本発明は、微細凹凸構造層とそれを支持する薄膜層とからなる反射防止膜、特に実用的な機械強度を有し、例えば、カメラ等の撮像光学系、表示デバイス等の投影光学系、画像表示装置等の観察光学系などの光学系に用いられる光学素子に好適な反射防止膜に関するものである。 The present invention relates to an antireflection film comprising a fine concavo-convex structure layer and a thin film layer that supports the layer, and particularly has a practical mechanical strength. For example, an imaging optical system such as a camera, a projection optical system such as a display device, an image The present invention relates to an antireflection film suitable for an optical element used in an optical system such as an observation optical system such as a display device.
近年、ディスプレイ、太陽電池、光学素子への応用を目的として、従来からの干渉による反射防止膜に代わり、波長レベルの微細構造による反射防止膜若しくは、直接表面に微細構造を加工する技術の開発が行われてきている。波長レベルの微細構造による反射防止では普通、空気界面側から基材側へ行くに従い、微細構造の占有体積が増大していくような構造を形成する事で、入射光にとっては、屈折率が空気の屈折率1から基材の屈折率に徐々に変化しているように感じられ、屈折率の異なる界面で起こる反射を抑えている。従って、微細構造はその構成単位がサブ波長レベルの大きさである事が必要であり、干渉による反射防止膜に比べ角度特性がいい、広い波長域にわたり低反射率を実現できるというメリットはある。しかし、微細凹凸構造はそのサイズが波長オーダーであり力が加わると、構造自体が崩れてしまったり、構造自体は崩れなくても倒れてしまったりするというデメリットもある。これは、光学素子などへの実用を考えた場合、人が触れる部分には使えない、素子表面が汚れてしまった後に拭き洗浄出来ない、組立工程において構造が保てないなどの問題がある。 In recent years, for the purpose of application to displays, solar cells, and optical elements, instead of the conventional antireflection film due to interference, development of an antireflection film with a fine structure at the wavelength level or a technique for processing a microstructure directly on the surface has been developed. Has been done. In the reflection prevention by the fine structure at the wavelength level, the refractive index is usually air for incident light by forming a structure in which the volume occupied by the fine structure increases from the air interface side to the substrate side. It is felt that the refractive index is gradually changed from the refractive index 1 to the refractive index of the base material, and reflection occurring at the interface having different refractive indexes is suppressed. Therefore, it is necessary that the structural unit of the fine structure has a size of a sub-wavelength level, and the angle characteristic is better than that of the antireflection film due to interference, and there is an advantage that a low reflectance can be realized over a wide wavelength range. However, the fine concavo-convex structure has a demerit that when the size is on the order of wavelength and force is applied, the structure itself collapses, or the structure itself collapses even if it does not collapse. When considering practical application to optical elements, there are problems such that it cannot be used on a part touched by humans, cannot be wiped and washed after the element surface becomes dirty, and the structure cannot be maintained in the assembly process.
ところで、特許文献1には、ゾルゲル法を用いて花弁状の微細凹凸構造をもつアルミナ透明薄膜の形成法が開示されており、このアルミナの微細凹凸構造は反射率の低減を可能にする。この方法では、基板上にアルミニウム-sec-ブトキシドと安定化剤であるアセト酢酸エチルの塗布液からアモルファスアルミナ膜を成膜し、乾燥・焼成してから熱水処理し、再び乾燥・焼成して花弁状アルミナ透明膜を形成している。
更に、特許文献2では、特許文献1に加えアルミナ以外にジルコニア、シリカ、チタニア、酸化亜鉛を加えることで得られる微細凹凸構造の高さの範囲を0.005〜5.0μmとし、作成できる微細凹凸構造の高さを高くして反射防止特性の向上を図っている。By the way, Patent Document 1 discloses a method for forming an alumina transparent thin film having a petal-like fine concavo-convex structure using a sol-gel method, and this fine concavo-convex structure of alumina enables a reduction in reflectance. In this method, an amorphous alumina film is formed on a substrate from a coating solution of aluminum-sec-butoxide and ethyl acetoacetate as a stabilizer, dried and baked, hydrothermally treated, dried and baked again. A petal-like alumina transparent film is formed.
Furthermore, in Patent Document 2, in addition to Patent Document 1, the height range of the fine uneven structure obtained by adding zirconia, silica, titania, and zinc oxide in addition to alumina is 0.005 to 5.0 μm, and the fine uneven structure that can be produced The anti-reflection characteristics are improved by increasing the height.
