本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材、及びそれを用いた発光装置に関するものである。 The present invention relates to a wavelength conversion member that converts a wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength, and a light emitting device using the same. .
近年、蛍光ランプや白熱灯に変わる次世代の発光装置として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた発光装置に対する注目が高まってきている。そのような次世代発光装置の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, as a next-generation light-emitting device that replaces fluorescent lamps and incandescent lamps, attention has been focused on light-emitting devices using LEDs and LDs from the viewpoints of low power consumption, small size and light weight, and easy light quantity adjustment. As an example of such a next-generation light-emitting device, for example, in Patent Document 1, a wavelength conversion member that absorbs part of light from the LED and converts it into yellow light is disposed on the LED that emits blue light. A light emitting device is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、発光装置の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。 As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light emitting device tends to be lowered. In particular, there is a problem that the mold resin deteriorates due to heat generated by the LED or high energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.
そこで、樹脂に代えてガラスマトリクス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。 Accordingly, a wavelength conversion member made of a completely inorganic solid in which a phosphor is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that glass as a base material is not easily deteriorated by the heat of LED or irradiation light, and problems such as discoloration and deformation hardly occur.
近年、ハイパワー化を目的として、光源として用いるLEDやLDの出力が上昇している。それに伴い、光源の熱や、励起光を照射された蛍光体から発せられる熱により波長変換部材の温度が上昇し、その結果、発光強度が経時的に低下する(温度消光)という問題がある。また、場合によっては、波長変換部材の温度上昇が顕著となり、構成材料(ガラスマトリクス等)が融解するおそれがある。 In recent years, the output of LEDs and LDs used as light sources has increased for the purpose of increasing power. Accordingly, there is a problem that the temperature of the wavelength conversion member rises due to the heat of the light source or the heat emitted from the phosphor irradiated with the excitation light, and as a result, the emission intensity decreases with time (temperature quenching). In some cases, the temperature rise of the wavelength conversion member becomes significant, and the constituent material (glass matrix or the like) may be melted.
以上に鑑み、本発明は、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の融解を抑制することが可能な波長変換部材、及びそれを用いた発光装置を提供することを目的とする。 In view of the above, the present invention uses a wavelength conversion member capable of suppressing a decrease in light emission intensity over time and melting of constituent materials when irradiated with light from a high-power LED or LD, and the same. An object is to provide a light emitting device.
本発明の波長変換部材は、無機バインダー中に蛍光体粉末と熱伝導性フィラーが分散されてなる蛍光体層と、蛍光体層の少なくとも一方の主面に形成され、無機バインダーより高い熱伝導率を有する透光性放熱層と、を含む積層体を備えることを特徴とする。 The wavelength conversion member of the present invention is formed on at least one main surface of a phosphor layer in which phosphor powder and a thermally conductive filler are dispersed in an inorganic binder, and has a higher thermal conductivity than the inorganic binder. And a light-transmitting heat dissipation layer having a laminate.
上記構成によれば、光源から発せられる励起光を波長変換部材に照射した際に、蛍光体層において発生した熱が、蛍光体層の少なくとも一方の主面に形成された透光性放熱層から効率良く外部に放出される。ここで、蛍光体層には熱伝導性フィラーが分散されているため、蛍光体粉末で発生した熱を熱伝導性フィラーが奪い、透光性放熱層に効率良く伝導させることができる。これにより、蛍光体層の温度上昇を抑制して、経時的な発光強度の低下や構成材料の融解を抑制することが可能となる。 According to the said structure, when the wavelength conversion member is irradiated with the excitation light emitted from a light source, the heat | fever generate | occur | produced in the fluorescent substance layer is from the translucent thermal radiation layer formed in the at least one main surface of the fluorescent substance layer. Efficiently discharged outside. Here, since the heat conductive filler is dispersed in the phosphor layer, the heat generated by the phosphor powder can be taken away by the heat conductive filler and efficiently conducted to the light transmissive heat radiation layer. As a result, it is possible to suppress the temperature rise of the phosphor layer and suppress the decrease in the emission intensity over time and the melting of the constituent materials.
なお、透光性放熱層における「透光性」とは、励起光、及び蛍光体層から発せられる蛍光を透過させることを意味する。 The “translucency” in the translucent heat dissipation layer means that the excitation light and the fluorescence emitted from the phosphor layer are transmitted.
本発明の波長変換部材において、熱伝導性フィラーが透光性放熱層に接触していることが好ましい。このようにすれば、熱伝導性フィラーと透光性放熱層との間で熱伝導経路が形成されるため、熱伝導性フィラーが蛍光体粉末で発生した熱を奪った後、効率良く透光性放熱層に伝導させることができる。 In the wavelength conversion member of the present invention, it is preferable that the heat conductive filler is in contact with the light transmissive heat radiation layer. In this way, since a heat conduction path is formed between the heat conductive filler and the light transmissive heat dissipation layer, the heat conductive filler efficiently removes the heat generated in the phosphor powder and then transmits light efficiently. Conductive heat dissipation layer.
本発明の波長変換部材において、複数の熱伝導性フィラーが互いに接触していることが好ましい。このようにすれば、複数の熱伝導性フィラーの間で熱伝導経路が形成されるため、蛍光体粉末で発生した熱を透光性放熱層に伝導させやすくなる。 In the wavelength conversion member of the present invention, it is preferable that a plurality of thermally conductive fillers are in contact with each other. In this way, since a heat conduction path is formed between the plurality of heat conductive fillers, the heat generated in the phosphor powder is easily conducted to the light transmissive heat radiation layer.
本発明の波長変換部材において、蛍光体粉末が熱伝導性フィラーと接触していることが好ましい。このようにすれば、蛍光体粉末と熱伝導性フィラーの間で熱伝導経路が形成されるため、蛍光体粉末で発生した熱を透光性放熱層に伝導させやすくなる。 In the wavelength conversion member of the present invention, the phosphor powder is preferably in contact with the thermally conductive filler. In this way, since a heat conduction path is formed between the phosphor powder and the heat conductive filler, it is easy to conduct heat generated in the phosphor powder to the light transmissive heat radiation layer.
本発明の波長変換部材において、熱伝導性フィラーの平均粒子径が、蛍光体層の厚みの0.1倍以上であることが好ましい。このようにすれば、熱伝導性フィラーと透光性放熱層または蛍光体粉末、あるいは熱伝導性フィラー同士を接触させやすくなる。結果として、蛍光体粉末で発生した熱を効率良く透光性放熱層に伝達しやすくなる。 In the wavelength conversion member of the present invention, the average particle diameter of the thermally conductive filler is preferably 0.1 times or more the thickness of the phosphor layer. If it does in this way, it will become easy to contact a heat conductive filler and a translucent heat radiation layer or fluorescent substance powder, or heat conductive fillers. As a result, it becomes easy to efficiently transfer the heat generated in the phosphor powder to the light transmissive heat radiation layer.
