本発明は、立体規則性の高いリン原子修飾ヌクレオチド類縁体の製造法に関し、更に詳しくは、立体制御された光学純度の高いリン原子修飾ヌクレオチド類縁体の製造法に関するものである。 The present invention relates to a method for producing a phosphorus atom-modified nucleotide analog having high stereoregularity, and more specifically, to a method for producing a phosphorus atom-modified nucleotide analog having high stereo purity that is stereocontrolled.
近年、遺伝子治療の分野で注目されている手法の一つに、アンチセンス法がある。アンチセンス法とは、mRNAに対して、相補的な塩基配列をもつアンチセンス分子を細胞内に導入し、標的のmRNAに選択的に二重鎖を形成させることにより、翻訳を阻害し、標的とする蛋白質の合成を制御する方法である。 In recent years, one of the methods attracting attention in the field of gene therapy is an antisense method. Antisense method introduces an antisense molecule having a complementary base sequence to mRNA, and selectively forms a double strand in the target mRNA, thereby inhibiting translation and targeting. This is a method for controlling the synthesis of the protein.
アンチセンス分子が生体内で有効に機能するためには、
(1)相補的なRNAに対して塩基配列特異的に結合する、
(2)相補的なRNAとの間で形成する二重鎖が安定である、
(3)相補的なRNAとの間で形成する二重鎖がRNaseHの基質となる、
(4)化学的、生化学的に安定である、
(5)高い細胞膜透過性を有している、
といった性質が求められる。これらの性質を具備するものとして、ホスホロチオエートRNA(例えば非特許文献1参照)が挙げられる。しかし、ホスホロチオエートRNAは、蛋白質と非特異的に相互作用するという問題点を有する。In order for antisense molecules to function effectively in vivo,
(1) base sequence specific binding to complementary RNA,
(2) The duplex formed with complementary RNA is stable.
(3) The double strand formed with complementary RNA serves as a substrate for RNaseH.
(4) chemically and biochemically stable,
(5) having high cell membrane permeability,
These properties are required. Examples of those having these properties include phosphorothioate RNA (see, for example, Non-Patent Document 1). However, phosphorothioate RNA has the problem of interacting non-specifically with proteins.
一方、数あるホスフェートの中でも、特にボラノホスフェートDNAは、
(1)相補的なRNAに対して塩基配列特異的に結合する、
(2)相補的なRNAとの間で形成する二重鎖がRNaseHの基質となる、
(3)ヌクレアーゼに対する耐性が高い、
(4)塩基性条件下又は酸性条件下で安定である、
(5)天然型DNAよりも脂溶性が高いため、高い細胞膜透過性が期待できる、
といった特徴を有し、アンチセンス核酸としての応用が期待されている。On the other hand, boranophosphate DNA, among other phosphates,
(1) base sequence specific binding to complementary RNA,
(2) The double strand formed with complementary RNA serves as a substrate for RNaseH.
(3) high resistance to nucleases,
(4) Stable under basic or acidic conditions,
(5) Since it has higher lipid solubility than natural DNA, high cell membrane permeability can be expected.
Therefore, application as an antisense nucleic acid is expected.
リン酸ジエステル結合に修飾を施したボラノホスフェートDNAは、リン原子上に不斉点が存在するため、その立体規則性の違いにより、異なる物性値や生化学的性質を持つと考えられる。そのため、立体規則性の高いボラノホスフェートDNAの製造法が必要である。 Boranophosphate DNA modified with a phosphodiester bond has an asymmetric point on the phosphorus atom, and therefore has different physical property values and biochemical properties due to the difference in stereoregularity. Therefore, a method for producing boranophosphate DNA with high stereoregularity is required.
現在知られている製造法としては、ホスホロアミダイド法を利用する方法(例えば非特許文献2参照)と、H−ホスホネート法を利用する方法(例えば非特許文献3参照)がある。 Currently known production methods include a method using a phosphoramidide method (see, for example, Non-Patent Document 2) and a method using an H-phosphonate method (see, for example, Non-Patent Document 3).
非特許文献2の方法は、キラルなインドール−オキサザホスホリン中間体を不斉補助基として使用し、立体選択的に3価のホスファイト中間体を合成した後、ボラノ化を行なう方法である。 The method of Non-Patent Document 2 is a method in which a chiral indole-oxazaphosphorine intermediate is used as an asymmetric auxiliary group, and a trivalent phosphite intermediate is synthesized stereoselectively and then boranoated. .
非特許文献3の方法は、ジアステレオマー混合物のH−ホスホネートをシリカゲルカラムクロマトグラフィーによって立体化学的に純粋なジアステレオマーを分離し、Rp体とSp体のそれぞれに対して、in situでシリル化を行ない、3価のホスファイトを経由し、ボラノ化を行なうという方法である。この方法によって、ジアステレオマー比98:2でボラノホスフェートDNAの合成が可能である。
非特許文献2の方法では、ボラノ化を行なう前の3価のホスファイトの段階でジアステレオマー比が94:6になっており、ボラノ化後のジアステレオマー比は90:10にとどまっている。 In the method of Non-Patent Document 2, the diastereomeric ratio is 94: 6 at the stage of trivalent phosphite before boranoylation, and the diastereomeric ratio after boranolation remains 90:10. Yes.
非特許文献3の方法では、P−キラルなH−ホスホネートを得ることができるのは二量体までであるため、この方法は固相法によるオリゴマーの合成には適さない。 In the method of Non-Patent Document 3, P-chiral H-phosphonate can be obtained up to a dimer, so this method is not suitable for the synthesis of oligomers by a solid phase method.
本発明は、リン原子上の立体を制御した立体規則性の高いリン原子修飾ヌクレオチドの効率的な製造法を提供することを課題とする。 An object of the present invention is to provide an efficient method for producing a phosphorus atom-modified nucleotide having a high stereoregularity in which the stereo on the phosphorus atom is controlled.
本発明は、課題の解決手段として、一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトと、一般式(2)で表されるヌクレオシドとを、一般式(3)で表される活性化剤を用いて縮合した後、求電子試薬との反応及び脱保護を行うことを特徴とする、一般式(4)又は(5)で表される立体規則性の高いリン原子修飾ヌクレオチド類縁体の製造法を提供するものである。 As a means for solving the problem, the present invention provides an optically active nucleoside 3′-phosphoramidite represented by the general formula (1) and a nucleoside represented by the general formula (2) in the general formula (3). A phosphorus atom having a high stereoregularity represented by the general formula (4) or (5), characterized by performing a reaction with an electrophile and deprotection after condensation using the activator represented Methods for producing modified nucleotide analogs are provided.
[一般式(1)中の記号の意味は下記のとおり。[Meanings of symbols in general formula (1) are as follows.
R1及びR2は同一又は異なって、水素原子、炭素数1〜3の直鎖若しくは分岐アルキル基、又は炭素数6〜14のアリール基を示す。R1 and R2 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
R3は炭素数1〜3の直鎖又は分岐アルキル基を示す。R3 represents a linear or branched alkyl group having 1 to3 carbon atoms.
R2とR3は窒素原子と窒素原子に隣接する炭素原子と共に炭素数3〜16の環状構造を形成しても良い。R2 and R3 may form a cyclic structure having 3 to 16 carbon atoms together with a nitrogen atom and a carbon atom adjacent to the nitrogen atom.
R4は水酸基の保護基を示す。R4 represents a hydroxyl-protecting group.
Bsは式: Bs is the formula:
で表されるチミン、アデニン、シトシン、グアニンあるいはそれらから誘導される基を示す。]Or a group derived from thymine, adenine, cytosine, guanine, or ]
[一般式(2)中、R5は水酸基の保護基、Bsは前記と同じ意味を示す。[In General Formula (2), R5 represents a protecting group for a hydroxyl group, and Bs represents the same meaning as described above.
一般式(3)中の記号の意味は下記のとおり。 The meanings of symbols in the general formula (3) are as follows.
X-はBF4-、PF6-、TfO-(TfはCF3SO2を表す。以下同じ。)、Tf2N-、AsF6-又はSbF6-を示す。X− represents BF4− , PF6− , TfO− (Tf represents CF3 SO2 , the same shall apply hereinafter), Tf2 N− , AsF6− or SbF6− .
