emitting element LD 1, the light emitting element LD 2, and thelight receiving element 3 are arranged side by side toward one surface of the living body 8. In this case, thelight receiving element 3 receives light from the light emitting element LD1 and the light emitting element LD2 reflected by the living body 8.

しかし、発光素子LD1、発光素子LD2、及び受光素子3の配置は、図10の配置例に限定されない。例えば、図11に示すように、発光素子LD1及び発光素子LD2と、受光素子3とを、生体8を挟んで対向する位置に配置するようにしてもよい。この場合、受光素子3は、生体8を透過した発光素子LD1及び発光素子LD2の光を受光する。  However, the arrangement of the light emitting element LD1, the light emitting element LD2, and thelight receiving element 3 is not limited to the arrangement example of FIG. For example, as shown in FIG. 11, the light emitting element LD1, the light emitting element LD2, and thelight receiving element 3 may be arranged at positions facing each other across the living body 8. In this case, thelight receiving element 3 receives light from the light emitting element LD1 and the light emitting element LD2 that have passed through the living body 8.

なお、ここでは一例として、発光素子LD1及び発光素子LD2は、共に面発光レーザ素子であるものとして説明するが、これに限らず、端面発光レーザ素子であってもよい。  Here, as an example, the light-emitting element LD1 and the light-emitting element LD2 are described as both surface-emitting laser elements. However, the present invention is not limited to this, and may be edge-emitting laser elements.

測定部20において血流量を測定する場合、既に説明したように、ビート信号による受光量のスペクトル分布を利用するため、発光素子LD1には他の光に比べてビート信号が発生しやすいレーザ素子を用いることが好ましい。  When measuring the blood flow in themeasurement unit 20, as described above, a laser element that easily generates a beat signal compared to other light is used for the light emitting element LD1 in order to use the spectral distribution of the amount of light received by the beat signal. It is preferable to use it.

しかし、発光素子LD2から照射される光はレーザ光でなくても、発光素子LD2の吸光量の変化量ΔARedは算出されるため、発光素子LD2には、発光ダイオード(Light-Emitting Diode:LED)又は有機発光ダイオード(Organic Light-Emitting Diode:OLED)を用いてもよい。However, even if the light emitted from the light emitting element LD2 is not laser light, the change amount ΔARed of the light absorption amount of the light emitting element LD2 is calculated, and therefore, the light emitting element LD2 includes a light-emitting diode (LED). ) Or organic light-emitting diode (OLED) may be used.

次に、図12を参照して、本実施の形態に係る生体情報測定装置10の電気系統の要部構成について説明する。  Next, with reference to FIG. 12, the principal part structure of the electric system of the biologicalinformation measuring device 10 which concerns on this Embodiment is demonstrated.

図12に示すように、本実施の形態に係る生体情報測定装置10は、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御手段、並びに、生体8における血流量及び血中の酸素飽和度を測定する測定手段の一例としてのCPU(Central Processing Unit)30を備える。また、生体情報測定装置10は、各種プログラムや各種パラメータ等が予め記憶されたROM(Read Only Memory)32、及びCPU30による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)34を備える。  As shown in FIG. 12, the biologicalinformation measuring apparatus 10 according to the present embodiment includes a light emitting element LD1 and a control means for controlling the light emission period and light emission period of the light emitting element LD2, and the blood flow volume and blood in the living body 8. A CPU (Central Processing Unit) 30 is provided as an example of a measuring means for measuring oxygen saturation. The biologicalinformation measuring apparatus 10 includes a ROM (Read Only Memory) 32 in which various programs and various parameters are stored in advance, and a RAM (Random Access Memory) 34 used as a work area when theCPU 30 executes the various programs. Is provided.

CPU30、ROM32、及びRAM32は、生体情報測定装置10の内部バス36で互いに接続され、更に、内部バス36には、発光素子LD1、発光素子LD2、受光素子3、増幅回路16、及びA/D変換回路18が各々接続される。なお、CPU30には、指定した時点からの経過時間を計測するタイマが内蔵されている。  TheCPU 30,ROM 32, andRAM 32 are connected to each other via an internal bus 36 of the biologicalinformation measuring apparatus 10, and further, the internal bus 36 includes a light emitting element LD 1, a light emitting element LD 2, alight receiving element 3, anamplifier circuit 16, and an A /D. Conversion circuits 18 are connected to each other. TheCPU 30 has a built-in timer that measures the elapsed time from the specified time.

次に、図13を参照して、生体情報測定装置10の作用について説明する。  Next, the operation of the biologicalinformation measuring apparatus 10 will be described with reference to FIG.

図13は、CPU30が生体情報の測定を開始する指示を受け付けた場合に、CPU30によって実行される生体情報測定処理の流れの一例を示すフローチャートである。生体情報測定処理を規定するプログラム(生体情報測定プログラム)は、例えばROM32に予めインストールされている。なお、生体情報測定プログラムの開始時点において、発光素子LD1及び発光素子LD2は、共にレーザ光を照射していない発光停止状態になっているものとする。  FIG. 13 is a flowchart illustrating an example of a flow of a biological information measurement process executed by theCPU 30 when theCPU 30 receives an instruction to start measurement of biological information. A program (biological information measurement program) for defining the biological information measurement process is installed in advance in theROM 32, for example. Note that at the start of the biological information measurement program, it is assumed that both the light emitting element LD1 and the light emitting element LD2 are in a light emission stop state in which laser light is not irradiated.