本発明の波長変換部材において、熱伝導性フィラーの平均粒子径が10μm以上であることが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the average particle diameter of the thermally conductive filler is 10 μm or more.
本発明の波長変換部材において、熱伝導性フィラーが、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム及び窒化ホウ素から選択される少なくとも1種であることが好ましい。 In the wavelength conversion member of the present invention, the thermally conductive filler is preferably at least one selected from aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, and boron nitride.
本発明の波長変換部材において、蛍光体層の厚みが1000μm以下であることが好ましい。 In the wavelength conversion member of the present invention, the thickness of the phosphor layer is preferably 1000 μm or less.
本発明の波長変換部材において、蛍光体層の両主面に透光性放熱層が形成されていることが好ましい。このようにすれば、蛍光体層で発生した熱を両主面から透光性放熱層を通じて外部に放出できるため、放熱効率をより一層向上させることができる。 In the wavelength conversion member of the present invention, it is preferable that a translucent heat radiation layer is formed on both main surfaces of the phosphor layer. In this way, the heat generated in the phosphor layer can be released to the outside through the translucent heat dissipation layer from both main surfaces, so that the heat dissipation efficiency can be further improved.
本発明の波長変換部材において、透光性放熱層が透光性セラミックスからなることが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the translucent heat radiation layer is made of translucent ceramics.
本発明の波長変換部材において、透光性セラミックスが、酸化アルミニウム系セラミックス、酸化ジルコニア系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス及び酸化イットリウム系セラミックスからなる群より選択される少なくとも1種であることが好ましい。 In the wavelength conversion member of the present invention, the translucent ceramic is aluminum oxide ceramics, zirconia oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, oxidation It is preferably at least one selected from the group consisting of niobium-based ceramics, zinc oxide-based ceramics, and yttrium oxide-based ceramics.
本発明の発光装置は、上記の波長変換部材と、波長変換部材に励起光を照射する光源とを備えてなることを特徴とする。 The light-emitting device of the present invention includes the above-described wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light.
本発明の発光装置において、光源がレーザーダイオードであることが好ましい。このようにすれば、発光強度を高めることが可能となる。なお、光源としてレーザーダイオードを用いた場合は、蛍光体層の温度が上昇しやすくなるため、本発明の効果を享受しやすくなる。 In the light emitting device of the present invention, the light source is preferably a laser diode. In this way, it is possible to increase the emission intensity. Note that when a laser diode is used as the light source, the temperature of the phosphor layer is likely to rise, so that the effects of the present invention can be easily enjoyed.
本発明によれば、ハイパワーのLEDやLDの光を照射した場合に、経時的な発光強度の低下や構成材料の融解を抑制することが可能な波長変換部材、及びそれを用いた発光装置を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, when irradiating the light of high power LED or LD, the wavelength conversion member which can suppress the fall of the emitted light intensity and the melting | dissolving of a constituent material with time, and a light-emitting device using the same Can be provided.
以下、本発明の実施形態を図面を用いて詳細に説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.
(1)第1の実施形態に係る波長変換部材
図1は、本発明の第1の実施形態に係る波長変換部材を示す模式的断面図である。波長変換部材10は、蛍光体層1と、その一方の主面に形成された透光性放熱層2とを備えた積層体3からなる。蛍光体層1は無機バインダー6中に蛍光体粉末4と熱伝導性フィラー5が分散されてなる。本実施形態に係る波長変換部材10は透過型の波長変換部材である。透光性放熱層2側から励起光を照射すると、入射した励起光の一部が蛍光体層1で波長変換されて蛍光となり、当該蛍光は、透光性放熱層2とは反対側の主面から外部に照射される。(1) Wavelength conversion member according to the first embodiment FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member according to the first embodiment of the present invention. The wavelength conversion member 10 includes a laminate 3 including a phosphor layer 1 and a translucent heat radiation layer 2 formed on one main surface thereof. The phosphor layer 1 is formed by dispersing phosphor powder 4 and a heat conductive filler 5 in an inorganic binder 6. The wavelength conversion member 10 according to the present embodiment is a transmission type wavelength conversion member. When excitation light is irradiated from the translucent heat radiating layer 2 side, a part of the incident excitation light is wavelength-converted by the phosphor layer 1 to become fluorescent light, and the fluorescence is mainly emitted on the side opposite to the translucent heat radiating layer 2. Irradiated from the surface to the outside.
図1に示すように、本実施形態では熱伝導性フィラー5の一部は透光性放熱層2に接触している。これにより、熱伝導性フィラー5と透光性放熱層2との間で熱伝導経路Pが形成されるため、熱伝導性フィラー5が蛍光体粉末4で発生した熱を奪った後、効率良く透光性放熱層2に伝導させることができる。また、図1に示すように、複数の熱伝導性フィラー5が互いに接触することにより、熱伝導経路Pがされていても良い。なお、蛍光体粉末4が熱伝導性フィラー5に接触していれば、蛍光体粉末4と熱伝導性フィラー5の間で熱伝導経路Pが形成されるため、蛍光体粉末4で発生した熱を透光性放熱層2に伝導させやすくなる。以上のようにして、本実施形態の波長変換部材10では、蛍光体層1の温度が不当に上昇することを抑制できる。 As shown in FIG. 1, in this embodiment, a part of the heat conductive filler 5 is in contact with the light transmissive heat radiation layer 2. Thereby, since the heat conduction path P is formed between the heat conductive filler 5 and the translucent heat radiation layer 2, the heat conductive filler 5 efficiently removes the heat generated in the phosphor powder 4. The light-transmitting heat radiation layer 2 can be conducted. Moreover, as shown in FIG. 1, the heat conduction path | route P may be made | formed by the some heat conductive filler 5 contacting mutually. If the phosphor powder 4 is in contact with the heat conductive filler 5, a heat conduction path P is formed between the phosphor powder 4 and the heat conductive filler 5, and thus heat generated in the phosphor powder 4. Is easily conducted to the translucent heat radiation layer 2. As described above, in the wavelength conversion member 10 of the present embodiment, it is possible to suppress the temperature of the phosphor layer 1 from unduly rising.
