Movatterモバイル変換


[0]ホーム

URL:


JP2010056458A - Method of manufacturing light emitting element - Google Patents

Method of manufacturing light emitting element
Download PDF

Info

Publication number
JP2010056458A
JP2010056458AJP2008222508AJP2008222508AJP2010056458AJP 2010056458 AJP2010056458 AJP 2010056458AJP 2008222508 AJP2008222508 AJP 2008222508AJP 2008222508 AJP2008222508 AJP 2008222508AJP 2010056458 AJP2010056458 AJP 2010056458A
Authority
JP
Japan
Prior art keywords
growth
substrate
bonding portion
metal body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008222508A
Other languages
Japanese (ja)
Inventor
Katsuaki Masaki
克明 正木
Takanori Yasuda
隆則 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera CorpfiledCriticalKyocera Corp
Priority to JP2008222508ApriorityCriticalpatent/JP2010056458A/en
Publication of JP2010056458ApublicationCriticalpatent/JP2010056458A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromJapanese

【課題】 作製工程における環境の温度変化に対して悪影響が小さい発光素子の製造方法を提供する。
【解決手段】 本発明の発光素子の製造方法は、(1)第1の積層体を複数形成する工程と、(2)5金属体と第2の接合部6とを順次積層して第2の積層体を複数形成する工程と、(3)加熱することにより第1の積層体に前記第2の積層体を実装する工程と、(4)成長用基板1を除去する工程と、(5)支持基板4を除去して第1の電極5とする工程と、(6)光半導体素子2上に第2の電極7とする工程と、を具備する
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a method for manufacturing a light-emitting element having a small adverse effect on environmental temperature change in a manufacturing process.
A method of manufacturing a light emitting device according to the present invention includes: (1) a step of forming a plurality of first laminated bodies; and (2) a fifth metal body and a second bonding portion 6 are sequentially laminated. (3) a step of mounting the second laminate on the first laminate by heating, (4) a step of removing the growth substrate 1, and (5) 1) removing the support substrate 4 to form the first electrode 5; and (6) forming the second electrode 7 on the optical semiconductor element 2.

Description

Translated fromJapanese

本発明は、発光素子の製造方法に関する。  The present invention relates to a method for manufacturing a light emitting device.

近年、光半導体から構成される発光素子が開発されており、照明装置などの用途に用いられている。このような発光素子としては、例えば、青色発光素子、紫外光発光素子などのIII族―V族系化合物半導体が挙げられる。  In recent years, light emitting elements composed of optical semiconductors have been developed and used for lighting devices and the like. Examples of such a light emitting element include a group III-V group compound semiconductor such as a blue light emitting element and an ultraviolet light emitting element.

発光素子の開発とともに、発光素子の製造方法についても種々の方法が開発されており、例えば、成長用基板に発光素子を成長させたのち、発光素子を成長用基板から剥がして発光素子を作製する製造方法が開示されている(特許文献1参照)。
特開2001−244503号公報
Along with the development of light-emitting elements, various methods for manufacturing light-emitting elements have been developed. For example, after a light-emitting element is grown on a growth substrate, the light-emitting element is peeled off from the growth substrate to produce a light-emitting element. A manufacturing method is disclosed (see Patent Document 1).
JP 2001-244503 A

しかしながら、特許文献1では、サファイアなどのウェハサイズの成長用基板上に光半導体層を形成し、金属などのウェハサイズの導電性基板を加熱により接合する工程を含むため、温度減少時に、成長用基板と導電性基板との熱膨張係数差の違いにより、成長用基板と導電性基板との間で歪みが生じる。そのため、得られた発光素子は接合不良、半導体欠陥が発生する傾向があった。  However, sincePatent Document 1 includes a step of forming an optical semiconductor layer on a wafer-size growth substrate such as sapphire and bonding a wafer-size conductive substrate such as metal by heating, it is used for growth when the temperature decreases. Due to the difference in thermal expansion coefficient between the substrate and the conductive substrate, distortion occurs between the growth substrate and the conductive substrate. For this reason, the obtained light emitting element tends to cause poor bonding and semiconductor defects.

本発明の目的は、作製工程における温度変化に対して悪影響が小さい発光素子の製造方法を提供することである。  An object of the present invention is to provide a method for manufacturing a light-emitting element having a small adverse effect on a temperature change in a manufacturing process.

本発明は、(1)成長用基板上に、光半導体層と第1の接合部とを順次積層して第1の積層体を複数形成する工程と、(2)支持基板の、前記成長用基板と対向させたとき前記第1の接合部と対向する位置に、金属体と第2の接合部とを順次積層して第2の積層体を複数形成する工程と、(3)加熱することにより前記第1の接合部と前記第2の接合部とを接合させて前記第1の積層体に前記第2の積層体を実装する工程と、(4)前記成長用基板を除去する工程と、(5)前記支持基板を除去して前記金属体を露出させ、第1の電極とする工程と、(6)前記光半導体素子上に導電層を形成して第2の電極とする工程と、
を具備する発光素子の製造方法に関する。
The present invention includes (1) a step of sequentially laminating an optical semiconductor layer and a first bonding portion on a growth substrate to form a plurality of first laminated bodies, and (2) the growth of the support substrate for the growth A step of sequentially stacking a metal body and a second bonding portion at a position facing the first bonding portion when facing the substrate to form a plurality of second stacked bodies; and (3) heating. Bonding the first bonding portion and the second bonding portion to mount the second stacked body on the first stacked body, and (4) removing the growth substrate. (5) removing the support substrate to expose the metal body to form a first electrode; (6) forming a conductive layer on the optical semiconductor element to form a second electrode; ,
The present invention relates to a method for manufacturing a light emitting device comprising:

前記工程(1)は、(1−1)前記成長用基板上に、前記第1の積層体のエピタキシャル成長に対して不活性な材料から成る物質により成長抑制マスクパターンを形成して、相互に分離された複数の前記成長用基板上に露出部を形成する工程と、(1−2)前記成長用基板上の露出部に、エピタキシャル成長によって前記第1の積層体を複数形成する工程と、
(1−3)前記成長抑制マスクパターンを除去する工程と、を含むことが好ましい。
In the step (1), (1-1) a growth suppression mask pattern is formed on the growth substrate by a material made of a material that is inactive with respect to the epitaxial growth of the first stacked body and separated from each other. A step of forming an exposed portion on the plurality of grown substrates, and (1-2) a step of forming a plurality of the first stacked bodies by epitaxial growth on the exposed portion on the growth substrate,
(1-3) It is preferable to include a step of removing the growth suppression mask pattern.

前記成長用基板と前記第1の積層体が異種材料である場合、前記工程(4)において、レーザーリフトオフにより前記成長用基板を除去することが好ましい。  When the growth substrate and the first laminate are different materials, it is preferable that the growth substrate is removed by laser lift-off in the step (4).

前記金属体がCuであり、前記成長用基板がサファイアであることが好ましい。  It is preferable that the metal body is Cu and the growth substrate is sapphire.

前記工程(2)において、前記支持基板と前記金属体との間に、前記第1の接合部および前記第2の接合部の融点よりも低い融点を有する第3の接合部を介して接合され、前記工程(5)において、前記第1の接合部および前記第2の接合部の融点よりも低く、前記第3の接合部の融点よりも高い温度に前記支持基板と前記金属体とを加熱することにより前記支持基板を除去することが好ましい。  In the step (2), the support substrate and the metal body are bonded via a third bonding portion having a melting point lower than that of the first bonding portion and the second bonding portion. In the step (5), the support substrate and the metal body are heated to a temperature lower than the melting points of the first bonding portion and the second bonding portion and higher than the melting point of the third bonding portion. It is preferable to remove the support substrate by doing so.