R6及びR7は同一又は異なって、水素原子、炭素数1〜5の直鎖若しくは分岐アルキル基、又は炭素数6〜14のアリール基を示す。R6 and R7 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
R6及びR7は窒素原子と共に炭素数3〜7のモノシクロ又はビシクロ構造を形成しても良い。]R6 and R7 may form a monocyclo or bicyclo structure having 3 to 7 carbon atoms together with the nitrogen atom. ]
[一般式(4)及び一般式(5)中の記号の意味は下記のとおり。[The meanings of the symbols in general formula (4) and general formula (5) are as follows.
Yは炭素数1〜3の直鎖又は分岐鎖のアルキル基、炭素数1〜3の直鎖又は分岐鎖のヒドロキシアルキル基、炭素数6〜14のアリール基、炭素数1〜5のアルキルチオ基、炭素数1~5のアシル基、又はY=Y’Z+を示す(Y’はSe-、BH3-を、Z+はアンモニウムイオン、第1級〜第4級の低級アルキルアンモニウムイオン又は1価金属イオンを示す)。Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a linear or branched hydroxyalkyl group having 1 to 3 carbon atoms, an aryl group having 6 to 14 carbon atoms, or an alkylthio group having 1 to 5 carbon atoms. , An acyl group having 1 to 5 carbon atoms, or Y = Y′Z+ (Y ′ is Se− , BH3− , Z+ is an ammonium ion, primary to quaternary lower alkyl ammonium ion or Indicates a monovalent metal ion).
Bsは前記と同じ意味を示し、各式中の2個のBsは同一でも異なっていても良い。] Bs has the same meaning as described above, and two Bs in each formula may be the same or different. ]
本発明によれば、アンチセンス分子として有効な立体規則性の高いリン原子修飾ヌクレオチド類縁体及びそのオリゴマーを高い収率で得ることができる。 According to the present invention, a highly stereoregular phosphorus atom-modified nucleotide analog and its oligomer effective as an antisense molecule can be obtained in high yield.
以下、本発明の製造法を、縮合反応(第1反応工程)と、求電子試薬との反応及び脱保護反応(第2反応工程)に分けて説明する。第1及び第2の分け方は説明の便宜のためだけのものであり、これに限定されるものではなく、また必要に応じて精製処理等の公知の処理工程を付加することもできる。 Hereinafter, the production method of the present invention will be described by dividing it into a condensation reaction (first reaction step), a reaction with an electrophilic reagent, and a deprotection reaction (second reaction step). The first and second dividing methods are only for the convenience of explanation, and are not limited to these, and a known processing step such as a purification treatment can be added as necessary.
〔第1反応工程〕
一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトと、一般式(2)で表されるヌクレオシド〔以下「ヌクレオシド(2)」という〕とを、一般式(3)で表される活性化剤〔以下「活性化剤(3)」という〕の存在下で縮合反応させる。[First reaction step]
An optically active nucleoside 3′-phosphoramidite represented by general formula (1) and a nucleoside represented by general formula (2) [hereinafter referred to as “nucleoside (2)”] are represented by general formula (3). The condensation reaction is carried out in the presence of the represented activator [hereinafter referred to as “activator (3)”].
一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトは、下記のとおり、適当な1,2−アミノアルコールから公知の方法で合成することができる(例えばTetrahedron:Asymmetry, 1995, 6, 1051-1054参照)。 The optically active nucleoside 3′-phosphoramidite represented by the general formula (1) can be synthesized from an appropriate 1,2-aminoalcohol by a known method as described below (for example, Tetrahedron: Asymmetry, 1995). , 6, 1051-1054).
即ち、一般式(6)で表される光学活性な1,2−アミノアルコール〔以下「アミノアルコール(6)」という〕と、三塩化リンを反応させて得られる一般式(7)で表される光学活性なホスフィチル化剤〔以下「ホスフィチル化剤(7)」という〕と、一般式(8)で表されるヌクレオシドを反応させて得ることができる。 That is, it is represented by the general formula (7) obtained by reacting the optically active 1,2-aminoalcohol represented by the general formula (6) (hereinafter referred to as “aminoalcohol (6)”) with phosphorus trichloride. An optically active phosphitylating agent [hereinafter referred to as “phosphitylating agent (7)”] and a nucleoside represented by the general formula (8) can be obtained.
[式中、R1、R2、R3、R4及びBsは、一般式(1)と同じ意味を示す。]
アミノアルコール(6)としては、(S)−及び(R)−2−メチルアミノ−1−フェニルエタノール、(1R,2S)−エフェドリン、(1R,2S)−2−メチルアミノ−1,2−ジフェニルエタノール等が挙げられる。[Wherein R1 , R2 , R3 , R4 and Bs have the same meaning as in general formula (1). ]
As amino alcohol (6), (S)-and (R) -2-methylamino-1-phenylethanol, (1R, 2S) -ephedrine, (1R, 2S) -2-methylamino-1,2- Examples include diphenylethanol.
ヌクレオシド(8)において、Bsはチミン、アデニン、シトシン又はグアニンあるいはそれらから誘導される基を示すが、具体的には、アデニン、シトシン及びグアニンのアミノ基を保護基で保護したもの等が挙げられ、更に具体的には、下記一般式で表される化合物が挙げられる。 In the nucleoside (8), Bs represents thymine, adenine, cytosine or guanine or a group derived therefrom, and specific examples include those in which the amino group of adenine, cytosine and guanine is protected with a protecting group. More specifically, compounds represented by the following general formula can be mentioned.
[式中、R8は炭素数1〜15の直鎖又は分岐鎖のアルキル基、アリール基、アラルキル基、アリールオキシアルキル基を示し、中でもメチル基、イソプロピル基、フェニル基、ベンジル基、フェノキシメチル基が好ましく、特にフェニル基が好ましい。また、R9及びR10は、それぞれ炭素数1〜4の直鎖又は分岐鎖のアルキル基を示し、特にメチル基が好ましい。]
ヌクレオシド(8)は、チミジン、アデノシン、シチジン、グアノシン又はそれらの誘導体の5位の水酸基を、tert−ブチルジフェニルシリル基(TBDPS)、tert−ブチルジメチルシリル基(TBDMS)、4,4’−ジメトキシトリチル基(DMTr)、4−メトキシトリチル基(MMTr)等の保護基で保護したものである。[Wherein R8 represents a linear or branched alkyl group having 1 to 15 carbon atoms, an aryl group, an aralkyl group, or an aryloxyalkyl group, and among them, a methyl group, an isopropyl group, a phenyl group, a benzyl group, a phenoxymethyl group. Group is preferable, and a phenyl group is particularly preferable. R9 and R10 each represent a linear or branched alkyl group having 1 to 4 carbon atoms, and a methyl group is particularly preferable. ]
Nucleoside (8) is a 5-position hydroxyl group of thymidine, adenosine, cytidine, guanosine or derivatives thereof, tert-butyldiphenylsilyl group (TBDPS), tert-butyldimethylsilyl group (TBDMS), 4,4′-dimethoxy. It is protected with a protecting group such as a trityl group (DMTr) or 4-methoxytrityl group (MMTr).
上記のような方法で得られた一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトにおいて、R1及びR2としては、R1及びR2のいずれか一方が水素原子で他方がフェニル基、R1及びR2のいずれか一方がメチル基で他方がフェニル基、あるいはR1及びR2が共にフェニル基の組合わせが好ましく、R1がフェニル基、R2が水素原子の組合わせが更に好ましい。R3はメチル基が好ましい。R4はTBDPS、TBDMSが好ましく、TBDPSが更に好ましい。In the optically active nucleoside 3'- phosphoramidite represented by the general formula obtained in the above-described method (1), as R1 and R2, either one hydrogen atom of R1 and R2 And the other is a phenyl group,one of R1 and R2 is a methyl group and the other is a phenyl group, or a combination of R1 and R2 are both a phenyl group, R1 is a phenyl group, and R2 is a hydrogen group. A combination of atoms is more preferred. R3 is preferably a methyl group. R4 is preferably TBDPS or TBDMS, more preferably TBDPS.