蛍光体粉末4は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粉末4の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体から選ばれた少なくとも1種が挙げられる。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。 The phosphor powder 4 is not particularly limited as long as it emits fluorescence upon incidence of excitation light. Specific examples of the phosphor powder 4 include, for example, oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, Examples thereof include at least one selected from a halide phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor. When blue light is used as the excitation light, for example, a phosphor that emits green light, yellow light, or red light as fluorescence can be used.
蛍光体粉末4の平均粒子径は1〜50μm、特に5〜25μmであることが好ましい。蛍光体粉末4の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、蛍光体粉末4の平均粒子径が大きすぎると、発光色が不均一になる傾向がある。 The average particle size of the phosphor powder 4 is preferably 1 to 50 μm, particularly preferably 5 to 25 μm. If the average particle size of the phosphor powder 4 is too small, the emission intensity tends to decrease. On the other hand, if the average particle size of the phosphor powder 4 is too large, the emission color tends to be non-uniform.
なお、本発明において平均粒子径は、レーザ回折法で測定した値を指し、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径(D50)を表す。In the present invention, the average particle diameter refers to a value measured by the laser diffraction method, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the cumulative amount is accumulated from the smaller particle size to 50. % Particle diameter (D50 ).
蛍光体層1中における蛍光体粉末4の含有量は5〜80体積%、10〜75体積%、特に20〜70体積%であることが好ましい。蛍光体粉末4の含有量が少なすぎると、所望の発光強度が得られにくくなる。一方、蛍光体粉末4の含有量が多すぎると、蛍光体層1の機械的強度が低下しやすくなる。 The content of the phosphor powder 4 in the phosphor layer 1 is preferably 5 to 80% by volume, 10 to 75% by volume, and particularly preferably 20 to 70% by volume. When there is too little content of the fluorescent substance powder 4, it will become difficult to obtain desired luminescence intensity. On the other hand, when there is too much content of the fluorescent substance powder 4, the mechanical strength of the fluorescent substance layer 1 will fall easily.
熱伝導性フィラー5は、無機バインダー6より高い熱伝導率を有している。具体的には、熱伝導性フィラー5の熱伝導率は5W/m・K以上、20W/m・K以上、40W/m・K以上、60W/m・K以上、特に100W/m・K以上であることが好ましい。 The thermally conductive filler 5 has a higher thermal conductivity than the inorganic binder 6. Specifically, the thermal conductivity of the heat conductive filler 5 is 5 W / m · K or more, 20 W / m · K or more, 40 W / m · K or more, 60 W / m · K or more, particularly 100 W / m · K or more. It is preferable that
熱伝導性フィラー5としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム及び窒化ホウ素等が挙げられる。これらは単独で使用してもよく、2種以上を混合して用いてもよい。なかでも、熱伝導率の比較的高い酸化マグネシウムまたは窒化アルミニウムを用いることが好ましく、特に熱伝導率の高い窒化アルミニウムを用いることがより好ましい。 Examples of the thermally conductive filler 5 include aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, and boron nitride. These may be used alone or in combination of two or more. Among these, it is preferable to use magnesium oxide or aluminum nitride having a relatively high thermal conductivity, and it is more preferable to use aluminum nitride having a particularly high thermal conductivity.
熱伝導性フィラー5の平均粒子径は10μm以上、15以上、特に20μm以上であることが好ましい。熱伝導性フィラー5の平均粒子径が小さすぎると、十分な放熱効果が得られにくくなる。一方、熱伝導性フィラー5の平均粒子径の上限は特に限定されないが、蛍光体層1の表面平滑性が要求される場合(例えば、蛍光体層1の両主面に透光性放熱層2を設ける場合)は、100μm以下、80μm以下、特に50μm以下であることが好ましい。 The average particle size of the heat conductive filler 5 is preferably 10 μm or more, 15 or more, and particularly preferably 20 μm or more. When the average particle diameter of the heat conductive filler 5 is too small, it becomes difficult to obtain a sufficient heat dissipation effect. On the other hand, the upper limit of the average particle diameter of the heat conductive filler 5 is not particularly limited, but the surface smoothness of the phosphor layer 1 is required (for example, the translucent heat radiation layer 2 on both main surfaces of the phosphor layer 1). Is preferably 100 μm or less, 80 μm or less, and particularly preferably 50 μm or less.
なお、熱伝導性フィラー5の平均粒子径は蛍光体層1の厚みに応じて適宜選択することが好ましい。具体的には、熱伝導性フィラー5の平均粒子径は蛍光体層1の厚みの0.1倍以上、0.2倍以上、0.3倍以上、特に0.5倍以上であることが好ましい。熱伝導性フィラー5の平均粒子径が蛍光体層1の厚みに対して小さすぎると、放熱効果が十分に得られにくくなる。一方、蛍光体層1の厚みに対する熱伝導性フィラー5の平均粒子径の倍率の上限は特に限定されないが、蛍光体層1の表面平滑性が要求される場合は、熱伝導性フィラー5の平均粒子径は蛍光体層1の厚みの1倍以下、0.8倍以下、特に0.5倍以下であることが好ましい。なお、蛍光体層1の表面平滑性が特に要求されない場合は、熱伝導性フィラー5の平均粒子径は蛍光体層1の厚みの0.8〜1.2倍、さらには0.9〜1.1倍としても良い。そうすることにより、熱伝導性フィラー5と透光性放熱層2とが接触しやすくなるため、熱伝導性フィラー5による放熱効果をより一層高めることができる。 The average particle diameter of the heat conductive filler 5 is preferably selected as appropriate according to the thickness of the phosphor layer 1. Specifically, the average particle size of the heat conductive filler 5 is 0.1 times or more, 0.2 times or more, 0.3 times or more, particularly 0.5 times or more of the thickness of the phosphor layer 1. preferable. When the average particle diameter of the heat conductive filler 5 is too small with respect to the thickness of the phosphor layer 1, it is difficult to obtain a sufficient heat dissipation effect. On the other hand, the upper limit of the magnification of the average particle diameter of the thermally conductive filler 5 with respect to the thickness of the phosphor layer 1 is not particularly limited, but when the surface smoothness of the phosphor layer 1 is required, the average of the thermally conductive filler 5 The particle diameter is preferably 1 times or less, 0.8 times or less, particularly 0.5 times or less of the thickness of the phosphor layer 1. When the surface smoothness of the phosphor layer 1 is not particularly required, the average particle diameter of the heat conductive filler 5 is 0.8 to 1.2 times the thickness of the phosphor layer 1, and further 0.9 to 1 It may be 1 times. By doing so, since the heat conductive filler 5 and the translucent heat radiation layer 2 are easily brought into contact with each other, the heat radiation effect by the heat conductive filler 5 can be further enhanced.
