Movatterモバイル変換


[0]ホーム

URL:


JP2013039300A - Patient behavior identification method and patient behavior detection system - Google Patents

Patient behavior identification method and patient behavior detection system
Download PDF

Info

Publication number
JP2013039300A
JP2013039300AJP2011179428AJP2011179428AJP2013039300AJP 2013039300 AJP2013039300 AJP 2013039300AJP 2011179428 AJP2011179428 AJP 2011179428AJP 2011179428 AJP2011179428 AJP 2011179428AJP 2013039300 AJP2013039300 AJP 2013039300A
Authority
JP
Japan
Prior art keywords
patient
behavior
sensor data
wheelchair
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179428A
Other languages
Japanese (ja)
Other versions
JP5867847B2 (en
Inventor
Tomoji Toriyama
朋二 鳥山
Satoshi Urashima
智 浦島
Masaki Nakamura
正樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama PrefecturefiledCriticalToyama Prefecture
Priority to JP2011179428ApriorityCriticalpatent/JP5867847B2/en
Publication of JP2013039300ApublicationCriticalpatent/JP2013039300A/en
Application grantedgrantedCritical
Publication of JP5867847B2publicationCriticalpatent/JP5867847B2/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

PROBLEM TO BE SOLVED: To provide a patient behavior identification method and a patient behavior detection system, allowing medical personnel to see the behavior of a patient whose behavior pattern is detected and accumulated after the fact, to make, when risk behavior is included in the behavior, the system learn that the behavior corresponds to the risk behavior, and to guide the patient not to perform the risk behavior hereafter.SOLUTION: In this patient behavior identification method, a wheelchair 12, a bed 14, and a handrail 18 used by the patient are provided with sensors 20, 32, 50, and sensor data from the various sensors 20, 32, 50 obtained by various pieces of movement or behavior of the patient are previously stored. A movement model is created and stored based on the sensor data from the various sensors 20, 32, 50, the sensor data obtained from the movement of the patient in normal life are identified based on the movement model, and the movement state of the patient is distinguished and reported to the patient by an alarm or the like.

Description

Translated fromJapanese

この発明は、患者の行動を遠隔的に監視するとともに、行動パターンを認識して事故を予防する患者行動識別方法と患者行動検知システムに関する。  The present invention relates to a patient behavior identification method and a patient behavior detection system for remotely monitoring a patient's behavior and recognizing a behavior pattern to prevent an accident.

近年、高齢化や療養ベッド数の不足、本人の希望などから、入院治療後の回復期を在宅でリハビリテーションを行う患者が増加している。自宅療養に移行するには、病院での入院中に食事や排泄、整容、移動、入浴等の日常生活動作を自立的に行うことができるようになるまで、医師や看護師、介護士による指導や補助が行われ、事故の危険性がないと判断した上で、在宅療養への移行が許可される。  In recent years, the number of patients who undergo rehabilitation at home during the recovery period after hospitalization has increased due to aging, a lack of treatment beds, and the desires of the person. In order to shift to home medical treatment, guidance by doctors, nurses, and caregivers until they can perform daily activities such as eating, excretion, preparation, movement, and bathing independently during hospitalization. After being judged that there is no risk of accidents, the shift to home care is permitted.

しかしながら、在宅で療養を続ける患者が転倒や転落などの事故で再び入院してしまう事例が増えている。これらは、在宅療養に移行した患者には看護師や介護士の目が届かないことや、患者の過失や患者自身のへの過信などで、病院での行動制限を超える動作を行ってしまうことが原因となっている。  However, there are an increasing number of cases where patients who continue to be treated at home are hospitalized again due to accidents such as falls or falls. These patients may not be able to reach the eyes of nurses or caregivers for patients who have shifted to home care, or may behave beyond hospital behavior restrictions due to patient negligence or overconfidence with the patient. Is the cause.

一方、病院などで入院患者の容態を常時監視するシステムとして、特許文献1に開示されているようなシステムも提案されている。この患者監視システムは、患者の生体情報を測定する生体情報測定装置と、複数の看護師にそれぞれ携帯されその生体情報測定装置により測定される生体情報に異常がある場合には、その異常の内容を表す異常情報を出力する複数の携帯端末装置とを備えた患者監視システムであって、前記複数の携帯端末装置の位置をそれぞれ検出する位置検出手段と、生体情報測定装置から警報が出力された場合には、その位置検出手段により検出された複数の携帯端末装置の位置に基づいて、その生体情報測定装置に最も近い携帯端末装置に、異常情報を送信する異常情報送信制御手段を備えた患者監視システムである。  On the other hand, a system as disclosed in Patent Document 1 has been proposed as a system for constantly monitoring the condition of an inpatient in a hospital or the like. This patient monitoring system includes a biological information measuring device for measuring the biological information of a patient, and the contents of the abnormality when there are abnormalities in the biological information carried by each of a plurality of nurses and measured by the biological information measuring device. A patient monitoring system including a plurality of portable terminal devices that output abnormality information representing the position of the plurality of portable terminal devices, and an alarm is output from the biological information measuring device. In this case, the patient includes abnormality information transmission control means for transmitting abnormality information to the portable terminal device closest to the biological information measuring device based on the positions of the plurality of portable terminal devices detected by the position detecting means. It is a monitoring system.