本発明の発光素子の製造方法は、支持基板の、前記成長用基板と対向させたとき前記第1の接合部と対向する位置に、金属体と第2の接合部とを順次積層して第2の積層体を複数形成する工程を具備する。前記工程によりウェハサイズではなく、発光素子サイズの金属体を用いることにより、金属体と光半導体層との接続面積が小さくなり、金属体と成長用基板との間の熱膨張率係数の差により発生する歪みを減少させることができるため、熱膨張係数差を気にせず熱伝導率の高い金属体材料を使用することができる。また、加熱後の温度減少時に生じる金属体と成長用基板との間の歪みを抑制することができるため、半導体層のクラック発生を抑制し歩留まり良く発光素子を作製することができる。  In the method for manufacturing a light emitting device of the present invention, a metal substrate and a second bonding portion are sequentially stacked on a support substrate at a position facing the first bonding portion when facing the growth substrate. A step of forming a plurality of the two laminates. By using the metal body of the light emitting element size instead of the wafer size in the above process, the connection area between the metal body and the optical semiconductor layer is reduced, and due to the difference in coefficient of thermal expansion between the metal body and the growth substrate. Since the generated strain can be reduced, a metal material having a high thermal conductivity can be used without worrying about the difference in thermal expansion coefficient. In addition, since the distortion between the metal body and the growth substrate that occurs when the temperature decreases after heating can be suppressed, generation of cracks in the semiconductor layer can be suppressed, and a light-emitting element can be manufactured with high yield.

本発明の発光素子の製造方法において、工程(1)が、(1−1)前記成長用基板上に、前記光半導体層のエピタキシャル成長に対して不活性な材料から成る物質により成長抑制マスクパターンを形成して、相互に分離された前記成長用基板上に露出部を複数形成する工程と、(1−2)前記成長用基板上の複数の露出部に、エピタキシャル成長によって前記積層体を複数形成する工程と、(1−3)前記成長抑制マスクパターンを除去する工程と、を含むことが好ましい。これにより、複数の第1の積層体をまとめて形成することができる。  In the method for manufacturing a light emitting device of the present invention, the step (1) includes (1-1) forming a growth suppression mask pattern on the growth substrate with a material made of a material that is inactive with respect to the epitaxial growth of the optical semiconductor layer. Forming a plurality of exposed portions on the growth substrate separated from each other; and (1-2) forming a plurality of the stacked bodies on the plurality of exposed portions on the growth substrate by epitaxial growth. It is preferable to include a step and (1-3) a step of removing the growth suppression mask pattern. Thereby, a some 1st laminated body can be formed collectively.

本発明の発光素子の製造方法において、前記成長用基板と前記第1の積層体が異種材料である場合、前記工程(4)において、レーザーリフトオフにより前記成長用基板を除去することが好ましい。これにより、成長用基板を容易に除去することが可能となる。更にダイシングする必要無く素子を分離できる。硬度が高くダイシング困難なサファイア基板をダイシングする必要が無く、またダイシングと比べて無駄になる素子領域も非常に少なくなる。  In the method for manufacturing a light-emitting element of the present invention, when the growth substrate and the first laminate are different materials, it is preferable that the growth substrate is removed by laser lift-off in the step (4). This makes it possible to easily remove the growth substrate. Further, the elements can be separated without the need for dicing. There is no need to dice a sapphire substrate that is hard and difficult to dice, and the element area that is wasted compared to dicing is greatly reduced.

本発明の発光素子の製造方法において、前記金属体がCuであり、前記成長用基板がサファイアであることが好ましく、Cuの熱伝導率が高く、発光素子で発生した熱を効率良く外部に放熱できる。なおかつ前記金属体が発光素子サイズであるため、金属体と成長用基板との熱膨張率差が大きなCuとサファイアとであっても、温度減少時に半導体層のクラックの発生を低減できる。  In the method for manufacturing a light-emitting element according to the present invention, the metal body is preferably Cu and the growth substrate is preferably sapphire, Cu has high thermal conductivity, and heat generated by the light-emitting element is efficiently radiated to the outside. it can. In addition, since the metal body has a light-emitting element size, even when Cu and sapphire have a large difference in thermal expansion coefficient between the metal body and the growth substrate, the occurrence of cracks in the semiconductor layer can be reduced when the temperature decreases.

前記工程(2)において、前記支持基板と前記金属体との間に、前記第1の接合部および前記第2の接合部の融点よりも低い融点を有する第3の接合部を介して接合され、前記工程(5)において、前記第1の接合部および前記第2の接合部の融点よりも低く、前記第3の接合部の融点よりも高い温度に前記支持基板と前記金属体とを加熱することにより前記支持基板を除去することが好ましい。これにより、第1の接合部および第2の接合部を密着させたまま、第1および第2の接合部への影響の小さい状態で支持基板のみを除去することができる。  In the step (2), the support substrate and the metal body are bonded via a third bonding portion having a melting point lower than that of the first bonding portion and the second bonding portion. In the step (5), the support substrate and the metal body are heated to a temperature lower than the melting points of the first bonding portion and the second bonding portion and higher than the melting point of the third bonding portion. It is preferable to remove the support substrate by doing so. Thereby, it is possible to remove only the support substrate in a state where the influence on the first and second bonding portions is small while the first bonding portion and the second bonding portion are kept in close contact with each other.

以下、図面を参照しながら本発明の発光素子の製造方法を詳細に説明する。  Hereinafter, a method for manufacturing a light emitting device of the present invention will be described in detail with reference to the drawings.

図1は、本発明の発光素子の製造方法の示す断面図である。  FIG. 1 is a cross-sectional view illustrating a method for manufacturing a light emitting device of the present invention.

図1において、1は成長用基板、2は光半導体層、2aはバッファ層、2bは第1導電型(n型)の半導体層、2cは発光層、2dは第2導電型(p型)の半導体層、2eはテンプレート層、3は第1の接合部、4は支持基板、5は金属体(第1の電極)、6は第2の接合部、7は導電層(第2の電極)、8は発光素子、10は成長抑制マスクパターンをそれぞれ示す。  In FIG. 1, 1 is a growth substrate, 2 is an optical semiconductor layer, 2a is a buffer layer, 2b is a first conductivity type (n-type) semiconductor layer, 2c is a light emitting layer, and 2d is a second conductivity type (p-type). Semiconductor layer, 2e is a template layer, 3 is a first joint, 4 is a support substrate, 5 is a metal body (first electrode), 6 is a second joint, and 7 is a conductive layer (second electrode). ), 8 denotes a light emitting element, and 10 denotes a growth suppression mask pattern.

本発明の発光素子の製造方法は、(1)成長用基板上に、光半導体層と第1の接合部とを順次積層して第1の積層体を複数形成する工程と、(2)支持基板の、前記成長用基板と対向させたとき前記第1の接合部と対向する位置に、金属体と第2の接合部とを順次積層して第2の積層体を複数形成する工程と、(3)加熱することにより前記第1の接合部と前記第2の接合部とを接合させて前記第1の積層体に前記第2の積層体を実装する工程と、(4)前記成長用基板を除去する工程と、(5)前記支持基板を除去して前記金属体を露出させ、第1の電極とする工程と、(6)前記光半導体素子上に導電層を形成して第2の電極とする工程と、を具備する。  The light emitting device manufacturing method of the present invention includes (1) a step of sequentially stacking an optical semiconductor layer and a first bonding portion on a growth substrate to form a plurality of first stacked bodies, and (2) support. Forming a plurality of second laminated bodies by sequentially laminating a metal body and a second joint at a position of the substrate facing the first joint when facing the growth substrate; (3) a step of bonding the first bonding portion and the second bonding portion by heating to mount the second stacked body on the first stacked body; and (4) the growth purpose. A step of removing the substrate; (5) a step of removing the support substrate to expose the metal body to form a first electrode; and (6) forming a conductive layer on the optical semiconductor element to form a second layer. And a step of forming an electrode.

以下にそれぞれの工程について説明する。  Each process will be described below.