ヌクレオシド(2)は、チミジン、アデノシン、シチジン、グアノシン又はそれらの誘導体の3位の水酸基を保護したものであり、Bsで示されるチミン、アデニン、シトシン、グアニン又はそれらの誘導体から誘導される基は、ヌクレオシド(8)で例示したものが挙げられる。ヌクレオシド(2)とヌクレオシド(8)のBsは同一でも異なっていても良い。R5で示される水酸基の保護基としては、TBDPS、TBDMS,アセチル基(Ac)、ベンジル基(Bz)、DMTr、MMTr等が挙げられ、TBDMSが好ましい。Nucleoside (2) is a group in which the hydroxyl group at the 3-position of thymidine, adenosine, cytidine, guanosine or a derivative thereof is protected, and a group derived from thymine, adenine, cytosine, guanine or a derivative thereof represented by Bs is And those exemplified for nucleoside (8). Bs of nucleoside (2) and nucleoside (8) may be the same or different. Examples of the hydroxyl protecting group represented by R5 include TBDPS, TBDMS, acetyl group (Ac), benzyl group (Bz), DMTr, MMTr and the like, and TBDMS is preferred.
活性化剤(3)は、一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトの窒素原子に対するプロトン供給能力を有し、求核試薬としては働かないものである。 The activator (3) has a proton supplying ability to the nitrogen atom of the optically active nucleoside 3'-phosphoramidite represented by the general formula (1) and does not function as a nucleophile.
活性化剤(3)中、X-はBF4-、PF6-、TfO-、Tf2N-が好ましい。R6及びR7は窒素原子と共に炭素数3〜7のモノシクロ又はビシクロ構造を形成しても良く、中でも炭素数4又は5のモノシクロ又はビシクロ構造が好ましい。In the activator (3), X− is preferably BF4− , PF6− , TfO− , or Tf2 N− . R6 and R7 may form a monocyclo or bicyclo structure having 3 to 7 carbon atoms with a nitrogen atom, and among them, a monocyclo or bicyclo structure having 4 or 5 carbon atoms is preferable.
活性化剤(3)は、式(11)で表されるアミンと、式(12)で表される化合物とを反応させることにより、容易に得ることができる。 The activator (3) can be easily obtained by reacting the amine represented by the formula (11) with the compound represented by the formula (12).
[一般式(11)中、R6及びR7は前記と同じ意味を示し、一般式(12)中、X-は一般式(3)と同じ意味を示す。]
活性化剤(3)は、特にアセトニトリルに良い溶解性を示すので、一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトとヌクレオシド(2)との反応は、アセトニトリル等の溶媒中で行うことが好ましい。[In general formula (11), R6 and R7 have the same meaning as described above, and in general formula (12), X− has the same meaning as in general formula (3). ]
Since the activator (3) exhibits particularly good solubility in acetonitrile, the reaction between the optically active nucleoside 3′-phosphoramidite represented by the general formula (1) and the nucleoside (2) It is preferable to carry out in a solvent.
一般式(1)で表される光学活性なヌクレオシド3’−ホスホロアミダイトとヌクレオシド(2)は、一般式(1)で表されるホスホロアミダイトに対し、ヌクレオシド(2)を0.5〜2.0当量倍で反応させることが好ましく、0.5〜1.2当量倍の割合で反応させることがより好ましい。反応温度は0〜40℃が好ましい。反応圧力は1気圧が好ましい。 The optically active nucleoside 3′-phosphoramidite represented by the general formula (1) and the nucleoside (2) have a nucleoside (2) of 0.5 to 0.5 with respect to the phosphoramidite represented by the general formula (1). It is preferable to make it react by 2.0 equivalent times, and it is more preferable to make it react by the ratio of 0.5-1.2 equivalent times. The reaction temperature is preferably 0 to 40 ° C. The reaction pressure is preferably 1 atmosphere.
以上の第1反応工程により、下記の一般式(10)で表されるホスファイト〔以下「ホスファイト(10)」という〕を得ることができる。 By the above first reaction step, a phosphite represented by the following general formula (10) [hereinafter referred to as “phosphite (10)]” can be obtained.
[一般式(10)中、R1、R2、R3、R4、R5及びBsは一般式(1)、(2)と同じ意味を示す。]
〔第2反応工程〕
まず、第1反応工程で得られたホスファイト(10)を無水酢酸等でN−アセチル化した後、求電子剤と反応させて、下記の一般式(13)で表される化合物〔以下「化合物(13)」という〕を得る。[In General Formula (10), R1 , R2 , R3 , R4 , R5 and Bs have the same meanings as in General Formulas (1) and (2). ]
[Second reaction step]
First, the phosphite (10) obtained in the first reaction step is N-acetylated with acetic anhydride or the like and then reacted with an electrophile to produce a compound represented by the following general formula (13) [hereinafter “ Compound (13) ”is obtained.
[一般式(13)中、R1、R2、R3、R4、R5、Bsは一般式(1)、(2)と同じ意味を示し、Yは炭素数1〜3の直鎖又は分岐鎖のアルキル基、炭素数1〜3の直鎖又は分岐鎖のヒドロキシアルキル基、炭素数6〜14のアリール基、アルキルチオ基、アシル基、又はY=Y’Z+を示し、Y’はSe-、BH3-を、Z+はアンモニウムイオン、第1級〜第4級の低級アルキルアンモニウムイオン又は1価金属イオンを示し、R11は水素原子又は窒素
原子の保護基を示す。]
R11で示される窒素原子の保護基としては、アセチル基(Ac)、ベンジル基(Bz)、トリメチルシリル基等が挙げられ、トリメチルシリル基が好ましいが、保護基が導入されていなくても良い。[In General Formula (13), R1 , R2 , R3 , R4 , R5 and Bs have the same meanings as in General Formulas (1) and (2), and Y is a straight chain having 1 to 3 carbon atoms. Or a branched alkyl group, a linear or branched hydroxyalkyl group having 1 to 3 carbon atoms, an aryl group having 6 to 14 carbon atoms, an alkylthio group, an acyl group, or Y = Y′Z+ , Represents Se− , BH3— , Z+ represents an ammonium ion, a primary to quaternary lower alkyl ammonium ion or a monovalent metal ion, and R11 represents a protecting group for a hydrogen atom or a nitrogen atom. ]
Examples of the protecting group for the nitrogen atom represented by R11 include an acetyl group (Ac), a benzyl group (Bz), a trimethylsilyl group, and the like. A trimethylsilyl group is preferable, but a protecting group may not be introduced.
求電子剤としては、BH3・THF、BH3・(CH3)2S等のホウ素化剤、ジスルフィド、CH3I等のアルキル化剤、CH2=O等のアルデヒド、酸クロリド又はセレン等が挙げられる。Examples of electrophiles include boronating agents such as BH3 · THF and BH3 · (CH3 )2 S, alkylating agents such as disulfide and CH3 I, aldehydes such as CH2 ═O, acid chloride, selenium and the like Is mentioned.
次に、リン酸修飾後、化合物(13)のキラル補助物質を1,8−ジアザビシクロ[5,4,0]ウンデカ−7−エン(DBU)等で処理して除き、一般式(14)で表される保護されたジヌクレオチドホスフェート誘導体を得る。 Next, after the phosphoric acid modification, the chiral auxiliary substance of the compound (13) is removed by treatment with 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU) or the like. The protected dinucleotide phosphate derivative represented is obtained.
[一般式(14)中、R4、R5、Bs及びYは一般式(1)、(2)と同じ意味を示す。] 最後に、水酸基の保護基を、(CH3CH2)3N・3HF等で除くことにより、一般式(4)又は一般式(5)で表される立体規則性の高いリン原子修飾ヌクレオチド類縁体を効率的に得ることができる。[In General Formula (14), R4 , R5 , Bs and Y have the same meanings as in General Formulas (1) and (2). Finally, a phosphorus atom-modified nucleotide with high stereoregularity represented by the general formula (4) or the general formula (5) is obtained by removing the protective group for the hydroxyl group with (CH3 CH2 )3 N · 3HF or the like. Analogues can be obtained efficiently.