その他、特許文献2に開示されているように、車椅子に着座センサを設けて、使用者が車椅子から離れたことを検知して警報ブザー等を鳴らし、車椅子から離れたことによる転倒事故等を防止する装置も提案されている。  In addition, as disclosed inPatent Document 2, a seating sensor is provided on the wheelchair to detect that the user has left the wheelchair and to sound an alarm buzzer, etc. to prevent a fall accident caused by leaving the wheelchair. Devices have also been proposed.

特開2004−65471号公報JP 2004-65471 A特開2005−81053号公報JP 2005-81053 A

特許文献1に開示されている患者監視システムは、病院内での監視システムであり在宅患者の事故防止に適用できるものではなかった。また、特許文献2に開示されているように患者が使用する機器にセンサを設けた場合は、患者がその機器から離れた場合を検知するもので、事故が起き得る状態にならないと警報が出ず、結果として、不測の事態が生じてしまうものである。  The patient monitoring system disclosed in Patent Document 1 is a monitoring system in a hospital and cannot be applied to prevent accidents at home patients. Also, as disclosed inPatent Document 2, when a sensor is provided on a device used by a patient, it detects when the patient leaves the device, and an alarm is issued if an accident cannot occur. As a result, unforeseen circumstances will occur.

この発明は、上記背景技術に鑑みて成されたもので、患者の行動パターンを検知し蓄積した患者の行動を、事後に医療関係者が見てその行動に危険行動が含まれている場合に、その行動が危険行動に該当することをシステムに学習させるとともに、今後危険行動をとらないように患者に指導することが可能な患者行動識別方法と患者行動検知システムを提供することを目的とする。  The present invention has been made in view of the above-mentioned background art. When a medical person sees the behavior of the patient who has detected and accumulated the behavior pattern of the patient afterwards, and the behavior includes dangerous behavior. The purpose is to provide a patient behavior identification method and a patient behavior detection system that allow the system to learn that the behavior corresponds to the dangerous behavior and to instruct the patient not to take the dangerous behavior in the future. .

さらにこの発明は、患者の回復期リハビリ実施中に患者単位の危険行動を学習したシステムにより、在宅化後には患者の危険行動を検知して患者が危険行動をとったときに、警報を出してその危険行動を中止させることが可能な患者行動識別方法と患者行動検知システムを提供することを目的とする。  Furthermore, the present invention uses a system that learns the risk behavior of each patient during the patient's convalescent rehabilitation, and detects the patient's risk behavior after going home, and issues a warning when the patient takes the risk behavior. It is an object of the present invention to provide a patient behavior identification method and a patient behavior detection system capable of stopping the dangerous behavior.

この発明は、患者が使用する複数の機器や部材に力や位置を検知する各種センサを設け、予めその患者の各種動作や行動により得られる前記センサからのセンサデータを蓄積し、この蓄積された前記センサデータを基に、動作モデルを作成して記憶し、前記動作モデルを基に、その後の通常生活時の前記患者の動作から得られる前記センサデータを識別し、その動作状態を判別する患者行動識別方法である。  The present invention provides various sensors for detecting force and position on a plurality of devices and members used by a patient, accumulates sensor data from the sensors obtained in advance by various operations and actions of the patient, and stores the accumulated data. A patient who creates and stores an action model based on the sensor data, identifies the sensor data obtained from the patient's actions during normal life based on the action model, and discriminates the action state It is a behavior identification method.

前記複数の機器は、少なくとも前記患者が使用する車椅子とベッドであり、前記センサは、前記車椅子やベッドに掛かる荷重や各部材の位置情報を検知するものであり、前記車椅子とベッドの何れかから危険な状態と判断される基準値以上の出力が得られた場合に、その動作状態を前記患者に知らせ、及び/又は前記動作状態を蓄積して後に参照可能とするものである。前記患者動作の識別は、例えばSVM(Support Vector Machine)を用いるものである。  The plurality of devices are at least a wheelchair and a bed used by the patient, and the sensor detects a load applied to the wheelchair or the bed and position information of each member, and is based on either the wheelchair or the bed. When an output equal to or higher than a reference value determined to be a dangerous state is obtained, the patient is informed of the operation state and / or the operation state is accumulated and can be referred to later. The patient motion is identified using, for example, an SVM (Support Vector Machine).

またこの発明は、患者が使用する複数の機器や部材に取り付けられ力や位置を検知する複数のセンサと、予めその患者の各種動作や行動により得られる前記センサからのセンサデータを記憶する記憶装置と、前記センサデータを基に前記患者の動作を分類して動作モデルを作成し、この動作モデルを基に前記患者の動作を識別し、その動作状態を送信する処理を行う処理装置を備えた患者行動検知システムである。  In addition, the present invention provides a plurality of sensors attached to a plurality of devices and members used by a patient to detect forces and positions, and a storage device that stores sensor data from the sensors obtained in advance by various operations and actions of the patient. And a processing device for classifying the patient's motion based on the sensor data to create a motion model, identifying the patient's motion based on the motion model, and transmitting the motion state It is a patient behavior detection system.