まず、ステップS10において、CPU30は、CPU30に内蔵されるタイマAをリセットする。ここで、タイマをリセットするとは、タイマによる計測を停止し、タイマを停止した時点から新たに経過時間を計測し始めることを意味する。  First, in step S10, theCPU 30 resets the timer A built in theCPU 30. Here, resetting the timer means stopping the measurement by the timer and starting to newly measure the elapsed time from the time when the timer is stopped.

ステップS20において、CPU30は、駆動回路14に対して発光素子LD1の発光開始を指示する発光開始指示を通知する。駆動回路14は、発光開始指示を受け付けると発光素子LD1に駆動電力を供給し、発光素子LD1からレーザ光を照射させる。  In step S20, theCPU 30 notifies thedrive circuit 14 of a light emission start instruction for instructing the light emission element LD1 to start light emission. When thedrive circuit 14 receives the light emission start instruction, thedrive circuit 14 supplies drive power to the light emitting element LD1 and irradiates the laser light from the light emitting element LD1.

ステップS30において、CPU30は、受光素子3で受光した発光素子LD1による受光量をA/D変換回路18から取得して、例えばRAM34の予め定めた領域に記憶する。  In step S <b> 30, theCPU 30 acquires the amount of light received by the light emitting element LD <b> 1 received by thelight receiving element 3 from the A /D conversion circuit 18 and stores it in a predetermined area of theRAM 34, for example.

ステップS40において、CPU30は、ステップS10でタイマAをリセットしてから時間T3以上経過しているか否かを判定する。当該時間T3は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD1の発光期間の長さを決定する。In step S40,CPU 30 determines whether or Reset the timer A has elapsed time T3 or more in step S10. The time T3 is a parameter stored in advance in a predetermined area of theROM 32, for example, and determines the length of the light emission period of the light emitting element LD1.

ステップS40の判定処理が否定判定の場合には、ステップS30に移行する。そして、CPU30は、時間T3以上経過するまで、ステップS30で、受光素子3で受光した発光素子LD1による受光量をA/D変換回路18から取得する処理を繰り返し実行する。すなわち、CPU30は、発光素子LD1を時間T3以上に亘って発光させ続けた状態で、発光素子LD1による受光量を複数回取得する。If the determination process in step S40 is negative, the process proceeds to step S30. Then,CPU 30 until elapse time T3 or more, in step S30, and repeatedly executes the process of acquiring the received light amount by the light emitting element LD1 of light received by thelight receiving element 3 from the A /D converter circuit 18. That,CPU 30 is in a state where the light emitting elements LD1 continued to emit light over time T3 or more, to obtain a plurality of times the received light amount of the light emitting element LD1.

一方、ステップS40の判定処理が肯定判定の場合には、ステップS50に移行する。  On the other hand, if the determination process in step S40 is affirmative, the process proceeds to step S50.

ステップS50において、CPU30は、駆動回路14に対して発光素子LD1の発光停止を指示する発光停止指示を通知する。駆動回路14は、発光停止指示を受け付けると発光素子LD1への駆動電力の供給を停止し、発光素子LD1によるレーザ光の照射を停止させる。  In step S50, theCPU 30 notifies thedrive circuit 14 of a light emission stop instruction that instructs to stop the light emission of the light emitting element LD1. When receiving the light emission stop instruction, thedrive circuit 14 stops the supply of drive power to the light emitting element LD1, and stops the irradiation of the laser light by the light emitting element LD1.

ステップS60において、CPU30は、CPU30に内蔵されるタイマBをリセットする。  In step S60, theCPU 30 resets the timer B built in theCPU 30.

ステップS70において、CPU30は、駆動回路14に対して発光素子LD2の発光開始指示を通知する。駆動回路14は、発光開始指示を受け付けると発光素子LD2に駆動電力を供給し、発光素子LD2からレーザ光を照射させる。  In step S70, theCPU 30 notifies thedrive circuit 14 of a light emission start instruction for the light emitting element LD2. When thedrive circuit 14 receives the light emission start instruction, thedrive circuit 14 supplies drive power to the light emitting element LD2, and irradiates the laser light from the light emitting element LD2.

ステップS80において、CPU30は、受光素子3で受光した発光素子LD2による受光量をA/D変換回路18から取得して、例えばRAM34の予め定めた領域に記憶する。  In step S80, theCPU 30 acquires the amount of light received by the light emitting element LD2 received by thelight receiving element 3 from the A /D conversion circuit 18, and stores it in a predetermined area of theRAM 34, for example.

ステップS90において、CPU30は、ステップS60でタイマBをリセットしてから時間T4以上経過しているか否かを判定する。当該時間T4は、例えばROM32の予め定めた領域に予め記憶されるパラメータであり、発光素子LD2の発光期間の長さを決定する。In step S90,CPU 30 determines whether or Reset the timer B has elapsed time T4 or more in step S60. The time T4 is a parameter stored in advance in a predetermined area of theROM 32, for example, and determines the length of the light emission period of the light emitting element LD2.