また、本発明においては、上記した第1反応工程と第2反応工程を繰り返すことにより、一般式(9)で表されるオリゴマー〔以下「オリゴマー(9)」という〕を製造することができる。 In the present invention, an oligomer represented by the general formula (9) [hereinafter referred to as “oligomer (9)”] can be produced by repeating the first reaction step and the second reaction step.
[式中、Y及びBsは一般式(1)、(4)、(5)と同じ意味を示し、nは1〜150の整数(但し、1は含まない)を示す。構成単位中の2個のBsは同一でも異なっていても良い。]
オリゴマー(9)の製造は、溶液中で行っても固相上で行っても良い。固相上で行う場合は、有機高分子系担体又は無機高分子担体をベースポリマーとして用いる。有機高分子系担体としては、ポリスチレン、ポリエチレングリコール−ポリスチレングラフト重合体が挙げられ、アミノメチルポリスチレンが好ましい。無機高分子担体としては、シシカゲル担体であるコントロールドポリグラス(CPG)が挙げられ、アミノプロピルCPGが好ましい。また、リンカー部分としては、サクリネートリンカー(−CO−CH2―CH2―CO−)、オキサリルリンカー(−CO−CO−)が挙げられる。リンカー部分とヌクレオチドとは、エステル結合を介して結合していることが好ましい。[Wherein Y and Bs have the same meanings as in general formulas (1), (4) and (5), and n represents an integer of 1 to 150 (however, 1 is not included). Two Bs in the structural unit may be the same or different. ]
The oligomer (9) may be produced in a solution or on a solid phase. When carried out on a solid phase, an organic polymer carrier or an inorganic polymer carrier is used as the base polymer. Examples of the organic polymer carrier include polystyrene and polyethylene glycol-polystyrene graft polymer, and aminomethyl polystyrene is preferable. Examples of the inorganic polymer carrier include controlled polygrass (CPG) which is a Shishika gel carrier, and aminopropyl CPG is preferred. Examples of the linker moiety include a succinate linker (—CO—CH2 —CH2 —CO—) and an oxalyl linker (—CO—CO—). The linker moiety and the nucleotide are preferably bonded via an ester bond.
一般式(9)におけるnは1〜150の整数を示し、好ましいnの範囲は10〜100であり、より好ましい範囲は10〜50、更に好ましい範囲は15〜30である。 N in General formula (9) shows the integer of 1-150, the range of preferable n is 10-100, a more preferable range is 10-50, and a still more preferable range is 15-30.
本発明の製造法により得られる立体規則性の高いリン原子修飾ヌクレオチド類縁体は、遺伝子治療の分野で注目されている手法の一つであるアンチセンス法に使用することができる。 The highly stereoregular phosphorus atom-modified nucleotide analog obtained by the production method of the present invention can be used in an antisense method, which is one of the methods that are attracting attention in the field of gene therapy.
本発明を実施例によって詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in detail by examples, but the present invention is not limited to these examples.
製造例1〔N−シアノメチルピロリジウムトリフルオロメタンスルホネートの製造;活性化剤(3)の製造〕
N―シアノメチルピロリジン0.551g(5.00mmol)のジクロロメタン(5.00ml)溶液を0℃に冷却し、攪拌しつつトリフルオロメタンスルホン酸0.442ml(5.00mmol)を滴下した後、エチルエーテル(10ml)を加えた。Production Example 1 [Production of N-cyanomethylpyrrolidinium trifluoromethanesulfonate; Production of activator (3)]
A solution of 0.551 g (5.00 mmol) of N-cyanomethylpyrrolidine in dichloromethane (5.00 ml) was cooled to 0 ° C., 0.442 ml (5.00 mmol) of trifluoromethanesulfonic acid was added dropwise with stirring, and then ethyl ether was added. (10 ml) was added.
生じた固体を吸引ろ過によって集め、エチルエーテル(1ml×3回)で洗浄した後、減圧下で乾燥し白色粉末状の目的物11.1g(4.27mmol、収率85%)を得た。
・IR(KBr)νmax:2996, 2841, 2651, 2477, 2347, 2282, 1637, 1462, 1437, 1269, 1228, 1168, 1033, 985, 911, 849, 761, 641 cm-1
・1H−NMR(300MHz, CD3CN)δ:8.16(br,1H), 4.30(s,2H), 3.50(br,4H), 2.14〜2.09(m,4H)
・13C−NMR(75MHz, CD3CN)δ:121.2(q,1JCF=320Hz), 55.9, 42.0, 23.5
製造例2〔(5R)−2−クロロ−3−メチル−5−フェニル−1,3,2−オキサアザホスホリジンの製造;ホスフィチル化剤(7)の製造〕
(R)−2−メチルアミノ−1−フェニルエタノール〔アミノアルコール(6)〕2.27g(15.0mmol)、トリエチルアミン5.58ml(40.0mmol)のテトラヒドロフラン(THF)(20.0ml)溶液を、0℃に冷却した三塩化リン1.75ml(20.0mmol)のTHF(20.0ml)溶液に対して、攪拌しつつ滴下し、温度を室温にして30分間攪拌した。The resulting solid was collected by suction filtration, washed with ethyl ether (1 ml × 3 times), and then dried under reduced pressure to obtain 11.1 g (4.27 mmol, yield 85%) of the desired product as a white powder.
IR (KBr) νmax : 2996, 2841, 2651, 2477, 2347, 2282, 1637, 1462, 1437, 1269, 1228, 1168, 1033, 985, 911, 849, 761, 641 cm-1
・1 H-NMR (300 MHz, CD3 CN) δ: 8.16 (br, 1H), 4.30 (s, 2H), 3.50 (br, 4H), 2.14 to 2.09 (m, 4H)
· 13 C-NMR (75MHz, CD 3 CN) δ: 121.2 (q, 1 J CF = 320Hz), 55.9, 42.0, 23.5
Production Example 2 [Production of (5R) -2-chloro-3-methyl-5-phenyl-1,3,2-oxaazaphosphoridine; Production of phosphitylating agent (7)]
(R) -2-methylamino-1-phenylethanol [amino alcohol (6)] 2.27 g (15.0 mmol), triethylamine 5.58 ml (40.0 mmol) in tetrahydrofuran (THF) (20.0 ml) The solution was added dropwise to a THF (20.0 ml) solution of 1.75 ml (20.0 mmol) of phosphorus trichloride cooled to 0 ° C. with stirring, and the temperature was brought to room temperature and stirred for 30 minutes.
生じた塩をグラスフィルターでアルゴン雰囲気下ろ過し、THF(1ml×3回)で洗浄した。ろ液を濃縮し、残渣を減圧下で蒸留することにより、無色透明液体の目的物2.59g(12.0mmol、収率60%)を得た。
・1H−NMR(300MHz,CDCl3)δ:7.08〜7.05(m,6H), 6.91〜6.81 (m,4H), 6.15(br,4H),6.15(d,J=8.3Hz,1H),4.64(dd,JHH=8.3Hz,3JHP=4.2Hz,1H),2.64(d,3JHP=15.3Hz,3H)
・31P−NMR(121MHz,CDCl3)δ:171.7
製造例3〔(2R,5R)−2−(5’−O−tert−ブチルジフェニルシリルチミジン−3’−イル)−3−メチル−5−フェニル−1,3,2−オキサアザホスホリジンの製造;一般式(1)の化合物の製造〕
5’−O−tert−ブチルジフェニルシリルチミジン〔ヌクレオシド(8)〕2.18g(4.55mmol)をピリジン及びトルエンで共沸乾燥し、THF7.50mlに溶解した。これに、トリエチルアミン3.17ml(22.73mmol)を加え、−78℃に冷却した。The resulting salt was filtered through a glass filter under an argon atmosphere and washed with THF (1 ml × 3 times). The filtrate was concentrated, and the residue was distilled under reduced pressure to obtain 2.59 g (12.0 mmol, yield 60%) of the desired product as a colorless transparent liquid.