(工程1)
工程1では、図1(a)に示すように、成長用基板1上に、光半導体層2と第1の接合部3とを順次積層して第1の積層体を複数形成する。
(Process 1)
Instep 1, as shown in FIG. 1A, anoptical semiconductor layer 2 and afirst bonding portion 3 are sequentially stacked on agrowth substrate 1 to form a plurality of first stacked bodies.

成長用基板1は、光半導体層2を成長させることが可能な基板であればよい。具体的に、基板1としては、サファイア(Al)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、酸化亜鉛(ZnO),シリコンカーバイド(SiC)等が挙げられる。基板20aの厚みとしては、100μm〜1000μm程度である。Thegrowth substrate 1 may be any substrate on which theoptical semiconductor layer 2 can be grown. Specifically, examples of thesubstrate 1 include sapphire (Al2 O3 ), gallium nitride (GaN), aluminum nitride (AlN), zinc oxide (ZnO), and silicon carbide (SiC). The thickness of the substrate 20a is about 100 μm to 1000 μm.

光半導体層2としては、III族窒化物半導体、III−V族化合物半導体、II−VI族化合物半導体などが挙げられる。ここで、III族窒化物半導体とは、元素周期律表におけるIII族(13族)元素の窒化物から構成される半導体を意味する。III族窒化物半導体は化学式AlxGayIn1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)で表すことができる。III族窒化物半導体としては、例えば、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウム(InN)などが挙げられる。Examples of theoptical semiconductor layer 2 include a group III nitride semiconductor, a group III-V compound semiconductor, a group II-VI compound semiconductor, and the like. Here, the group III nitride semiconductor means a semiconductor composed of a nitride of a group III (group 13) element in the periodic table. The group III nitride semiconductor can be represented by the chemical formula Alx Gay In1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1). Examples of the group III nitride semiconductor include gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), and indium nitride (InN).

図1(a)の場合、光半導体層2は、バッファ層2a、第1導電型の半導体層2b、発光層及2cおよび第2導電型の半導体層2dで構成される。  In the case of FIG. 1A, theoptical semiconductor layer 2 includes a buffer layer 2a, a first conductivitytype semiconductor layer 2b, a light emitting layer 2c, and a second conductivity type semiconductor layer 2d.

バッファ層2aは、成長用基板1と光半導体層2との間の応力を緩和させるために好適に形成される。バッファ層2aは、例えば、窒化ガリウム、窒化アルミニウムなどの材料から構成される。バッファ層2aの厚みは0.01〜0.2μm程度である。  The buffer layer 2 a is preferably formed in order to relieve stress between thegrowth substrate 1 and theoptical semiconductor layer 2. The buffer layer 2a is made of a material such as gallium nitride or aluminum nitride, for example. The thickness of the buffer layer 2a is about 0.01 to 0.2 μm.

第1導電型の半導体層2bとしては、n型の半導体層が挙げられる。例えば、III族窒化物半導体層をn型とするには、元素周期律表においてIV族の元素であるSi等をドーパントとして窒化物半導体層に混入させればよい。第1導電型の半導体層2bの厚みは2〜3μm程度である。  Examples of the first conductivitytype semiconductor layer 2b include an n-type semiconductor layer. For example, in order to make the group III nitride semiconductor layer n-type, Si or the like, which is a group IV element in the periodic table, may be mixed into the nitride semiconductor layer as a dopant. The thickness of the first conductivitytype semiconductor layer 2b is about 2 to 3 μm.

第2導電型の半導体層2dとしては、p型の窒化物半導体が挙げられる。例えば、III族窒化物半導体層をp型とするには、元素周期律表においてII族の元素であるMg等をドーパントとして窒化物半導体層に混入させればよい。第2導電型の半導体層2dの厚みは200〜500nm程度である。  Examples of the second conductivity type semiconductor layer 2d include a p-type nitride semiconductor. For example, in order to make the group III nitride semiconductor layer p-type, Mg or the like, which is a group II element in the periodic table, may be mixed into the nitride semiconductor layer as a dopant. The thickness of the second conductivity type semiconductor layer 2d is about 200 to 500 nm.

発光層2cは、第1導電型の半導体層2bと第2導電型の半導体層2dとの間に設けられる。発光層2cは、禁制帯幅の広い障壁層と禁制帯幅の狭い井戸層とから成る量子井戸構造が複数回(例えば約3回)繰り返し規則的に積層された多層量子井戸構造(MQW)としてもよい。なお、前記障壁層としては、In0.01Ga0.99N層などが挙げられる。また、井戸層としては、In0.11Ga0.89N層などが挙げられる。障壁層の厚みは5〜15nm程度、井戸層の厚みは2〜10nm程度である。発光層2cの厚みは25〜150nm程度である。The light emitting layer 2c is provided between the first conductivetype semiconductor layer 2b and the second conductive type semiconductor layer 2d. The light emitting layer 2c has a multilayer quantum well structure (MQW) in which a quantum well structure composed of a barrier layer having a wide forbidden band and a well layer having a narrow forbidden band is regularly stacked a plurality of times (for example, about 3 times). Also good. Note that examples of the barrier layer include an In0.01 Ga0.99 N layer. Examples of the well layer include an In0.11 Ga0.89 N layer. The thickness of the barrier layer is about 5 to 15 nm, and the thickness of the well layer is about 2 to 10 nm. The thickness of the light emitting layer 2c is about 25 to 150 nm.

成長用基板1上における光半導体層2の成長方法としては、分子線エピタキシー(MBE;Molecular Beam Epitaxy)法、有機金属エピタキシー(MOVPE;Metal Organic Vapor Phase Epitaxy)法、ハイドライド気相成長(HVPE;Hydride Vapor Phase Epitaxy)、パルスレーザデポジション(PLD;Pulsed Laser deposition)法等が用いられる。  As a growth method of theoptical semiconductor layer 2 on thegrowth substrate 1, a molecular beam epitaxy (MBE) method, a metal organic epitaxy (MOVPE), a hydride vapor phase epitaxy (HVPE; Vapor Phase Epitaxy), pulsed laser deposition (PLD) method, or the like is used.

工程1において、光半導体層2上に第1の接合部3を形成する。第1の接合部3は真空蒸着法、スパッタリング法等の方法により設けられ、厚みは0.1〜10μm程度である。また、第1の接合部3は、Au−Snの合金、Pb−Sn合金などの材料により構成される。  Instep 1, afirst bonding portion 3 is formed on theoptical semiconductor layer 2. The1st junction part 3 is provided by methods, such as a vacuum evaporation method and sputtering method, and thickness is about 0.1-10 micrometers. The first joint 3 is made of a material such as an Au—Sn alloy or a Pb—Sn alloy.

工程1において、第1の積層体を複数形成する方法としては、作製した第1の積層体を分割する方法、マスクを形成し成長用基板1の領域を先に分割させ、その後に第1の積層体を成長させる方法などが挙げられる。作製した第1の積層体を分割する方法としては、例えば、ダイシング、分割する領域以外にエッチングマスクを形成した後にドライエッチングを行う方法などが挙げられる。  Instep 1, as a method of forming a plurality of first stacked bodies, a method of dividing the produced first stacked body, a mask is formed, and the region of thegrowth substrate 1 is divided first, and then the first stacked body is divided. Examples include a method of growing a laminate. Examples of the method for dividing the manufactured first laminated body include dicing, a method of performing dry etching after forming an etching mask in a region other than the region to be divided, and the like.

また、成長用基板1の領域を先に分割させ、その後に第1の積層体を成長させる方法の具体例は、以下の図2に示す。  Further, a specific example of a method of dividing the region of thegrowth substrate 1 first and then growing the first stacked body is shown in FIG. 2 below.