これらの方法は、簡便で、且つ基板の種類を選択することが出来るため、様々な素子への適応が可能な微細凹凸構造の形成方法であり、微細凹凸構造層の強度を保つために、微細凹凸構造層の高さを規定している。
ここで、これらの方法では、アモルファスアルミナ膜を熱水により処理する事で、一度解膠作用等により熱水に溶解してから、アルミナ表層に結晶として析出・成長させて微細凹凸構造層を形成しているため、もともとのアルミナ薄膜層とその上に形成される微細凹凸構造層の2層からなっている。薄膜層は微細凹凸構造層と基板との間に位置しており、微細凹凸構造自体の強度があっても、この薄膜層に強度がないと、反射防止膜全体として機械的な強度が保てず、亀裂がはいるなどの問題が生じることがあった。
上記のように、従来技術においては広い波長域にわたり低反射率を実現できる微細凹凸構造による反射防止膜において、実用的な強度を有する微細凹凸構造を実現することは難しかった。
Here, in these methods, the amorphous alumina film is treated with hot water, once dissolved in hot water by peptization, etc., and then precipitated and grown as crystals on the alumina surface layer to form a fine relief structure layer Therefore, it consists of two layers: the original alumina thin film layer and the fine relief structure layer formed on it. The thin film layer is located between the fine concavo-convex structure layer and the substrate, and even if the fine concavo-convex structure itself has strength, if the thin film layer is not strong, the mechanical strength of the antireflection film as a whole can be maintained. However, problems such as cracks may occur.
As described above, in the conventional technology, it is difficult to realize a fine concavo-convex structure having practical strength in an antireflection film having a fine concavo-convex structure capable of realizing a low reflectance over a wide wavelength range.
本発明は、上記のごとき従来技術の実情に鑑みてなされたものであり、その目的とするところは、上記従来技術の課題を解決した反射防止膜を提供することにある。 The present invention has been made in view of the circumstances of the prior art as described above, and an object thereof is to provide an antireflection film that solves the problems of the prior art.
上記の目的を達成するため、本発明による反射防止膜は、主成分がアルミナからなる微細凹凸構造層と、前記微細凹凸構造層を支持する少なくとも1層の薄膜層とからなり、前記薄膜層の厚さttが0.15μm<tt<1μmであり、前記微細凹凸構造層の厚さと前記薄膜層の厚さとの比 aが0.1≦a≦1.65であることを特徴とする。In order to achieve the above object, the antireflection film according to the present invention comprises a fine concavo-convex structure layer whose main component is alumina and at least one thin film layer that supports the fine concavo-convex structure layer. The thickness tt is 0.15 μm <tt <1 μm, and the ratio a between the thickness of the fine uneven structure layer and the thickness of the thin film layer is 0.1 ≦ a ≦ 1.65.
本発明によれば、前記薄膜層の主成分はアルミナであることを特徴とする。 According to the present invention, the main component of the thin film layer is alumina.
また、本発明によれば、前記薄膜層は主成分のアルミナ以外に他の金属酸化物を含んでいることを特徴とする。 According to the invention, the thin film layer contains other metal oxides in addition to the main component alumina.
また、本発明によれば、前記他の金属酸化物はBe, Cu, Ge, Gd, Hf, La, Mg, Nb, Sc, Sn, Ta, V, W, Yの1つ又はそれらの何れかの組み合わせの酸化物であることを特徴とする。 According to the present invention, the other metal oxide may be one of Be, Cu, Ge, Gd, Hf, La, Mg, Nb, Sc, Sn, Ta, V, W, Y, or any one of them. It is characterized by being an oxide of the combination.
また、本発明によれば、前記金属薄膜はゾルゲル法により形成された膜であることを特徴とする。 According to the present invention, the metal thin film is a film formed by a sol-gel method.
また、本発明によれば、前記反射防止膜のヤング率が0.5Gpa以上であることを特徴とする。 According to the present invention, the antireflection film has a Young's modulus of 0.5 Gpa or more.
本発明による光学素子は、本発明による前記反射防止膜の何れかを表面に有している。 The optical element according to the present invention has one of the antireflection films according to the present invention on its surface.
本発明によれば、アルミナを主成分とする微細凹凸構造層とそれを支持する薄膜層からなる反射防止膜を形成して、前記薄膜層の膜厚を制御することにより、実用的な機械強度を有し、且つ広い波長域で低反射率を実現し得る反射防止膜を提供することができる。 According to the present invention, a practical mechanical strength is obtained by forming an antireflection film comprising a fine concavo-convex structure layer mainly composed of alumina and a thin film layer supporting the fine rugged structure layer, and controlling the film thickness of the thin film layer. And an antireflection film capable of realizing a low reflectance in a wide wavelength range.
本発明では、アルミナを主成分とする微細凹凸構造層とそれを支持する薄膜層からなる反射防止膜を形成し、この微細凹凸構造層とそれを支持する薄膜層の膜厚を制御する。
ここで、微細凹凸構造とは、その構造単位がサブ波長レベルであり、空気との界面側から基材側に対して占有体積が増大していくような構造を持っているものであれば良く、ある単位構造が繰り返されている周期構造であっても、ランダム構造であっても良い。
また薄膜層とは、前記微細凹凸構造層と基材の間に存在し、その膜厚ttが0.15μm<tt<1μmの範囲にある事が好ましい平坦な膜であり、複数層から成っていてもかまわないし、その内部に組成分布や屈折率分布があっても良い。
また、微細凹凸構造層を支持するとは、前記薄膜層が微細凹凸構造層に、微細凹凸構造層より基材側で接していている状態であること意味している。In the present invention, an antireflection film comprising a fine concavo-convex structure layer mainly composed of alumina and a thin film layer supporting the fine concavo-convex structure layer is formed, and the film thicknesses of the fine concavo-convex structure layer and the thin film layer supporting the fine concavo-convex structure layer are controlled.