前記複数の機器は、少なくとも前記患者が使用する車椅子とベッドであり、前記センサは、前記車椅子に設けられた荷重センサと、前記ベッドに設けられた荷重センサ及び力センサであり、前記車椅子とベッドの何れかからの複数の前記センサデータを識別処理して、危険な状態か否かを判断する行動判別処理を行い、その動作状態を前記患者に知らせる処理を行うものである。  The plurality of devices are at least a wheelchair and a bed used by the patient, and the sensors are a load sensor provided in the wheelchair, a load sensor and a force sensor provided in the bed, and the wheelchair and the bed. A plurality of sensor data from any of the above are identified, a behavior determination process is performed to determine whether or not it is in a dangerous state, and a process of notifying the patient of the operation state is performed.

前記複数の機器は、無線通信の送受信機を備え、無線通信により前記処理装置と前記センサデータの授受を行うものである。  The plurality of devices include wireless communication transceivers, and exchange the sensor data with the processing device by wireless communication.

この発明の患者行動識別方法と患者行動検知システムは、予めその患者の行動パターンを各種センサにより把握して蓄積し、その患者の危険な行動時に表れるセンサデータの動作モデルを作成し、これを基に、例えば在宅療養時に、上記患者行動を監視して、危険行動が起こる可能性のあるデータが得られた場合には、アラームを鳴らして、患者や周囲の人に警告することが出来る。これにより、在宅療養時等の危険行動による不測の事態や事故を防止することが出来る。特に、行動パターンの分類にSVMを用いることにより、正確な判断が可能となる。  The patient behavior identification method and patient behavior detection system according to the present invention grasps and accumulates the patient's behavior patterns in advance using various sensors, creates an operation model of sensor data that appears during the dangerous behavior of the patient, and uses this as a basis. For example, during home medical treatment, if the patient behavior is monitored and data that may cause dangerous behavior is obtained, an alarm can be sounded to warn the patient and the surrounding people. As a result, it is possible to prevent unexpected situations and accidents due to dangerous behavior during home medical treatment. In particular, accurate determination is possible by using SVM for classification of behavior patterns.

この発明の一実施形態の患者行動検知システムを示す概念図である。It is a conceptual diagram which shows the patient action detection system of one Embodiment of this invention.この実施形態の患者行動検知システムに用いられる車椅子を示す概略斜視図である。It is a schematic perspective view which shows the wheelchair used for the patient action detection system of this embodiment.この実施形態の車椅子の足置き部の左右方向の部分破断正面図である。It is a partial fracture front view of the horizontal direction of the footrest part of the wheelchair of this embodiment.この実施形態の患者行動検知システムの車椅子の座面部の左右方向の縦断面図(a)と、座面側部の部分破断側面図(b)である。It is the longitudinal cross-sectional view (a) of the left-right direction of the seat surface part of the wheelchair of the patient action detection system of this embodiment, and the partially broken side view (b) of the seat surface side part.この実施形態の車椅子の肘掛け部の左右方向の縦断面図(a)と、肘掛け部の部分破断側面図(b)である。It is the longitudinal cross-sectional view (a) of the left-right direction of the armrest part of the wheelchair of this embodiment, and the partially broken side view (b) of an armrest part.この実施形態のベッドの概略平面図(a)と、概略正面図(b)である。It is the schematic plan view (a) and schematic front view (b) of the bed of this embodiment.この実施形態のベッドの手摺りの概略正面図である。It is a schematic front view of the handrail of the bed of this embodiment.この実施形態の壁手摺りを示す斜視図である。It is a perspective view which shows the wall handrail of this embodiment.この実施形態の患者行動検知システムに用いられる歪みゲージセンサの回路図である。It is a circuit diagram of the strain gauge sensor used for the patient action detection system of this embodiment.この実施形態の患者行動検知システムの機能ブロック図である。It is a functional block diagram of the patient action detection system of this embodiment.この実施形態の患者行動検知システムの事前処理を示すフローチャート(a)と、動作時の処理を示すフローチャート(b)である。It is the flowchart (a) which shows the preliminary process of the patient action detection system of this embodiment, and the flowchart (b) which shows the process at the time of operation | movement.

以下、この発明の一実施形態の患者行動検知システム10について、図1〜図11に基づいて説明する。患者行動検知システム10は、図1に示すように、車椅子12、ベッド14、及びトイレ16の壁に取り付けられた手摺り18に、患者による各機器の使用状態を検出するセンサ類が取り付けられている。  Hereinafter, a patient behavior detection system 10 according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the patient behavior detection system 10 is provided with sensors for detecting a use state of each device by a patient on ahandrail 18 attached to awheelchair 12, abed 14, and a wall of atoilet 16. Yes.

先ず、車椅子12には、図2〜図5に示すように、背もたれ22の背もたれ部22a内には圧電素子等による圧力分布センサ24が配置され、背もたれ部22aへの患者のもたれ具合を検出可能に設けられている。車椅子12の車輪26に近接したブレーキレバー28の近傍には、車椅子12の車体フレーム30の前方垂直フレーム30aに、フォトインタラプタ等の光学センサ32が取り付けられている。これにより、ブレーキレバー28の揺動動作による、車輪ロック状態とロック解除状態を検出可能としている。車椅子12の足置き部34にも、車体フレーム30から前方に延びた足置きフレーム30bに取り付けられたフォトインタラプタ等の光学センサ32が設けられている。これにより、足置き板34aが水平にされた使用状態と、跳ね上げられた不使用状態とを検出可能としている。光学センサ32は、レバー等の有無の二値状態を検知するものである。  First, in thewheelchair 12, as shown in FIGS. 2 to 5, apressure distribution sensor 24 using a piezoelectric element or the like is disposed in thebackrest portion 22a of thebackrest 22 so that the patient's leaning state against thebackrest portion 22a can be detected. Is provided. Anoptical sensor 32 such as a photo interrupter is attached to the frontvertical frame 30 a of thevehicle body frame 30 of thewheelchair 12 in the vicinity of thebrake lever 28 adjacent to thewheel 26 of thewheelchair 12. Thereby, it is possible to detect the wheel locked state and the unlocked state by the swinging operation of thebrake lever 28. Thefootrest part 34 of thewheelchair 12 is also provided with anoptical sensor 32 such as a photo interrupter attached to afootrest frame 30 b extending forward from thevehicle body frame 30. Thereby, the use state in which thefootrest plate 34a is leveled and the non-use state in which thefootrest plate 34a is flipped up can be detected. Theoptical sensor 32 detects a binary state with or without a lever or the like.

