
本発明は、含フッ素有機酸の選択的分離方法に関する。 The present invention relates to a method for selectively separating a fluorine-containing organic acid.
フロオロカルボン酸などの含フッ素有機酸は、撥水作用、界面活性作用等に優れており、撥水スプレー、表面コーティング剤、消化剤、ワックス等に使用されてきた。従来、代表的なフルオロカルボン酸としてパーフルオロオクタンスルホン酸(以下、「PFOS」ともいう)およびパーフルオロオクタンカルボン酸(以下、「PFOA」ともいう)が広く用いられてきた。しかしながら、PFOSおよびPFOAは、環境負荷が大きく、残留性有機汚染物質に関するストックホルム条約等の規制により、その製造および使用が制限されており、その使用量は減りつつある。 Fluorine-containing organic acids such as fluorocarboxylic acids are excellent in water repellency and surface activity, and have been used in water-repellent sprays, surface coating agents, digestive agents, waxes and the like. Conventionally, perfluorooctanesulfonic acid (hereinafter also referred to as “PFOS”) and perfluorooctanecarboxylic acid (hereinafter also referred to as “PFOA”) have been widely used as typical fluorocarboxylic acids. However, PFOS and PFOA have a large environmental load, and their production and use are restricted by regulations such as the Stockholm Convention on Persistent Organic Pollutants, and the amount of use is decreasing.
上記の理由から、現在、PFOSおよびPFOAに代わる含フッ素有機酸として、パーフルオロヘキサン酸(以下、「PFHxA」ともいう)やエーテル結合を有するフルオロカルボン酸が利用されており、その製造および使用量が増加している。それに伴い、産業排水として排出される含フッ素有機酸を多く含んだ廃液の量が増加している。この廃液を処理する方法として、現在、逆浸透膜を利用して廃液を濃縮し、その後焼却する処理が行われている。例えば、特許文献1には、フッ素ポリマーを製造するプロセスにおいて生じる、フルオロアルカン酸である含フッ素界面活性剤を含む水溶液を、逆浸透膜を用いて濾過処理する方法が記載されている。また、非特許文献1には、NaCl除去率が97.0%の逆浸透膜で、PFHxAを95.5〜98.5%除去する方法が記載されている。 For the above reasons, perfluorohexanoic acid (hereinafter also referred to as “PFHxA”) and fluorocarboxylic acids having an ether bond are currently used as fluorine-containing organic acids in place of PFOS and PFOA. Has increased. Accordingly, the amount of waste liquid containing a large amount of fluorine-containing organic acid discharged as industrial wastewater is increasing. As a method for treating this waste liquid, currently, a process of concentrating the waste liquid using a reverse osmosis membrane and then incinerating it is performed. For example, Patent Document 1 describes a method of filtering an aqueous solution containing a fluorosurfactant, which is a fluoroalkanoic acid, produced in a process for producing a fluoropolymer, using a reverse osmosis membrane. Non-Patent Document 1 describes a method of removing 95.5 to 98.5% of PFHxA with a reverse osmosis membrane having a NaCl removal rate of 97.0%.
上記のような逆浸透膜を利用するフロオロカルボン酸を含む廃液の処理方法は、用いる逆浸透膜の孔が非常に小さいので、大きな膜間圧力を負荷する必要がある。従って、従来の処理方法は、高エネルギーを必要とする。さらに処理に時間を要するので処理効率が低く、大量の廃液を処理することが困難であるという問題がある。 In the method for treating a waste liquid containing fluorocarboxylic acid using a reverse osmosis membrane as described above, since the pores of the reverse osmosis membrane to be used are very small, it is necessary to load a large transmembrane pressure. Therefore, the conventional processing method requires high energy. Furthermore, since processing takes time, processing efficiency is low, and it is difficult to process a large amount of waste liquid.
別の問題として、逆浸透膜は、孔の径が非常に小さい(0.2nm〜1nm)(水循環システムのしくみ,ナツメ社,2010参照)ことから、ファウリング(目詰まり)が起こりやすく、膜のメンテナンスの頻度が多くなるという問題がある。これは処理コストを増大させ、メンテナンスの間、処理を停止する必要があることから効率も低下する。 Another problem is that reverse osmosis membranes have very small pore diameters (0.2 nm to 1 nm) (see How Water Circulation System Works, Natsume, 2010), so fouling is likely to occur. There is a problem that the frequency of maintenance increases. This increases processing costs and reduces efficiency because the processing needs to be stopped during maintenance.
処理能力を向上させ、ファウリングを防止するためには、逆浸透膜(半透膜)の孔の径を大きくする必要がある。しかしながら、孔の径を大きくすると、界面活性剤等に使用されるフルオロカルボン酸自体が比較的小さな分子であることから、フルオロカルボン酸分子が膜を通り抜け、フルオロカルボン酸の阻止率が低下してしまう。 In order to improve the processing capability and prevent fouling, it is necessary to increase the diameter of the reverse osmosis membrane (semi-permeable membrane) hole. However, when the pore diameter is increased, the fluorocarboxylic acid itself used for the surfactant and the like is a relatively small molecule, so that the fluorocarboxylic acid molecule passes through the membrane and the blocking rate of the fluorocarboxylic acid decreases. End up.