Here, the fine concavo-convex structure may be any structure as long as its structural unit is at the sub-wavelength level and has a structure in which the occupied volume increases from the interface side with the air to the base material side. A periodic structure in which a certain unit structure is repeated or a random structure may be used.
The thin film layer is a flat film that exists between the fine concavo-convex structure layer and the substrate, and preferably has a film thickness tt in the range of 0.15 μm <tt <1 μm, and is composed of a plurality of layers. There may be a composition distribution or a refractive index distribution inside.
Further, supporting the fine concavo-convex structure layer means that the thin film layer is in contact with the fine concavo-convex structure layer on the substrate side from the fine concavo-convex structure layer.
低反射特性を持たせるためには、前記微細凹凸構造層が必須であり、アルミナの場合、例えば特許文献2に記載の方法や陽極酸化法のような方法など、形状の変化を起こし易く、微細構造を簡便に形成することが出来る方法が好ましい。 In order to have low reflection characteristics, the fine concavo-convex structure layer is indispensable. In the case of alumina, for example, a method such as a method described in Patent Document 2 or a method such as an anodic oxidation method is liable to cause a change in shape. A method capable of easily forming the structure is preferred.
前記薄膜層の膜厚ttは、0.15μm<tt<1μmの範囲であることが望ましい。膜厚ttが0.15μm以下では、薄すぎて外部衝撃により膜に亀裂が入り易く、反射防止膜全体として充分な機械的な強度が得られない。また1μm以上では厚すぎて製膜が困難になる。蒸着やスパッタなどの物理的方法では、非常に時間が掛かかってしまうため生産性が悪くなってしまう。また、特許文献1,2に記載のようなゾルゲル法などによるウエットコーティングでは、膜に波長サイズ以上のクラックが発生し、光散乱の要因となる為、反射防止特性や透過率品質が劣化したり、例えば撮影光学系の光学素子として用いるとゴーストやフレアーの原因となったりしてしまう。The film thickness tt of the thin film layer is preferably in the range of 0.15 μm <tt <1 μm. When the film thickness tt is 0.15 μm or less, the film is too thin and easily cracks due to external impact, and sufficient mechanical strength cannot be obtained as the whole antireflection film. On the other hand, when the thickness is 1 μm or more, it is too thick to form a film. With physical methods such as vapor deposition and sputtering, it takes a very long time, resulting in poor productivity. In addition, in the wet coating by the sol-gel method as described in Patent Documents 1 and 2, since cracks of the wavelength size or more are generated in the film, which causes light scattering, the antireflection characteristics and transmittance quality deteriorate. For example, when used as an optical element of a photographing optical system, it may cause ghost and flare.
また、前記微細凹凸構造層の膜厚tsと前記薄膜層の膜厚ttとの比 a(微細膜厚 / 薄膜層膜厚)が0.1≦a≦1.65であることが望ましい。
ここでいう、薄膜層の膜厚ttとは、微細凹凸構造層を形成する前、若しくは微細構造層を取り除いた状態で直接求めたものでも良いし、微細凹凸構造層とそれを支持する薄膜層からなる膜の全体膜厚taから微細構造層の膜厚tsを引いてtt=ta−tsで求めたものでも良い。The ratio a (fine film thickness / film layer thickness) of the thickness tt of the thin film layer and the thickness ts of the fine concavo-convex structure layer is desirably 0.1 ≦ a ≦ 1.65.
Here, the thin film and the thickness tt of the thin layer, supporting before, or may be one obtained directly on the condition of removing the fine structure layer, and it fine uneven structure layer to form a fine concavo-convex structure layer may be those determined by tt = ta -ts from the entire thickness ta of a film made of layers by subtracting the thickness ts of the fine structure layer.
薄膜層の膜厚ttを直接求めるには、微細凹凸構造層を形成する前、若しくは微細構造層を取り除いた状態で接触式段差計により測定する方法と、その状態で膜断面をSEMで観察して、その断面像から計測する方法を用いる。また、全体膜厚taと微細凹凸構造層の膜厚tsから求める場合には、全体膜厚taは微細凹凸構造がある膜の断面をSEMで観察して、その断面像から計測する方法を用いる。微細凹凸構造層の膜厚tsとは、膜表面に形成された凸部の山の高さと凹部の谷底点の深さの和を指し、JIS B 0601 に規定されている輪郭線の最大高さRzに相当するものであり、AFMを用いて測定できる。また、微細凹凸構造層の膜厚tsを膜の全体膜厚taと薄膜層の膜厚ttを接触式段差計やSEM観察により計測し、ts=ta−ttで求めても良い。In order to directly determine the film thickness tt of the thin film layer, a method of measuring with a contact step meter before forming the fine concavo-convex structure layer or with the fine structure layer removed, and observing the film cross section with the SEM in that state Then, a method of measuring from the cross-sectional image is used. Also, when obtaining from the thickness ts of the total thickness ta and the fine concavo-convex structure layer, the overall thickness ta was observed with a SEM cross section of the membrane has fine unevenness is measured from its cross-sectional image Use the method. The film thickness ts of the fine concavo-convex structure layer refers to the sum of the height of the convex crest formed on the film surface and the depth of the valley bottom point of the concave, and the maximum height of the contour line defined in JIS B 0601 This corresponds to Rz and can be measured using AFM. Further, the thickness tt of the overall film thickness ts of the fine unevenness layer thickness ta and the thin film layer was measured by a contact step meter and SEM observation are acquired by ts = ta -tt Also good.