1 H-NMR (300 MHz, CDCl3 ) δ: 7.08 to 7.05 (m, 6H), 6.91 to 6.81 (m, 4H), 6.15 (br, 4H), 6.15 (d, J = 8.3 Hz, 1H), 4.64 (dd, JHH = 8.3Hz,3 JHP = 4.2Hz, 1H), 2.64 (d,3 JHP = 15.3Hz, 3H)
31 P-NMR (121 MHz, CDCl3 ) δ: 171.7
Production Example 3 [(2R, 5R) -2- (5′-O-tert-butyldiphenylsilylthymidin-3′-yl) -3-methyl-5-phenyl-1,3,2-oxaazaphosphoridine Production; Production of Compound of General Formula (1)]
2.18 g (4.55 mmol) of 5′-O-tert-butyldiphenylsilylthymidine [nucleoside (8)] was azeotropically dried with pyridine and toluene, and dissolved in 7.50 ml of THF. To this, 3.17 ml (22.73 mmol) of triethylamine was added and cooled to -78 ° C.
この溶液に、アルゴン雰囲気下、製造例2で得られた化合物〔ホスフィチル化剤(7)〕のTHF溶液7.5ml(4.55mmol)滴下した後、室温で30分間攪拌し、飽和炭酸水素ナトリウム溶液75ml及びクロロホルム75mlを加えた。 To this solution, 7.5 ml (4.55 mmol) of the THF solution of the compound [phosphitylating agent (7)] obtained in Production Example 2 was added dropwise under an argon atmosphere, followed by stirring at room temperature for 30 minutes, and saturated sodium bicarbonate. 75 ml of solution and 75 ml of chloroform were added.
有機相を分離後、飽和炭酸水素ナトリウム溶液(75ml×2回)で洗浄し、集めた洗浄液をクロロホルム(75ml×2回)で抽出した。次に、集めた有機相を無水硫酸ナトリウムで乾燥後、ろ過し、減圧下で濃縮した。 The organic phase was separated, washed with saturated sodium hydrogen carbonate solution (75 ml × 2 times), and the collected washings were extracted with chloroform (75 ml × 2 times). Next, the collected organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
残渣をシリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル−トリエチルアミン、30:70:3、v/v/v)で分離精製した。得られたフラクションを集めて飽和炭酸水素ナトリウム溶液(100ml)で洗浄した後、無水硫酸ナトリウムで乾燥、ろ過し、減圧下で濃縮することにより無色非晶質である目的物957.0mg(収率32%)を得た。
・1H−NMR(300MHz,CDCl3)δ:8.12(br,1H),7.66〜7.62(m,4H),7.46〜7.16(m,12H),6.39(dd,J=2.4,5.7Hz,1H),5.55(dd,J=6.9,7.2Hz,1H),4.95〜4.90
(m,1H),4.04〜4.02(m,1H),3.95(dd,2JH=18.2Hz,3JH=1.1Hz,1H),3.89(dd,2JH=18.2Hz,3JH=1.1Hz,1H),3.51〜3.46(m,1H),2.93〜2.86(m,1H),2.75〜2.71(d,J=6Hz,3H),2.46〜2.40(m,1H),2.28〜2.17(m,1H),1.58(d,J=0.6Hz,3H),1.10(s,9H)
・31P−NMR(121MHz,CDCl3)δ:143.5(s)
実施例1〔(R)トリエチルアンモニウム 5’−O−tert−ブチルジフェニルシリルチミジン−3’−イル 3’−O−ブチルジメチルシリルチミジン−5’−イル ボラノフォスフェートの製造〕
製造例3で得られた化合物〔一般式(1)の化合物〕49.5mg(75μmol)と3’−O−tert−ブチルジメチルシリルチミジン〔ヌクレオシド(2)〕17.8mg(50μmol)とを五酸化二リン存在下で12時間乾燥した。The residue was separated and purified by silica gel column chromatography (hexane-ethyl acetate-triethylamine, 30: 70: 3, v / v / v). The obtained fractions were collected, washed with a saturated sodium hydrogen carbonate solution (100 ml), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give 957.0 mg (yield) of a colorless amorphous target product. 32%).
・1 H-NMR (300 MHz, CDCl3 ) δ: 8.12 (br, 1H), 7.66 to 7.62 (m, 4H), 7.46 to 7.16 (m, 12H), 6.39 (dd, J = 2.4, 5.7 Hz, 1H ), 5.55 (dd, J = 6.9, 7.2Hz, 1H), 4.95-4.90
(M, 1H), 4.04 to 4.02 (m, 1H), 3.95 (dd,2 JH = 18.2Hz,3 JH = 1.1Hz, 1H), 3.89 (dd,2 JH = 18.2Hz,3 JH = 1.1Hz, 1H), 3.51 to 3.46 (m, 1H), 2.93 to 2.86 (m, 1H), 2.75 to 2.71 (d, J = 6Hz, 3H), 2.46 to 2.40 (m, 1H), 2.28 to 2.17 (M, 1H), 1.58 (d, J = 0.6Hz, 3H), 1.10 (s, 9H)
· 31 P-NMR (121MHz, CDCl 3) δ: 143.5 (s)
Example 1 (Production of (R) triethylammonium 5′-O-tert-butyldiphenylsilylthymidine-3′-yl 3′-O-butyldimethylsilylthymidine-5′-yl boranophosphate)
The compound obtained in Production Example 3 [compound of general formula (1)] 49.5 mg (75 μmol) and 3′-O-tert-butyldimethylsilylthymidine [nucleoside (2)] 17.8 mg (50 μmol) Dried for 12 hours in the presence of diphosphorus oxide.
ここに、モレキュラーシーブ(MS3A)で8時間乾燥させた製造例1で得られた化合物〔活性化剤(3)〕200μl(100μmol)の0.5Mアセトニトリル溶液をアルゴン雰囲気下で加え、5分静置した。 To this was added a 0.5 M acetonitrile solution of 200 [mu] l (100 [mu] mol) of the compound [activator (3)] obtained in Production Example 1 dried for 8 hours with molecular sieve (MS3A) in an argon atmosphere, and allowed to stand for 5 minutes. I put it.
その後、1.04Mボランテトラヒドロフラン錯体のテトラヒロドフラン溶液(求電子試薬)0.5ml(500μl)を加えた。添加後10分間静置し、減圧下でアセトニトリルと過剰のボラノ化剤を留去した。その後、1,8−ジアザビシクロ[5,4,0]ウンデカ−7−エン74.6μl(500μmol)を加え、50℃で26時間放置した。 Thereafter, 0.5 ml (500 μl) of a tetrahydrofuran solution (electrophilic reagent) of 1.04 M borane tetrahydrofuran complex was added. The mixture was allowed to stand for 10 minutes after the addition, and acetonitrile and excess boranoting agent were distilled off under reduced pressure. Thereafter, 74.6 μl (500 μmol) of 1,8-diazabicyclo [5,4,0] undec-7-ene was added and left at 50 ° C. for 26 hours.