蛍光体層1中における熱伝導性フィラー5の含有量は1〜15体積%、2〜13体積%、特に3〜10体積%であることが好ましい。熱伝導性フィラー5の含有量が少なすぎると、所望の放熱効果が得られにくくなる。一方、熱伝導性フィラー5の含有量が多すぎると、蛍光体層1内部の光散乱が過剰となり、蛍光強度が低下しやすくなる。 The content of the heat conductive filler 5 in the phosphor layer 1 is preferably 1 to 15% by volume, 2 to 13% by volume, particularly 3 to 10% by volume. When there is too little content of the heat conductive filler 5, it will become difficult to obtain a desired heat dissipation effect. On the other hand, when there is too much content of the heat conductive filler 5, the light scattering inside fluorescent substance layer 1 will become excess, and it will become easy to fall in fluorescence intensity.
蛍光体層1における無機バインダー6としては、ガラスやポリシラザン等が挙げられる。ガラスとしては、蛍光体粉末4の耐熱性を考慮し、軟化点が250℃〜1000℃、さらには300℃〜850℃であるものを用いることが好ましい。ガラスの具体例としては、ホウケイ酸塩系ガラス、リン酸塩系ガラス等が挙げられる。 Examples of the inorganic binder 6 in the phosphor layer 1 include glass and polysilazane. In consideration of the heat resistance of the phosphor powder 4, it is preferable to use glass having a softening point of 250 ° C. to 1000 ° C., more preferably 300 ° C. to 850 ° C. Specific examples of the glass include borosilicate glass and phosphate glass.
蛍光体層1の厚みは、励起光が確実に蛍光体に吸収されるような厚みである範囲において、薄い方が好ましい。その理由としては、蛍光体層1が厚すぎると、蛍光体層1における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低下する傾向があること、及び、蛍光体層1の温度が高くなって、経時的な発光強度の低下や構成材料の融解が発生しやすくなることが挙げられる。そのため、蛍光体層1の厚みは、1000μm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましい。蛍光体層1の厚みの下限値は、通常、30μm程度である。 The thickness of the phosphor layer 1 is preferably as thin as possible in such a range that the excitation light is surely absorbed by the phosphor. The reason is that if the phosphor layer 1 is too thick, the light scattering and absorption in the phosphor layer 1 becomes too large, and the emission efficiency of fluorescence tends to decrease, and the temperature of the phosphor layer 1 It becomes high and it becomes easy to generate | occur | produce the fall of emitted light intensity and a melting | fusing of a constituent material with time. Therefore, the thickness of the phosphor layer 1 is preferably 1000 μm or less, more preferably 500 μm or less, and even more preferably 300 μm or less. The lower limit of the thickness of the phosphor layer 1 is usually about 30 μm.
透光性放熱層2は、無機バインダー6より高い熱伝導率を有している。具体的には、透光性放熱層2の熱伝導率は5W/m・K以上、10W/m・K以上、特に20W/m・K以上であることが好ましい。また、透光性放熱層2は、励起光、及び蛍光体層1から発せられる蛍光を透過させる。具体的には、透光性放熱層2の波長400〜800nmにおける全光線透過率は10%以上、20%以上、30%以上、40%以上、特に50%以上であることが好ましい。 The translucent heat radiation layer 2 has a higher thermal conductivity than the inorganic binder 6. Specifically, the thermal conductivity of the translucent heat radiation layer 2 is preferably 5 W / m · K or more, 10 W / m · K or more, and particularly preferably 20 W / m · K or more. Further, the light transmissive heat radiation layer 2 transmits excitation light and fluorescence emitted from the phosphor layer 1. Specifically, the total light transmittance of the translucent heat radiation layer 2 at a wavelength of 400 to 800 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, particularly 50% or more.
透光性放熱層2としては、酸化アルミニウム系セラミックス(サファイア等)、酸化ジルコニア系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス、酸化イットリウム系セラミックス等の透光性セラミック基板が挙げられる。 The translucent heat radiation layer 2 includes aluminum oxide ceramics (such as sapphire), zirconia ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, and niobium oxide. Examples thereof include translucent ceramic substrates such as ceramics, zinc oxide ceramics, and yttrium oxide ceramics.
透光性放熱層2の厚みは50〜1000μm、70〜800μm、特に100〜500μmであることが好ましい。透光性放熱層2の厚みが小さすぎると、機械的強度が低下する傾向がある。一方、透光性放熱層2の厚みが大きすぎると、発光装置が大型化する傾向がある。 The thickness of the translucent heat radiation layer 2 is preferably 50 to 1000 μm, 70 to 800 μm, and particularly preferably 100 to 500 μm. When the thickness of the translucent heat radiation layer 2 is too small, the mechanical strength tends to decrease. On the other hand, when the thickness of the translucent heat radiation layer 2 is too large, the light emitting device tends to be enlarged.
透光性放熱層2の励起光入射側表面に、励起光の反射損失低減や蛍光の前方取り出し向上を目的として、反射防止膜やバンドパスフィルターを設けてもよい。また、蛍光体層1の励起光及び蛍光の出射側表面に、励起光及び蛍光の反射損失低減を目的として反射防止膜を設けてもよい。 An antireflection film or a band-pass filter may be provided on the excitation light incident side surface of the translucent heat radiation layer 2 for the purpose of reducing reflection loss of excitation light and improving forward extraction of fluorescence. An antireflection film may be provided on the excitation light and fluorescence emission side surface of the phosphor layer 1 for the purpose of reducing reflection loss of excitation light and fluorescence.
波長変換部材10は、例えば以下のようにして作製することができる。 The wavelength conversion member 10 can be manufactured as follows, for example.
ガラス粉末と、蛍光体と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、蛍光体層1用のグリーンシートを作製する。グリーンシートを焼成することにより蛍光体層1を得る。 A slurry containing glass powder, a phosphor, and an organic component such as a binder resin or a solvent is applied onto a resin film such as polyethylene terephthalate by a doctor blade method or the like, and dried by heating, whereby the phosphor layer 1 Make a green sheet. The phosphor layer 1 is obtained by firing the green sheet.
蛍光体層1の一方の主面に透光性放熱層2を積層し、加熱圧着することにより波長変換部材10が得られる。あるいは、ポリシラザン等の無機接着剤を介して蛍光体層1と透光性放熱層2を接合してもよい。 The wavelength conversion member 10 is obtained by laminating the translucent heat radiation layer 2 on one main surface of the phosphor layer 1 and thermocompression bonding. Or you may join the fluorescent substance layer 1 and the translucent heat radiation layer 2 via inorganic adhesives, such as a polysilazane.