膜厚比aは、0.1≦a≦1.65の範囲であることが望ましい。反射防止膜の強度としては、微細凹凸構造の高さが低く、薄膜層の膜厚が厚いほど強くなるので、膜厚比aは小さいほど良いが膜厚比aが0.1より小さい場合、微細凹凸構造層が低すぎて、従来からの反射防止膜に対して優れた特性を得ることが出来ない。また、膜厚比aが1.65より大きくなるような微細凹凸構造の高さが高く崩れ易いため、実用的な機械強度が得られない。
ここでいう、実用的な機械強度があるとは、反射防止膜として光学素子につけた時に組立工程で反射防止特性が保持されればよく、光学素子そのものの自重がかかった場合や、隣接する光学素子と接触した場合に反射率の変化が少ないものを言い、BK7ガラス板を100g/cm2の加重で垂直に押しつけた時の反射率の変化で定義する。加重前に比べて反射率が50%以上高くなった場合に実用的な機械強度がないと判断する。The film thickness ratio a is preferably in the range of 0.1 ≦ a ≦ 1.65. As the strength of the antireflection film, the height of the fine concavo-convex structure is low, and the thicker the thin film layer, the stronger the film. Therefore, the smaller the film thickness ratio a, the better. The structural layer is too low to obtain excellent characteristics with respect to conventional antireflection films. Moreover, since the height of the fine concavo-convex structure in which the film thickness ratio a is larger than 1.65 is high and easily collapses, practical mechanical strength cannot be obtained.
The term “practical mechanical strength” as used herein means that the anti-reflection property is maintained in the assembly process when it is attached to an optical element as an anti-reflection film. This means that the change in reflectance is small when in contact with the element, and is defined as the change in reflectance when a BK7 glass plate is pressed vertically with a weight of 100 g / cm2 . It is judged that there is no practical mechanical strength when the reflectance is 50% or more higher than before weighting.
前記薄膜層は、微細凹凸構造を形成するための主成分がアルミナである薄膜層に加えて異なる成分を添加しても良いし、アルミナ主成分膜以外の膜が重なっていてもよい。添加もしくは重ねる膜の材料としては、反射防止膜として用いるために可視光域で透明であれば限定されないが、光学素子を基材としてコーティングする事を考えると、密着性の面から金属酸化物やプラチックなどが望ましい。特に、耐熱性・耐候性などに優れた金属酸化物が望ましく、その製膜方法としては蒸着法、スパッタ法などのドライプロセスおよびゾルゲル溶液をスピンコート法やディッピング法、ノズルフロ−コ−ト法、スプレ−法、リバ−スコ−ト法、フレキソ法、印刷法、フロ−コ−ト法、ならびにこれらの手法の併用で塗布するウエットプロセスなどを用いることが出来る。ドライプロセスでは、製膜時間などで、ウエットプロセスのスピンコートでは溶液の粘度や回転数、ディッピング法では溶液の粘度や引き上げ速度により膜厚をナノレベルで制御することが出来る。 Different components may be added to the thin film layer in addition to the thin film layer whose main component for forming the fine relief structure is alumina, or films other than the alumina main component film may overlap. The material of the film to be added or stacked is not limited as long as it is transparent in the visible light range for use as an antireflection film, but considering the coating with an optical element as a base material, metal oxide and Plastic or the like is desirable. In particular, a metal oxide excellent in heat resistance and weather resistance is desirable, and as a film forming method, a dry process such as a vapor deposition method and a sputtering method, and a sol-gel solution using a spin coating method, a dipping method, a nozzle flow coating method, A spray method, a river coat method, a flexo method, a printing method, a flow coat method, and a wet process for applying these methods in combination can be used. In the dry process, the film thickness can be controlled at the nano level by the film forming time, in the wet coating by spin coating, the viscosity and rotation speed of the solution, and in the dipping method, the viscosity of the solution and the pulling speed can be controlled.
また、蒸着法やスパッタ法などのドライプロセスの場合、多層構造を作り易い、周囲の環境変化に強いなどのメリットがあり、ゾルゲル溶液を塗布するウエットプロセスの場合、大面積や曲率を持った基材への製膜が容易であるなどのメリットがある。ここでいう、ゾルゲル溶液とは、金属アルコキシド若しくはその塩化物を加水分解・縮合重合して得られた溶液であり、その溶液中に希釈するための溶媒や各反応を制御するための触媒や安定化剤を含んでもいても良い。 In addition, dry processes such as vapor deposition and sputtering have advantages such as easy formation of a multilayer structure and resistance to changes in the surrounding environment. In the case of a wet process in which a sol-gel solution is applied, a substrate with a large area and curvature is provided. There are advantages such as easy film formation on the material. Here, the sol-gel solution is a solution obtained by hydrolysis / condensation polymerization of a metal alkoxide or its chloride, a solvent for dilution in the solution, a catalyst for controlling each reaction, and a stability. An agent may be included.
