本発明は、湿潤時潤滑性を有し、水潤滑下における摩擦係数の低い生体内摺動部材及びその表面処理方法に関する。The present invention relates to an in-vivo sliding member having wet lubricity and a low coefficient of friction under water lubrication, and a surface treatment method thereof.
医療分野において、気管、消化管、尿管、血管、その他の体腔、又は、組織に挿入されるカテーテル、イントロデューサー等、又は、これらに挿入されるガイドワイヤーなどの医療用具は、挿入時に目的部位にアクセスするための操作性を向上し、血管内壁や粘膜などへの組織損傷を最小限にするために、潤滑性を有する表面が必要である。これらの医療用具の、樹脂、金属あるいは無機材料からなる部材の表面にダイヤモンドライクカーボン(DLC)膜を形成し、その膜表面に親水性などの機能性を発揮する表面活性化処理を行った医療用具及びその製造方法が開示されている。(特許文献1参照)。しかし、人工関節など、生体組織内の湿潤環境中で樹脂、金属、又は無機物からなる部材同士を摺動させる場合の、摺動性を向上する技術についての言及はない。In the medical field, a medical device such as a trachea, digestive tract, urinary tract, blood vessel, other body cavity, catheter inserted into a tissue, introducer, etc., or a guide wire inserted therein is a target site at the time of insertion. In order to improve the operability to access and minimize tissue damage to the inner wall of the blood vessel and mucous membrane, a surface having lubricity is required. A medical device in which a diamond-like carbon (DLC) film is formed on the surface of a member made of a resin, metal, or inorganic material of these medical devices, and the surface of the film is subjected to a surface activation treatment that exhibits functionality such as hydrophilicity. A tool and its manufacturing method are disclosed. (See Patent Document 1). However, there is no mention of a technique for improving slidability in the case where members made of resin, metal, or inorganic material are slid in a humid environment such as an artificial joint in a living tissue.
また、炭化水素および有機シリコンの混合ガスを原料に用い、イオン注入とCVD(Chemical Vapor Deposition)法を組み合わせた方法によりDLCを形成することにより、人工関節の摺動面に用いるDLC膜の密着性を向上させるインプラント部材が開示されている。(特許文献2参照)。
しかし、上記のいずれの方法によっても人工関節など、生体組織内の湿潤環境下で樹脂and/or金属からなる部材同士を摺動させる場合の、摺動性を向上させる技術についての言及はない。すなわち、本発明は上記不具合を解消することができる湿潤環境下での摺動性を向上する人工関節用インプラントなどに用いられる生体内摺動部材及びその表面処理方法を提供することを目的とする。However, there is no mention of a technique for improving the slidability in the case where members made of a resin and / or metal are slid in a wet environment in a living tissue such as an artificial joint by any of the above methods. That is, an object of the present invention is to provide an in-vivo sliding member used for an artificial joint implant or the like that improves the slidability in a moist environment that can eliminate the above-described problems, and a surface treatment method thereof. .
本発明者は、鋭意検討した結果、上記目的は、下記により達成されることを見出し、本発明に至った。As a result of intensive studies, the present inventor has found that the above object can be achieved by the following, and has reached the present invention.
上記課題を解決するため、請求項1に係る発明は、生体内摺動部材において、該生体内摺動部材を構成する基材の表面にDLC層を有し、該DLC層の表面が親水性を有している、ことを特徴とする生体内摺動部材を用いることが好ましい。In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a living body sliding member having a DLC layer on the surface of a base material constituting the living body sliding member, and the surface of the DLC layer is hydrophilic. It is preferable to use an in-vivo sliding member characterized by having
請求項2に係る発明として、該DLC層の表面は、OH基を含む水和層を有することが好ましい。As an invention according to claim 2, the surface of the DLC layer preferably has a hydration layer containing an OH group.
請求項3に係る発明として、前記請求項1に係る発明における生体内摺動部材を構成する基材が、樹脂もしくは金属であることがより好ましい。
更に、請求項4に係る発明として、前記生体内摺動部材を構成する基材が、ポリエチレン樹脂もしくはチタンであることが特に好ましい。As an invention according to claim 3, it is more preferable that the base material constituting the in-vivo sliding member in the invention according to claim 1 is a resin or a metal.
Further, as an invention according to claim 4, it is particularly preferable that the base material constituting the in-vivo sliding member is polyethylene resin or titanium.