さらに車椅子12には、使用者である患者の使用状態における荷重の掛かり方を検知する圧電素子やその他の圧力センサから成る荷重センサ20が設けられている。足置き部34の足置き板34aには、図3に示すように、荷重センサ20が足置き板34aの内部に設けられ、患者が足置き板34aに足を載せた際の荷重を検出可能としている。  Furthermore, thewheelchair 12 is provided with aload sensor 20 including a piezoelectric element and other pressure sensors for detecting how to apply a load in a use state of a patient who is a user. As shown in FIG. 3, thefootrest plate 34a of thefootrest portion 34 is provided with aload sensor 20 inside thefootrest plate 34a, and can detect the load when the patient puts the foot on thefootrest plate 34a. It is said.

車椅子12の座面部38には、図4に示すように、車体フレーム30に固定された座面支持構造材40が設けられ、座面38の表面側の座面布38aを支持した座面布保持部材40aと座面支持構造材40の両端部の各間に荷重センサ20が一対ずつ設けられ、患者の着座を検知し、荷重の値を検出可能としている。  As shown in FIG. 4, theseat surface portion 38 of thewheelchair 12 is provided with a seatsurface support structure 40 fixed to thevehicle body frame 30, and supports theseat surface fabric 38 a on the surface side of theseat surface 38. A pair ofload sensors 20 are provided between both ends of theholding member 40a and theseat support structure 40 to detect the patient's sitting and to detect the load value.

車椅子12の肘掛け部42には、図5に示すように、肘掛け板42aの裏面の取付板42bと、車体フレーム30側の取付板42cとの間に、一対の荷重センサ20が前後方向端部に取り付けられている。肘掛け板42aの下面と車体フレーム30の上面との間には、ずれ防止用の保持部材44が挿入されている。  As shown in FIG. 5, the pair ofload sensors 20 is provided between themounting plate 42 b on the back surface of thearmrest plate 42 a and themounting plate 42 c on thevehicle body frame 30 side. Is attached. A holdingmember 44 for preventing displacement is inserted between the lower surface of thearmrest plate 42 a and the upper surface of thevehicle body frame 30.

この実施形態の患者行動検知システム10に用いられるベッド14は、図6,図7に示すように、ベッド14の上面に載置された2枚の上面板52の裏面四隅に荷重センサ20が取り付けられ、患者がベッド14上に居る状態を検出可能としている。ベッド14の手摺り54には、水平部材54aの上面に歪みゲージセンサ50が貼り付けられ、垂直部材54bの周囲2方向にも、歪みゲージセンサ50が貼り付けられている。これにより、ベッド14及び手摺り54に掛かる力を検出可能としている。  As shown in FIGS. 6 and 7, thebed 14 used in the patient behavior detection system 10 of this embodiment hasload sensors 20 attached to the four corners of the back surface of the twoupper surface plates 52 placed on the upper surface of thebed 14. The state where the patient is on thebed 14 can be detected. On thehandrail 54 of thebed 14, thestrain gauge sensor 50 is attached to the upper surface of thehorizontal member 54a, and thestrain gauge sensor 50 is also attached to the two directions around thevertical member 54b. Thereby, the force applied to thebed 14 and thehandrail 54 can be detected.

さらにこの実施形態では、図8に示すように、トイレ16の壁に取り付けられた手摺り18の取付部材18aにも、歪みゲージセンサ50が3箇所に巻き付けられ、手摺り18に掛かる力とその方向を検出可能としている。取付部材18aに巻き付けられた歪みゲージセンサ50は、1本の取付部材18aに対して3本の歪みゲージセンサ50が取り付けられ、上下左右方向の力を検出可能としている。  Furthermore, in this embodiment, as shown in FIG. 8, thestrain gauge sensor 50 is also wound around theattachment member 18a of thehandrail 18 attached to the wall of thetoilet 16, and the force applied to thehandrail 18 and the force applied thereto. The direction can be detected. Thestrain gauge sensor 50 wound around theattachment member 18a has threestrain gauge sensors 50 attached to oneattachment member 18a, and can detect force in the vertical and horizontal directions.