前記金属酸化物としては、Al, Be, Cu, Ge, Gd, Hf, La, Mg, Nb, Sc, Sn, Ta, V, W, Y の酸化物などを単独若しくはそれらの何れかを組み合わせて用いることができ、選択する金属種により微細凹凸構造を支持する薄膜層の光学特性、機械特性、熱特性、耐候性などを制御することが可能になる。 Examples of the metal oxide include oxides of Al, Be, Cu, Ge, Gd, Hf, La, Mg, Nb, Sc, Sn, Ta, V, W, and Y alone or in combination of any of them. The optical characteristics, mechanical characteristics, thermal characteristics, weather resistance, and the like of the thin film layer that supports the fine concavo-convex structure can be controlled by the metal species selected.
また、反射防止膜としての機械特性を得る為には、膜材質自体の強度を上げてもよく、ヤング率が0.5GPa以上であることが望ましい。前記反射防止膜を熱処理にすることによりアルミナを緻密化することができ、高強度を得る事が出来る。熱処理温度としては、400〜600℃で処理することが好ましい。400℃よりも低い場合は充分な膜強度を有する反射防止膜を得ることができず、600℃よりも高温で処理すると基材として用いる材料が変形してしまう恐れがある。ここで、ヤング率は、MTSシステムズ製ナノインデンターにより評価することができる。 In addition, in order to obtain mechanical characteristics as an antireflection film, the strength of the film material itself may be increased, and it is desirable that the Young's modulus is 0.5 GPa or more. By applying heat treatment to the antireflection film, alumina can be densified and high strength can be obtained. The heat treatment temperature is preferably 400 to 600 ° C. When the temperature is lower than 400 ° C., an antireflection film having sufficient film strength cannot be obtained, and when used at a temperature higher than 600 ° C., the material used as the substrate may be deformed. Here, the Young's modulus can be evaluated by a nano indenter manufactured by MTS Systems.
次に、ナノインデンターによる薄膜ヤング率の測定方法を説明する。ナノインデンターによる薄膜や材料の表面の硬さは、ダイヤモンドチップから成る三角錐(バーコビッチ型)の圧子を薄膜や材料の表面に押し込み、その時の圧子にかかる荷重Pと圧子の下の射影面積Aで除することで求まる。ここで得た膜の硬さを、ナノインデンター圧子のモジュラス、圧子および試料のポアソン比を関数として演算してヤング率を得る(コペルニクス Vol.11. APR. 1-3 (2002)参照)。圧子の押し込み深さは0.3μmとし、当該反射防止膜のヤング率が0.5GPa以上の場合には、光学物品の組立工程で傷などによる反射特性の不具合が発生しないことがわかった。
他にも、反射防止膜として用いるには、偏向特性を変化させないなどの特性を有していることが望ましい。Next, a method for measuring the thin film Young's modulus using a nanoindenter will be described. The hardness of the surface of the thin film or material by the nanoindenter is determined by pressing a triangular pyramid indenter made of diamond tips into the surface of the thin film or material, the load P applied to the indenter at that time and the projected area A under the indenter It is obtained by dividing by. The Young's modulus is obtained by calculating the hardness of the obtained film as a function of the modulus of the nanoindenter indenter, the Poisson's ratio of the indenter and the sample (see Copernicus Vol.11. APR. 1-3 (2002)). It was found that when the indentation depth was 0.3 μm and the Young's modulus of the antireflection film was 0.5 GPa or more, there was no problem of reflection characteristics due to scratches or the like in the assembly process of the optical article.
In addition, in order to use as an antireflection film, it is desirable to have characteristics such as not changing the deflection characteristics.
光学素子とは、レンズ、プリズム、ミラー、光ファイバなどが挙げられる。用いる光学素子の材料としては、ポリメタクリ酸エステル、ポリアクリル酸エステル、エポキシ化合物、含硫黄化合物、含芳香族化合物、ウレタン樹脂、フッ素樹脂、シリコーン樹脂、エステル樹脂、ノボルネン系樹脂などのプラスチック、石英、ホウケイ酸ガラス、りん酸ガラス、ケイ酸ガラス、フッ化物ガラスなどのガラス、透光性セラッミクス、サファイア、蛍石などの結晶が挙げられる。また、光学素子の形状としては、フィルム状、シート状、平板状、曲面状が挙げられる。 Examples of the optical element include a lens, a prism, a mirror, and an optical fiber. As the material of the optical element to be used, polymethacrylic acid ester, polyacrylic acid ester, epoxy compound, sulfur-containing compound, aromatic compound, urethane resin, fluororesin, silicone resin, ester resin, nobornene-based plastic, quartz, Examples thereof include glasses such as borosilicate glass, phosphate glass, silicate glass, and fluoride glass, and crystals such as translucent ceramics, sapphire, and fluorite. Examples of the shape of the optical element include a film shape, a sheet shape, a flat plate shape, and a curved surface shape.