まず、成長用基板1上に成長抑制マスクパターンを形成する(図2(a))。その際、バッファ層2a上にテンプレート層2eを成長させたのち、マスクを形成する領域だけエッチング等によりバッファ層2aおよびテンプレート層2eを除去しておく。なぜなら成長用基板はテンプレート層と分離されるので、テンプレート層を分割しておかないとテンプレート層では各々の半導体層は繋がったままになってしまうからである。ここで、テンプレート層2eとは、成長抑制マスク10上には成長させないように、半導体層2bを選択的に成長させるために用いられる。テンプレート層2eは、第1導電型の半導体層2bがバッファ層無しでエピタキシャル成長する材料であり、厚みは1〜5μm程度である。  First, a growth suppression mask pattern is formed on the growth substrate 1 (FIG. 2A). At this time, after the template layer 2e is grown on the buffer layer 2a, the buffer layer 2a and the template layer 2e are removed by etching or the like only in the region where the mask is to be formed. This is because the growth substrate is separated from the template layer, and each semiconductor layer remains connected to the template layer unless the template layer is divided. Here, the template layer 2e is used for selectively growing thesemiconductor layer 2b so as not to grow on thegrowth suppression mask 10. The template layer 2e is a material on which the first conductivitytype semiconductor layer 2b is epitaxially grown without a buffer layer, and has a thickness of about 1 to 5 μm.

成長抑制マスクパターン10は、III族窒化物半導体のエピタキシャル成長に対して不活性の材料から成る物質により形成される。ここで、成長抑制マスクパターン10に使用される材料としては、具体的にはSiO2,多結晶シリコンなどが挙げられる。これらはIII族窒化物半導体のエピタキシャル成長に対して不活性である。The growthsuppression mask pattern 10 is formed of a material made of a material that is inactive with respect to the epitaxial growth of the group III nitride semiconductor. Here, specific examples of materials used for the growthsuppression mask pattern 10 include SiO2 and polycrystalline silicon. These are inert to the epitaxial growth of group III nitride semiconductors.

成長抑制マスクパターン10は、具体的に、蒸着、CVD等によりマスク材料を一面に成膜した後、フォトリソグラフィおよびエッチングをすることにより形成される。  Specifically, the growth suppressingmask pattern 10 is formed by depositing a mask material on one surface by vapor deposition, CVD or the like, and then performing photolithography and etching.

成長抑制マスクパターン10を形成した後に、テンプレート層2e上に成長抑制マスクパターン10によって分離された、第1導電型の半導体層2bと、発光層2cと、第2導電型の半導体層2dと、を、エピタキシャル成長によって形成する(図2(b)参照)。  After forming the growthsuppression mask pattern 10, the first conductivitytype semiconductor layer 2b, the light emitting layer 2c, and the second conductivity type semiconductor layer 2d separated by the growthsuppression mask pattern 10 on the template layer 2e, Are formed by epitaxial growth (see FIG. 2B).

そして、それらを形成したのちに、成長抑制マスクパターン10を除去させる(図2(c))。具体的に、マスク材料がSiOの場合はフッ酸、多結晶シリコンの場合は硝酸及びフッ酸による混酸によるウェットエッチングをすることにより成長抑制マスクパターン10を除去する。Then, after forming them, the growthsuppression mask pattern 10 is removed (FIG. 2C). Specifically, if the mask material is SiO2 in the case of hydrofluoric acid, polycrystalline silicon removing the growthsuppression mask pattern 10 by wet etching using a mixed acid with nitric acid and hydrofluoric acid.

(工程2)
工程2では、図1(b)に示すように、支持基板4の、成長用基板1と対向させたとき第1の接合部3と対向する位置に、金属体5と第2の接合部6とを順次積層して第2の積層体を複数形成する。
(Process 2)
Instep 2, as shown in FIG. 1B, themetal body 5 and thesecond bonding portion 6 are located at a position where the supportingsubstrate 4 faces thefirst bonding portion 3 when facing thegrowth substrate 1. Are sequentially stacked to form a plurality of second stacked bodies.

支持基板4は、アルミナ、窒化アルミ等のセラミックや、ガラス、ステンレス等の金属、ガラスエポキシ基板などの材料により構成される。支持基板4の材料は成長用基板1の材料と熱膨張係数が近いことが好ましい。支持基板4の厚みは0.5〜5mm程度である。  Thesupport substrate 4 is made of a material such as a ceramic such as alumina or aluminum nitride, a metal such as glass or stainless steel, or a glass epoxy substrate. The material of thesupport substrate 4 preferably has a thermal expansion coefficient close to that of thegrowth substrate 1. The thickness of thesupport substrate 4 is about 0.5 to 5 mm.

金属体5は、支持基板4上に、成長用基板1と対向させたとき第1の接合部3と対向する位置に複数作製される。平面視したときの金属体5の面積は、光半導体層2を平面視したときの面積と等しい、またはそれ以上である。このように、本発明の製造方法において金属体5は、チップサイズ(0.2〜5mm角程度)で使用される。  A plurality ofmetal bodies 5 are formed on thesupport substrate 4 at positions facing the first joint 3 when facing thegrowth substrate 1. The area of themetal body 5 when viewed in plan is equal to or larger than the area when theoptical semiconductor layer 2 is viewed in plan. Thus, in the manufacturing method of the present invention, themetal body 5 is used in a chip size (about 0.2 to 5 mm square).

金属体5の作製方法としては、例えば、支持基板上に、ウェハサイズの金属体を設けてそれらを接合したのち、ダイシングにより、チップサイズに分割する方法などが挙げられる。  Examples of a method for producing themetal body 5 include a method of providing a wafer-size metal body on a support substrate, bonding them, and then dividing them into chips by dicing.

金属体5としては、Cu−W合金などが挙げられるが、本発明の製造方法では、Cu単体から構成される金属体5を使用することが可能となる。従来では、例えば、成長用基板1としてサファイア基板を用いた場合、金属体5としては熱膨張係数がサファイア基板と近いCu−W合金が用いられていた。しかし、Cu−W合金は、熱伝導性が不十分であったため、より熱伝導性に優れるCu単体から構成される金属体5の使用が望まれていた。  Examples of themetal body 5 include a Cu—W alloy. In the manufacturing method of the present invention, it is possible to use themetal body 5 composed of Cu alone. Conventionally, for example, when a sapphire substrate is used as thegrowth substrate 1, a Cu—W alloy having a thermal expansion coefficient close to that of the sapphire substrate has been used as themetal body 5. However, since the Cu—W alloy has insufficient thermal conductivity, it has been desired to use themetal body 5 made of a simple substance of Cu that is more excellent in thermal conductivity.

本発明では、チップサイズの金属体5を用いることで、金属体と光半導体層との接続面積が小さくなる。これにより、ウェハサイズの金属体の場合と比較して、金属体と成長用基板との間の熱膨張率係数の差により発生する歪みを減少させることができるため、金属体5として、Cu単体を用いることが可能となる。  In the present invention, the connection area between the metal body and the optical semiconductor layer is reduced by using the chip-sized metal body 5. Thereby, compared to the case of a wafer-sized metal body, distortion caused by the difference in coefficient of thermal expansion between the metal body and the growth substrate can be reduced. Can be used.

第2の接合部6は、第1の接合部3と接合するための部位である。第2の接合部6はメッキ法、スパッタリング法、真空蒸着法などの方法により設けられ、厚みは1〜100μm程度である。また、第2の接合部6はAn−Sn合金、Pb−Sn合金などの材料により構成される。  Thesecond joint 6 is a part for joining with thefirst joint 3. The2nd junction part 6 is provided by methods, such as a plating method, sputtering method, and a vacuum evaporation method, and thickness is about 1-100 micrometers. Moreover, the2nd junction part 6 is comprised with materials, such as an An-Sn alloy and a Pb-Sn alloy.

工程2において、支持基板4と金属体5との間には、第3の接合部が設けられることが好ましい。これにより、支持基板4上に金属体5が十分に保持される。支持基板4と金属体5とは、150〜400℃に加熱することで行われる。  Instep 2, it is preferable that a third joint is provided between thesupport substrate 4 and themetal body 5. Thereby, themetal body 5 is sufficiently held on thesupport substrate 4. Thesupport substrate 4 and themetal body 5 are performed by heating to 150 to 400 ° C.