さらに、逆浸透膜は、孔の径が非常に小さいことから、過剰な分離が生じる。即ち、分離を意図しない分子量の小さな物質、例えばNaClなども孔を通り抜けることができず、フルオロカルボン酸と一緒に分離され、濃縮される。このようにフルオロカルボン酸濃縮液に他の物質が多く存在すると、フルオロカルボン酸を回収し、再利用することが困難となる。その結果、このフルオロカルボン酸濃縮液は、焼却処分されているのが現状である。さらに、この焼却処分の際に、フッ化水素(HF)が発生するため焼却用の炉は特殊な構造を必要とし、維持費用も高額となる。 Furthermore, reverse osmosis membranes have very small pore diameters, resulting in excessive separation. That is, a substance having a low molecular weight that is not intended to be separated, such as NaCl, cannot pass through the pores and is separated and concentrated together with the fluorocarboxylic acid. Thus, when there are many other substances in the concentrated fluorocarboxylic acid solution, it is difficult to recover and reuse the fluorocarboxylic acid. As a result, at present, this fluorocarboxylic acid concentrate is incinerated. In addition, since hydrogen fluoride (HF) is generated during the incineration, the furnace for incineration requires a special structure and the maintenance cost is high.
フルオロカルボン酸を選択的に阻止することができれば、上記の問題を解消できるが、そのような方法は知られていない。 If the fluorocarboxylic acid can be selectively blocked, the above problem can be solved, but such a method is not known.
従って、本発明は、低エネルギーおよび短時間で炭素数2〜7の含フッ素有機酸溶液を処理することができ、さらに炭素数2〜7の含フッ素有機酸を選択的に分離することができる処理方法を提供することを目的とする。 Therefore, the present invention can treat a fluorine-containing organic acid solution having 2 to 7 carbon atoms with low energy and a short time, and can selectively separate a fluorine-containing organic acid having 2 to 7 carbon atoms. An object is to provide a processing method.
本発明者らは、上記の問題を解決すべく鋭意検討した結果、濾過膜(半透膜)として、分画分子量が大きく、かつ、表面に負の電荷を有する膜を用いることにより、炭素数2〜7の含フッ素有機酸の負電荷と反発する事により選択的に分離することが可能になり、さらに処理効率を高めることができることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have used a membrane having a large fractional molecular weight and a negative charge on the surface as a filtration membrane (semi-permeable membrane). It has been found that it can be selectively separated by repelling the negative charges of 2 to 7 fluorine-containing organic acids, and the processing efficiency can be further increased.
本発明の一の要旨によれば、濾過により炭素数2〜7の含フッ素有機酸を含む溶液中の含フッ素有機酸を分離する方法であって、濾過膜が、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有し、負の表面ゼータ電位を有することを特徴とする方法が提供される。 According to one aspect of the present invention, there is provided a method for separating a fluorinated organic acid in a solution containing a fluorinated organic acid having 2 to 7 carbon atoms by filtration, wherein the filtration membrane comprises a C2-7 containing fluorinated organic acid. A method is provided that has a molecular weight cut-off greater than the molecular weight of the fluoroorganic acid and has a negative surface zeta potential.
本発明の一の要旨によれば、濾過膜を備える炭素数2〜7の含フッ素有機酸溶液の濾過システムであって、半透膜が、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有し、負の表面ゼータ電位を有することを特徴とする濾過システムが提供される。 According to one aspect of the present invention, a filtration system for a fluorinated organic acid solution having 2 to 7 carbon atoms provided with a filtration membrane, wherein the semipermeable membrane is based on the molecular weight of the fluorinated organic acid having 2 to 7 carbon atoms. A filtration system is provided which has a high molecular weight cut off and a negative surface zeta potential.
本発明によれば、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有し、負の表面ゼータ電位(即ち、負の電荷)を有する濾過膜を用いることにより、膜にかかる圧力が比較的小さい場合であっても高処理量を達成することができ、さらに、炭素数2〜7の含フッ素有機酸の負電荷と反発する事により選択的に分離することができる。即ち、本発明によれば、低エネルギーで短時間に炭素数2〜7の含フッ素有機酸の溶液を処理することが可能になる。 According to the present invention, by using a filtration membrane having a molecular weight cut off larger than that of a fluorine-containing organic acid having 2 to 7 carbon atoms and having a negative surface zeta potential (that is, negative charge), the membrane High throughput can be achieved even when the pressure applied is relatively small, and it can be selectively separated by repelling the negative charge of the fluorine-containing organic acid having 2 to 7 carbon atoms. . That is, according to the present invention, it is possible to treat a solution of a fluorine-containing organic acid having 2 to 7 carbon atoms in a short time with low energy.
本発明の方法は、炭素数2〜7の含フッ素有機酸溶液中の炭素数2〜7の含フッ素有機酸を、濾過膜を用いて分離する。 The method of this invention isolate | separates the C2-C7 fluorine-containing organic acid in a C2-C7 fluorine-containing organic acid solution using a filtration membrane.
好ましい態様において、濾過は逆浸透により行われる。 In a preferred embodiment, the filtration is performed by reverse osmosis.
炭素数2〜7の含フッ素有機酸
本発明の方法により処理される溶液に含まれる炭素数2〜7の含フッ素有機酸において、炭素数は3〜7であるのが好ましく、5〜7であるのがより好ましく、6〜7であるのが特に好ましい。Fluorine-containing organic acid having 2 to 7 carbon atoms In the fluorine-containing organic acid having 2 to 7 carbon atoms contained in the solution treated by the method of the present invention, the number of carbon atoms is preferably 3 to 7, and preferably 5 to 7 More preferably, it is 6-7.