以下、実施例及び比較例について説明する。
先ず、各実施例、比較例で得られた反射防止膜について行った評価方法について説明する。
1.膜断面観察
走査型電子顕微鏡(FE-SEM、日立製作所製S4700)を用いて反射防止膜の断面の観察を行った。
2.反射率測定
レンズ反射率測定機(USPM-RU、OLYMPUS製)を用いて、BK7ガラス平板をリファレンスとして測定した。
3.膜厚測定
触針式表面形状測定器(Dektak、Veeco製)を用いて膜厚を測定した。
4.微細凹凸構造の機械強度試験
BK7ガラス板を100g/cm2の加重で垂直に押しつけた。試験前後の反射率を上記2の方法で測定した。加重前に比べて荷重後の反射率が、50%以上高くなった場合は強度が不足していると判断、50%以内の場合は十分な強度を有していると判断した。
5.ヤング率の測定
MTSシステムズ社製ナノインデンターXPにより、ダイヤモンドチップ圧子の押し込み深さ0.3μmで測定した。Hereinafter, examples and comparative examples will be described.
First, the evaluation method performed about the anti-reflective film obtained by each Example and the comparative example is demonstrated.
1. Observation of cross section of film The cross section of the antireflection film was observed using a scanning electron microscope (FE-SEM, Hitachi S4700).
2. Reflectance measurement Using a lens reflectometer (USPM-RU, manufactured by OLYMPUS), the BK7 glass plate was measured as a reference.
3. Film thickness measurement The film thickness was measured using a stylus type surface shape measuring instrument (Dektak, manufactured by Veeco).
4). Mechanical strength test of fine uneven structure
A BK7 glass plate was pressed vertically with a load of 100 g / cm2 . The reflectance before and after the test was measured by the above method 2. When the reflectance after loading was 50% or more higher than before weighting, it was judged that the strength was insufficient, and when it was within 50%, it was judged that the strength was sufficient.
5. Measurement of Young's modulus
Measurement was performed with a diamond indenter indentation depth of 0.3 μm using Nano Indenter XP manufactured by MTS Systems.
アルミニウム-sec-ブトキシド、アセト酢酸エチル(EAcAc)及び水を、それぞれ2-プロパノール(以降、IPA)に加えて約1時間室温で攪拌し、それぞれのIPA溶液とし、次いで、アルミニウム-sec-ブトキシドIPA溶液に、アセト酢酸エチルIPA溶液を加えて約30分室温で攪拌した後、更にここに水IPA溶液を加えて約30分室温で攪拌する。これをアルミゾル溶液とする。このアルミナ溶液はモル比で、アルミニウム-sec-ブトキシド:IPA:EAcAc:水 = 1: 20:1:2の割合としてある。
一方、φ22mm、厚さ2mmのBK7ガラス円板をイソプロピルアルコールで超音波洗浄し乾燥して、コーティング用ガラス基板とした。
次いで、コーティング用ガラス基板に、アルミナゾル溶液を25℃ 、50%R.H.下でスピンコート法(回転数4000rpm)により塗布した。これを、乾燥後、400℃ 30分で熱処理してアルミナ薄膜を得た。この膜厚を測定したところ、約0.18μmであった。
このアルミナ薄膜を90℃の熱水に30分間浸漬したのち、乾燥後、再度400℃ 30分で熱処理して反射防止膜を得た。得られた反射防止膜の断面観察画像を図1に示し、また、同反射膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造層とそれを支持する薄膜層との比を図2の表にそれぞれ示した。Aluminum-sec-butoxide, ethyl acetoacetate (EAcAc) and water were added to 2-propanol (hereinafter referred to as IPA), respectively, and stirred at room temperature for about 1 hour to obtain respective IPA solutions, and then aluminum-sec-butoxide IPA. To the solution is added an ethyl acetoacetate IPA solution and stirred for about 30 minutes at room temperature, and then a water IPA solution is further added thereto and stirred for about 30 minutes at room temperature. This is an aluminum sol solution. This alumina solution has a molar ratio of aluminum-sec-butoxide: IPA: EAcAc: water = 1: 20: 1: 2.
On the other hand, a BK7 glass disk having a diameter of 22 mm and a thickness of 2 mm was subjected to ultrasonic cleaning with isopropyl alcohol and dried to obtain a glass substrate for coating.
Next, the alumina sol solution was applied to the glass substrate for coating by spin coating (rotation speed 4000 rpm) at 25 ° C. and 50% RH. After drying, this was heat-treated at 400 ° C. for 30 minutes to obtain an alumina thin film. The film thickness was measured and found to be about 0.18 μm.
This alumina thin film was immersed in hot water at 90 ° C. for 30 minutes, dried, and then heat treated again at 400 ° C. for 30 minutes to obtain an antireflection film. The cross-sectional observation image of the obtained anti-reflective coating is shown in FIG. 1, and the reflectivity measurement, cross-sectional observation, and mechanical strength test of the fine concavo-convex structure layer are performed to support the reflectivity and the fine concavo-convex structure layer. The table of FIG. 2 shows the film thickness of the thin film layer to be formed and the ratio of the fine uneven structure layer to the thin film layer supporting it.