第3の接合部の融点は、第1の接合部3および第2の接合部6の融点よりも低いことが好ましい。このような第3の接合部としては、例えば、インジウム、スズ、鉛およびこれらの合金、UV硬化熱剥離接着剤などが挙げられる。  The melting point of the third bonding part is preferably lower than the melting points of thefirst bonding part 3 and thesecond bonding part 6. Examples of such a third joint include indium, tin, lead and alloys thereof, UV-curing heat-peeling adhesive, and the like.

第3の接合部の融点は、第1の接合部3および第2の接合部6の融点よりも低いことにより、後述する工程3において第1の接合部3と第2の接合部6とを接合させた後、温度が減少して接合部同士が凝固しても、第3の接合部は液体である期間が長い。よって、金属体5と支持体4の間の熱膨張係数の相違があったとしても、第3の接合部が緩衝となり、熱膨張係数の影響を小さくすることができる。  Since the melting point of the third bonding portion is lower than the melting points of thefirst bonding portion 3 and thesecond bonding portion 6, thefirst bonding portion 3 and thesecond bonding portion 6 are connected instep 3 to be described later. After bonding, even if the temperature decreases and the bonded portions solidify, the third bonded portion has a long period of liquid. Therefore, even if there is a difference in the thermal expansion coefficient between themetal body 5 and thesupport body 4, the third joint portion acts as a buffer, and the influence of the thermal expansion coefficient can be reduced.

(工程3)
工程3は、加熱することにより第1の接合部3と第2の接合部6とを接合させて第1の積層体に第2の積層体を実装する工程をいう(図1(c)参照)。第1の接合部3と第2の接合部6とは、150〜400℃に加熱することで行われる。
(Process 3)
Step 3 is a step of mounting the second stacked body on the first stacked body by bonding the first bondedportion 3 and the second bondedportion 6 by heating (see FIG. 1C). ). The1st junction part 3 and the2nd junction part 6 are performed by heating at 150-400 degreeC.

(工程4)
工程4において、成長用基板1を除去する。除去方法としては、レーザーリフトオフ(成長用基板1と光半導体層2とが異種材料の場合)、基板の研磨などが挙げられる。なかでもレーザー照射により簡易に成長用基板1を除去できるため、レーザーリフトオフが除去方法として好ましい。また、工程3において、加熱された際に、そのサイクルの中でレーザーリフトオフを行うようにしてもよい。この場合、成長用基板1が先に除去された状態で支持基板4が冷却されるので、熱応力の蓄積を防止することができる。
(Process 4)
Instep 4, thegrowth substrate 1 is removed. Examples of the removal method include laser lift-off (when thegrowth substrate 1 and theoptical semiconductor layer 2 are made of different materials), polishing of the substrate, and the like. Among these, thegrowth substrate 1 can be easily removed by laser irradiation, and therefore, laser lift-off is preferable as the removal method. InStep 3, when heated, laser lift-off may be performed in the cycle. In this case, since thesupport substrate 4 is cooled in a state where thegrowth substrate 1 is removed first, accumulation of thermal stress can be prevented.

(工程5)
工程5において支持基板を除去して金属体5を露出させ、第1の電極とする。除去方法としては、例えば、加熱により第3の接合部を融かし、光半導体層2を真空吸着する方法などの方法が挙げられる。また、第3の接合部に、熱により剥離する接着剤を用いた場合は、工程3の熱処理で接着力が減少しているため、光半導体層2に粘着シートを貼り付けるだけで、光半導体層2は支持基板4から容易に除去される。
(Process 5)
Instep 5, the support substrate is removed to expose themetal body 5, thereby forming a first electrode. Examples of the removal method include a method such as a method of melting the third bonding portion by heating and vacuum-sucking theoptical semiconductor layer 2. Further, when an adhesive that is peeled off by heat is used for the third bonding portion, the adhesive strength is reduced by the heat treatment instep 3, so that the optical semiconductor can be obtained by simply attaching an adhesive sheet to theoptical semiconductor layer 2.Layer 2 is easily removed fromsupport substrate 4.

とくに金属体5と支持基板4との間に第3の接合部を設けており、その第3の接合部の融点が、第1の接合部3および第2の接合部6の融点よりも低い場合、工程5において、第1の接合部3および第2の接合部6の融点よりも低く、第3の接合部の融点よりも高い温度に加熱することで、第1および第2の接合部への影響の小さい状態で支持基板のみを除去することができる。  In particular, a third joint is provided between themetal body 5 and thesupport substrate 4, and the melting point of the third joint is lower than the melting points of the first joint 3 and thesecond joint 6. In this case, instep 5, the first and second joints are heated to a temperature lower than the melting point of the first joint 3 and thesecond joint 6 and higher than the melting point of the third joint. Only the support substrate can be removed in a state where the influence on the surface is small.

(工程6)
工程6において、光半導体素子2上に導電層7を形成して第2の電極とする。
(Step 6)
Instep 6, aconductive layer 7 is formed on theoptical semiconductor element 2 to form a second electrode.

導電層7は電流を素子全面に拡散させる為の導電部7aと、外部と電気的接触を取るパッド電極7bから構成される。導電部7aとしては、ITO、ZnOなどの透明導電膜材料、Ti, Al,Rhなどの金属材料が用いられる。  Theconductive layer 7 includes a conductive portion 7a for diffusing a current over the entire surface of the element, and a pad electrode 7b that makes electrical contact with the outside. As the conductive portion 7a, a transparent conductive film material such as ITO or ZnO or a metal material such as Ti, Al, or Rh is used.

導電層7aは、真空蒸着法、スパッタリング法などの方法により作製される。また、導電層7aの厚みは約0.1〜5μmである。導電層7aは必ずしも無くても良く、導電層7aによる光の吸収を抑えつつ電流拡散の効果を得る為に、例えば格子状にパターニングしてあっても良い。  The conductive layer 7a is produced by a method such as a vacuum evaporation method or a sputtering method. The thickness of the conductive layer 7a is about 0.1 to 5 μm. The conductive layer 7a is not necessarily required, and may be patterned, for example, in a lattice pattern in order to obtain the effect of current diffusion while suppressing light absorption by the conductive layer 7a.

次にワイヤーボンディングを行う為のパッド電極7bを形成する。パッド電極7bは第1導電型の半導体層2bまたは導電部7aと接合できるように、例えば、チタン、またはチタンを下地層として金層を積層したものを用いる。  Next, a pad electrode 7b for wire bonding is formed. The pad electrode 7b is made of, for example, titanium or a layer in which a gold layer is stacked with titanium as a base layer so that the pad electrode 7b can be bonded to the first conductivetype semiconductor layer 2b or the conductive portion 7a.

パッド電極7bは、真空蒸着法、スパッタリング法などの方法により形成される。パッド電極7bの厚みは約0.5〜5μmである。  The pad electrode 7b is formed by a method such as a vacuum evaporation method or a sputtering method. The thickness of the pad electrode 7b is about 0.5 to 5 μm.

以上のように、工程1〜6を経ることにより、発光素子8を作製することができる。  As described above, the light-emittingelement 8 can be manufactured through thesteps 1 to 6.

なお、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

(a)〜(e)は、本発明の発光素子の製造方法の一つの実施の形態を示す断面図である。(A)-(e) is sectional drawing which shows one Embodiment of the manufacturing method of the light emitting element of this invention.(a)〜(c)は、本発明の発光素子の製造方法の工程1の一つを示す断面図である。(A)-(c) is sectional drawing which shows one of theprocess 1 of the manufacturing method of the light emitting element of this invention.