更に、請求項5に係る発明として、請求項1乃至3に係る発明は、前記生体内摺動部材が、人工関節であることが特に好ましい。Further, as an invention according to claim 5, in the inventions according to claims 1 to 3, the in-vivo sliding member is particularly preferably an artificial joint.
また、請求項6に係る発明として、生体内摺動部材の表面処理方法において、該生体内摺動部材を構成する基材の表面にDLC層を形成し、次に該DLCの表面を親水化処理する生体内摺動部材の表面処理方法が好ましい。According to a sixth aspect of the present invention, in the surface treatment method for an in-vivo sliding member, a DLC layer is formed on the surface of a substrate constituting the in-vivo sliding member, and then the surface of the DLC is hydrophilized. A surface treatment method for the in-vivo sliding member to be treated is preferred.
さらに、請求項7に係る発明として、請求項6に記載のDLCの形成方法が、プラズマイオン注入法であり、親水化処理方法が、酸素を含むガスから形成されたプラズマに暴露する方法により、該DLCの表面にOH基を含む水和層が形成されることを特徴とする生体内摺動部材の表面処理方法が、より好ましい。Further, as an invention according to claim 7, the DLC formation method according to claim 6 is a plasma ion implantation method, and the hydrophilization treatment method is a method of exposing to plasma formed from a gas containing oxygen, A surface treatment method for a living body sliding member, wherein a hydrated layer containing an OH group is formed on the surface of the DLC, is more preferable.
本発明の目的は、人工関節などの生体内摺動部材を構成する基材の表面にDLC層が存在し、湿潤環境である生体内で、関節を構成する異物質同士が優れた摺動性を有する生体内摺動部材およびその表面処理方法を提供することにある。この目的は、DLC表面を空気プラズマ処理により親水化することによって達成されることを見出した。本発明に係る生体内摺動部材及びその表面方法により、生体内湿潤時において、摩擦係数が低く優れた潤滑性を有することから、長期にわたり摺動性能が低下することのない耐久性に優れた人工関節などの生体内摺動部材が実現できる。The object of the present invention is that the DLC layer is present on the surface of the base material constituting the in-vivo sliding member such as an artificial joint, and the slidability in which the different substances constituting the joint are excellent in the living body in a humid environment. An in-vivo sliding member having a surface and a surface treatment method thereof. It has been found that this object is achieved by hydrophilizing the DLC surface by air plasma treatment. The in-vivo sliding member and the surface method thereof according to the present invention have a low friction coefficient and excellent lubricity when wet in the living body. An in-vivo sliding member such as an artificial joint can be realized.
本発明は人工関節などの生体内摺動部材を構成する基材の表面に、DLC薄膜を形成し、その表面をプラズマなどによる表面活性化処理を行うことによって、湿潤時に高度な潤滑性を有し、かつ潤滑耐久性に優れた各種医療用具を実現したものである。In the present invention, a DLC thin film is formed on the surface of a base material constituting an in-vivo sliding member such as an artificial joint, and the surface is subjected to a surface activation treatment by plasma or the like, thereby providing high lubricity when wet. In addition, various medical devices having excellent lubrication durability have been realized.
本発明の生体内摺動部材を構成する基材としては、樹脂や金属が用いられ、樹脂ではポリアミド系樹脂、ナイロン系樹脂、ポリアミドおよびポリフェニレンエーテルのポリマーアロイ、PEEK系樹脂、ポリエチレン系樹脂が好ましく、また金属ではチタンが好ましい。As the base material constituting the living body sliding member of the present invention, a resin or a metal is used, and the resin is preferably a polyamide resin, a nylon resin, a polymer alloy of polyamide and polyphenylene ether, a PEEK resin, or a polyethylene resin. As a metal, titanium is preferable.
上記基材の表面に形成されたDLC膜はダイヤモンドに類似したカーボンからなる薄膜であり、非常に緻密でかつ強固な膜である。DLC膜は、プラズマイオン注入法(PBIID法)、スパッタ法、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、化学気相堆積法(CVD法)、プラズマCVD法、重畳型RFプラズマイオン注入法、イオンプレーティング法、アークイオンプレーティング法、イオンビーム蒸着法またはレーザーアブレーション法などの公知の方法により基材の表面に形成することができる。その中でもPBIID法がより好ましい。The DLC film formed on the surface of the substrate is a thin film made of carbon similar to diamond, and is a very dense and strong film. DLC films are plasma ion implantation (PBIID), sputtering, DC magnetron sputtering, RF magnetron sputtering, chemical vapor deposition (CVD), plasma CVD, superimposed RF plasma ion implantation, ion plate It can be formed on the surface of the substrate by a known method such as a coating method, an arc ion plating method, an ion beam deposition method or a laser ablation method. Among these, the PBIID method is more preferable.