(2)第2の実施形態に係る波長変換部材
図2は、本発明の第2の実施形態に係る波長変換部材を示す模式的断面図である。波長変換部材20では、蛍光体層1の両主面に透光性放熱層2、2’が各々形成されている点で、第1の実施形態に係る波長変換部材10と異なる。本実施形態によれば、蛍光体層1で発生した熱を両主面から透光性放熱層2、2’を通じて外部に放出できるため、放熱効率をより一層向上させることができる。具体的には、図2に示すように、波長変換部材20においては、一部の熱伝導性フィラー5が、透光性放熱層2、2’の両方に接触している。あるいは、複数の熱伝導性フィラー5が互いに接触し、かつ、蛍光体層1の両主面近傍に位置している熱伝導性フィラー5が各々透光性放熱層2、2’に接触している。これにより、蛍光体粉末4から熱伝導性フィラー5を経由して、透光性放熱層2、2’の両方に放熱する熱伝導経路Pを形成することができる。(2) Wavelength conversion member according to second embodiment FIG. 2 is a schematic cross-sectional view showing a wavelength conversion member according to the second embodiment of the present invention. The wavelength conversion member 20 is different from the wavelength conversion member 10 according to the first embodiment in that translucent heat radiation layers 2, 2 ′ are formed on both main surfaces of the phosphor layer 1. According to the present embodiment, heat generated in the phosphor layer 1 can be released from both main surfaces to the outside through the translucent heat radiation layers 2 and 2 ′, so that the heat radiation efficiency can be further improved. Specifically, as shown in FIG. 2, in the wavelength conversion member 20, a part of the heat conductive filler 5 is in contact with both the light transmissive heat radiation layers 2 and 2 ′. Alternatively, the plurality of heat conductive fillers 5 are in contact with each other, and the heat conductive fillers 5 located in the vicinity of both main surfaces of the phosphor layer 1 are in contact with the light transmissive heat radiation layers 2, 2 ′, respectively. Yes. Thereby, the heat conduction path | route P which thermally radiates from the fluorescent substance powder 4 to both the translucent heat radiation layer 2 and 2 'via the heat conductive filler 5 can be formed.
なお、透光性放熱層2、2’の厚みは同じであってもよいし、異なっていてもよい。例えば、一方の透光性放熱層2の厚みを比較的大きく(例えば0.2mm以上、さらには0.5mm以上)することにより、波長変換部材としての機械的強度が担保される場合は、他方の透光性放熱層2の厚みを比較的小さく(例えば0.2mm未満、さらには0.1mm以下)してもよい。また、透光性放熱層2、2’の材質は同じであってもよいし、異なっていてもよい。 The thickness of the light transmissive heat radiation layers 2 and 2 ′ may be the same or different. For example, when the mechanical strength as the wavelength conversion member is ensured by making the thickness of one translucent heat radiation layer 2 relatively large (for example, 0.2 mm or more, further 0.5 mm or more), the other The thickness of the translucent heat radiation layer 2 may be relatively small (for example, less than 0.2 mm, or even 0.1 mm or less). Moreover, the material of translucent heat radiation layer 2, 2 'may be the same, and may differ.
本実施形態の波長変換部材20は、1つの蛍光体層の両主面に透光性放熱層が積層されてなる積層体から構成されているが、2つ以上の蛍光体層と3つ以上の透光性放熱層とが交互に積層されてなる積層体から構成されていても構わない。その場合は、蛍光体層の温度上昇を抑制しつつ、波長変換部材の発光強度をさらに向上させることが可能となる。 Although the wavelength conversion member 20 of this embodiment is comprised from the laminated body by which a translucent heat dissipation layer is laminated | stacked on both the main surfaces of one fluorescent substance layer, two or more fluorescent substance layers and three or more fluorescent substance layers are comprised. The translucent heat radiation layer may be laminated alternately. In that case, it becomes possible to further improve the emission intensity of the wavelength conversion member while suppressing the temperature rise of the phosphor layer.
(3)第1の実施形態に係る波長変換部材を用いた発光装置
図3は、本発明の第1の実施形態に係る波長変換部材を用いた発光装置の模式的側面図である。本実施形態に係る発光装置は、透過型の波長変換部材を用いた発光装置である。図3に示すように、発光装置30は、波長変換部材10と光源7を備えている。光源7から出射された励起光L0は、波長変換部材10における蛍光体層1により、励起光L0よりも波長の長い蛍光L1に波長変換される。また、励起光L0の一部は、波長変換部材10を透過する。このため、波長変換部材10からは、励起光L0と蛍光L1との合成光L2が出射する。例えば、励起光L0が青色光であり、蛍光L1が黄色光である場合、白色の合成光L2を得ることができる。(3) Light-Emitting Device Using Wavelength Conversion Member According to First Embodiment FIG. 3 is a schematic side view of a light-emitting device using the wavelength conversion member according to the first embodiment of the present invention. The light emitting device according to the present embodiment is a light emitting device using a transmission type wavelength conversion member. As shown in FIG. 3, the light emitting device 30 includes a wavelength conversion member 10 and a light source 7. The excitation light L0 emitted from the light source 7 is wavelength-converted by the phosphor layer 1 in the wavelength conversion member 10 into fluorescence L1 having a longer wavelength than the excitation light L0. Further, a part of the excitation light L0 passes through the wavelength conversion member 10. For this reason, the combined light L2 of the excitation light L0 and the fluorescence L1 is emitted from the wavelength conversion member 10. For example, when the excitation light L0 is blue light and the fluorescence L1 is yellow light, white synthetic light L2 can be obtained.
発光装置30においては、上述の波長変換部材10を用いているため、蛍光体層1に励起光L0が照射されることにより発生した熱を、効率良く外部に放出することができる。よって、蛍光体層1の温度が不当に上昇することを抑制できる。なお、第1の実施形態に係る波長変換部材10に代えて、第2の実施形態に係る波長変換部材20を用いてもよい。 In the light emitting device 30, since the wavelength conversion member 10 described above is used, the heat generated by irradiating the phosphor layer 1 with the excitation light L 0 can be efficiently emitted to the outside. Therefore, it can suppress that the temperature of the fluorescent substance layer 1 rises unjustly. Note that the wavelength conversion member 20 according to the second embodiment may be used instead of the wavelength conversion member 10 according to the first embodiment.
光源7としては、LEDやLDが挙げられる。発光装置30の発光強度を高める観点からは、光源7は高強度の光を出射できるLDを用いることが好ましい。 Examples of the light source 7 include an LED and an LD. From the viewpoint of increasing the light emission intensity of the light emitting device 30, the light source 7 is preferably an LD capable of emitting high intensity light.