その後、室温に戻し、クロロホルム10mlで希釈し、pH=7.0の0.2Mリン酸緩衝液10mlで洗浄した。洗浄液をクロロホルム(10ml×3回)で抽出した後、集めた有機相を無水硫酸ナトリウムで乾燥、ろ過し、減圧下で濃縮した。 Thereafter, the temperature was returned to room temperature, diluted with 10 ml of chloroform, and washed with 10 ml of 0.2 M phosphate buffer having a pH of 7.0. The washing solution was extracted with chloroform (10 ml × 3 times), and the collected organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
残渣を薄相クロマトグラフィー(ジクロロメタン:メタノール:トリメチルアミン=99:1:0.5、v/v/vで3回、96:4:0.5、v/v/vで2回)で分離精製し、得られた生成物をクロロホルム/1Mトリエチルアンモニウム酢酸緩衝液により塩交換することで(脱保護)、無色非晶質である目的物25.6mg(収率51%)を得た。
・1H−NMR(300MHz,CDCl3)δ:9.3〜8.8(br,1H),7.69〜7.64(m,6H),7.52〜7.36(m,6H),6.44〜6.31(m,2H),5.19〜5.10(m,1H),4.39(s,1H),3.98〜3.89
(m,4H),3.06(q,J=7.2Hz,6H),2.59〜2.56(m,1H),2.25〜2.20(m,1H),1.98(s,1H),1.56(s,3H),1.32(t,J=6.9Hz,9H),1.10(s,9H),0.87(s,9H),0.05(s,6H),1.0〜0(br,3H)
・31P−NMR(121MHz,CDCl3)δ:95.0(br)
実施例2〔(R)トリエチルアンモニウム チミジン−3’−イル チミジン−5'−イル−ボラノフォスフェートの製造〕
実施例1で得られた化合物25.6mg(25.5μmmol)をピリジン及びトルエンで共沸乾燥し、トリエチルアミン−3フッ化水素(500μl)に溶解した。この溶液を室温で24時間攪拌した後、0.1M酢酸アンモニウム緩衝液3mlを加え、逆相カラムクロマトグラフィー〔0.1M酢酸アンモニウム緩衝液(pH=7.0)アセトニトリル0〜10%の線形的グラディエント〕により精製し、無色非晶質である目的物10.6mg(収率61%)を得た。
・1H−NMR(300MHz,D2O)δ:7.69(s,1H),7.63(s,1H),6.30〜6.18(m,2H),4.87(br,1H),4.55〜4.54(m,1H),4.14〜4.05(m,4H),3.80〜3.77(m,2H),3.18(q,J=3.6Hz,6H),2.49〜2.46(m,1H),1.90(s,3H),1.87(s,3H),1.27(t,J=7.2Hz,9H),1.0〜0(br,3H)
・31P−NMR(121MHz,D2O)δ:93.0(br)
実施例3
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-3’-O-〔(2R,5R)-3-メチル-5-フェニル-1,3,2-オキサザホスホリジン-2-イル〕-2’-デオキシアデノシン[(Rp)-1]の
製造
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-2’-デオキシアデノシン(0.80 g, 1.50 mmol)をピリジン、トルエンと繰り返し共沸することによって乾燥し、THF(7.50 ml) 溶液とした。Separation and purification of the residue by thin phase chromatography (dichloromethane: methanol: trimethylamine = 99: 1: 0.5, 3 times at v / v / v, 96: 4: 0.5, 2 times at v / v / v) Then, the obtained product was subjected to salt exchange with chloroform / 1M triethylammonium acetate buffer (deprotection) to obtain 25.6 mg (yield 51%) of the desired product which was colorless and amorphous.
・1 H-NMR (300 MHz, CDCl3 ) δ: 9.3 to 8.8 (br, 1H), 7.69 to 7.64 (m, 6H), 7.52 to 7.36 (m, 6H), 6.44 to 6.31 (m, 2H) , 5.19-5.10 (m, 1H), 4.39 (s, 1H), 3.98-3.89
(M, 4H), 3.06 (q, J = 7.2Hz, 6H), 2.59 to 2.56 (m, 1H), 2.25 to 2.20 (m, 1H), 1.98 (s, 1H), 1.56 (s, 3H), 1.32 (t, J = 6.9Hz, 9H), 1.10 (s, 9H), 0.87 (s, 9H), 0.05 (s, 6H), 1.0 to 0 (br, 3H)
・31 P-NMR (121 MHz, CDCl3 ) δ: 95.0 (br)
Example 2 [Production of (R) triethylammonium thymidine-3′-yl thymidine-5′-yl-boranophosphate]
25.6 mg (25.5 μmmol) of the compound obtained in Example 1 was azeotropically dried with pyridine and toluene, and dissolved in triethylamine-3 hydrogen fluoride (500 μl). After stirring this solution at room temperature for 24 hours, 3 ml of 0.1 M ammonium acetate buffer was added, and reverse phase column chromatography [0.1 M ammonium acetate buffer (pH = 7.0) acetonitrile 0-10% linear To obtain 10.6 mg (yield 61%) of the target product which is colorless and amorphous.
· 1 H-NMR (300MHz, D 2 O) δ: 7.69 (s, 1H), 7.63 (s, 1H), 6.30~6.18 (m, 2H), 4.87 (br, 1H), 4.55~4.54 (m, 1H), 4.14 to 4.05 (m, 4H), 3.80 to 3.77 (m, 2H), 3.18 (q, J = 3.6Hz, 6H), 2.49 to 2.46 (m, 1H), 1.90 (s, 3H), 1.87 (S, 3H), 1.27 (t, J = 7.2Hz, 9H), 1.0 to 0 (br, 3H)
・31 P-NMR (121 MHz, D2 O) δ: 93.0 (br)
Example 3
5'-O- [Bis (4-methoxyphenyl) phenylmethyl] -3'-O-[(2R, 5R) -3-methyl-5-phenyl-1,3,2-oxazaphospholidine-2- Il] -2'-deoxyadenosine [(Rp) -1]
5'-O- [Bis (4-methoxyphenyl) phenylmethyl] -2'-deoxyadenosine (0.80 g, 1.50 mmol) was dried by repeated azeotropy with pyridine and toluene, and THF (7.50 ml) solution was added. did.
これにトリエチルアミン(1.47 ml, 10.5 mmol)を加え、−78 ℃に冷却した後、アルゴン雰囲気下、下記式15の0.22 M THF溶液(10.0 ml, 2.25 mmol)を滴下した。反応混合物を−78℃に保ったまま1時間撹拌した後、飽和重曹水(75 ml)及びクロロホルム(75 ml)を加えた。 Triethylamine (1.47 ml, 10.5 mmol) was added thereto, and after cooling to −78 ° C., a 0.22 M THF solution (10.0 ml, 2.25 mmol) of the following formula 15 was added dropwise under an argon atmosphere. The reaction mixture was stirred for 1 hour while maintaining at -78 ° C, and then saturated aqueous sodium hydrogen carbonate (75 ml) and chloroform (75 ml) were added.
有機相を分離後、飽和重曹水で洗浄(75 ml×2)し、集めた洗液をクロロホルム(75 ml ×2)で抽出した。集めた有機相を無水硫酸ナトリウムで乾燥後、ろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー〔2.5 × 16 cm,シリカゲル50g,ジクロロメタン−ヘキサン−ピリジン−トリエチルアミン(57:29:14:2, v/v/v/v)〕で分離精製した。 The organic phase was separated, washed with saturated aqueous sodium hydrogen carbonate (75 ml × 2), and the collected washings were extracted with chloroform (75 ml × 2). The collected organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography [2.5 × 16 cm, silica gel 50 g, dichloromethane-hexane-pyridine-triethylamine (57: 29: 14: 2, v / v / v / v)].
(Rp)-1を含むフラクションを集め、飽和重曹水水溶液(100 ml)で洗浄後、無水硫酸ナトリウムで乾燥、ろ過し、減圧下濃縮乾燥して、下記式の(Rp)-1(469.1 mg, 44%)を得た。薄黄色非晶質。
1H-NMR (CDCl3) δ 8.28 (s, 1H), 7.98 (s, 1H), 7.40 - 7.13 (m, 9H), 6.76 - 6.73 (m, 4H), 6.46 - 6.42 (t, 1H), 6.02 (s, 1H), 5.59 - 5.57 (br, 2H), 5.04 - 4.99 (m,
1H), 4.23 - 4.20 (m, 1H), 3.72 - 3.53 (m, 6H), 3.53 - 3.49 (m, 1H), 3.41 - 3.34 (m, 1H), 2.96 - 2.84 (m, 2H), 2.71, 2.67 (d, 3H), 2.63 - 2.55 (m, 1H).31P-NMR (CDCl3) δ 141.4.Fractions containing (Rp) -1 were collected, washed with a saturated aqueous sodium bicarbonate solution (100 ml), dried over anhydrous sodium sulfate, filtered and concentrated to dryness under reduced pressure to give (Rp) -1 (469.1 mg , 44%). Pale yellow amorphous.