PBIID法はプラズマCVD法の一種で、図1に示すように、真空チャンバー1内のアンテナ(試料ホルダ)2に試料3を取り付け、該アンテナにパルス高周波をかけることで、試料の周囲にプラズマを発生させ、次に高電圧パルスをかけることで試料表面にイオン注入を行うことを特徴とするDLC製膜方法である。The PBIID method is a kind of plasma CVD method. As shown in FIG. 1, a sample 3 is attached to an antenna (sample holder) 2 in a vacuum chamber 1 and a pulsed high frequency is applied to the antenna to generate plasma around the sample. This DLC film forming method is characterized in that ion implantation is performed on a sample surface by generating a high voltage pulse and then applying a high voltage pulse.
DLC膜の膜厚は本発明の効果が得られる範囲ならば、性能に大きく影響しないが、好ましい膜厚の範囲は1μm程度である。If the thickness of the DLC film is within the range where the effects of the present invention can be obtained, the performance is not greatly affected, but the preferable film thickness range is about 1 μm.
DLC膜の表面は平滑で不活性であるため、一般的に親水性に乏しい。しかし、その表面にプラズマなどの照射による表面活性化処理を行うことで、表面の炭素−炭素結合の一部を開裂させて、DLC膜の表面に水酸基などの官能基親水性の官能基を結合させることができる。DLC膜の炭素−炭素結合の開裂は、空気などのガスにより発生させたプラズマにDLC膜を曝すことにより行えばよい。前記プラズマとしては、減圧下でのプラズマや大気圧でのプラズマなどを用いることができる。Since the surface of the DLC film is smooth and inert, it is generally poor in hydrophilicity. However, surface activation treatment by irradiating with plasma or the like is performed on the surface to cleave part of the carbon-carbon bond on the surface and bond a hydrophilic functional group such as a hydroxyl group to the surface of the DLC film. Can be made. Cleavage of carbon-carbon bonds in the DLC film may be performed by exposing the DLC film to plasma generated by a gas such as air. As the plasma, plasma under reduced pressure, plasma at atmospheric pressure, or the like can be used.
DLC膜形成後の基材を真空可にて1分程度の空気プラズマ処理を行う。この処理によって、DLC膜の表面に親水性官能基が導入され、潤滑耐久性が大きく向上する。The substrate after the DLC film is formed is subjected to air plasma treatment for about 1 minute under vacuum. By this treatment, hydrophilic functional groups are introduced on the surface of the DLC film, and the lubrication durability is greatly improved.
本発明は、上記の方法に従って導入されたDLC表面親水基によって水潤滑下における摩擦係数および摩耗量の低い医療用具および人工関節表面の機能化の可能性を見出したものである。The present invention has found the possibility of functionalization of medical devices and artificial joint surfaces having a low friction coefficient and wear amount under water lubrication by the DLC surface hydrophilic group introduced according to the above method.
基材に対するPBII法を用いたDLC膜の成膜方法は以下のとおりである。基材としてポリアミド(PA)およびポリフェニレンエーテル(PPE)よりなるポリマーアロイのディスク(直径70mm、厚さ5mm)を用い、これをアンテナ(試料ホルダ)に取り付けた後、真空チャンバー内を真空度3×10-3Paまで排気した後、原料ガスとして、ヘキサメチルジシロキサンを15(cc/min)、続いてアセチレンを100(cc/min)、最後にアセチレン+トルエンを90+20(cc/min)、真空チャンバーに導入する。外部の高周波発信器4より前記アンテナにパルス高周波として300Wを印加、同時に高圧パルス電源5より、電圧-5kV、パルス幅5μ sec、繰り返し周波数2 kHzの高電圧パルスを印加し、厚さ1μmのDLC膜を形成した。The method for forming a DLC film on the substrate using the PBII method is as follows. A polymer alloy disk (70 mm in diameter and 5 mm in thickness) made of polyamide (PA) and polyphenylene ether (PPE) is used as the base material, and this is attached to the antenna (sample holder). After exhausting to 10-3 Pa, the raw material gas is 15 (cc / min) for hexamethyldisiloxane, then 100 (cc / min) for acetylene, and finally 90 + 20 (cc / min) for acetylene + toluene. Introduce into the vacuum chamber. A 300 W pulsed high frequency is applied from the external high frequency transmitter 4 to the antenna, and at the same time, a high voltage pulse having a voltage of -5 kV, a pulse width of 5 μsec, and a repetition frequency of 2 kHz is applied from the high voltage pulse power source 5 to a DLC with a thickness of 1 μm A film was formed.