なお、既に説明したように、血中の酸素飽和度を測定する際に必要となる発光素子LD2の受光量の測定周期は、血流量を測定する際に必要となる発光素子LD1の受光量の測定周期より短くてもよいため、時間T4を時間T3より小さい値に設定して、発光素子LD2の発光期間を発光素子LD1の発光期間より短くすることが好ましい。このように時間T4を設定することで、時間T4を時間T3より大きい値に設定する場合に比べて、血中の酸素飽和度の測定精度を低下させることなく、単位時間における血中の酸素飽和度の測定回数を増加することができる。As already described, the measurement period of the amount of light received by the light emitting element LD2 required when measuring the oxygen saturation in the blood is the amount of light received by the light emitting element LD1 required when measuring the blood flow. Since it may be shorter than the measurement cycle, it is preferable to set the time T4 to a value smaller than the time T3 so that the light emitting period of the light emitting element LD2 is shorter than the light emitting period of the light emitting element LD1. By setting the time T4 in this way, the blood in the unit time can be reduced without degrading the measurement accuracy of the oxygen saturation in the blood as compared with the case where the time T4 is set to a value larger than the time T3. The number of oxygen saturation measurements can be increased.

ステップS90の判定処理が否定判定の場合、CPU30はステップS90の処理を繰り返し実行して、タイマBが時間T4以上経過するまで待機する。一方、肯定判定の場合にはステップS100に移行する。If the determination processing in step S90 is negative determination,CPU 30 is repeatedly performs the processes of steps S90, timer B waits until the elapsed time T4 or higher. On the other hand, if the determination is affirmative, the process proceeds to step S100.

ステップS100において、CPU30は、駆動回路14に対して発光素子LD2の発光停止を指示する発光停止指示を通知する。駆動回路14は、発光停止指示を受け付けると発光素子LD2への駆動電力の供給を停止し、発光素子LD2によるレーザ光の照射を停止させる。  In step S100, theCPU 30 notifies thedrive circuit 14 of a light emission stop instruction that instructs the light emission element LD2 to stop light emission. When receiving the light emission stop instruction, thedrive circuit 14 stops the supply of drive power to the light emitting element LD2, and stops the irradiation of the laser light by the light emitting element LD2.

ステップS110において、CPU30は、既に説明した血流量の測定方法にしたがって、ステップS30で取得した発光素子LD1の各受光量の時系列データに対してFFT処理を行い、周波数ω毎のスペクトル分布を算出し、当該スペクトル分布を全周波数ωについて積分することで、血流量を測定する。  In step S110, theCPU 30 performs FFT processing on the time series data of each received light amount of the light emitting element LD1 acquired in step S30 in accordance with the blood flow measurement method described above, and calculates the spectrum distribution for each frequency ω. Then, the blood flow is measured by integrating the spectrum distribution with respect to all the frequencies ω.

ステップS120において、CPU30は、既に説明した血中の酸素飽和度の測定方法にしたがって、ステップS30で最後に取得した発光素子LD1の受光量と、ステップS80で取得した発光素子LD2の受光量と、を組み合わせた受光量ペアを、例えばRAM34の予め定めた領域に記憶する。そして、CPU30は、受光量ペアの時系列データを用いて(1)式及び(2)式、又は、これらの式を変形して得られる公知の式を算出することで、血中の酸素飽和度を測定する。  In step S120, according to the method for measuring blood oxygen saturation already described, theCPU 30 receives the light receiving amount of the light emitting element LD1 last acquired in step S30, the light receiving amount of the light emitting element LD2 acquired in step S80, and Are stored in a predetermined area of theRAM 34, for example. Then, theCPU 30 calculates the formula (1) and (2), or a known formula obtained by modifying these formulas, using the time series data of the received light amount pair, so that the oxygen saturation in the blood is calculated. Measure the degree.

ステップS130において、CPU30は、生体情報の測定を終了する終了指示を受け付けたか否かを判定する。当該判定処理が否定判定の場合にはステップS10に移行し、終了指示を受け付けるまでステップS10〜S130を繰り返し実行することで、血流量及び酸素飽和度を測定し続ける。  In step S <b> 130, theCPU 30 determines whether an end instruction for ending the measurement of biometric information has been received. If the determination process is negative, the process proceeds to step S10, and steps S10 to S130 are repeatedly executed until an end instruction is received, thereby continuously measuring blood flow and oxygen saturation.

図14は、図13の生体情報測定プログラムを実行した場合における、発光素子LD1及び発光素子LD2の発光タイミングを示すタイミングチャートの一例である。  FIG. 14 is an example of a timing chart showing light emission timings of the light emitting element LD1 and the light emitting element LD2 when the biological information measurement program of FIG. 13 is executed.

図14に示すように、発光素子LD1には、時間T3の長さを有する発光期間と、時間T4の長さを有する発光停止期間とが繰り返し現われる。反対に、発光素子LD2には、時間T3の長さを有する発光停止期間と、時間T4の長さを有する発光期間とが繰り返し現われる。As shown in FIG. 14, in the light emitting element LD1, a light emission period having a length of time T3 and a light emission stop period having a length of time T4 appear repeatedly. Conversely, the light emitting element LD2, the light emission stop period having a length of time T3, repeatedly appears and light emission period with a length of time T4.