この実施形態の患者行動検知システム10は、図1に示すように、各センサで検出した力の値や部材位置を無線通信を用いて、各種プログラムの処理装置であり記録装置であるパーソナルコンピュータ(以下、PCと称す。)60に送信可能に設けられている。PC60は、例えばノートパソコン程度の大きさのものを車椅子12に搭載して置くことができる。通信には、既存の短距離無線通信規格のZigbeeやBluetoothを用いることが出来る。また、USB端子を経由した有線によりデータを授受しても良い。例えば車椅子12に設けられたPC60には、通信アダプタが接続され、ベッド14とトイレ16には、送受信機62が据え付けられている。  As shown in FIG. 1, the patient behavior detection system 10 of this embodiment is a personal computer (processing device for various programs and a recording device) that uses force values and member positions detected by each sensor by wireless communication. (Hereinafter referred to as “PC”). ThePC 60 can be placed on thewheelchair 12 with a size about the size of a notebook computer, for example. For communication, the existing short-range wireless communication standard Zigbee or Bluetooth can be used. Further, data may be exchanged by wire via a USB terminal. For example, a communication adapter is connected to thePC 60 provided in thewheelchair 12, and atransceiver 62 is installed in thebed 14 and thetoilet 16.

各荷重センサ20の出力は、図示しないアンプを介して荷重に比例した値が出力され、図示しないA/D変換器を介して荷重の値を示すデジタルデータが送受信機62から出力され、PC60へ送られ、後述する所定の処理が処理プログラムにより行われて、荷重データが記憶装置64に記録される。  The output of eachload sensor 20 is a value proportional to the load via an amplifier (not shown), and digital data indicating the value of the load is output from thetransceiver 62 via an A / D converter (not shown) to thePC 60. Then, predetermined processing described later is performed by the processing program, and the load data is recorded in the storage device 64.

同様に、歪みゲージセンサ50の出力は、図9に示すセンサ回路56を介して、荷重の値が出力される。センサ回路56は、歪みゲージセンサ50をブリッジの一つに配置したブリッジ回路56aを備え、ブリッジ回路56aの一対の出力をアンプ56bに入力して、アンプ56bの出力が、A/D変換と荷重データの記録を行うデータロガー58に出力される。データロガー58に記録された荷重データは、送受信機62を介して、PC60内の記憶装置64に記録される。  Similarly, as the output of thestrain gauge sensor 50, a load value is output via thesensor circuit 56 shown in FIG. Thesensor circuit 56 includes abridge circuit 56a in which thestrain gauge sensor 50 is arranged in one of the bridges, and a pair of outputs of thebridge circuit 56a is input to theamplifier 56b, and the output of theamplifier 56b is converted into A / D conversion and a load. The data is output to adata logger 58 that records data. The load data recorded in thedata logger 58 is recorded in the storage device 64 in thePC 60 via thetransceiver 62.

PC60内の処理は、図1、図10、図11に示すように、車椅子12、ベッド14、及びトイレ16に設けられた各センサにより取得されたセンサデータがPC60に送信され、所定のプログラムによりセンサデータが集約され、集約されたセンサデータに対して、その動作の動作識別処理が行われる。  As shown in FIGS. 1, 10, and 11, the processing in thePC 60 is performed by transmitting sensor data acquired by the sensors provided in thewheelchair 12, thebed 14, and thetoilet 16 to thePC 60, according to a predetermined program. The sensor data is aggregated, and the operation identification processing of the operation is performed on the aggregated sensor data.

動作識別処理に先立ち、各センサからのデータを集約してその患者の行動パターンの分類の基準となる動作モデルを作成する。動作モデルの作成は、図11(a)に示すように、その患者の動作の特徴を抽出し、危険な動作か否かを判別するための動作の分類情報を蓄積し、動作モデルの情報を作成し、記憶装置64の動作モデル記憶部64aに記録する。ここで、センサデータの分類処理には、SVM(サポートベクターマシン・Support Vector Machine)を用いる。SVMは、教師あり学習を用いる識別手法の一つであり、非線形分類問題にも優れた性能を発揮することを特徴とする学習モデルである。そこで、この実施形態の動作分類には、SVMを用いて分類処理を行っている。  Prior to the motion identification process, the data from each sensor is aggregated to create a motion model that serves as a reference for classification of the behavior pattern of the patient. As shown in FIG. 11A, the motion model is created by extracting the features of the patient's motion, accumulating motion classification information for determining whether the motion is dangerous, and storing the motion model information. It is created and recorded in the behaviormodel storage unit 64a of the storage device 64. Here, SVM (Support Vector Machine) is used for the sensor data classification process. SVM is one of identification methods using supervised learning, and is a learning model characterized by exhibiting excellent performance for nonlinear classification problems. Therefore, classification processing is performed using SVM for the operation classification of this embodiment.

先ず、図11(a)に示すように、センサデータを取得すると(s1)、取得した動作データの動作ラベリング(s2)と特徴量抽出処理(s3)を行う。この後、得られたラベルと特徴量データを基に、SVMを用いて、SVM分類による動作モデルを作成する(s4)。これにより、その患者の動作の各種パターンが分類されて各種の動作モデルが設定される。この動作モデルは、後に例えば患者の動作の識別に用いられる。  First, as shown in FIG. 11A, when sensor data is acquired (s1), operation labeling (s2) and feature amount extraction processing (s3) of the acquired operation data are performed. Thereafter, based on the obtained label and feature amount data, an operation model based on SVM classification is created using SVM (s4). Thereby, various patterns of the patient's motion are classified and various motion models are set. This motion model is later used, for example, to identify patient motion.