実施例1と同様で、塗布のみスピンコート法(3000rpm)で塗布した。熱水処理をする前の膜厚は約0.25μmであった。得られた反射防止膜の反射率の測定、断面観察を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造そうとそれを支持する薄膜層との比を図2の表にそれぞれに示した。 In the same manner as in Example 1, only the coating was applied by spin coating (3000 rpm). The film thickness before the hot water treatment was about 0.25 μm. The reflectance of the obtained antireflection film is measured and the cross section is observed, and the ratio between the reflectance and the film thickness of the thin film layer supporting the fine concavo-convex structure layer, and the ratio of the fine concavo-convex structure and the thin film layer supporting it are shown in FIG. These are shown in the table.
実施例1と同様で、塗布のみスピンコート法(2000rpm)で塗布した。熱水処理をする前の膜厚は約0.32μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造とそれを支持する薄膜層との比を図2の表にそれぞれ示す。 In the same manner as in Example 1, only coating was performed by spin coating (2000 rpm). The film thickness before the hot water treatment was about 0.32 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine concavo-convex structure layer are performed, and the film thickness of the thin film layer that supports the reflectivity and fine concavo-convex structure layer, and the fine concavo-convex structure and support it The ratio to the thin film layer is shown in the table of FIG.
実施例1と同様で、塗布のみディッピング法(引き上げ速度 9mm/s)で塗布した。熱水処理をする前の膜厚は約0.15μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造とそれを支持する薄膜層との比を図2の表にそれぞれ示す。なお、ヤング率は0.5GPaであった。 In the same manner as in Example 1, only coating was performed by the dipping method (pickup speed 9 mm / s). The film thickness before the hot water treatment was about 0.15 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine concavo-convex structure layer are performed, and the film thickness of the thin film layer that supports the reflectivity and fine concavo-convex structure layer, and the fine concavo-convex structure and support it The ratio to the thin film layer is shown in the table of FIG. The Young's modulus was 0.5 GPa.
実施例1と同様で、コーティング用ガラス基板に真空蒸着法により膜厚20nmのMgO膜をつけたものを用い、塗布をスピンコート法(3700rpm)で塗布して反射防止膜を得た。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造とそれを支持する薄膜層との比を図2の表にそれぞれ示す。 In the same manner as in Example 1, a coating glass substrate with a 20 nm-thickness MgO film formed by vacuum deposition was used, and coating was performed by spin coating (3700 rpm) to obtain an antireflection film. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine concavo-convex structure layer are performed, and the film thickness of the thin film layer that supports the reflectivity and fine concavo-convex structure layer, and the fine concavo-convex structure and support it The ratio to the thin film layer is shown in the table of FIG.
実施例4と同様で、熱水処理後500℃ 30分で熱処理して反射防止膜を得た。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造層とそれを支持する薄膜層との比を図2の表にそれぞれ示す。なお、ヤング率は0.8GPaであった。 In the same manner as in Example 4, an antireflection film was obtained by heat treatment at 500 ° C. for 30 minutes after the hot water treatment. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine relief structure layer, reflectivity and thin film layer thickness supporting the fine relief structure layer, fine relief structure layer and support it The ratio to the thin film layer to be used is shown in the table of FIG. The Young's modulus was 0.8 GPa.
実施例1と同様で、塗布のみディッピング法(引き上げ速度 0.7mm/s)で行った。熱水処理をする前の膜厚は約0.05μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造層とそれを支持する薄膜層との比を図2の表にそれぞれ示す。 In the same manner as in Example 1, only coating was performed by the dipping method (pulling speed 0.7 mm / s). The film thickness before the hot water treatment was about 0.05 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine relief structure layer, reflectivity and thin film layer thickness supporting the fine relief structure layer, fine relief structure layer and support it The ratio to the thin film layer to be used is shown in the table of FIG.
実施例1と同様で、塗布のみスピンコート法(200rpm)で行った。熱水処理をする前の膜厚は約1μmであった。得られた膜には肉眼で観察可能なクラックが発生していた。 In the same manner as in Example 1, only coating was performed by the spin coat method (200 rpm). The film thickness before the hot water treatment was about 1 μm. The resulting film had cracks that were observable with the naked eye.
実施例1と同様で、塗布のみディッピング法(引き上げ速度 1.5mm/s)で行った。熱水処理をする前の膜厚は約0.10μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、反射率と微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造そうとそれを支持する薄膜層との比を図2の表にそれぞれ示す。 In the same manner as in Example 1, only coating was performed by the dipping method (pickup speed: 1.5 mm / s). The film thickness before the hot water treatment was about 0.10 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine uneven structure layer, the reflectivity and the film thickness of the thin film layer supporting the fine uneven structure layer, the fine uneven structure and so on The ratio to the thin film layer to be used is shown in the table of FIG.
実施例1と同様で、アルミナゾル溶液に、酢酸亜鉛2水和物〔Zn(CH3COO)2・2H2O 〕をIPA中に溶解させ、モノエタノールアミンを添加して調整したZnO溶液を加えた。また、この溶液をディッピング法(引き上げ速度 1.5mm/s)で塗布した。熱水処理をする前の膜厚は約0.12μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造層とそれを支持する薄膜層との比を図2の表にそれぞれ示す。 In the same manner as in Example 1, zinc acetate dihydrate [Zn (CH3COO) 2 · 2H2O] was dissolved in IPA to an alumina sol solution, and a ZnO solution prepared by adding monoethanolamine was added. Further, this solution was applied by a dipping method (pickup speed: 1.5 mm / s). The film thickness before the hot water treatment was about 0.12 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine concavo-convex structure layer, film thickness of the thin film layer supporting the fine concavo-convex structure layer, and fine concavo-convex structure layer and the thin film layer supporting it The ratio is shown in the table of FIG.