また、図13のステップS30及びS40の処理によって、生体情報測定装置10は、発光素子LD1からレーザ光を連続して照射した状態のまま、複数の受光点96で発光素子LD1の受光量を取得する。  Further, through the processing of steps S30 and S40 in FIG. 13, the biologicalinformation measuring apparatus 10 acquires the amount of light received by the light emitting element LD1 at the plurality of light receiving points 96 while the laser light is continuously emitted from the light emitting element LD1. To do.

したがって、血流量を測定する際、図15に示すように、発光素子LD1の単位時間あたりの点滅回数を増加し、発光素子LD1の各々の発光期間毎に1つ設けた受光点96で発光素子LD1の受光量を取得することで、発光素子LD1の受光量のサンプリング周期を短くする場合に比べて、発光素子LD1の点滅に伴う発光素子LD1の応答性能の影響を受けにくくなる。すなわち、生体情報測定装置10は、発光素子LD1の単位時間あたりの点滅回数を増加することで、発光素子LD1の受光量のサンプリング周期を短くする場合よりも、当該サンプリング周期を更に短くすることができる。  Therefore, when measuring the blood flow rate, as shown in FIG. 15, the number of flashes per unit time of the light emitting element LD1 is increased, and thelight emitting element 96 is provided with onelight receiving point 96 provided for each light emitting period of the light emitting element LD1. By acquiring the amount of light received by LD1, it becomes less susceptible to the response performance of the light emitting element LD1 accompanying the blinking of the light emitting element LD1 than when the sampling period of the amount of light received by the light emitting element LD1 is shortened. That is, the biologicalinformation measuring apparatus 10 can further shorten the sampling cycle by increasing the number of blinks per unit time of the light emitting element LD1 than when the light receiving amount of the light emitting element LD1 is shortened. it can.

なお、ここでレーザ光を連続して照射する状態とは、上記に示したように、例えば発光素子LD1の発光期間全域に亘って、発光素子LD1からレーザ光を照射する状態に限られない。例えば、発光素子LD1の受光量のサンプリング周期に合わせて発光素子LD1からレーザ光を照射し、且つ、各受光点96における発光素子LD1のレーザ光の光量が、発光素子LD1のオンオフ制御に伴う発光素子LD1の応答性能に影響されない範囲で、発光素子LD1からのレーザ光の照射を一旦停止し、その後、レーザ光の照射を再開する状態も含まれる。  Here, the state in which the laser light is continuously irradiated is not limited to the state in which the laser light is irradiated from the light emitting element LD1 over the entire light emission period of the light emitting element LD1, for example, as described above. For example, the laser light is emitted from the light emitting element LD1 in accordance with the sampling period of the light receiving amount of the light emitting element LD1, and the light amount of the laser light of the light emitting element LD1 at eachlight receiving point 96 is the light emission accompanying the on / off control of the light emitting element LD1. This includes a state where the irradiation of the laser light from the light emitting element LD1 is temporarily stopped and then the irradiation of the laser light is resumed within a range not affected by the response performance of the element LD1.

また、生体情報測定装置10の測定部20は、発光素子LD1及び発光素子LD2の受光量の各取得タイミングを表す受光点96のうち、受光点96Bで取得した発光素子LD2の受光量と、受光点96Bを含む発光素子LD2の発光期間と時間軸に沿って隣接する発光素子LD1の発光期間中に取得した何れかの受光点96における発光素子LD1の受光量を用いて、血中の酸素飽和度を測定する。なお、この場合には、受光点96Bに隣接する、受光点96A又は受光点96Cの何れか一方における発光素子LD1の受光量を、受光点96Bにおける発光素子LD2の受光量と組み合わせることが好ましい。  In addition, themeasurement unit 20 of the biologicalinformation measuring apparatus 10 receives the received light amount of the light emitting element LD2 acquired at thelight receiving point 96B among the light receiving points 96 representing the respective acquisition timings of the received light amounts of the light emitting element LD1 and the light emitting element LD2. Oxygen saturation in blood using the light reception amount of the light emitting element LD1 at anylight receiving point 96 acquired during the light emission period of the light emitting element LD2 including thepoint 96B and the light emission period of the light emitting element LD1 adjacent along the time axis. Measure the degree. In this case, it is preferable to combine the amount of light received by the light emitting element LD1 at either thelight receiving point 96A or thelight receiving point 96C adjacent to thelight receiving point 96B with the amount of light received by the light emitting element LD2 at thelight receiving point 96B.

これは、血中の酸素飽和度を測定する場合、時間的にできるだけ隣接する発光素子LD1の受光量と発光素子LD2の受光量とを用いた方が、測定精度が高くなる傾向があるためである。  This is because when measuring the oxygen saturation in blood, the measurement accuracy tends to be higher when the light receiving amount of the light emitting element LD1 and the light receiving amount of the light emitting element LD2 that are adjacent in terms of time are used. is there.

また、図13に示した生体情報測定プログラムのフローチャートでは、発光素子LD2の発光期間に発光素子LD2の受光量を1回取得する例を示したが、複数回取得するようにしてもよい。  Further, in the flowchart of the biological information measurement program illustrated in FIG. 13, an example in which the received light amount of the light emitting element LD2 is acquired once during the light emission period of the light emitting element LD2, but may be acquired a plurality of times.