本発明の方法により処理される溶液に含まれる、炭素数2〜7の含フッ素有機酸としては、炭素数2〜7の含フッ素カルボン酸およびその塩が挙げられる。 As a C2-C7 fluorine-containing organic acid contained in the solution processed by the method of this invention, C2-C7 fluorine-containing carboxylic acid and its salt are mentioned.
炭素数2〜7の含フッ素カルボン酸として、式(i):
X1−Rf1−COOH (i)
[式中、X1は、H、FまたはClであり、Rf1は、炭素数1〜6の直鎖または分枝状のフルオロアルキレン基、モノオキシフルオロアルキレン基を有する炭素数1〜6の基、または、ポリオキシフルオロアルキレン基を有する炭素数1〜6の基である。]
で表される化合物が挙げられる。As a fluorine-containing carboxylic acid having 2 to 7 carbon atoms, the formula (i):
X1 -Rf1 -COOH (i)
[Wherein, X1 is H, F or Cl, and Rf1 is a linear or branched fluoroalkylene group having 1 to 6 carbon atoms or a monooxyfluoroalkylene group having 1 to 6 carbon atoms. Or a group having 1 to 6 carbon atoms having a polyoxyfluoroalkylene group. ]
The compound represented by these is mentioned.
上記Rf1基における、炭素数1〜6の直鎖または分枝状のフルオロアルキレン基として、例えば、CF2、C2F4、C3F6、C4F8、C5F10、C6F12、CHF、C2F3H、C2F2H2、C2FH3、C3F5H、C3F4H2、C3F3H3、C3F2H4、C3FH5、C4F7H、C4F6H2、C4F5H3、C4F4H4、C4F3H5、C4F2H6、C4FH7、C5F9H、C5F8H2、C5F7H3、C5F6H4、C5F5H5、C5F4H6、C5F3H7、C5F2H8、C5FH9、C6F11H、C6F10H2、C6F9H3、C6F8H4、C6F7H5、C6F6H6、C6F5H7、C6F4H8、C6F3H9、C6F2H10、C6FH11が挙げられる。Examples of the linear or branched fluoroalkylene group having 1 to 6 carbon atoms in the Rf1 group include, for example, CF2 , C2 F4 , C3 F6 , C4 F8 , C5 F10 , C6 F 12, CHF, C 2 F 3 H, C 2 F 2 H 2, C 2 FH 3, C 3 F 5 H, C 3 F 4 H 2, C 3 F 3 H 3, C 3 F 2 H 4, C 3 FH 5, C 4 F 7 H, C 4 F 6 H 2, C 4 F 5 H 3, C 4 F 4 H 4, C 4 F 3 H 5, C 4 F 2 H 6, C 4 FH7 , C5 F9 H, C5 F8 H2 , C5 F7 H3 , C5 F6 H4 , C5 F5 H5 , C5 F4 H6 , C5 F3 H7 , C5 F2 H8 , C5 FH9 , C6 F11 H, C6 F10 H2 , C6 F9 H3 , C6 F8 H4 , C6 F7 H5, C 6 F 6 H 6 , C 6 F 5 H 7, C 6 F 4 H 8, C 6 F 3 H 9, C 6 F 2 H 10, C 6 FH 11 and the like.
炭素数2〜7の含フッ素カルボン酸は、式(i−a):
X2−Rf2−COOH (i−a)
[式中、X2は、HまたはFであり、Rf2は、式(a):
(CF2)l−(CF2OCF2)m−(CF2OCF(CF3))n (a)
で示される基であって、
上記式(a)中、lは0または1〜4の整数であり、mは0または1〜3の整数であり、nは0、1または2であり、ただし、l+2m+3nは6を超えないこと、mおよびnの両方が0である場合は除かれること、および上記括弧でくくられた各繰り返し単位の存在順序は任意であること、を条件とする。]
で示されるパーフルオロカルボン酸であるのが、さらに好ましい。The fluorine-containing carboxylic acid having 2 to 7 carbon atoms has the formula (ia):
X 2 -Rf 2 -COOH (i- a)
[Wherein X2 is H or F, and Rf2 is the formula (a):
(CF 2) l - (CF 2 OCF 2) m - (CF 2 OCF (CF 3)) n (a)
A group represented by
In the above formula (a), l is 0 or an integer of 1 to 4, m is an integer of 0 or 1 to 3, n is 0, 1 or 2, provided that l + 2m + 3n does not exceed 6. , M, and n are both excluded, and the order of presence of each of the repeating units enclosed in parentheses is arbitrary. ]
More preferred is perfluorocarboxylic acid represented by the following formula.
上記含フッ素カルボン酸において、炭素数は3〜7であるのが好ましく、5〜7であるのがより好ましく、6〜7であるのが特に好ましい。 In the said fluorine-containing carboxylic acid, it is preferable that carbon number is 3-7, it is more preferable that it is 5-7, and it is especially preferable that it is 6-7.