SVMモデルが作成された後は、図10に示すように、その患者の動作について動作識別処理が行われ、その後その患者の行動について危険か否かの行動判別処理が行われる。また、得られたセンサデータによる各動作の検出値は、記憶装置64内の動作ログ記憶部64bに動作時刻とともに記録される。患者動作に対する動作識別処理は、図11(b)に示すように、センサデータを取得し(s11)、センサデータの特徴量の抽出処理を行う(s12)。抽出した特徴量データをSVM分類処理する(s13)。このSVM分類処理には、先に作成したSVMモデルを動作モデル記憶部64aから呼び出して用いる。これにより、その患者のセンサデータによる動作識別がなされる。  After the SVM model is created, as shown in FIG. 10, an action identification process is performed for the movement of the patient, and then an action determination process for determining whether the patient's action is dangerous is performed. The detected value of each operation based on the obtained sensor data is recorded in the operationlog storage unit 64b in the storage device 64 together with the operation time. As shown in FIG. 11B, in the motion identification process for the patient motion, sensor data is acquired (s11), and a feature amount extraction process for the sensor data is performed (s12). The extracted feature data is subjected to SVM classification processing (s13). In this SVM classification process, the previously created SVM model is called from the behaviormodel storage unit 64a and used. Thereby, the operation | movement identification by the patient's sensor data is made.

動作識別処理が行われたセンサデータは、行動判別処理が施され、危険な動作であるか否かが判別される。判別には、記憶装置64内の行動ルール記憶部64cに記録された行動ルールが適用される。即ち、検出されたセンサデータが行動ルール記憶部64cの行動ルールに照らして、危険であると判断される場合は、アラーム生成部66からアラーム信号が送信され、その動作が行われている箇所の図示しないアラームが鳴り、患者やその周囲の人はその動作が危険であることを認識することができる。  The sensor data that has been subjected to the action identification process is subjected to an action determination process to determine whether it is a dangerous action. For the determination, an action rule recorded in the actionrule storage unit 64c in the storage device 64 is applied. That is, when it is determined that the detected sensor data is dangerous in light of the action rules in the actionrule storage unit 64c, an alarm signal is transmitted from thealarm generation unit 66 and the location of the operation is performed. An alarm (not shown) sounds and the patient and the people around him can recognize that the operation is dangerous.

以上説明したように、この実施形態の患者行動識別方法と患者行動検知システム10は、患者の行動パターンを把握して、予めその患者の行動により得られる各センサからのセンサデータにより、その患者の危険な行動時に表れるセンサデータの値を認識し、これを基に、例えば在宅療養時に、上記患者行動を監視して、危険行動が起こる可能性のあるデータが得られた場合には、アラームを鳴らして、患者やその周囲の人に警告を発することが出来る。これにより、在宅療養時等の危険行動による事故を防止することが出来る。特に、行動時に得られるセンサデータのモデル作成や分類にSVMを用いることにより、正確な分類が可能となり、適切な判断が可能となる。  As described above, the patient behavior identification method and the patient behavior detection system 10 according to this embodiment grasps a patient's behavior pattern and uses the sensor data from each sensor obtained in advance based on the behavior of the patient to determine the patient's behavior. Recognize the value of sensor data that appears at the time of dangerous behavior, and based on this, monitor the above patient behavior during home medical treatment, for example, and if data that can cause dangerous behavior is obtained, an alarm is issued. It can be used to alert the patient and those around him. As a result, accidents due to dangerous behavior such as home medical treatment can be prevented. In particular, by using SVM for model creation and classification of sensor data obtained at the time of action, accurate classification is possible, and appropriate determination is possible.

なお、この発明の患者行動識別方法と患者行動検知システムは、上記実施形態に限定されるものではなく、センサの設置箇所は適宜選択可能なものであり、療養箇所の廊下等の手摺りや、洗面所に設置しても良く、センサの種類も適宜選択可能なものである。  The patient behavior identification method and the patient behavior detection system according to the present invention are not limited to the above-described embodiment, and the installation location of the sensor can be selected as appropriate. The sensor type may be selected as appropriate.

10 患者行動検知システム
12 車椅子
14 ベッド
16 トイレ
18 手摺り
20 荷重センサ
22 背もたれ
24 圧力分布センサ
30 車体フレーム
32 光学センサ
34 足置き部
38 座面部
50 歪みゲージセンサ
52 肘掛け部
60 PC
62 送受信機
64 記憶装置
DESCRIPTION OF SYMBOLS 10 Patientaction detection system 12Wheelchair 14Bed 16Toilet 18Handrail 20Load sensor 22Backrest 24Pressure distribution sensor 30Body frame 32Optical sensor 34Footrest part 38Seat surface part 50Strain gauge sensor 52Armrest part 60 PC
62 Transceiver 64 Storage device

Claims (6)