1 H-NMR (CDCl3 ) δ 8.28 (s, 1H), 7.98 (s, 1H), 7.40-7.13 (m, 9H), 6.76-6.73 (m, 4H), 6.46-6.42 (t, 1H), 6.02 (s, 1H), 5.59-5.57 (br, 2H), 5.04-4.99 (m,
1H), 4.23-4.20 (m, 1H), 3.72-3.53 (m, 6H), 3.53-3.49 (m, 1H), 3.41-3.34 (m, 1H), 2.96-2.84 (m, 2H), 2.71, 2.67 (d, 3H), 2.63 -. 2.55 (m, 1H) 31 P-NMR (CDCl 3) δ 141.4.
実施例4
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-3’-O-〔(2R,5R)-3-メチル-5-フェニル-1,3,2-オキサザホスホリジン-2-イル〕-2’-デオキシシチジン[(Rp)-2]の製
造
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-2’-デオキシシチジン(0.79 g, 1.50 mmol)をピリジン、トルエンと繰り返し共沸することによって乾燥し、THF (7.50 ml) 溶液とした。Example 4
5'-O- [Bis (4-methoxyphenyl) phenylmethyl] -3'-O-[(2R, 5R) -3-methyl-5-phenyl-1,3,2-oxazaphospholidine-2- Il] -2'-deoxycytidine [(Rp) -2]
5'-O- [Bis (4-methoxyphenyl) phenylmethyl] -2'-deoxycytidine (0.79 g, 1.50 mmol) was dried by repeated azeotropy with pyridine and toluene, and THF (7.50 ml) solution was added. did.
これにトリエチルアミン(1.47 ml, 10.5mmol)を加え、−78℃に冷却した後、アルゴン雰囲気下、上記の15の0.22 M THF溶液(10.0 ml, 2.25 mmol)を滴下した。反応混合物を−78℃に保ったまま1時間撹拌した後、飽和重曹水(75 ml)及びクロロホルム(75 ml)を加えた。 Triethylamine (1.47 ml, 10.5 mmol) was added thereto, and after cooling to −78 ° C., the above-mentioned 15 0.22 M THF solution (10.0 ml, 2.25 mmol) was added dropwise under an argon atmosphere. The reaction mixture was stirred for 1 hour while maintaining at -78 ° C, and then saturated aqueous sodium hydrogen carbonate (75 ml) and chloroform (75 ml) were added.
有機相を分離後、飽和重曹水で洗浄(75 ml×2)し、集めた洗液をクロロホルム(75ml×2)で抽出した。集めた有機相を無水硫酸ナトリウムで乾燥後、ろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー〔2.5×16cm,シリカゲル50g,ジクロロメタン−ヘキサン−ピリジン−トリエチルアミン(71:14:14:2, v/v/v/v)〕で分離精製した。 The organic phase was separated, washed with saturated aqueous sodium hydrogen carbonate (75 ml × 2), and the collected washings were extracted with chloroform (75 ml × 2). The collected organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography [2.5 × 16 cm, silica gel 50 g, dichloromethane-hexane-pyridine-triethylamine (71: 14: 14: 2, v / v / v / v)].
(Rp)-2を含むフラクションを集め、飽和重曹水水溶液 (100 ml) で洗浄後、無水硫酸ナトリウムで乾燥、ろ過し、減圧下濃縮乾燥して、下記式の(Rp)-2(452.1 mg, 42%)を得た。薄黄色非晶質。
1H-NMR (CDCl3) δ 7.89, 7.87 (d, 1H), 7.40 - 7.10 (m, 9H), 6.79 - 6.77 (m, 4H), 6.28 - 6.24 (t, 1H), 5.52 - 5.43 (m, 2H), 4.87 - 4.82 (m, 1H), 4.06 - 4.05 (m, 1H), 3.77 - 3.66 (m, 4H), 3.46 - 3.41 (m, 3H), 2.87 - 2.82 (m, 1H), 2.69, 2.65 (d, 3H), 2.58 - 2.34 (m, 1H), 2.32 - 2.23 (m, 1H).31P-NMR (CDCl3) δ 143.5.Fractions containing (Rp) -2 were collected, washed with a saturated aqueous sodium bicarbonate solution (100 ml), dried over anhydrous sodium sulfate, filtered and concentrated to dryness under reduced pressure to give (Rp) -2 (452.1 mg , 42%). Pale yellow amorphous.
1 H-NMR (CDCl3 ) δ 7.89, 7.87 (d, 1H), 7.40-7.10 (m, 9H), 6.79-6.77 (m, 4H), 6.28-6.24 (t, 1H), 5.52-5.43 (m , 2H), 4.87-4.82 (m, 1H), 4.06-4.05 (m, 1H), 3.77-3.66 (m, 4H), 3.46-3.41 (m, 3H), 2.87-2.82 (m, 1H), 2.69 , 2.65 (d, 3H), 2.58 - 2.34 (m, 1H), 2.32 -. 2.23 (m, 1H) 31 P-NMR (CDCl 3) δ 143.5.
実施例5
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-3’-O-〔(2R,5R)-3-メチル-5-フェニル-1,3,2-オキサザホスホリジン-2-イル〕-2’-デオキシグアノシン[(Rp)-3]の
製造
5’-O-〔ビス(4-メトキシフェニル)フェニルメチル〕-2’-デオキシグアノシン(0.85g,1.50mmol)をピリジン、トルエンと繰り返し共沸することによって乾燥し、THF (7.50 ml)溶液とした。Example 5
5'-O- [Bis (4-methoxyphenyl) phenylmethyl] -3'-O-[(2R, 5R) -3-methyl-5-phenyl-1,3,2-oxazaphospholidine-2- Il] -2'-deoxyguanosine [(Rp) -3]
5′-O- [Bis (4-methoxyphenyl) phenylmethyl] -2′-deoxyguanosine (0.85 g, 1.50 mmol) was dried by repeated azeotropy with pyridine and toluene, and a THF (7.50 ml) solution was added. did.
これにトリエチルアミン(1.47 ml, 10.5 mmol)を加え、−78 ℃に冷却した後、アルゴン雰囲気下、上記の15の0.22 M THF溶液(10.0 ml, 2.25 mmol)を滴下した。反応混合物を−78℃に保ったまま1時間30分撹拌した後、飽和重曹水(75 ml)及びクロロホルム
(75ml)を加えた。Triethylamine (1.47 ml, 10.5 mmol) was added thereto, and the mixture was cooled to −78 ° C., and then the above-mentioned 15 0.22 M THF solution (10.0 ml, 2.25 mmol) was added dropwise under an argon atmosphere. The reaction mixture was stirred for 1 hour and 30 minutes while maintaining at -78 ° C, and saturated aqueous sodium hydrogen carbonate (75 ml) and chloroform (75 ml) were added.
有機相を分離後、飽和重曹水で洗浄(75 ml×2)し、集めた洗液をクロロホルム(75ml×2)で抽出した。集めた有機相を無水硫酸ナトリウムで乾燥後、ろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー〔2.5×16cm,シリカゲル50g,ジクロロメタン−ピリジン−トリエチルアミン(83:17:2, v/v/v)〕で分離精製した。 The organic phase was separated, washed with saturated aqueous sodium hydrogen carbonate (75 ml × 2), and the collected washings were extracted with chloroform (75 ml × 2). The collected organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography [2.5 × 16 cm, silica gel 50 g, dichloromethane-pyridine-triethylamine (83: 17: 2, v / v / v)].
(Rp)-3を含むフラクションを集め、飽和重曹水水溶液(100ml)で洗浄後、無水硫酸ナトリウムで乾燥、ろ過し、減圧下濃縮乾燥して、下記式の(Rp)-3(332.7mg,30%)を得た。薄黄色非晶質。
1H-NMR (CDCl3) δ 11.0 - 10.4 (br, 1H), 7.84 (s, 1H), 7.34 - 7.19 (m, 9H), 6.81 - 6.78 (m, 4H), 6.48 (br, 1H), 6.15 - 6.11 (m, 1H), 5.59 - 5.54 (m, 1H), 4.85 - 4.80 (m, 1H), 3.95 - 3.93(m, 1H), 3.71 - 3.68 (m, 4H), 3.48 - 3.35 (m, 1H), 2.85
- 2.71 (m, 1H), 2.58 - 2.48 (m, 3H), 2.38 - 2.27 (m, 1H).31P-NMR (CDCl3) δ 137.5.Fractions containing (Rp) -3 were collected, washed with a saturated aqueous sodium bicarbonate solution (100 ml), dried over anhydrous sodium sulfate, filtered and concentrated to dryness under reduced pressure to give (Rp) -3 (332.7 mg, 30%). Pale yellow amorphous.