以下、本発明の波長変換部材を実施例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although the wavelength conversion member of the present invention is explained in detail using an example, the present invention is not limited to the following examples.
表1は本発明の実施例(No.1〜4)及び比較例(No.5、6)を示す。 Table 1 shows Examples (No. 1 to 4) and Comparative Examples (No. 5 and 6) of the present invention.
ガラス粉末(日本電気硝子株式会社製ホウケイ酸塩系ガラス粉末GA−13(熱伝導率:0.94W/m・K))、蛍光体粉末(YAG蛍光体、平均粒子径15μm)、熱伝導性フィラー(MgO(熱伝導率:約42W/m・K、平均粒子径:10μm、50μm)またはAlN(熱伝導率:約200W/m・K、平均粒子径:50μm、80μm))を混合し、φ20mmの金型を用いて圧粉体を作製した。混合粉末中の蛍光体粉末の含有量は28.9体積%、熱伝導性フィラーの含有量は表1に示す通りとした。 Glass powder (borosilicate glass powder GA-13 manufactured by Nippon Electric Glass Co., Ltd. (thermal conductivity: 0.94 W / m · K)), phosphor powder (YAG phosphor, average particle size 15 μm), thermal conductivity Filler (MgO (thermal conductivity: about 42 W / m · K, average particle size: 10 μm, 50 μm) or AlN (thermal conductivity: about 200 W / m · K, average particle size: 50 μm, 80 μm)) is mixed, A green compact was prepared using a φ20 mm mold. The phosphor powder content in the mixed powder was 28.9% by volume, and the heat conductive filler content was as shown in Table 1.
圧粉体を真空下850℃で焼成した後、切削加工を施すことにより、厚み50μmの蛍光体層を得た。蛍光体層を、透光性放熱層である厚み100μmのサファイア基板(熱伝導率:41W/m・K)上に熱圧着して積層させることにより波長変換部材を得た。 The green compact was fired under vacuum at 850 ° C., and then subjected to cutting to obtain a phosphor layer having a thickness of 50 μm. A wavelength conversion member was obtained by thermocompressing and laminating the phosphor layer on a sapphire substrate (thermal conductivity: 41 W / m · K) having a thickness of 100 μm, which is a light-transmitting heat dissipation layer.
蛍光体層の熱伝導率はレーザーフラッシュ法により測定した。また、得られた波長変換部材のサファイア基板側からLDの励起光(波長445nm、出力3W)を60秒間照射し、励起光照射位置における蛍光体層とサファイア基板の界面付近におけるガラスマトリクスの状態を観察した。なお、No.6に試料については、サファイア基板を積層させず、蛍光体層のみに励起光を照射した。ガラスマトリクスに変化がない場合を「○」、ガラスマトリクスが融解した場合を「×」として評価した。結果を表1に示す。 The thermal conductivity of the phosphor layer was measured by a laser flash method. Further, the excitation light of the LD (wavelength 445 nm, output 3 W) is irradiated for 60 seconds from the sapphire substrate side of the obtained wavelength conversion member, and the state of the glass matrix near the interface between the phosphor layer and the sapphire substrate at the excitation light irradiation position Observed. In addition, No. For the sample in 6, the sapphire substrate was not laminated, and only the phosphor layer was irradiated with excitation light. The case where there was no change in the glass matrix was evaluated as “◯”, and the case where the glass matrix was melted was evaluated as “x”. The results are shown in Table 1.
表1から明らかなように、蛍光体層中に熱伝導性フィラーを配合した試料No.1〜4では、蛍光体層の熱伝導率が2.15W/m・K以上と高く、LD照射試験においてもガラスマトリクスの融解は見られなかった。一方、蛍光体層中に熱伝導性フィラーを配合しなかった試料No.5、では、蛍光体層の熱伝導率が2.08W/m・Kと低く、LD照射試験においてガラスマトリクスが融解した。また、サファイア基板を積層させなかった試料No.6についても、LD照射試験においてガラスマトリクスが融解した。このように、試料No.1〜4は、試料No.5、6と比較して、蛍光体層で発生した熱をサファイア基板側に効率良く放出できるため、温度消光が抑制されると考えられる。 As is apparent from Table 1, sample No. 1 in which a thermally conductive filler was blended in the phosphor layer. In 1-4, the thermal conductivity of the phosphor layer was as high as 2.15 W / m · K or higher, and no melting of the glass matrix was observed in the LD irradiation test. On the other hand, Sample No. in which no thermally conductive filler was blended in the phosphor layer. In No. 5, the thermal conductivity of the phosphor layer was as low as 2.08 W / m · K, and the glass matrix was melted in the LD irradiation test. In addition, Sample No. in which the sapphire substrate was not laminated. 6 also melted the glass matrix in the LD irradiation test. In this way, sample no. 1-4 are sample no. Compared with 5 and 6, since the heat generated in the phosphor layer can be efficiently released to the sapphire substrate side, it is considered that temperature quenching is suppressed.
なお、試料No.1〜4の比較から、熱伝導性フィラーの平均粒子径が大きいほど、蛍光体層の熱伝導率が高く、放熱効果が高いことがわかる。 Sample No. From the comparison of 1-4, it turns out that the heat conductivity of a fluorescent substance layer is so high that the average particle diameter of a heat conductive filler is large, and the heat dissipation effect is high.
本発明の波長変換部材は、白色LED等の一般照明や特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源、内視鏡の光源)等の構成部材として好適である。 The wavelength conversion member of the present invention is suitable as a structural member for general illumination such as white LED and special illumination (for example, projector light source, automobile headlamp light source, endoscope light source).