符号の説明Explanation of symbols

1:成長用基板
2:光半導体層
2a:バッファ層
2b:第1導電型(n型)の半導体層
2c:発光層
2d:第2導電型(p型)の半導体層
2e:テンプレート層
3:第1の接合部
4:支持基板
5:金属体(第1の電極)
6:第2の接合部
7:導電層(第2の電極)
7a:導電部
7b:パッド電極
8:発光素子
10:成長抑制マスクパターン
1: growth substrate 2: optical semiconductor layer 2a:buffer layer 2b: first conductivity type (n-type) semiconductor layer 2c: light emitting layer 2d: second conductivity type (p-type) semiconductor layer 2e: template layer 3: First bonding part 4: Support substrate 5: Metal body (first electrode)
6: Second joint 7: Conductive layer (second electrode)
7a: Conductive portion 7b: Pad electrode 8: Light emitting element 10: Growth suppression mask pattern

Claims (5)

Translated fromJapanese
(1)成長用基板上に、光半導体層と第1の接合部とを順次積層して第1の積層体を複数形成する工程と、
(2)支持基板の、前記成長用基板と対向させたとき前記第1の接合部と対向する位置に、金属体と第2の接合部とを順次積層して第2の積層体を複数形成する工程と、
(3)加熱することにより前記第1の接合部と前記第2の接合部とを接合させて前記第1の積層体に前記第2の積層体を実装する工程と、
(4)前記成長用基板を除去する工程と、
(5)前記支持基板を除去して前記金属体を露出させ、第1の電極とする工程と、
(6)前記光半導体素子上に導電層を形成して第2の電極とする工程と、
を具備する発光素子の製造方法。
(1) forming a plurality of first stacked bodies by sequentially stacking an optical semiconductor layer and a first bonding portion on a growth substrate;
(2) A plurality of second laminated bodies are formed by sequentially laminating a metal body and a second joint portion at a position facing the first joint portion when the support substrate is opposed to the growth substrate. And a process of
(3) The step of bonding the first bonding portion and the second bonding portion by heating to mount the second stacked body on the first stacked body;
(4) removing the growth substrate;
(5) removing the support substrate to expose the metal body to form a first electrode;
(6) forming a conductive layer on the optical semiconductor element to form a second electrode;
A method for manufacturing a light emitting device comprising:
前記工程(1)は、
(1−1)前記成長用基板上に、前記第1の積層体のエピタキシャル成長に対して不活性な材料から成る物質により成長抑制マスクパターンを形成して、相互に分離された複数の前記成長用基板上に露出部を形成する工程と、
(1−2)前記成長用基板上の露出部に、エピタキシャル成長によって前記第1の積層体を複数形成する工程と、
(1−3)前記成長抑制マスクパターンを除去する工程と、
を含む請求項1記載の発光素子の製造方法。
The step (1)
(1-1) A plurality of growth-use patterns separated from each other by forming a growth-inhibiting mask pattern on the growth-use substrate using a material made of a material that is inactive with respect to the epitaxial growth of the first stacked body. Forming an exposed portion on the substrate;
(1-2) forming a plurality of the first stacked bodies by epitaxial growth on the exposed portion on the growth substrate;
(1-3) removing the growth suppression mask pattern;
The manufacturing method of the light emitting element of Claim 1 containing this.
前記成長用基板と前記第1の積層体が異種材料である場合、前記工程(4)において、レーザーリフトオフにより前記成長用基板を除去する請求項1または2記載の発光素子の製造方法  3. The method for manufacturing a light-emitting element according to claim 1, wherein when the growth substrate and the first stacked body are different materials, the growth substrate is removed by laser lift-off in the step (4). 前記金属体がCuであり、前記成長用基板がサファイアである請求項1乃至3のいずれか記載の発光素子の製造方法。  The method for manufacturing a light-emitting element according to claim 1, wherein the metal body is Cu, and the growth substrate is sapphire. 前記工程(2)において、前記支持基板と前記金属体との間に、前記第1の接合部および前記第2の接合部の融点よりも低い融点を有する第3の接合部を介して接合され、
前記工程(5)において、前記第1の接合部および前記第2の接合部の融点よりも低く、前記第3の接合部の融点よりも高い温度に前記支持基板と前記金属体とを加熱することにより前記支持基板を除去する請求項1乃至4のいずれか記載の発光素子の製造方法。
In the step (2), the support substrate and the metal body are bonded via a third bonding portion having a melting point lower than that of the first bonding portion and the second bonding portion. ,
In the step (5), the support substrate and the metal body are heated to a temperature lower than the melting points of the first bonding portion and the second bonding portion and higher than the melting point of the third bonding portion. The method for manufacturing a light-emitting element according to claim 1, wherein the support substrate is removed.
JP2008222508A2008-08-292008-08-29Method of manufacturing light emitting elementPendingJP2010056458A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2008222508AJP2010056458A (en)2008-08-292008-08-29Method of manufacturing light emitting element

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2008222508AJP2010056458A (en)2008-08-292008-08-29Method of manufacturing light emitting element

Publications (1)

Publication NumberPublication Date
JP2010056458Atrue JP2010056458A (en)2010-03-11

Family

ID=42072027

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2008222508APendingJP2010056458A (en)2008-08-292008-08-29Method of manufacturing light emitting element

Country Status (1)

CountryLink
JP (1)JP2010056458A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2012089646A (en)*2010-10-192012-05-10Napura:KkLight-emitting device and method of manufacturing the same
JP2012238795A (en)*2011-05-132012-12-06Stanley Electric Co LtdSemiconductor element manufacturing method
WO2013074374A1 (en)*2011-11-182013-05-23LuxVue Technology CorporationMicro light emitting diode
US8518204B2 (en)2011-11-182013-08-27LuxVue Technology CorporationMethod of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
EP2631948A2 (en)2012-02-212013-08-28Stanley Electric Co., Ltd.Semiconductor light emitting element, method of manufacturing the same, and vehicle lighting unit utilizing the same
US8573469B2 (en)2011-11-182013-11-05LuxVue Technology CorporationMethod of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US8646505B2 (en)2011-11-182014-02-11LuxVue Technology CorporationMicro device transfer head
US8686542B2 (en)2012-07-062014-04-01LuxVue Technology CorporationCompliant monopolar micro device transfer head with silicon electrode
KR20140053530A (en)*2012-10-262014-05-08삼성전자주식회사Semiconductor light emitting device and manufacturing method of the same
US8789573B2 (en)2011-11-182014-07-29LuxVue Technology CorporationMicro device transfer head heater assembly and method of transferring a micro device
US8791530B2 (en)2012-09-062014-07-29LuxVue Technology CorporationCompliant micro device transfer head with integrated electrode leads
US8928021B1 (en)2013-06-182015-01-06LuxVue Technology CorporationLED light pipe
US8987765B2 (en)2013-06-172015-03-24LuxVue Technology CorporationReflective bank structure and method for integrating a light emitting device
US9012930B2 (en)2012-09-132015-04-21Stanley Electric Co., Ltd.Semiconductor light emitting device providing graded brightness
US9035279B2 (en)2013-07-082015-05-19LuxVue Technology CorporationMicro device with stabilization post
US9087764B2 (en)2013-07-262015-07-21LuxVue Technology CorporationAdhesive wafer bonding with controlled thickness variation
US9105492B2 (en)2012-05-082015-08-11LuxVue Technology CorporationCompliant micro device transfer head
US9111464B2 (en)2013-06-182015-08-18LuxVue Technology CorporationLED display with wavelength conversion layer
US9136161B2 (en)2013-06-042015-09-15LuxVue Technology CorporationMicro pick up array with compliant contact
US9153548B2 (en)2013-09-162015-10-06Lux Vue Technology CorporationAdhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9217541B2 (en)2013-05-142015-12-22LuxVue Technology CorporationStabilization structure including shear release posts
US9236815B2 (en)2012-12-102016-01-12LuxVue Technology CorporationCompliant micro device transfer head array with metal electrodes
US9296111B2 (en)2013-07-222016-03-29LuxVue Technology CorporationMicro pick up array alignment encoder
US9318475B2 (en)2014-05-152016-04-19LuxVue Technology CorporationFlexible display and method of formation with sacrificial release layer
US9367094B2 (en)2013-12-172016-06-14Apple Inc.Display module and system applications
US9425151B2 (en)2014-06-172016-08-23Apple Inc.Compliant electrostatic transfer head with spring support layer
US9450147B2 (en)2013-12-272016-09-20Apple Inc.LED with internally confined current injection area
US9478583B2 (en)2014-12-082016-10-25Apple Inc.Wearable display having an array of LEDs on a conformable silicon substrate
US9484504B2 (en)2013-05-142016-11-01Apple Inc.Micro LED with wavelength conversion layer
US9511498B2 (en)2012-09-072016-12-06Apple Inc.Mass transfer tool
US9522468B2 (en)2014-05-082016-12-20Apple Inc.Mass transfer tool manipulator assembly with remote center of compliance
US9542638B2 (en)2014-02-182017-01-10Apple Inc.RFID tag and micro chip integration design
US9548332B2 (en)2012-04-272017-01-17Apple Inc.Method of forming a micro LED device with self-aligned metallization stack
US9558721B2 (en)2012-10-152017-01-31Apple Inc.Content-based adaptive refresh schemes for low-power displays
US9570002B2 (en)2014-06-172017-02-14Apple Inc.Interactive display panel with IR diodes
US9583466B2 (en)2013-12-272017-02-28Apple Inc.Etch removal of current distribution layer for LED current confinement
US9583533B2 (en)2014-03-132017-02-28Apple Inc.LED device with embedded nanowire LEDs
US9624100B2 (en)2014-06-122017-04-18Apple Inc.Micro pick up array pivot mount with integrated strain sensing elements
US9705432B2 (en)2014-09-302017-07-11Apple Inc.Micro pick up array pivot mount design for strain amplification
US9741286B2 (en)2014-06-032017-08-22Apple Inc.Interactive display panel with emitting and sensing diodes
US9768345B2 (en)2013-12-202017-09-19Apple Inc.LED with current injection confinement trench
US9773750B2 (en)2012-02-092017-09-26Apple Inc.Method of transferring and bonding an array of micro devices
US9828244B2 (en)2014-09-302017-11-28Apple Inc.Compliant electrostatic transfer head with defined cavity
JP2022523861A (en)*2019-03-122022-04-26ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア A method for removing the bar of one or more elements using a support plate