好ましい態様である、炭素数5〜7の含フッ素カルボン酸として、例えば、
CF3OCF(CF3)CF2OCF(CF3)COOH、
CF3CF2OCF2CF2OCF2COOH、
CF3OCF2CF2CF2OCHFCF2COOH、
CF3CF2OCF2CF2OCF2COOH、
CF3OCF2CF2CF2OCHFCF2COOH、
CF3(CF2)4COOH、
CF3CF2CF2OCF(CF3)COOH、
F(CF2)4CH2CF2COOH
H(CF2)6COOH、
H(CF2)4COOH、
CH2=CFCF2OCF(CF3)COOH
などを例示することができる。As a fluorine-containing carboxylic acid having 5 to 7 carbon atoms, which is a preferred embodiment, for example,
CF3 OCF (CF3 ) CF2 OCF (CF3 ) COOH,
CF3 CF2 OCF2 CF2 OCF2 COOH,
CF3 OCF2 CF2 CF2 OCHFCF2 COOH,
CF3 CF2 OCF2 CF2 OCF2 COOH,
CF3 OCF2 CF2 CF2 OCHFCF2 COOH,
CF3 (CF2 )4 COOH,
CF3 CF2 CF2 OCF (CF3 ) COOH,
F (CF2 )4 CH2 CF2 COOH
H (CF2 )6 COOH,
H (CF2 )4 COOH,
CH 2 = CFCF 2 OCF (CF 3) COOH
Etc. can be illustrated.
本発明において、「炭素数2〜7の含フッ素有機酸の溶液」とは、炭素数2〜7の含フッ素有機酸を含む液体であれば特に限定されず、炭素数2〜7の含フッ素有機酸が溶解した溶液に限定されず、炭素数2〜7の含フッ素有機酸が分散した懸濁液または乳濁液であってもよい。好ましい態様において、炭素数2〜7の含フッ素有機酸溶液は、炭素数2〜7の含フッ素有機酸が溶解した溶液である。 In the present invention, the “solution of a fluorine-containing organic acid having 2 to 7 carbon atoms” is not particularly limited as long as it is a liquid containing a fluorine-containing organic acid having 2 to 7 carbon atoms. It is not limited to a solution in which an organic acid is dissolved, and may be a suspension or emulsion in which a fluorine-containing organic acid having 2 to 7 carbon atoms is dispersed. In a preferred embodiment, the fluorinated organic acid solution having 2 to 7 carbon atoms is a solution in which the fluorinated organic acid having 2 to 7 carbon atoms is dissolved.
炭素数2〜7の含フッ素有機酸の溶液において、炭素数2〜7の含フッ素有機酸は、単独、または2種以上で存在してもよい。 In the solution of a fluorine-containing organic acid having 2 to 7 carbon atoms, the fluorine-containing organic acid having 2 to 7 carbon atoms may be present alone or in combination of two or more.
炭素数2〜7の含フッ素有機酸の溶液において、炭素数2〜7の含フッ素有機酸は、電離形態、非電離形態または塩の形態であってもよく、あるいはこれらの2つまたは3つの形態が共存していてもよい。好ましくは、炭素数2〜7の含フッ素有機酸は、少なくとも一部が電離した形態であり得る。 In the solution of the fluorinated organic acid having 2 to 7 carbon atoms, the fluorinated organic acid having 2 to 7 carbon atoms may be in an ionized form, a non-ionized form or a salt form, or two or three of these Forms may coexist. Preferably, the fluorine-containing organic acid having 2 to 7 carbon atoms may be in a form that is at least partially ionized.
炭素数2〜7の含フッ素有機酸の溶液における溶媒は、特に限定されず、水または有機溶媒、あるいは2種以上の溶媒の混合物であってもよい。上記有機溶媒は、特に限定されず、水性であっても非水性であってもよく、例えば、アルコール類(例えば、メタノール、エタノール、イソプロピルアルコール等)、酢酸メチル等のエステル、エーテル類(ジエチルエーテル等)、脂肪族炭化水素(ヘキサン、オクタン等)、ケトン類(アセトンなど)、アセトニトリル等が挙げられる。溶媒は、水性溶媒が好ましく、水がより好ましい。 The solvent in the solution of a fluorine-containing organic acid having 2 to 7 carbon atoms is not particularly limited, and may be water, an organic solvent, or a mixture of two or more kinds of solvents. The organic solvent is not particularly limited and may be aqueous or non-aqueous. For example, alcohols (for example, methanol, ethanol, isopropyl alcohol, etc.), esters such as methyl acetate, ethers (diethyl ether) Etc.), aliphatic hydrocarbons (hexane, octane, etc.), ketones (acetone, etc.), acetonitrile and the like. The solvent is preferably an aqueous solvent, and more preferably water.
炭素数2〜7の含フッ素有機酸の溶液には、不純物、即ち他の溶質が存在していてもよい。他の溶質としては、例えば、金属塩(NaCl、KCl、Na2SO4等)、有機塩類等が挙げられる。Impurities, that is, other solutes may be present in the solution of the fluorine-containing organic acid having 2 to 7 carbon atoms. Examples of other solutes include metal salts (NaCl, KCl, Na2 SO4 etc.), organic salts and the like.
炭素数2〜7の含フッ素有機酸の溶液のpHは、特に限定されないが、pH4以上、好ましくはpH7以上であることが好ましい。pHを7以上とすることにより、より炭素数2〜7の含フッ素有機酸の阻止率を高めることができる。pHの調整は、特に限定されないが、塩酸溶液または水酸化ナトリウム溶液を添加することにより行うことができる。 The pH of the solution of a fluorine-containing organic acid having 2 to 7 carbon atoms is not particularly limited, but is preferably pH 4 or higher, preferably pH 7 or higher. By setting the pH to 7 or more, the rejection rate of the fluorine-containing organic acid having 2 to 7 carbon atoms can be further increased. Although adjustment of pH is not specifically limited, it can be performed by adding hydrochloric acid solution or sodium hydroxide solution.