1 H-NMR (CDCl3 ) δ 11.0-10.4 (br, 1H), 7.84 (s, 1H), 7.34-7.19 (m, 9H), 6.81-6.78 (m, 4H), 6.48 (br, 1H), 6.15-6.11 (m, 1H), 5.59-5.54 (m, 1H), 4.85-4.80 (m, 1H), 3.95-3.93 (m, 1H), 3.71-3.68 (m, 4H), 3.48-3.35 (m , 1H), 2.85
- 2.71 (m, 1H), 2.58 - 2.48 (m, 3H), 2.38 -. 2.27 (m, 1H) 31 P-NMR (CDCl 3) δ 137.5.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011019399AJP2011088935A (en) | 2003-08-08 | 2011-02-01 | Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003289559 | 2003-08-08 | ||
| JP2011019399AJP2011088935A (en) | 2003-08-08 | 2011-02-01 | Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004089150ADivisionJP2005089441A (en) | 2003-08-08 | 2004-03-25 | Method for producing phosphorus atom-modified nucleotide analogues with high stereoregularity |
| Publication Number | Publication Date |
|---|---|
| JP2011088935Atrue JP2011088935A (en) | 2011-05-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011019399APendingJP2011088935A (en) | 2003-08-08 | 2011-02-01 | Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog |
| Country | Link |
|---|---|
| JP (1) | JP2011088935A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9394333B2 (en) | 2008-12-02 | 2016-07-19 | Wave Life Sciences Japan | Method for the synthesis of phosphorus atom modified nucleic acids |
| US9598458B2 (en) | 2012-07-13 | 2017-03-21 | Wave Life Sciences Japan, Inc. | Asymmetric auxiliary group |
| US9605019B2 (en) | 2011-07-19 | 2017-03-28 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
| US9617547B2 (en) | 2012-07-13 | 2017-04-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
| US9744183B2 (en) | 2009-07-06 | 2017-08-29 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
| US9982257B2 (en) | 2012-07-13 | 2018-05-29 | Wave Life Sciences Ltd. | Chiral control |
| US10144933B2 (en) | 2014-01-15 | 2018-12-04 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
| US10149905B2 (en) | 2014-01-15 | 2018-12-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
| US10160969B2 (en) | 2014-01-16 | 2018-12-25 | Wave Life Sciences Ltd. | Chiral design |
| US10322173B2 (en) | 2014-01-15 | 2019-06-18 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent |
| US10428019B2 (en) | 2010-09-24 | 2019-10-01 | Wave Life Sciences Ltd. | Chiral auxiliaries |
| Title |
|---|
| JPN6010027601; J.AM.CHEM.SOC. 125(27), 20030614, pp.8307-8317* |
| JPN6010027602; Tetrahedron Letters vol.39, 1998, pp.6433-6436* |
| JPN6010027603; Tetrahedron Letters vol.40, 1999, pp.2041-2044* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9695211B2 (en) | 2008-12-02 | 2017-07-04 | Wave Life Sciences Japan, Inc. | Method for the synthesis of phosphorus atom modified nucleic acids |
| US10329318B2 (en) | 2008-12-02 | 2019-06-25 | Wave Life Sciences Ltd. | Method for the synthesis of phosphorus atom modified nucleic acids |
| US9394333B2 (en) | 2008-12-02 | 2016-07-19 | Wave Life Sciences Japan | Method for the synthesis of phosphorus atom modified nucleic acids |
| US10307434B2 (en) | 2009-07-06 | 2019-06-04 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
| US9744183B2 (en) | 2009-07-06 | 2017-08-29 | Wave Life Sciences Ltd. | Nucleic acid prodrugs and methods of use thereof |
| US10428019B2 (en) | 2010-09-24 | 2019-10-01 | Wave Life Sciences Ltd. | Chiral auxiliaries |
| US10280192B2 (en) | 2011-07-19 | 2019-05-07 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
| US9605019B2 (en) | 2011-07-19 | 2017-03-28 | Wave Life Sciences Ltd. | Methods for the synthesis of functionalized nucleic acids |
| US9598458B2 (en) | 2012-07-13 | 2017-03-21 | Wave Life Sciences Japan, Inc. | Asymmetric auxiliary group |
| US9982257B2 (en) | 2012-07-13 | 2018-05-29 | Wave Life Sciences Ltd. | Chiral control |
| US9617547B2 (en) | 2012-07-13 | 2017-04-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant |
| US10590413B2 (en) | 2012-07-13 | 2020-03-17 | Wave Life Sciences Ltd. | Chiral control |
| US10167309B2 (en) | 2012-07-13 | 2019-01-01 | Wave Life Sciences Ltd. | Asymmetric auxiliary group |
| US10144933B2 (en) | 2014-01-15 | 2018-12-04 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator |
| US10322173B2 (en) | 2014-01-15 | 2019-06-18 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent |
| US10149905B2 (en) | 2014-01-15 | 2018-12-11 | Shin Nippon Biomedical Laboratories, Ltd. | Chiral nucleic acid adjuvant having antitumor effect and antitumor agent |
| US10160969B2 (en) | 2014-01-16 | 2018-12-25 | Wave Life Sciences Ltd. | Chiral design |
| Publication | Publication Date | Title |
|---|---|---|
| JP2005089441A (en) | Method for producing phosphorus atom-modified nucleotide analogues with high stereoregularity | |
| JP2011088935A (en) | Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog | |
| US5218088A (en) | Process for preparing dithiophosphate oligonucleotide analogs via nucleoside thiophosphoramidite intermediates | |
| JP5878758B2 (en) | Novel protecting groups for the synthesis of RNA and its derivatives | |
| JP5847700B2 (en) | Method for producing ribonucleoside phosphorothioate | |
| US5449769A (en) | Method and reagent for sulfurization of organophosphorous compounds | |
| JP4865544B2 (en) | Method for producing highly stereoregular ribonucleotide analogs and deoxyribonucleotide analogs | |
| JP4348044B2 (en) | Method for producing highly stereoregular dinucleoside phosphorothioates | |
| HUT64555A (en) | A method for linking nucleosides with syloxane bridge | |
| WO1998022489A1 (en) | Novel nucleotide analogues | |
| JP2017518966A (en) | Phosphorus protecting groups and their preparation and use | |
| JP5194256B2 (en) | 2 'hydroxyl group-modified ribonucleoside derivative | |
| JPH10195098A (en) | New nucleotide analogue | |
| JP2011184318A (en) | Ribonucleoside h-boranophosphonate | |
| IL108467A (en) | Modified oligodeoxyribo-nucleotides their preparation and their therapeutic use | |
| EP1608669A1 (en) | Silylated oligonucleotide compounds | |
| WO2002018406A1 (en) | Alkylated hexitol nucleoside analogues and oligomers thereof | |
| AU707369B2 (en) | Compositions and methods for the synthesis of organophosphorus derivatives | |
| WO2006095739A1 (en) | Process for deblocking the 2'-hydroxyl groups of ribonucleosides | |
| JP6429264B2 (en) | Boranophosphate compounds and nucleic acid oligomers | |
| EP4349846A1 (en) | Chimeric nucleic acid oligomer including phosphorothioate and boranophosphate, and method for producing same | |
| EP4249495A1 (en) | Method for the purification of polynucleotides and analogues thereof | |
| JP4805143B2 (en) | Novel artificial RNA modified with 2 'hydroxyl group | |
| CA2078256A1 (en) | Synthesis of sulfide-linked di-or oligonucleotide analogs and incorporation into antisense dna or rna | |
| EP1169329A1 (en) | Oligonucleotides having alkylphosphonate linkages and methods for their preparation |
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20130319 | |
| A02 | Decision of refusal | Effective date:20130716 Free format text:JAPANESE INTERMEDIATE CODE: A02 |