Translated fromJapanese
患者が使用する複数の機器や部材に力や位置を検知する各種センサを設け、予めその患者の各種動作や行動により得られる前記センサからのセンサデータを蓄積し、この蓄積された前記センサデータを基に、動作モデルを作成して記憶し、前記動作モデルを基に、その後の通常生活時の前記患者の動作から得られる前記センサデータを識別し、その動作状態を判別することを特徴とする患者行動識別方法。  Various sensors and devices that detect force and position are provided on a plurality of devices and members used by a patient, and sensor data from the sensors obtained by the various operations and actions of the patient are accumulated in advance, and the accumulated sensor data is A motion model is created and stored, and the sensor data obtained from the motion of the patient during the normal life is identified based on the motion model, and the motion state is determined. Patient behavior identification method. 前記複数の機器は、少なくとも前記患者が使用する車椅子とベッドであり、前記センサは、前記車椅子やベッドに掛かる荷重や各部材の位置情報を検知するものであり、前記車椅子とベッドの何れかから危険な状態と判断される基準値以上の出力が得られた場合に、その動作状態を前記患者に知らせ、及び/又は前記動作状態を蓄積して後に参照可能とする請求項1記載の患者行動識別方法。  The plurality of devices are at least a wheelchair and a bed used by the patient, and the sensor detects a load applied to the wheelchair or the bed and position information of each member, and is based on either the wheelchair or the bed. 2. The patient behavior according to claim 1, wherein when an output exceeding a reference value determined to be a dangerous state is obtained, the patient is informed of the operation state and / or the operation state is accumulated and can be referred later. Identification method. 前記患者動作の識別は、SVM(Support Vector Machine)を用いる請求項1記載の患者行動識別方法。  The patient behavior identification method according to claim 1, wherein the patient motion is identified using an SVM (Support Vector Machine). 患者が使用する複数の機器や部材に取り付けられ力や位置を検知する複数のセンサと、予めその患者の各種動作や行動により得られる前記センサからのセンサデータを記憶する記憶装置と、前記センサデータを基に前記患者の動作を分類して動作モデルを作成し、この動作モデルを基に前記患者の動作を識別し、その動作状態を送信する処理を行う処理装置を備えたことを特徴とする患者行動検知システム。  A plurality of sensors attached to a plurality of devices and members used by a patient to detect forces and positions, a storage device that stores sensor data from the sensors obtained in advance by various operations and actions of the patient, and the sensor data A processing apparatus is provided that classifies the movements of the patient based on the movement, creates a movement model, identifies the movement of the patient based on the movement model, and transmits the movement state. Patient behavior detection system. 前記複数の機器は、少なくとも前記患者が使用する車椅子とベッドであり、前記センサは、前記車椅子に設けられた荷重センサと、前記ベッドに設けられた荷重センサ及び力センサであり、前記車椅子とベッドの何れかからの複数の前記センサデータを識別処理して、危険な状態か否かを判断する行動判別処理を行い、その動作状態を前記患者に知らせる処理を行う請求項4記載の患者行動検知システム。  The plurality of devices are at least a wheelchair and a bed used by the patient, and the sensors are a load sensor provided in the wheelchair, a load sensor and a force sensor provided in the bed, and the wheelchair and the bed. 5. The patient behavior detection according to claim 4, wherein a plurality of the sensor data from any of the above are identified, a behavior determination process is performed to determine whether or not the state is dangerous, and a process of notifying the patient of the operation state is performed. system. 前記複数の機器は、無線通信の送受信機を備え、無線通信により前記処理装置と前記センサデータの授受を行う請求項5記載の患者行動検知システム。
The patient behavior detection system according to claim 5, wherein the plurality of devices includes a transceiver for wireless communication, and exchanges the sensor data with the processing device by wireless communication.
JP2011179428A2011-08-192011-08-19 Patient behavior identification method and patient behavior detection systemExpired - Fee RelatedJP5867847B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2011179428AJP5867847B2 (en)2011-08-192011-08-19 Patient behavior identification method and patient behavior detection system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2011179428AJP5867847B2 (en)2011-08-192011-08-19 Patient behavior identification method and patient behavior detection system

Publications (2)

Publication NumberPublication Date
JP2013039300Atrue JP2013039300A (en)2013-02-28
JP5867847B2 JP5867847B2 (en)2016-02-24

Family

ID=47888287

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2011179428AExpired - Fee RelatedJP5867847B2 (en)2011-08-192011-08-19 Patient behavior identification method and patient behavior detection system

Country Status (1)

CountryLink
JP (1)JP5867847B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2018519032A (en)*2015-05-292018-07-19ヒル−ロム サービシズ,インコーポレイテッド Patient support device
JP2020009378A (en)*2018-07-122020-01-16医療法人社団皓有会Monitoring device
JP2020103553A (en)*2018-12-272020-07-09甲斐 久順Contact sensor, seat for seating and wheelchair
JP2023033830A (en)*2021-08-302023-03-13大和ハウス工業株式会社Daily living activity evaluation system and program
KR20240044836A (en)*2022-09-292024-04-05이재완Bath wheelchair for people with mobility difficulties

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10555112B2 (en)2016-12-152020-02-04David H. WilliamsSystems and methods for providing location-based security and/or privacy for restricting user access
US12342240B2 (en)2016-12-152025-06-24Conquer Your Addiction LlcSystems and methods for monitoring for and lowering the risk of addiction-related or restriction violation-related behavior(s)
US10853897B2 (en)2016-12-152020-12-01David H. WilliamsSystems and methods for developing, monitoring, and enforcing agreements, understandings, and/or contracts
US11636941B2 (en)2016-12-152023-04-25Conquer Your Addiction LlcDynamic and adaptive systems and methods for rewarding and/or disincentivizing behaviors
US10497242B2 (en)2016-12-152019-12-03David H. WilliamsSystems and methods for monitoring for and preempting pre-identified restriction violation-related behavior(s) of persons under restriction
US11412353B2 (en)2016-12-152022-08-09Conquer Your Addiction LlcSystems and methods for monitoring for and preempting the risk of a future occurrence of a quarantine violation