図16は、発光素子LD2の発光期間に発光素子LD2の受光量を複数回取得する場合の取得タイミングを示すタイミングチャートの一例である。図16に示す例では、領域92で示される発光素子LD2の発光期間に、発光素子LD2の受光量を3回取得している。なお、発光素子LD2の受光量の取得回数は3回に限られず、2回以上であればよいことは言うまでもない。  FIG. 16 is an example of a timing chart showing the acquisition timing when the amount of light received by the light emitting element LD2 is acquired a plurality of times during the light emission period of the light emitting element LD2. In the example shown in FIG. 16, the amount of light received by the light emitting element LD2 is acquired three times during the light emission period of the light emitting element LD2 indicated by theregion 92. Needless to say, the number of times the amount of light received by the light emitting element LD2 is acquired is not limited to three, but may be two or more.

この場合、測定部20は、領域92で示される発光素子LD2の発光期間に取得した各受光点96における受光量の平均値を、領域92で示される発光素子LD2の発光期間における受光量とする。また、測定部20は、発光素子LD2の発光期間に隣接する発光素子LD1の発光期間で取得した各受光点96における受光量の平均値を、発光素子LD1の発光期間における受光量とする。そして、測定部20は、発光素子LD1の発光期間における受光量と、発光素子LD2の発光期間における受光量と、を組み合わせて、血中の酸素飽和度を算出する。  In this case, themeasurement unit 20 uses the average value of the light receiving amount at eachlight receiving point 96 acquired during the light emitting period of the light emitting element LD2 indicated by theregion 92 as the light receiving amount during the light emitting period of the light emitting element LD2 indicated by theregion 92. . In addition, themeasurement unit 20 sets the average value of the light reception amount at eachlight receiving point 96 acquired during the light emission period of the light emitting element LD1 adjacent to the light emission period of the light emitting element LD2 as the light reception amount during the light emission period of the light emitting element LD1. Then, themeasurement unit 20 calculates the oxygen saturation level in the blood by combining the amount of light received during the light emission period of the light emitting element LD1 and the amount of light received during the light emission period of the light emitting element LD2.

なお、発光素子LD1の発光期間における複数の受光点96の選択方法に制限はないが、出来る限り、領域92で示される発光素子LD2の発光期間における受光点96と隣接する受光点96を選択することが好ましい。例えば領域92に含まれる受光点96の数と同じ数の受光点96を有する、領域98又は領域99に含まれる受光点96を選択すればよい。これは、既に述べたように、血中の酸素飽和度を測定する場合、時間的にできるだけ隣接する発光素子LD1の受光量と発光素子LD2の受光量とを用いた方が、測定精度が高くなる傾向があるためである。  Although there is no limitation on the selection method of the plurality of light receiving points 96 in the light emitting period of the light emitting element LD1, thelight receiving point 96 adjacent to thelight receiving point 96 in the light emitting period of the light emitting element LD2 indicated by theregion 92 is selected as much as possible. It is preferable. For example, the light receiving points 96 included in theregion 98 or theregion 99 having the same number of light receiving points 96 as the number of light receiving points 96 included in theregion 92 may be selected. As described above, when measuring the oxygen saturation in blood, the measurement accuracy is higher when the light receiving amount of the light emitting element LD1 and the light receiving amount of the light emitting element LD2 that are adjacent as much as possible are used. This is because there is a tendency to become.

また、血中の酸素飽和度の算出に用いる、発光素子LD1の発光期間における受光点96の選択数にも制限はない。図16に示す例では、領域92で示される発光素子LD2の発光期間における受光点96の数と同じ数の受光点96を選択しているが、例えば図17の領域98A又は領域99Aで示されるように、発光素子LD1の1つの発光期間に含まれる全ての受光点96を選択してもよい。選択する発光素子LD1の受光点96の数を増やすほど、発光素子LD1から受光したIR光に含まれるビート信号の差周波Δω0が平均化されて、血中の酸素飽和度の算出に対して雑音成分となるビート信号の影響が低減される。In addition, there is no limit to the number of light receiving points 96 that are used to calculate the oxygen saturation level in blood during the light emission period of the light emitting element LD1. In the example shown in FIG. 16, the same number of light receiving points 96 as the number of light receiving points 96 in the light emission period of the light emitting element LD2 indicated by theregion 92 are selected. For example, the light receiving points 96A and 99A shown in FIG. As described above, all the light receiving points 96 included in one light emission period of the light emitting element LD1 may be selected. As the number of light receiving points 96 of the light emitting element LD1 to be selected is increased, the difference frequency Δω0 of the beat signal included in the IR light received from the light emitting element LD1 is averaged, and the oxygen saturation in blood is calculated. The influence of the beat signal that becomes a noise component is reduced.

このように本実施の形態に係る生体情報測定装置10によれば、発光素子LD1からレーザ光を照射した状態のまま、複数の受光点96で発光素子LD1の受光量を取得する。  As described above, according to the biologicalinformation measuring apparatus 10 according to the present embodiment, the received light amount of the light emitting element LD1 is obtained at the plurality of light receiving points 96 while the laser light is irradiated from the light emitting element LD1.

したがって、単位時間あたりの発光素子LD1の点滅回数を増加することで、生体8で反射した光の受光量のサンプリング周期を短くする場合に比べて、更に受光量のサンプリング周期を短くすることができるため、生体情報を精度よく測定することができる。  Therefore, by increasing the number of blinks of the light emitting element LD1 per unit time, the sampling period of the received light amount can be further shortened compared with the case where the sampling period of the received light amount reflected by the living body 8 is shortened. Therefore, biological information can be measured with high accuracy.

また、生体情報測定装置10は、ここで挙げた内容に限らず、他の生体情報の測定にも利用する事が出来る。  In addition, the biologicalinformation measuring device 10 is not limited to the contents listed here, and can be used for measuring other biological information.

なお、生体情報測定装置10は、既に説明したように血流量の他、血流速度の測定にも適用される。また、図7に示したように、動脈4の脈動に応じて受光素子3で受光される受光量が変化するため、受光素子3での受光量の変化から、脈拍数が測定される。また、脈拍数の変化を時系列順に測定して得られる波形を2回微分することで、加速度脈波が測定される。加速度脈波は、血管年齢の推定又は動脈硬化の診断等に用いられる。  In addition, the biologicalinformation measuring device 10 is applied to the measurement of the blood flow velocity in addition to the blood flow as already described. Further, as shown in FIG. 7, since the amount of light received by thelight receiving element 3 changes according to the pulsation of the artery 4, the pulse rate is measured from the change in the amount of light received by thelight receiving element 3. Moreover, an acceleration pulse wave is measured by differentiating twice the waveform obtained by measuring the change of the pulse rate in time series. The acceleration pulse wave is used for estimating blood vessel age or diagnosing arteriosclerosis.

また、生体情報測定装置10は、ここで挙げた内容に限らず、他の生体情報の測定にも利用する事ができる。In addition, the biologicalinformation measuring device 10 is not limited to the contents described here, and can be used for measuring other biological information.

以上、実施の形態を用いて本発明について説明したが、本発明は実施の形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で実施の形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。例えば、本発明の要旨を逸脱しない範囲で処理の順序を変更してもよい。  Although the present invention has been described using the embodiment, the present invention is not limited to the scope described in the embodiment. Various changes or improvements can be added to the embodiments without departing from the gist of the present invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. For example, the processing order may be changed without departing from the scope of the present invention.

また、実施の形態では、一例として制御部12及び測定部20における処理をソフトウエアで実現する形態について説明したが、図13に示したフローチャートと同等の処理をハードウエアで処理させるようにしてもよい。この場合、制御部12及び測定部20における処理をソフトウエアで実現する場合に比べて、処理の高速化が図られる。  In the embodiment, as an example, the form in which the processing in thecontrol unit 12 and themeasurement unit 20 is realized by software has been described. However, the processing equivalent to the flowchart shown in FIG. 13 may be processed by hardware. Good. In this case, the processing speed can be increased as compared with the case where the processing in thecontrol unit 12 and themeasurement unit 20 is realized by software.

また、実施の形態では、生体情報測定プログラムがROM32にインストールされている形態を説明したが、これに限定されるものではない。本発明に係る生体情報測定プログラムは、コンピュータ読取可能な記録媒体に記録された形態で提供することも可能である。例えば、本発明に係る生体情報測定プログラムは、CD(Compact Disc)−ROM、DVD(Digital Versatile)−ROMまたはUSB(Universal Serial Bus)メモリ等の可搬型記録媒体に記録された形態で提供することも可能である。また、本発明に係る生体情報測定プログラムは、フラッシュメモリ等の半導体メモリ等に記録された形態で提供することも可能である。  In the embodiment, the biological information measurement program is installed in theROM 32. However, the present invention is not limited to this. The biological information measurement program according to the present invention can also be provided in a form recorded on a computer-readable recording medium. For example, the biological information measurement program according to the present invention is provided in a form recorded in a portable recording medium such as a CD (Compact Disc) -ROM, a DVD (Digital Versatile) -ROM, or a USB (Universal Serial Bus) memory. Is also possible. The biological information measurement program according to the present invention can be provided in a form recorded in a semiconductor memory such as a flash memory.

1、2・・・発光素子(LD)
3・・・受光素子
4・・・動脈
5・・・静脈
6・・・毛細血管
7・・・血球細胞
8・・・生体
10・・・生体情報測定装置
12・・・制御部
14・・・駆動回路
16・・・増幅回路
18・・・変換回路
20・・・測定部
30・・・CPU
96(96A、96B、96C)・・・受光点
1, 2 ... Light emitting element (LD)
DESCRIPTION OFSYMBOLS 3 ... Light receiving element 4 ... Artery 5 ...Vein 6 ... Capillary blood vessel 7 ... Blood cell 8 ... Livingbody 10 ... Living bodyinformation measuring device 12 ...Control part 14 ... Drivecircuit 16 ...amplifier circuit 18 ...conversion circuit 20 ...measurement unit 30 ... CPU
96 (96A, 96B, 96C) ... light receiving point

Claims (7)

Translated fromJapanese
互いに波長の異なる光を照射する第1発光素子及び第2発光素子と、
前記第1発光素子及び前記第2発光素子から照射される各々の光を受光する受光素子と、
前記第1発光素子の連続発光期間より前記第2発光素子の連続発光期間が短くなるように、前記第1発光素子及び前記第2発光素子の発光期間を制御する制御手段と、
前記受光素子で受光した光の各々から、複数の生体情報を測定する測定手段と、
備えた生体情報測定装置。
A first light emitting element and a second light emitting element that irradiate light having different wavelengths;
A light receiving element that receives each light emitted from the first light emitting element and the second light emitting element;
Control means for controlling a light emission period of the first light emitting element and the second light emitting element so that a continuous light emission period of the second light emitting element is shorter than a continuous light emission period of the first light emitting element;
Measuring means for measuring a plurality of biological information from each of the light received by the light receiving element;
Biological information measuring device provided.
前記測定手段は、前記第1発光素子の発光期間毎に前記受光素子で複数回受光した前記第1発光素子による光の受光量と、前記第1発光素子の発光期間と隣接する前記第2発光素子の発光期間における光の受光量と、を用いて複数の生体情報を測定する
請求項1に記載の生体情報測定装置。
The measuring means receives the amount of light received by the first light emitting element received by the light receiving element a plurality of times for each light emitting period of the first light emitting element, and the second light emission adjacent to the light emitting period of the first light emitting element. The biological information measuring device according to claim 1, wherein a plurality of pieces of biological information are measured using the amount of light received during the light emission period of the element.
前記制御手段は、前記第1発光素子及び前記第2発光素子の発光期間が重複しないように、前記第1発光素子及び前記第2発光素子の発光期間を制御する
請求項1又は請求項2に記載の生体情報測定装置。
3. The control unit according to claim 1, wherein the control unit controls a light emission period of the first light emitting element and the second light emitting element so that light emission periods of the first light emitting element and the second light emitting element do not overlap. The biological information measuring device described.
前記測定手段は、前記受光素子で受光した前記第1発光素子による光の受光量に対する周波数スペクトル、並びに、前記受光素子で受光した前記第1発光素子による光の受光量及び前記第2発光素子による光の受光量から、前記複数の生体情報を測定する
請求項1〜請求項3の何れか1項に記載の生体情報測定装置。
The measuring means includes a frequency spectrum with respect to the amount of light received by the first light-emitting element received by the light-receiving element, a light-receiving amount of light by the first light-emitting element received by the light-receiving element, and the second light-emitting element. The biological information measuring device according to any one of claims 1 to 3, wherein the plurality of pieces of biological information are measured from an amount of received light.
前記測定手段は、前記第1発光素子の発光期間及び前記第2発光素子の発光期間の少なくとも一方の発光期間において、前記受光素子から受光量を複数回取得し、取得した各々の受光量の平均値を、複数回に亘って前記受光素子から受光量を取得した発光期間における光の受光量とする
請求項1〜請求項4の何れか1項に記載の生体情報測定装置。
The measuring means obtains the received light amount from the light receiving element a plurality of times during at least one of the light emitting period of the first light emitting element and the light emitting period of the second light emitting element, and averages the respective received light amounts. The biological information measuring device according to claim 1, wherein the value is a light reception amount of light during a light emission period in which the light reception amount is acquired from the light receiving element over a plurality of times.
前記測定手段は、血流量、血流速度、及び血液量の少なくとも1つと、血中の酸素飽和度と、を含む生体情報を前記複数の生体情報として測定する
請求項1〜請求項5の何れか1項に記載の生体情報測定装置。
The measurement means measures biological information including at least one of a blood flow volume, a blood flow velocity, and a blood volume, and oxygen saturation in the blood as the plurality of biological information. The biological information measuring device according to claim 1.
コンピュータを、請求項1〜請求項6の何れか1項に記載の制御手段及び測定手段として機能させるための生体情報測定プログラム。  A biological information measurement program for causing a computer to function as the control unit and the measurement unit according to any one of claims 1 to 6.
JP2016064455A2016-03-282016-03-28 Biological information measuring device and biological information measuring programPendingJP2017176264A (en)

Priority Applications (7)

Application NumberPriority DateFiling DateTitle
JP2016064455AJP2017176264A (en)2016-03-282016-03-28 Biological information measuring device and biological information measuring program
US15/226,371US10376223B2 (en)2016-03-282016-08-02Living-body information measurement device and non-transitory computer readable medium
US15/228,074US20170273631A1 (en)2016-03-282016-08-04Living-body information measurement device
US15/229,192US10492732B2 (en)2016-03-282016-08-05Living-body information measurement device and non-transitory computer readable medium
CN201610806366.7ACN107233100A (en)2016-03-282016-09-07Biological information detecting device
CN201610808043.1ACN107233089B (en)2016-03-282016-09-07 Living body information measuring device
CN201610810705.9ACN107233073A (en)2016-03-282016-09-08Biological information detecting device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2016064455AJP2017176264A (en)2016-03-282016-03-28 Biological information measuring device and biological information measuring program

Publications (1)

Publication NumberPublication Date
JP2017176264Atrue JP2017176264A (en)2017-10-05

Family

ID=60002875

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2016064455APendingJP2017176264A (en)2016-03-282016-03-28 Biological information measuring device and biological information measuring program