炭素数2〜7の含フッ素有機酸の溶液は、例えば産業排水として排出される溶液または実験室などで排出される溶液であり得る。 The solution of a fluorine-containing organic acid having 2 to 7 carbon atoms can be, for example, a solution discharged as industrial wastewater or a solution discharged in a laboratory.
濾過膜
本発明の方法で用いられる濾過膜(半透膜を含む)は、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有し、負の表面ゼータ電位を有する。Filtration Membrane A filtration membrane (including a semipermeable membrane) used in the method of the present invention has a molecular weight cut off larger than that of a fluorine-containing organic acid having 2 to 7 carbon atoms, and has a negative surface zeta potential.
「分画分子量」とは、膜の孔径を表す指標として当業者に周知であり、指標物質を用いて膜ろ過を行い、それぞれの阻止率を求めて、阻止率が90%に相当する分子量を分画分子量(molecular weight cut off)とする(膜ろ過技術,p.54,工業調査会,2006参照)。 “Fractionated molecular weight” is well known to those skilled in the art as an index representing the pore size of a membrane. Membrane filtration is performed using an index substance, the respective blocking rates are obtained, and a molecular weight corresponding to a blocking rate of 90% is obtained. The molecular weight is cut off (see Membrane Filtration Technology, p. 54, Industrial Research Committee, 2006).
「表面ゼータ電位」とは、膜の帯電性を表す指標として当業者に周知であり、電解質溶液を流動させた時に膜表面に発生する電位差を測定し、下記Helmholtz-Smoluchowskiの式により算出される。
ζ=(ηε)×(1/ρ)×(E/P)
ζ:表面ゼータ電位
η:電解質の粘度(poise)
ε:電解質の導電率(S/cm)
ρ:溶液の比抵抗(Ω・cm)
E:測定した電位
P:膜間圧力“Surface zeta potential” is well known to those skilled in the art as an index representing the chargeability of a membrane, and is measured by the following Helmholtz-Smoluchowski equation by measuring the potential difference generated on the membrane surface when the electrolyte solution is flowed. .
ζ = (ηε) × (1 / ρ) × (E / P)
ζ: surface zeta potential η: viscosity of the electrolyte (poise)
ε: Electrolytic conductivity (S / cm)
ρ: Specific resistance of the solution (Ω · cm)
E: Measured potential P: Transmembrane pressure
本発明に用いられる濾過膜(半透膜)の分画分子量は、炭素数2〜7の含フッ素有機酸の分子量よりも大きければよいが、好ましくは5000Da以上50000Da以下であり、より好ましくは8000Da以上30000Da以下であり、さらに好ましくは15000Da以上25000Da以下である。分画分子量を炭素数2〜7の含フッ素有機酸の分子量よりも大きくすることにより、膜の処理能力が向上する。即ち、膜の単位面積あたりの溶媒透過量が大きくなる。処理能力は、分画分子量が大きい程向上する。また、濾過(代表的には、逆浸透)に必要とされる圧力も小さくなる。さらに、分離を望まない他の不純物が、炭素数2〜7の含フッ素有機酸と一緒に分離されることを抑制することができる。また、分画分子量を20000Da以下とすることにより、炭素数2〜7の含フッ素有機酸の阻止率をより高くすることができる。 The molecular weight cut off of the filtration membrane (semi-permeable membrane) used in the present invention may be larger than the molecular weight of the fluorine-containing organic acid having 2 to 7 carbon atoms, preferably 5000 Da or more and 50000 Da or less, more preferably 8000 Da. It is 30000 Da or less and more preferably 15000 Da or more and 25000 Da or less. By making the molecular weight cut off larger than the molecular weight of the fluorine-containing organic acid having 2 to 7 carbon atoms, the throughput of the membrane is improved. That is, the solvent permeation amount per unit area of the membrane is increased. The throughput increases as the molecular weight cut off increases. Also, the pressure required for filtration (typically reverse osmosis) is reduced. Furthermore, it can suppress that the other impurity which does not want to isolate | separate is isolate | separated with a C2-C7 fluorine-containing organic acid. Moreover, the rejection of a C2-C7 fluorine-containing organic acid can be made higher by making a molecular weight cut off into 20000 Da or less.
本発明に用いられる濾過膜(半透膜)の表面ゼータ電位は、負の値を有し、好ましくは−10mV以下、より好ましくは−30mV以下、さらに好ましくは−50mV以下、さらにより好ましくは−80mV以下である。表面ゼータ電位の下限は、特に限定されないが、好ましくは−300mV以上、例えば−200mV以上または−150mV以上である。濾過膜が負の表面ゼータ電位を有することにより、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有する膜を用いた場合であっても、炭素数2〜7の含フッ素有機酸の負電荷と膜の負表面電荷が反発する事により高い阻止率で分離することができる。負の表面ゼータ電位がより大きいほど(即ち、膜表面のマイナス電荷が大きいほど)、より高い分画分子量の膜を用いることが可能になる。 The surface zeta potential of the filtration membrane (semipermeable membrane) used in the present invention has a negative value, preferably −10 mV or less, more preferably −30 mV or less, further preferably −50 mV or less, and even more preferably − 80 mV or less. The lower limit of the surface zeta potential is not particularly limited, but is preferably −300 mV or higher, for example −200 mV or higher or −150 mV or higher. Since the filtration membrane has a negative surface zeta potential, even when a membrane having a molecular weight cut off larger than the molecular weight of the fluorine-containing organic acid having 2 to 7 carbon atoms is used, Separation can be achieved with a high rejection rate due to repulsion between the negative charge of the fluorine organic acid and the negative surface charge of the film. The larger the negative surface zeta potential (ie, the greater the negative charge on the membrane surface), the higher the fractional molecular weight membrane that can be used.
膜の表面ゼータ電位は、膜を形成する材料を選択することにより、適宜変更することができる。また、膜の表面ゼータ電位は、溶液のpHを調整することによっても、調整し得る。 The surface zeta potential of the film can be appropriately changed by selecting a material for forming the film. The surface zeta potential of the membrane can also be adjusted by adjusting the pH of the solution.
好ましい態様において、本発明に用いられる濾過膜は、5000Da以上50000以下、好ましくは8000Da以上30000Da以下、より好ましくは15000Da以上25000Da以下の分画分子量を有し、−30mV以下、好ましくは−50mV以下、より好ましくは−80mV以下の表面ゼータ電位を有する。 In a preferred embodiment, the filtration membrane used in the present invention has a molecular weight cut-off of 5000 Da or more and 50000 or less, preferably 8000 Da or more and 30000 Da, more preferably 15000 Da or more and 25000 Da or less, and −30 mV or less, preferably −50 mV or less, More preferably, it has a surface zeta potential of −80 mV or less.
本発明に用いられる濾過膜を構成する材料は、負の表面ゼータ電位を有し得るものであれば特に限定されないが、例えば全芳香族ポリアミド系樹脂、ポリビニルアルコール系樹脂、ピペラジンアミド系樹脂、スルホン化ポリエーテルスルホン等が挙げられる。 The material constituting the filtration membrane used in the present invention is not particularly limited as long as it can have a negative surface zeta potential, and examples thereof include wholly aromatic polyamide resins, polyvinyl alcohol resins, piperazine amide resins, sulfones. And polyethersulfone.
本発明に用いられる濾過膜は、例えば、日東電工株式会社から、NTR7450およびNTR7410として入手することができる。 The filtration membrane used for this invention can be obtained from Nitto Denko Corporation as NTR7450 and NTR7410, for example.
本発明の方法における条件(膜間圧力、温度など)は、当業者であれば、処理する溶液の組成、用いる膜の種類等の種々の因子に応じて適宜設定することができる。 Conditions (intermembrane pressure, temperature, etc.) in the method of the present invention can be appropriately set by those skilled in the art according to various factors such as the composition of the solution to be treated and the type of membrane used.
本発明の方法によれば、濾過膜が炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有するにも拘わらず、良好に炭素数2〜7の含フッ素有機酸を選択的に分離することができる。 According to the method of the present invention, a fluorine-containing organic acid having 2 to 7 carbon atoms can be selected satisfactorily even though the filtration membrane has a fractional molecular weight larger than the molecular weight of the fluorine-containing organic acid having 2 to 7 carbon atoms. Can be separated.
従って、本発明は、また、濾過膜を備える炭素数2〜7の含フッ素有機酸溶液の濾過システムであって、半透膜が、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有し、負の表面ゼータ電位を有することを特徴とする濾過システムをも提供する。 Accordingly, the present invention is also a filtration system for a fluorinated organic acid solution having 2 to 7 carbon atoms provided with a filtration membrane, wherein the semipermeable membrane is larger than the molecular weight of the fluorinated organic acid having 2 to 7 carbon atoms. Also provided is a filtration system characterized by having a fractional molecular weight and having a negative surface zeta potential.
本発明は、いかなる理論にも拘束されないが、炭素数2〜7の含フッ素有機酸の分子量よりも大きな分画分子量を有する膜を用いるにも拘わらず、炭素数2〜7の含フッ素有機酸を分離することができる理由は、以下のように考えられる。本発明で用いられる濾過膜は表面に負電荷を有している。一方、炭素数2〜7の含フッ素有機酸も負電荷を有している。その結果、お互いの負電荷が反発し、この電気的反発力により、炭素数2〜7の含フッ素有機酸が膜に近づくことが難しくなるためと考えられる。 Although the present invention is not bound by any theory, the fluorine-containing organic acid having 2 to 7 carbon atoms is used in spite of the use of a film having a fractional molecular weight larger than the molecular weight of the fluorine-containing organic acid having 2 to 7 carbon atoms. The reason why can be separated is considered as follows. The filtration membrane used in the present invention has a negative charge on the surface. On the other hand, the fluorine-containing organic acid having 2 to 7 carbon atoms also has a negative charge. As a result, the negative charges repel each other, and this electric repulsive force is considered to make it difficult for the fluorine-containing organic acid having 2 to 7 carbon atoms to approach the film.
パーフルオロヘキサン酸(以下、PFHxAともいう)水溶液(初期濃度100 ng/L)を、クロスフロー型の平膜試験装置を用いて膜ろ過試験を行った。膜として、日東電工製のNTR7450(分画分子量:10000Da、表面ゼータ電位−33mV;公称NaCl阻止率:50%)およびNTR7410(分画分子量:20000Da、表面ゼータ電位−99mV;公称NaCl阻止率:10%)を用いた。処理条件は、以下の通りである。pHは初期値から調整を行わなかった。
膜間圧力:0.700MPa
循環流量:1.0±0.1L/分
水温 :20±2℃A membrane filtration test was performed on an aqueous solution of perfluorohexanoic acid (hereinafter also referred to as PFHxA) (initial concentration 100 ng / L) using a cross-flow type flat membrane test apparatus. NTR7450 (fractional molecular weight: 10000 Da, surface zeta potential −33 mV; nominal NaCl rejection: 50%) and NTR7410 (fractional molecular weight: 20000 Da, surface zeta potential—99 mV; nominal NaCl rejection: 10 manufactured by Nitto Denko %) Was used. The processing conditions are as follows. The pH was not adjusted from the initial value.
Intermembrane pressure: 0.700 MPa
Circulation flow rate: 1.0 ± 0.1 L / min Water temperature: 20 ± 2 ° C.
0、6、12、24、48および72時間後に、透過液を500mL、透過液採取開始時と終了時に原液を50mLずつ採取し、PFHxA濃度を分析した。濃度は、試料を固相抽出法により濃縮した後、HPLC/MS/MSを用いて測定した。得られた結果に基づいて、各試験におけるPFHxAの阻止率を以下の式(1)により算出した。
Cs1:透過液採取開始時濃縮液濃度(ng/L)
Cs2:透過液採取終了時濃縮液濃度(ng/L)After 0, 6, 12, 24, 48 and 72 hours, 500 mL of permeate was collected and 50 mL of stock solution was collected at the start and end of permeate collection, and the PFHxA concentration was analyzed. The concentration was measured using HPLC / MS / MS after concentrating the sample by solid phase extraction. Based on the obtained results, the inhibition rate of PFHxA in each test was calculated by the following equation (1).
Cs1 : Concentrate concentration at the start of permeate collection (ng / L)
Cs2 : Concentrated liquid concentration at the end of permeate collection (ng / L)
各膜のPFHxA阻止率の推移を図1に示す。72時間後の阻止率は、それぞれ、99.0%(NTR7450)と98.3%(NTR7410)であり、低いNaCl阻止率(それぞれ、50%および10%)にもかかわらず、高いPFHxA阻止率が得られることが確認された。これらの膜はスルホン化ポリエーテルスルホン膜であり、膜表面に負電荷を有するため、PFHxAの負電荷と反発して、PFHxAが阻止されたと考えられる。 The transition of the PFHxA blocking rate of each film is shown in FIG. The rejection after 72 hours was 99.0% (NTR7450) and 98.3% (NTR7410), respectively, and high PFHxA rejection despite low NaCl rejection (50% and 10%, respectively) It was confirmed that Since these membranes are sulfonated polyethersulfone membranes and have a negative charge on the membrane surface, it is considered that PFHxA was blocked by repelling the negative charge of PFHxA.
本発明の方法は、処理能力が高く、選択的に炭素数2〜7の含フッ素有機酸を分離することができるので、炭素数2〜7の含フッ素有機酸を含む廃液の処理等に用いることができる。 Since the method of the present invention has a high treatment capacity and can selectively separate a fluorine-containing organic acid having 2 to 7 carbon atoms, it is used for treating a waste liquid containing a fluorine-containing organic acid having 2 to 7 carbon atoms. be able to.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015017005 | 2015-01-30 | ||
| JP2015017005 | 2015-01-30 |
| Publication Number | Publication Date |
|---|---|
| JP2016144800Atrue JP2016144800A (en) | 2016-08-12 |
| JP6923865B2 JP6923865B2 (en) | 2021-08-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016010018AActiveJP6923865B2 (en) | 2015-01-30 | 2016-01-21 | Selective Separation Method for Fluorine-Containing Organic Acids |
| Country | Link |
|---|---|
| JP (1) | JP6923865B2 (en) |
| CN (1) | CN105836846B (en) |
| FR (1) | FR3032129B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2020218621A1 (en)* | 2019-04-26 | 2020-10-29 |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002058966A (en)* | 2000-08-11 | 2002-02-26 | Daikin Ind Ltd | Recovery method of fluorinated surfactant |
| JP2010053108A (en)* | 2008-08-29 | 2010-03-11 | Asahi Kasei Corp | Method for separating biogenic substance by using ultrafiltration membrane having electric charge, and module and apparatus therefor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1476892A (en)* | 2003-07-28 | 2004-02-25 | 范兆科 | Method for separating effertive components of Chinese medicine by adopting membrane technique |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002058966A (en)* | 2000-08-11 | 2002-02-26 | Daikin Ind Ltd | Recovery method of fluorinated surfactant |
| JP2010053108A (en)* | 2008-08-29 | 2010-03-11 | Asahi Kasei Corp | Method for separating biogenic substance by using ultrafiltration membrane having electric charge, and module and apparatus therefor |
| Title |
|---|
| STEINLE-DARLING EVA, ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 42, no. 14, JPN6019018217, 15 July 2008 (2008-07-15), US, pages 5292 - 5297, ISSN: 0004040726* |
| TANG CHUYANG Y, ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 40, no. 23, JPN6019018220, 1 December 2006 (2006-12-01), US, pages 7343 - 7349, ISSN: 0004040728* |
| ZENG CHENGHUI, JOURNAL OF WATER AND ENVIRONMENT TECHNOLOGY, vol. 15, no. 3, JPN6019018215, 2017, JP, pages 120 - 127, ISSN: 0004040727* |
| 陳 霞明: "低圧逆浸透膜による水中の有機フッ素化合物の分離", 大阪産業大学学位論文, JPN6019018212, March 2014 (2014-03-01), JP, pages 1 - 85, ISSN: 0004275076* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2020218621A1 (en)* | 2019-04-26 | 2020-10-29 | ||
| WO2020218621A1 (en)* | 2019-04-26 | 2020-10-29 | ダイキン工業株式会社 | Water treatment method and composition |
| JP2023160860A (en)* | 2019-04-26 | 2023-11-02 | ダイキン工業株式会社 | Water treatment method and composition |