比較例4と同様で、塗布のみディッピング法(引き上げ速度 0.7mm/s)で行った。熱水処理をする前の膜厚は約0.10μmであった。得られた反射防止膜の反射率の測定、断面観察、微細凹凸構造層の機械強度試験を行い、微細凹凸構造層を支持する薄膜層の膜厚、微細凹凸構造層とそれを支持する薄膜層との比を図2の表にそれぞれ示す。 As in Comparative Example 4, only coating was performed by the dipping method (pickup speed 0.7 mm / s). The film thickness before the hot water treatment was about 0.10 μm. Measurement of reflectivity of the obtained antireflection film, cross-sectional observation, mechanical strength test of the fine concavo-convex structure layer, film thickness of the thin film layer supporting the fine concavo-convex structure layer, and fine concavo-convex structure layer and the thin film layer supporting it The ratio is shown in the table of FIG.
ts 微細凹凸構造層の膜厚
tt薄膜層の膜厚ts Thickness of fine relief structure layer
tt Film thickness
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008025369AJP2009186670A (en) | 2008-02-05 | 2008-02-05 | Antireflective film |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008025369AJP2009186670A (en) | 2008-02-05 | 2008-02-05 | Antireflective film |
| Publication Number | Publication Date |
|---|---|
| JP2009186670Atrue JP2009186670A (en) | 2009-08-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008025369AWithdrawnJP2009186670A (en) | 2008-02-05 | 2008-02-05 | Antireflective film |
| Country | Link |
|---|---|
| JP (1) | JP2009186670A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014035475A (en)* | 2012-08-09 | 2014-02-24 | Canon Inc | Optical member, and method for manufacturing optical member |
| JP2016178087A (en)* | 2016-05-10 | 2016-10-06 | ウシオ電機株式会社 | Fluorescent light source device |
| JP2019061137A (en)* | 2017-09-27 | 2019-04-18 | キヤノン株式会社 | Optical element, optical apparatus, method of manufacturing optical element, and paint |
| JPWO2023047948A1 (en)* | 2021-09-24 | 2023-03-30 |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014035475A (en)* | 2012-08-09 | 2014-02-24 | Canon Inc | Optical member, and method for manufacturing optical member |
| JP2016178087A (en)* | 2016-05-10 | 2016-10-06 | ウシオ電機株式会社 | Fluorescent light source device |
| JP2019061137A (en)* | 2017-09-27 | 2019-04-18 | キヤノン株式会社 | Optical element, optical apparatus, method of manufacturing optical element, and paint |
| JP7046544B2 (en) | 2017-09-27 | 2022-04-04 | キヤノン株式会社 | Optical elements, optical equipment, manufacturing methods and paints for optical elements |
| JPWO2023047948A1 (en)* | 2021-09-24 | 2023-03-30 | ||
| WO2023047948A1 (en)* | 2021-09-24 | 2023-03-30 | 東海光学株式会社 | Optical product and manufacturing method for optical product |
| Publication | Publication Date | Title |
|---|---|---|
| CN109655944B (en) | Optical element, optical system, and image pickup apparatus | |
| JP4520418B2 (en) | Optical transparent member and optical system using the same | |
| KR101091851B1 (en) | A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition | |
| JP2013539550A (en) | Optical coating containing porous silica nanoparticles | |
| CN101693519B (en) | Process for preparing silicon dioxide nano-cone array | |
| JP3051084B2 (en) | Sol-gel method | |
| US20070104922A1 (en) | Superhydrophilic coatings | |
| CN101241199A (en) | Optically transparent component and optical system using the optically transparent component | |
| TW201249768A (en) | Glass article having antireflective layer and method of making | |
| JP5279344B2 (en) | Optical element manufacturing method | |
| JP6903994B2 (en) | Optical element and its manufacturing method | |
| WO2017056405A1 (en) | Coated glass plate and method for manufacturing same | |
| JP2009186670A (en) | Antireflective film | |
| JP7343334B2 (en) | Lens unit and camera module | |
| JP2020181073A (en) | Lens with film, lens unit and camera module | |
| JP2017167271A (en) | Optical member and optical member manufacturing method | |
| JP2001183506A (en) | Optical element and display device | |
| JP2017062371A (en) | Optical member having antireflection film and method for producing the antireflection film | |
| JP2007241177A (en) | Antireflection structure and structure | |
| JP5286632B2 (en) | Porous membrane and method for producing the same | |
| JP2006171430A (en) | Optical element and optical system having the same | |
| JPH1184102A (en) | Antifogging coating and optical component using the same | |
| JP3762108B2 (en) | Antifogging and antireflection optical article | |
| JP7335556B2 (en) | OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT | |
| US12242026B2 (en) | Optical element and optical element production method |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20110405 |