Country Status (1)

CountryLink
JP (1)JP2017176264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020122164A1 (en)*2018-12-142020-06-18ソニー株式会社Biosignal measurement apparatus
WO2024117209A1 (en)*2022-11-302024-06-06株式会社ジャパンディスプレイDetection device

Citations (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH01256924A (en)*1988-04-081989-10-13Kowa Co Ophthalmological diagnostic method and device
JPH04193158A (en)*1990-11-271992-07-13Kowa CoBlood flow measuring device
JPH07171140A (en)*1993-12-211995-07-11Kowa Co Oxygen saturation measuring device
JPH07265284A (en)*1994-03-301995-10-17Nippon Koden Corp Oxygen saturation and blood flow measurement device
JPH09103425A (en)*1995-08-311997-04-22Hewlett Packard Co <Hp>Medical monitoring method
JP2002168862A (en)*2000-12-042002-06-14Terumo CorpApparatus for measuring body fluid
JP2007135621A (en)*2005-11-142007-06-07Konica Minolta Sensing IncBiological information measuring instrument
JP2009189576A (en)*2008-02-142009-08-27Univ Of Tsukuba Blood flow measuring device and brain activity measuring device using blood flow measuring device
JP2010233908A (en)*2009-03-312010-10-21Konica Minolta Sensing IncPulse oximeter
JP2011041699A (en)*2009-08-212011-03-03Konica Minolta Sensing IncBiological information measuring apparatus
US20120277559A1 (en)*2009-12-082012-11-01Matthias Kohl-BareisApparatus for Measuring Blood Parameters
JP2015528334A (en)*2012-08-102015-09-28ビオプティックス・インコーポレイテッドVioptix,Inc. Wireless and handheld tissue oximetry devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH01256924A (en)*1988-04-081989-10-13Kowa Co Ophthalmological diagnostic method and device
JPH04193158A (en)*1990-11-271992-07-13Kowa CoBlood flow measuring device
JPH07171140A (en)*1993-12-211995-07-11Kowa Co Oxygen saturation measuring device
JPH07265284A (en)*1994-03-301995-10-17Nippon Koden Corp Oxygen saturation and blood flow measurement device
JPH09103425A (en)*1995-08-311997-04-22Hewlett Packard Co <Hp>Medical monitoring method
JP2002168862A (en)*2000-12-042002-06-14Terumo CorpApparatus for measuring body fluid
JP2007135621A (en)*2005-11-142007-06-07Konica Minolta Sensing IncBiological information measuring instrument
JP2009189576A (en)*2008-02-142009-08-27Univ Of Tsukuba Blood flow measuring device and brain activity measuring device using blood flow measuring device
JP2010233908A (en)*2009-03-312010-10-21Konica Minolta Sensing IncPulse oximeter
JP2011041699A (en)*2009-08-212011-03-03Konica Minolta Sensing IncBiological information measuring apparatus
US20120277559A1 (en)*2009-12-082012-11-01Matthias Kohl-BareisApparatus for Measuring Blood Parameters
JP2015528334A (en)*2012-08-102015-09-28ビオプティックス・インコーポレイテッドVioptix,Inc. Wireless and handheld tissue oximetry devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020122164A1 (en)*2018-12-142020-06-18ソニー株式会社Biosignal measurement apparatus
US12109011B2 (en)2018-12-142024-10-08Sony Group CorporationBiological signal measuring device
WO2024117209A1 (en)*2022-11-302024-06-06株式会社ジャパンディスプレイDetection device

Similar Documents

PublicationPublication DateTitle
US10492732B2 (en)Living-body information measurement device and non-transitory computer readable medium
KR102486700B1 (en)Apparatus and method for estimating blood pressure
US20100056887A1 (en)Emission sensor device and bioinformation detecting method
US10271747B2 (en)Living-body information measuring device
EP3485807A1 (en)Measurement device, measurement method, and measurement program
US20180014731A1 (en)Biometric information measuring apparatus and non-transitory computer readable storage medium
US11160473B2 (en)Biological information measurement device and non-transitory computer readable medium
US10492695B2 (en)Living-body information measuring device and light-emitting element
US20180014735A1 (en)Biometric information measuring apparatus and non-transitory computer readable storage medium
JP2017176264A (en) Biological information measuring device and biological information measuring program
JP2017176263A (en) Biological information measuring device and biological information measuring program
JP7247671B2 (en) Biological information measuring device and biological information measuring program
JP7024261B2 (en) Optical measuring device and optical measuring program
JP7102832B2 (en) Biological information measuring device
JP7106893B2 (en) Biological information measuring device
JP2023043576A (en)Biological information measurement device and biological information measurement program
JP6711071B2 (en) Biological information measuring device and biological information measuring program
JP2019141410A (en)Biological information measurement device and biological information measurement program
JP2016198206A (en) Blood oxygen status monitoring apparatus and monitoring method
JP2018115946A (en) Measuring device, measuring method, computer program, and recording medium
JP2018117968A (en)Biological signal analysis device and control method therefor

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20190228

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20200115

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20200212

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20200409

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20200707

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20200902

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20201013

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20210413


[8]ページ先頭

©2009-2025 Movatter.jp