| JP7417129B2 (en) | 2019-04-26 | 2024-01-18 | ダイキン工業株式会社 | Water treatment methods and compositions |
| JP7719388B2 (en) | 2019-04-26 | 2025-08-06 | ダイキン工業株式会社 | Water treatment method and composition |
| Publication number | Publication date |
|---|---|
| CN105836846B (en) | 2020-11-06 |
| FR3032129B1 (en) | 2020-04-03 |
| FR3032129A1 (en) | 2016-08-05 |
| JP6923865B2 (en) | 2021-08-25 |
| CN105836846A (en) | 2016-08-10 |
| Publication | Publication Date | Title |
|---|---|---|
| Lee et al. | High-pressure membrane filtration processes for separation of Per-and polyfluoroalkyl substances (PFAS) | |
| Hang et al. | Removal and recovery of perfluorooctanoate from wastewater by nanofiltration | |
| Yu et al. | Removal of perfluorooctane sulfonates from water by a hybrid coagulation–nanofiltration process | |
| US10508049B2 (en) | System for regenerating sodium hydroxide and sulfuric acid from waste water stream containing sodium and sulfate ions | |
| JP2025028951A (en) | Method for removing PFAS from water | |
| JP4868108B2 (en) | Permeation membrane blocking rate improver, rejection rate improving method, permeable membrane and water treatment method | |
| Yi et al. | Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater | |
| JP5914973B2 (en) | Method for improving rejection rate of permeable membrane and treatment agent for improving rejection rate | |
| KR102042043B1 (en) | A Draw Solution for forward osmosis using salt of organic acid and use thereof | |
| CN103182246A (en) | Membrane separation technological method of solution and system | |
| JP5772083B2 (en) | Reverse osmosis membrane rejection rate improving method, rejection rate improving treatment agent, and reverse osmosis membrane | |
| JP2016049483A (en) | Detergent for reverse osmosis membrane and cleaning method of reverse osmosis membrane | |
| JP6923865B2 (en) | Selective Separation Method for Fluorine-Containing Organic Acids | |
| CN104291501B (en) | A kind of Integrated Membrane Technology processes the method for ammonium nitrate wastewater | |
| JP2012210568A (en) | Regeneration apparatus and regeneration method of development waste liquid | |
| Dalbosco et al. | Removal of fluoxetine from water by nanofiltration and reverse osmosis | |
| WO2018112781A1 (en) | Reverse osmosis membrane and method of processing the same | |
| WO2018056242A1 (en) | Reverse osmosis membrane rejection rate-improving agent and rejection rate-improving method | |
| JP2011025102A (en) | Method for purifying fluorine-comprising surfactant-containing water | |
| Tomaszewska | Industrial wastewater treatment by means of membrane techniques | |
| JP2004237280A (en) | Method and device for producing mineral liquid | |
| KR101709661B1 (en) | A draw solution for forward osmosis using salt of citric acid and use thereof | |
| US20180071686A1 (en) | Subsea water processing system and associated methods | |
| TW201522239A (en) | Waste water treatment system and method | |
| KR101919448B1 (en) | A draw solution for forward osmosis using Nitrilotris(methylene)phosphonate salt and use thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20180827 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A821 Effective date:20180827 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20190515 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20190528 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20190726 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20191210 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20200309 | |
| C60 | Trial request (containing other claim documents, opposition documents) | Free format text:JAPANESE INTERMEDIATE CODE: C60 Effective date:20200309 | |
| A911 | Transfer to examiner for re-examination before appeal (zenchi) | Free format text:JAPANESE INTERMEDIATE CODE: A911 Effective date:20200316 | |
| C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings | Free format text:JAPANESE INTERMEDIATE CODE: C21 Effective date:20200317 | |
| A912 | Re-examination (zenchi) completed and case transferred to appeal board | Free format text:JAPANESE INTERMEDIATE CODE: A912 Effective date:20200605 | |
| C211 | Notice of termination of reconsideration by examiners before appeal proceedings | Free format text:JAPANESE INTERMEDIATE CODE: C211 Effective date:20200609 | |
| C22 | Notice of designation (change) of administrative judge | Free format text:JAPANESE INTERMEDIATE CODE: C22 Effective date:20210323 | |
| C22 | Notice of designation (change) of administrative judge | Free format text:JAPANESE INTERMEDIATE CODE: C22 Effective date:20210413 | |
| C23 | Notice of termination of proceedings | Free format text:JAPANESE INTERMEDIATE CODE: C23 Effective date:20210525 | |
| C03 | Trial/appeal decision taken | Free format text:JAPANESE INTERMEDIATE CODE: C03 Effective date:20210706 | |
| C30A | Notification sent | Free format text:JAPANESE INTERMEDIATE CODE: C3012 Effective date:20210706 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20210716 | |
| R150 | Certificate of patent or registration of utility model | Ref document number:6923865 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 |