1 蛍光体層
2、2’ 透光性放熱層
3 積層体
4 蛍光体粉末
5 熱伝導性フィラー
6 無機バインダー
7 光源
10、20 波長変換部材
30 発光装置DESCRIPTION OF SYMBOLS 1 Phosphor layer 2, 2 'Translucent heat radiation layer 3 Laminate 4 Phosphor powder 5 Thermally conductive filler 6 Inorganic binder 7 Light source 10, 20 Wavelength conversion member 30 Light emitting device
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015113694AJP2016225581A (en) | 2015-06-04 | 2015-06-04 | Wavelength conversion member and light-emitting device including the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015113694AJP2016225581A (en) | 2015-06-04 | 2015-06-04 | Wavelength conversion member and light-emitting device including the same |
| Publication Number | Publication Date |
|---|---|
| JP2016225581Atrue JP2016225581A (en) | 2016-12-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015113694APendingJP2016225581A (en) | 2015-06-04 | 2015-06-04 | Wavelength conversion member and light-emitting device including the same |
| Country | Link |
|---|---|
| JP (1) | JP2016225581A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018123219A1 (en)* | 2016-12-27 | 2018-07-05 | パナソニックIpマネジメント株式会社 | Wavelength converter and wavelength converting member |
| JP2018163947A (en)* | 2017-03-24 | 2018-10-18 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device |
| WO2019056208A1 (en)* | 2017-09-20 | 2019-03-28 | Materion Precision Optics (Shanghai) Limited | Light conversion device with enhanced inorganic binder |
| WO2019116916A1 (en)* | 2017-12-12 | 2019-06-20 | 日本電気硝子株式会社 | Wavelength conversion member and method for manufacturing same, and light-emitting device |
| JP2019105826A (en)* | 2017-12-12 | 2019-06-27 | 日本電気硝子株式会社 | Wavelength conversion member, manufacturing method therefor, and light-emitting device |
| WO2019176622A1 (en)* | 2018-03-13 | 2019-09-19 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device using same |
| JP2019159308A (en)* | 2018-03-13 | 2019-09-19 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device having the same |
| WO2020141851A1 (en)* | 2019-01-04 | 2020-07-09 | 서울반도체주식회사 | Light-emitting diode package |
| JP2020106831A (en)* | 2018-12-27 | 2020-07-09 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
| WO2020213456A1 (en)* | 2019-04-18 | 2020-10-22 | 日本電気硝子株式会社 | Wavelength conversion member, production method therefor, and light-emitting device |
| CN112178591A (en)* | 2020-09-18 | 2021-01-05 | 广州光联电子科技有限公司 | Preparation method of wavelength conversion device for laser and wavelength conversion device |
| WO2021024914A1 (en)* | 2019-08-02 | 2021-02-11 | 地方独立行政法人神奈川県立産業技術総合研究所 | Fluorescent particle-dispersed glass and light-emitting device |
| CN113551203A (en)* | 2020-04-24 | 2021-10-26 | 深圳市绎立锐光科技开发有限公司 | Transmission type wavelength conversion device and light emitting device thereof |
| TWI846967B (en)* | 2019-10-23 | 2024-07-01 | 日商電化股份有限公司 | Phosphor plate, light-emitting device and method for producing phosphor plate |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005038935A1 (en)* | 2003-10-15 | 2005-04-28 | Nichia Corporation | Light-emitting device |
| JP2007027688A (en)* | 2005-06-13 | 2007-02-01 | Nichia Chem Ind Ltd | Light emitting device |
| US7196354B1 (en)* | 2005-09-29 | 2007-03-27 | Luminus Devices, Inc. | Wavelength-converting light-emitting devices |
| WO2008105428A1 (en)* | 2007-02-27 | 2008-09-04 | Kyocera Corporation | Light-emitting device |
| US20110069490A1 (en)* | 2010-07-28 | 2011-03-24 | Heng Liu | Phosphor Layer having Enhanced Thermal Conduction and Light Sources Utilizing the Phosphor Layer |
| CN102437272A (en)* | 2011-11-25 | 2012-05-02 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and light emitting device |
| JP2012516032A (en)* | 2009-01-21 | 2012-07-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light source having light recycling device and corresponding light recycling device |
| JP2013004480A (en)* | 2011-06-21 | 2013-01-07 | Sharp Corp | Light emitting device, luminaire and vehicular headlamp |
| JP2013016268A (en)* | 2011-06-30 | 2013-01-24 | Sharp Corp | Light-emitting device |
| JP2013511836A (en)* | 2009-11-23 | 2013-04-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Wavelength conversion semiconductor light emitting diode |
| US20130200785A1 (en)* | 2012-02-02 | 2013-08-08 | Citizen Electronics Co., Ltd. | Lighting device |
| JP2013207049A (en)* | 2012-03-28 | 2013-10-07 | Nec Corp | Light emitting device using wavelength conversion body |
| JP2014022412A (en)* | 2012-07-12 | 2014-02-03 | Nemoto Lumi-Materials Co Ltd | Fluorescent material dispersed inorganic glass plate |
| WO2014167458A1 (en)* | 2013-04-08 | 2014-10-16 | Koninklijke Philips N.V. | Led with high thermal conductivity particles in phosphor conversion layer and the method of fabricating the same |
| JP2014204071A (en)* | 2013-04-09 | 2014-10-27 | シチズン電子株式会社 | Lighting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005038935A1 (en)* | 2003-10-15 | 2005-04-28 | Nichia Corporation | Light-emitting device |
| JP2007027688A (en)* | 2005-06-13 | 2007-02-01 | Nichia Chem Ind Ltd | Light emitting device |
| US7196354B1 (en)* | 2005-09-29 | 2007-03-27 | Luminus Devices, Inc. | Wavelength-converting light-emitting devices |
| WO2008105428A1 (en)* | 2007-02-27 | 2008-09-04 | Kyocera Corporation | Light-emitting device |
| JP2012516032A (en)* | 2009-01-21 | 2012-07-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light source having light recycling device and corresponding light recycling device |
| JP2013511836A (en)* | 2009-11-23 | 2013-04-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Wavelength conversion semiconductor light emitting diode |
| US20110069490A1 (en)* | 2010-07-28 | 2011-03-24 | Heng Liu | Phosphor Layer having Enhanced Thermal Conduction and Light Sources Utilizing the Phosphor Layer |
| JP2013004480A (en)* | 2011-06-21 | 2013-01-07 | Sharp Corp | Light emitting device, luminaire and vehicular headlamp |
| JP2013016268A (en)* | 2011-06-30 | 2013-01-24 | Sharp Corp | Light-emitting device |
| CN102437272A (en)* | 2011-11-25 | 2012-05-02 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and light emitting device |
| US20130200785A1 (en)* | 2012-02-02 | 2013-08-08 | Citizen Electronics Co., Ltd. | Lighting device |
| JP2013207049A (en)* | 2012-03-28 | 2013-10-07 | Nec Corp | Light emitting device using wavelength conversion body |
| JP2014022412A (en)* | 2012-07-12 | 2014-02-03 | Nemoto Lumi-Materials Co Ltd | Fluorescent material dispersed inorganic glass plate |
| WO2014167458A1 (en)* | 2013-04-08 | 2014-10-16 | Koninklijke Philips N.V. | Led with high thermal conductivity particles in phosphor conversion layer and the method of fabricating the same |