形成したDLC膜に対して、下記のごとく、プラズマ処理を行い表面に親水基(OH基)を導入し、OH基を含む水和層を形成し親水化した。DLC膜を形成したPA/PPEポリマーアロイディスクをプラズマ処理装置の真空チャンバー内に入れ減圧し、残留している空気に対し高周波電力を印加しプラズマ化し、そのプラズマにPA/PPEポリマーアロイディスクを60sec暴露した。The formed DLC film was subjected to plasma treatment as described below to introduce hydrophilic groups (OH groups) on the surface, thereby forming a hydrated layer containing OH groups to make it hydrophilic. Put the PA / PPE polymer alloy disk with DLC film in the vacuum chamber of the plasma processing equipment, depressurize it, apply high-frequency power to the remaining air to turn it into plasma, and apply PA / PPE polymer alloy disk to the plasma for 60 sec. Exposed.
上記方法で形成したDLC膜を形成したPA/PPEポリマーアロイディスクは、以下のような方法で、摩擦係数を測定した。図2に示すボール/円板型摩擦試験機(自作)を用い、PA/PPEポリマーアロイディスク6に直径3mmの超高分子量ポリエチレン樹脂(UHMWPE)製半球ピンを相手材7として加重1.96N、摺動速度19.1cm/sで摺動させ、摩擦係数を測定した。ここで本実施例では、摺動面に水滴を垂らし続け、水潤滑下で摩擦係数を測定した。結果0.07であった。The friction coefficient of the PA / PPE polymer alloy disk on which the DLC film formed by the above method was formed was measured by the following method. Using a ball / disk type friction tester (self-made) as shown in Fig. 2, PA / PPE polymer alloy disk 6 with a hemispherical pin made of ultra high molecular weight polyethylene resin (UHMWPE) 3mm in diameter, with a weight of 1.96N, sliding The friction coefficient was measured by sliding at a dynamic speed of 19.1 cm / s. Here, in this example, water droplets were continuously dropped on the sliding surface, and the friction coefficient was measured under water lubrication. The result was 0.07.
実施例1と同様にPA/PPEポリマーアロイディスク表面にPBIID法を用いてDLCを成膜し、本比較例では親水化処理を行うことなく、実施例1と同様に水潤滑下での摩擦係数を測定した。結果、0.13であった。As in Example 1, a DLC film was formed on the surface of the PA / PPE polymer alloy disk using the PBIID method. In this comparative example, the coefficient of friction under water lubrication was the same as in Example 1 without hydrophilization treatment. Was measured. As a result, it was 0.13.
実施例1と同様にPA/PPEポリマーアロイディスク表面にPBIID法を用いてDLCを成膜し、本比較例では親水化処理を行うことなく、また水潤滑下を行うことなく雰囲気の空気中での摩擦係数を測定した。結果、0.12であった。As in Example 1, a DLC film was formed on the surface of the PA / PPE polymer alloy disk using the PBIID method, and in this comparative example, in the air in the atmosphere without hydrophilization treatment and without water lubrication. The coefficient of friction was measured. As a result, it was 0.12.
実施例1と同様にPA/PPEポリマーアロイディスク表面にPBIID法を用いてDLCを成膜し、本比較例では親水化処理を行うことなく、また相手材としてSUJ2鋼球を用い、且つ水潤滑下を行うことなく雰囲気の空気中での摩擦係数を測定した。結果、0.14であった。As in Example 1, a DLC film was formed on the surface of the PA / PPE polymer alloy disk using the PBIID method. In this comparative example, no hydrophilic treatment was performed, SUJ2 steel balls were used as the mating material, and water lubrication was performed. The friction coefficient in atmospheric air was measured without performing the following. As a result, it was 0.14.
以上の実施例、比較例から分かるとおり、本発明に係る生体内摺動部材及びその表面処理方法により極めて低い摩擦係数、すなわち極めて良好な摺動特性を実現する事ができる。As can be seen from the above Examples and Comparative Examples, an extremely low friction coefficient, that is, an extremely good sliding characteristic can be realized by the in-vivo sliding member and the surface treatment method according to the present invention.