Cited By (96)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8766312B2 (en)2010-10-192014-07-01Napra Co., Ltd.Light-emitting device comprising vertical conductors and through electrodes and method for manufacturing the same
CN102456827A (en)*2010-10-192012-05-16纳普拉有限公司Light-emitting device and method for manufacturing the same
JP2012089646A (en)*2010-10-192012-05-10Napura:KkLight-emitting device and method of manufacturing the same
JP2012238795A (en)*2011-05-132012-12-06Stanley Electric Co LtdSemiconductor element manufacturing method
US8809875B2 (en)2011-11-182014-08-19LuxVue Technology CorporationMicro light emitting diode
US12243955B2 (en)2011-11-182025-03-04Apple Inc.Display and micro device array for transfer to a display substrate
US9463613B2 (en)2011-11-182016-10-11Apple Inc.Micro device transfer head heater assembly and method of transferring a micro device
US8552436B2 (en)2011-11-182013-10-08LuxVue Technology CorporationLight emitting diode structure
US8558243B2 (en)2011-11-182013-10-15LuxVue Technology CorporationMicro device array for transfer to a receiving substrate
US8573469B2 (en)2011-11-182013-11-05LuxVue Technology CorporationMethod of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US9620478B2 (en)2011-11-182017-04-11Apple Inc.Method of fabricating a micro device transfer head
US8646505B2 (en)2011-11-182014-02-11LuxVue Technology CorporationMicro device transfer head
US10607961B2 (en)2011-11-182020-03-31Apple Inc.Micro device transfer head heater assembly and method of transferring a micro device
WO2013074374A1 (en)*2011-11-182013-05-23LuxVue Technology CorporationMicro light emitting diode
WO2013074375A1 (en)*2011-11-182013-05-23LuxVue Technology CorporationMethod of forming a micro light emitting diode array
US8789573B2 (en)2011-11-182014-07-29LuxVue Technology CorporationMicro device transfer head heater assembly and method of transferring a micro device
US9831383B2 (en)2011-11-182017-11-28Apple Inc.LED array
US8794501B2 (en)2011-11-182014-08-05LuxVue Technology CorporationMethod of transferring a light emitting diode
US10121864B2 (en)2011-11-182018-11-06Apple Inc.Micro device transfer head heater assembly and method of transferring a micro device
US11552046B2 (en)2011-11-182023-01-10Apple Inc.Micro device transfer head assembly
US10297712B2 (en)2011-11-182019-05-21Apple Inc.Micro LED display
US8518204B2 (en)2011-11-182013-08-27LuxVue Technology CorporationMethod of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US9773750B2 (en)2012-02-092017-09-26Apple Inc.Method of transferring and bonding an array of micro devices
US8952415B2 (en)2012-02-212015-02-10Stanley Electric Co., Ltd.Semiconductor light emitting element, method of manufacturing the same, and vehicle lighting unit utilizing the same
EP2631948A3 (en)*2012-02-212014-01-22Stanley Electric Co., Ltd.Semiconductor light emitting element, method of manufacturing the same, and vehicle lighting unit utilizing the same
EP2631948A2 (en)2012-02-212013-08-28Stanley Electric Co., Ltd.Semiconductor light emitting element, method of manufacturing the same, and vehicle lighting unit utilizing the same
US9548332B2 (en)2012-04-272017-01-17Apple Inc.Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en)2012-05-082015-08-11LuxVue Technology CorporationCompliant micro device transfer head
US9370864B2 (en)2012-05-082016-06-21Apple Inc.Compliant micro device transfer head
US9895902B2 (en)2012-05-082018-02-20Apple Inc.Compliant micro device transfer head
US9505230B2 (en)2012-05-082016-11-29Apple Inc.Compliant micro device transfer head
US8686542B2 (en)2012-07-062014-04-01LuxVue Technology CorporationCompliant monopolar micro device transfer head with silicon electrode
US9000566B2 (en)2012-07-062015-04-07LuxVue Technology CorporationCompliant micro device transfer head
US8791530B2 (en)2012-09-062014-07-29LuxVue Technology CorporationCompliant micro device transfer head with integrated electrode leads
US8945968B2 (en)2012-09-062015-02-03LuxVue Technology CorporationCompliant micro device transfer head with integrated electrode leads
US10183401B2 (en)2012-09-072019-01-22Apple Inc.Mass transfer tool
US9511498B2 (en)2012-09-072016-12-06Apple Inc.Mass transfer tool
US9012930B2 (en)2012-09-132015-04-21Stanley Electric Co., Ltd.Semiconductor light emitting device providing graded brightness
US9240522B2 (en)2012-09-132016-01-19Stanley Electric Co., Ltd.Semiconductor light emitting device providing graded brightness
US9558721B2 (en)2012-10-152017-01-31Apple Inc.Content-based adaptive refresh schemes for low-power displays
KR20140053530A (en)*2012-10-262014-05-08삼성전자주식회사Semiconductor light emitting device and manufacturing method of the same
KR101969308B1 (en)*2012-10-262019-04-17삼성전자주식회사Semiconductor light emitting device and manufacturing method of the same
US9236815B2 (en)2012-12-102016-01-12LuxVue Technology CorporationCompliant micro device transfer head array with metal electrodes
US9217541B2 (en)2013-05-142015-12-22LuxVue Technology CorporationStabilization structure including shear release posts
US9484504B2 (en)2013-05-142016-11-01Apple Inc.Micro LED with wavelength conversion layer
US9136161B2 (en)2013-06-042015-09-15LuxVue Technology CorporationMicro pick up array with compliant contact
US9484237B2 (en)2013-06-042016-11-01Apple Inc.Mass transfer system
US11004836B2 (en)2013-06-172021-05-11Apple Inc.Method for integrating a light emitting device
US9240397B2 (en)2013-06-172016-01-19LuxVue Technology CorporationMethod for integrating a light emitting device
US10573629B2 (en)2013-06-172020-02-25Apple Inc.Method for integrating a light emitting device
US8987765B2 (en)2013-06-172015-03-24LuxVue Technology CorporationReflective bank structure and method for integrating a light emitting device
US10256221B2 (en)2013-06-172019-04-09Apple Inc.Method for integrating a light emitting device
US9570427B2 (en)2013-06-172017-02-14Apple Inc.Method for integrating a light emitting device
US11676952B2 (en)2013-06-172023-06-13Apple Inc.Method for integrating a light emitting device
US9876000B2 (en)2013-06-172018-01-23Apple Inc.Method for integrating a light emitting device
US12094864B2 (en)2013-06-172024-09-17Apple Inc.Light emitting structure
US9865577B2 (en)2013-06-182018-01-09Apple Inc.LED display with wavelength conversion layer
US8928021B1 (en)2013-06-182015-01-06LuxVue Technology CorporationLED light pipe
US9111464B2 (en)2013-06-182015-08-18LuxVue Technology CorporationLED display with wavelength conversion layer
US9599857B2 (en)2013-06-182017-03-21Apple Inc.LED display with wavelength conversion layer
US9035279B2 (en)2013-07-082015-05-19LuxVue Technology CorporationMicro device with stabilization post
US9620695B2 (en)2013-07-082017-04-11Apple Inc.Micro device with stabilization post
US9379092B2 (en)2013-07-082016-06-28Apple Inc.Micro device with stabilization post
US9209348B2 (en)2013-07-082015-12-08LuxVue Technology CorporationMicro device with stabilization post
US9296111B2 (en)2013-07-222016-03-29LuxVue Technology CorporationMicro pick up array alignment encoder
US9087764B2 (en)2013-07-262015-07-21LuxVue Technology CorporationAdhesive wafer bonding with controlled thickness variation
US9153548B2 (en)2013-09-162015-10-06Lux Vue Technology CorporationAdhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9922966B2 (en)2013-12-172018-03-20Apple Inc.Display module and system applications
US9367094B2 (en)2013-12-172016-06-14Apple Inc.Display module and system applications
US11676953B2 (en)2013-12-172023-06-13Apple Inc.Display module and system applications
US12087749B2 (en)2013-12-172024-09-10Apple Inc.Display module and system applications
US10957678B2 (en)2013-12-172021-03-23Apple Inc.Display module and system applications
US9582036B2 (en)2013-12-172017-02-28Apple Inc.Display module and system applications
US10147711B2 (en)2013-12-172018-12-04Apple Inc.Display module and system applications
US10535642B2 (en)2013-12-172020-01-14Apple Inc.Display module and system applications
US11362076B2 (en)2013-12-172022-06-14Apple IncDisplay module and system applications
US9768345B2 (en)2013-12-202017-09-19Apple Inc.LED with current injection confinement trench
US9450147B2 (en)2013-12-272016-09-20Apple Inc.LED with internally confined current injection area
US11101405B2 (en)2013-12-272021-08-24Apple Inc.LED with internally confined current injection area
US11978825B2 (en)2013-12-272024-05-07Apple Inc.LED with internally confined current injection area
US9583466B2 (en)2013-12-272017-02-28Apple Inc.Etch removal of current distribution layer for LED current confinement
US10593832B2 (en)2013-12-272020-03-17Apple Inc.LED with internally confined current injection area
US9542638B2 (en)2014-02-182017-01-10Apple Inc.RFID tag and micro chip integration design
US9583533B2 (en)2014-03-132017-02-28Apple Inc.LED device with embedded nanowire LEDs
US9522468B2 (en)2014-05-082016-12-20Apple Inc.Mass transfer tool manipulator assembly with remote center of compliance
US10183396B2 (en)2014-05-082019-01-22Apple Inc.Mass transfer tool manipulator assembly with remote center of compliance
US9318475B2 (en)2014-05-152016-04-19LuxVue Technology CorporationFlexible display and method of formation with sacrificial release layer
US9741286B2 (en)2014-06-032017-08-22Apple Inc.Interactive display panel with emitting and sensing diodes
US10150669B2 (en)2014-06-122018-12-11Apple Inc.Micro pick up array pivot mount
US9624100B2 (en)2014-06-122017-04-18Apple Inc.Micro pick up array pivot mount with integrated strain sensing elements
US9570002B2 (en)2014-06-172017-02-14Apple Inc.Interactive display panel with IR diodes
US9425151B2 (en)2014-06-172016-08-23Apple Inc.Compliant electrostatic transfer head with spring support layer
US9828244B2 (en)2014-09-302017-11-28Apple Inc.Compliant electrostatic transfer head with defined cavity
US9705432B2 (en)2014-09-302017-07-11Apple Inc.Micro pick up array pivot mount design for strain amplification
US9478583B2 (en)2014-12-082016-10-25Apple Inc.Wearable display having an array of LEDs on a conformable silicon substrate
JP2022523861A (en)*2019-03-122022-04-26ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア A method for removing the bar of one or more elements using a support plate