| JP2014204071A (en)* | 2013-04-09 | 2014-10-27 | シチズン電子株式会社 | Lighting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018123219A1 (en)* | 2016-12-27 | 2018-07-05 | パナソニックIpマネジメント株式会社 | Wavelength converter and wavelength converting member |
| JPWO2018123219A1 (en)* | 2016-12-27 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Wavelength conversion body and wavelength conversion member |
| JP2018163947A (en)* | 2017-03-24 | 2018-10-18 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device |
| WO2019056208A1 (en)* | 2017-09-20 | 2019-03-28 | Materion Precision Optics (Shanghai) Limited | Light conversion device with enhanced inorganic binder |
| JP7296951B2 (en) | 2017-09-20 | 2023-06-23 | マテリオン プレシジョン オプティクス (シャンハイ) リミテッド | Photoconversion device with improved inorganic binder |
| US11041606B1 (en) | 2017-12-12 | 2021-06-22 | Nippon Electric Glass Co., Ltd. | Wavelength conversion member and method for manufacturing same, and light-emitting device |
| WO2019116916A1 (en)* | 2017-12-12 | 2019-06-20 | 日本電気硝子株式会社 | Wavelength conversion member and method for manufacturing same, and light-emitting device |
| JP2019105826A (en)* | 2017-12-12 | 2019-06-27 | 日本電気硝子株式会社 | Wavelength conversion member, manufacturing method therefor, and light-emitting device |
| CN110006005A (en)* | 2017-12-12 | 2019-07-12 | 日本电气硝子株式会社 | Wavelength convert component and its manufacturing method and light emitting device |
| JP7268315B2 (en) | 2017-12-12 | 2023-05-08 | 日本電気硝子株式会社 | WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE |
| TWI788436B (en)* | 2017-12-12 | 2023-01-01 | 日商日本電氣硝子股份有限公司 | Wavelength converting member, manufacturing method thereof, and light-emitting device |
| JP2019159308A (en)* | 2018-03-13 | 2019-09-19 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device having the same |
| CN111448489A (en)* | 2018-03-13 | 2020-07-24 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting device using the same |
| JP7469847B2 (en) | 2018-03-13 | 2024-04-17 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device using same |
| WO2019176622A1 (en)* | 2018-03-13 | 2019-09-19 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device using same |
| JP2020106831A (en)* | 2018-12-27 | 2020-07-09 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
| US11605763B2 (en) | 2019-01-04 | 2023-03-14 | Seoul Semiconductor Co., Ltd. | Light emitting diode package |
| WO2020141851A1 (en)* | 2019-01-04 | 2020-07-09 | 서울반도체주식회사 | Light-emitting diode package |
| US12199226B2 (en) | 2019-01-04 | 2025-01-14 | Seoul Semiconductor Co., Ltd. | Light emitting package free of wavelength conversion material |
| WO2020213456A1 (en)* | 2019-04-18 | 2020-10-22 | 日本電気硝子株式会社 | Wavelength conversion member, production method therefor, and light-emitting device |
| JPWO2020213456A1 (en)* | 2019-04-18 | 2020-10-22 | ||
| US12140785B2 (en) | 2019-04-18 | 2024-11-12 | Nippon Electric Glass Co., Ltd. | Wavelength conversion member, production method therefor, and light-emitting device |
| JP2021026105A (en)* | 2019-08-02 | 2021-02-22 | 国立大学法人横浜国立大学 | Fluorescent particle-dispersed glass and light-emitting device |
| WO2021024914A1 (en)* | 2019-08-02 | 2021-02-11 | 地方独立行政法人神奈川県立産業技術総合研究所 | Fluorescent particle-dispersed glass and light-emitting device |
| JP7376022B2 (en) | 2019-08-02 | 2023-11-08 | 国立大学法人横浜国立大学 | Phosphor particle dispersed glass and light emitting device |
| TWI846967B (en)* | 2019-10-23 | 2024-07-01 | 日商電化股份有限公司 | Phosphor plate, light-emitting device and method for producing phosphor plate |
| US12284848B2 (en) | 2019-10-23 | 2025-04-22 | Denka Company Limited | Phosphor plate, light emitting device, and method for manufacturing phosphor plate |
| CN113551203A (en)* | 2020-04-24 | 2021-10-26 | 深圳市绎立锐光科技开发有限公司 | Transmission type wavelength conversion device and light emitting device thereof |
| CN112178591A (en)* | 2020-09-18 | 2021-01-05 | 广州光联电子科技有限公司 | Preparation method of wavelength conversion device for laser and wavelength conversion device |
| Publication | Publication Date | Title |
|---|---|---|
| JP2016225581A (en) | Wavelength conversion member and light-emitting device including the same | |
| JP2016027613A (en) | Wavelength conversion member and light emitting device using the same | |
| CN108291987B (en) | Wavelength converting member and wavelength converting element, and light-emitting device using them | |
| TWI673252B (en) | Wavelength converting member and light emitting device using same | |
| CN207320161U (en) | Wavelength convert component and use its luminescent device | |
| JP7268315B2 (en) | WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE | |
| JP6802983B2 (en) | Wavelength conversion member and wavelength conversion element, and light emitting device using them | |
| CN106195925A (en) | A kind of Wavelength converter, light-emitting device and projection arrangement | |
| CN111699420A (en) | Optical wavelength conversion device | |
| JP2017085038A (en) | Method of manufacturing wavelength conversion element | |
| JP2018043912A (en) | Light conversion member, illumination light source, and method of manufacturing light conversion member | |
| JP2014179231A (en) | Light source device and lighting device | |
| JP2012243618A (en) | Light source device and lighting device | |
| WO2019116916A1 (en) | Wavelength conversion member and method for manufacturing same, and light-emitting device | |
| JP2023083288A (en) | Wavelength conversion member and light-emitting device having the same | |
| JP6582907B2 (en) | Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device | |
| JP2017084703A (en) | Method for manufacturing wavelength conversion element | |
| JP2017171706A (en) | Red phosphor and light emitting module | |
| JP6561777B2 (en) | Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device | |
| JP2013105647A (en) | Light source device, emission chromaticity adjusting method, and manufacturing method for light source device | |
| JP2016115828A (en) | Wavelength conversion member and light-emitting device | |
| JP2019204104A (en) | Wavelength conversion element and light-emitting device | |
| JP6924383B2 (en) | Manufacturing method of wavelength conversion member | |
| KR101860852B1 (en) | Metal-Phosphor Functionally Graded Composites having High Heat Radiation and Energy Circulation Laser Lighting System with High Efficiency using the same | |
| CN114556599A (en) | Wavelength conversion member, light-emitting element, and light-emitting device |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20180507 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20190220 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20190402 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20190522 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20190729 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20200220 |