本発明は、人工関節などの産業に利用可能である。The present invention is applicable to industries such as artificial joints.
1 真空チャンバー
2 アンテナ(試料ホルダ)
3 試料
4 高周波発信器
5 高圧パルス電源
6 摩擦係数を測定する試料
7 相手材
1 Vacuum chamber 2 Antenna (sample holder)
3 Sample 4 High-frequency transmitter 5 High-voltage pulse power supply 6 Sample 7 for measuring friction coefficient
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012219733AJP2014069000A (en) | 2012-10-01 | 2012-10-01 | Living body sliding member and surface treatment method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012219733AJP2014069000A (en) | 2012-10-01 | 2012-10-01 | Living body sliding member and surface treatment method thereof |
| Publication Number | Publication Date |
|---|---|
| JP2014069000Atrue JP2014069000A (en) | 2014-04-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2012219733APendingJP2014069000A (en) | 2012-10-01 | 2012-10-01 | Living body sliding member and surface treatment method thereof |
| Country | Link |
|---|---|
| JP (1) | JP2014069000A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017174586A (en)* | 2016-03-23 | 2017-09-28 | 株式会社栗田製作所 | Plasma processing method and plasma processing device |
| JP2018519873A (en)* | 2015-05-11 | 2018-07-26 | ノバ プラズマ リミテッド | Apparatus and method for manipulating an implant |
| WO2023279663A1 (en)* | 2021-07-08 | 2023-01-12 | 深圳先进技术研究院 | Surface hydrophilic layer modification method for implantable medical device and application |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018519873A (en)* | 2015-05-11 | 2018-07-26 | ノバ プラズマ リミテッド | Apparatus and method for manipulating an implant |
| JP2017174586A (en)* | 2016-03-23 | 2017-09-28 | 株式会社栗田製作所 | Plasma processing method and plasma processing device |
| WO2023279663A1 (en)* | 2021-07-08 | 2023-01-12 | 深圳先进技术研究院 | Surface hydrophilic layer modification method for implantable medical device and application |
| Publication | Publication Date | Title |
|---|---|---|
| Gołda et al. | Oxygen plasma functionalization of parylene C coating for implants surface: Nanotopography and active sites for drug anchoring | |
| US10184181B2 (en) | Method for generating plasma uniformly on dielectric material | |
| CA2561667C (en) | Method for treating surface of material, surface-treated material, medical material, and medical instrument | |
| US8449803B2 (en) | Method of forming a catheter | |
| US9526814B2 (en) | Medical balloons and methods of making the same | |
| KR101483846B1 (en) | A tube with modified inner wall surface and preparation method thereof | |
| Cvrček et al. | Plasma modified polymeric materials for implant applications | |
| KR102346927B1 (en) | Anti-Bioadhesion Coating Method for Maintaining Endoscope Vision | |
| JP2014069000A (en) | Living body sliding member and surface treatment method thereof | |
| Lewis et al. | Influence of the 316 L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films | |
| US20220142177A1 (en) | Plasma immobilization of bacteriophages and applications thereof | |
| Vijayan et al. | Non-equilibrium organosilane plasma polymerization for modulating the surface of PTFE towards potential blood contact applications | |
| Morelli et al. | Utilizing radio frequency plasma treatment to modify polymeric materials for biomedical applications | |
| JP2009127059A (en) | Method for forming diamond-like carbon film | |
| Cvelbar et al. | Hemocompatible poly (ethylene terephthalate) polymer modified via reactive plasma treatment | |
| RU2530568C1 (en) | Method for making endosseous implant with ion beam modification | |
| US20160023240A1 (en) | Wear Resistant and Biocompatible Coatings for Medical Devices and Method of Fabrication | |
| JP7229458B2 (en) | Amorphous carbon film and manufacturing method thereof | |
| US7879418B1 (en) | Method for depositing fluorocarbon films on polymer surfaces | |
| Wen et al. | Tube-based DBD plasma treatment for improving the performance of the slippery coating layers on medical catheters | |
| JP7453637B2 (en) | Internally coated tube | |
| GB2629494A (en) | Nano surfaces on smoke particle electrodes | |
| Vladkova et al. | Plasma Based Approaches for Deposition and Grafting of Antimicrobial Agents to Polymer Surfaces | |
| JP2006230639A (en) | Catheters with modified living body contact parts | |
| US20240293112A1 (en) | Hydrophobic coating for medical devices |