Similar Documents

PublicationPublication DateTitle
JP2010056458A (en)Method of manufacturing light emitting element
KR101438818B1 (en)light emitting diode
KR101198758B1 (en)Vertical structured semiconductor light emitting device and method for producing thereof
JP5220916B2 (en) Light emitting device and manufacturing method thereof
CN102106006B (en) Support substrate for manufacturing semiconductor light emitting device and semiconductor light emitting device using support substrate
KR101470020B1 (en)epitaxial semiconductor thin-film transfer using sandwich-structured wafer bonding and photon-beam
US8946745B2 (en)Supporting substrate for manufacturing vertically-structured semiconductor light-emitting device and semiconductor light-emitting device using the supporting substrate
US7943942B2 (en)Semiconductor light-emitting device with double-sided passivation
CN102255013B (en)Method for making light-emitting diode with vertical structure through stripping GaN based epitaxial layer and sapphire substrate by using wet process
KR20130029455A (en)Manufacturing method for gan semiconductor device
CN112186079A (en)Preparation method of LED chip with vertical structure
US20150325742A1 (en)Method of fabricating semiconductor devices
KR100999548B1 (en) A support substrate for manufacturing a semiconductor light emitting device having a vertical structure, a method for manufacturing a semiconductor light emitting device having a vertical structure and a semiconductor light emitting device having a vertical structure
CN111771256A (en) Manufacturing method of semiconductor element and semiconductor element
KR101428066B1 (en)vertical structured group 3 nitride-based light emitting diode and its fabrication methods
JP5564799B2 (en) Method for fabricating gallium nitride based semiconductor electronic device
KR20100109169A (en)Fabrication method of light emitting diode and the light emitting diode fabricated by the method
KR101480551B1 (en)vertical structured group 3 nitride-based light emitting diode and its fabrication methods
KR101137514B1 (en)Method for manufacturing nitride semiconductor device using nano particle
JP2010226023A (en) Method for manufacturing substrate product having nitride-based compound semiconductor layer on support substrate, and method for manufacturing semiconductor device
KR101231118B1 (en)Supporting substrates for semiconductor light emitting device and high-performance vertical structured semiconductor light emitting devices using supporting substrates
KR20090115902A (en) Vertical group III-nitride semiconductor light emitting diode device and manufacturing method
JP2010056457A (en)Method of manufacturing light emitting element array
JP5800568B2 (en) Manufacturing method of semiconductor device
US8552465B2 (en)Method for reducing stress in epitaxial growth

[8]ページ先頭

©2009-2025 Movatter.jp