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001258859A (en)*2000-03-212001-09-25Hitachi Engineering & Services Co LtdSupport system and support method for aged person care staff arrangement
JP2005081053A (en)*2003-09-112005-03-31Kid International:KkSeating cushion with sensor
US20050242946A1 (en)*2002-10-182005-11-03Hubbard James E JrPatient activity monitor
JP2007296326A (en)*2006-03-312007-11-15Cordis CorpSystem and method for monitoring posture and movement
JP2009039466A (en)*2007-08-132009-02-26Advanced Telecommunication Research Institute International Action identification device, action identification system, and action identification method
JP2009230335A (en)*2008-03-212009-10-08Aisin Seiki Co LtdBed fall detection system and bed device
US20100045454A1 (en)*2008-03-032010-02-25Heather-Marie Callanan KnightWheelchair Alarm System and Method
US20100049095A1 (en)*2008-03-142010-02-25Stresscam Operations & Systems, Ltd. (c/o PHD Associates)Assessment of medical conditions by determining mobility
JP2010063756A (en)*2008-09-122010-03-25Yokogawa Electric CorpBody motion detecting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001258859A (en)*2000-03-212001-09-25Hitachi Engineering & Services Co LtdSupport system and support method for aged person care staff arrangement
US20050242946A1 (en)*2002-10-182005-11-03Hubbard James E JrPatient activity monitor
JP2005081053A (en)*2003-09-112005-03-31Kid International:KkSeating cushion with sensor
JP2007296326A (en)*2006-03-312007-11-15Cordis CorpSystem and method for monitoring posture and movement
JP2009039466A (en)*2007-08-132009-02-26Advanced Telecommunication Research Institute International Action identification device, action identification system, and action identification method
US20100045454A1 (en)*2008-03-032010-02-25Heather-Marie Callanan KnightWheelchair Alarm System and Method
US20100049095A1 (en)*2008-03-142010-02-25Stresscam Operations & Systems, Ltd. (c/o PHD Associates)Assessment of medical conditions by determining mobility
JP2009230335A (en)*2008-03-212009-10-08Aisin Seiki Co LtdBed fall detection system and bed device
JP2010063756A (en)*2008-09-122010-03-25Yokogawa Electric CorpBody motion detecting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015046844; 牛 童 外2名: '"RNN予測器を用いた人物行動パターンの自動分節化"' 電子情報通信学会技術研究報告 第108巻,第327号, 20081120, p.63-68, 社団法人電子情報通信学会*

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2018519032A (en)*2015-05-292018-07-19ヒル−ロム サービシズ,インコーポレイテッド Patient support device
US10517784B2 (en)2015-05-292019-12-31Hill-Rom Services, Inc.Patient support apparatus
US11135110B2 (en)2015-05-292021-10-05Hill-Rom Services, Inc.Patient support apparatus
US12350211B2 (en)2015-05-292025-07-08Hill-Rom Services, Inc.Patient support apparatus
JP2020009378A (en)*2018-07-122020-01-16医療法人社団皓有会Monitoring device
JP2020103553A (en)*2018-12-272020-07-09甲斐 久順Contact sensor, seat for seating and wheelchair
JP2023033830A (en)*2021-08-302023-03-13大和ハウス工業株式会社Daily living activity evaluation system and program
KR20240044836A (en)*2022-09-292024-04-05이재완Bath wheelchair for people with mobility difficulties
KR102682298B1 (en)2022-09-292024-07-05이재완Bath wheelchair for people with mobility difficulties

Also Published As

Publication numberPublication date
JP5867847B2 (en)2016-02-24

Similar Documents

PublicationPublication DateTitle
JP5867847B2 (en) Patient behavior identification method and patient behavior detection system
CN102150186B (en) bed alarm system
US10863927B2 (en)Identifying fall risk using machine learning algorithms
CN201200563Y (en) Anti-fall care bed
JP6012758B2 (en) Method and computer program for monitoring the use of absorbent products
CN101313877A (en) Intelligent nursing bed with anti-fall function
JP5877528B2 (en) Automatic notification system
JP2007283071A (en)Scale with heartbeat and respiration measuring function
US20210158965A1 (en)Automated mobility assessment
JP2011172674A (en)Patient state information management system
KR101131329B1 (en)Toddler care system and method
KR101767053B1 (en)Mobile for automatic measuring and monitoring body temperature of babies and the method thereof
KR20130039150A (en)System and method for preventing driver sleeping
JP6241820B2 (en) Fall risk calculation system and reporting system
JP2019101565A (en)Management server and program
JP5068602B2 (en) Bed equipment
JP6874048B2 (en) State judgment device
Karunanithi et al.An innovative technology to support independent living: the smarter safer homes platform
JP2020190889A (en) Watching system for people requiring care
JP2008257280A (en)User identification device
Yeh et al.Internet-of-Things Management of Medical Chairs and Wheelchairs.
Madokoro et al.Prediction of bed-leaving behaviors using piezoelectric non-restraining sensors
JP2020091628A (en) Caregiver watching system
KR101843787B1 (en)Method and system for alarming safety by wireless network based on bio sensing
KR20230103282A (en)Transfer assistant robot able to collect operational data

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20140725

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20150414

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20150421

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20150619

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20151124

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20151225

R150Certificate of patent or registration of utility model

Ref document number:5867847

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp