

本発明は、特に、非球面レンズの非球面形状を測定するために用いられる光波干渉測定装置に関する。 The present invention particularly relates to an optical interference measuring apparatus used for measuring the aspherical shape of an aspherical lens.
近年、非球面光学素子の非球面表面形状を高精度に測定したいという要求が、特にレンズ設計、製造等の分野において強い。 In recent years, there is a strong demand for measuring the aspheric surface shape of an aspherical optical element with high accuracy, particularly in the fields of lens design and manufacturing.
非球面形状の高精度な測定手法に係る技術としては、フィゾー型タイプの干渉計において、被測定非球面の基準とされた参照非球面を有する参照用反射素子を、該被測定非球面と近接配置し、該参照用反射素子で反射して被測定非球面に戻る参照光と、該被測定非球面において反射される物体光との光干渉により得られる干渉縞に基づき、被測定非球面の形状を測定し、この測定時において干渉縞をスキャニングする、いわゆる干渉縞スキャン法が知られている(下記特許文献1参照)。 As a technique related to a highly accurate measurement method of an aspherical shape, in a Fizeau type interferometer, a reference reflecting element having a reference aspherical surface as a standard for the measured aspherical surface is placed close to the measured aspherical surface. The measured aspheric surface is arranged on the basis of interference fringes obtained by optical interference between the reference light reflected by the reference reflecting element and returning to the measured aspheric surface and the object light reflected on the measured aspheric surface. A so-called interference fringe scanning method is known in which the shape is measured and the interference fringes are scanned during the measurement (see Patent Document 1 below).
さらに、非球面形状の高精度な測定手法に係る技術としては、下記特許文献2、3等に開示されたようないわゆる点スキャン法や、下記特許文献4等に記載されたような開口合成法を利用する手法が知られている。 Furthermore, as a technique related to a highly accurate measurement method of an aspherical shape, a so-called point scan method as disclosed in Patent Documents 2 and 3 below, and an aperture synthesis method as described in Patent Document 4 below and the like. A method of using is known.
しかしながら、上記特許文献、特に上記特許文献1等に記載された手法では、参照非球面(非球面基準面)と被測定非球面との各光軸のズレが測定に大きく影響すること等の理由から、非球面形状をなす被検面の全領域について同時に、良好な干渉縞を得ることができない。結局、被検面全体について干渉縞情報を得るためには、各領域について干渉縞情報が現れる毎に撮像を繰返し、これら撮像された多数の干渉縞情報を組み合わせる等の処理が必要であるから、干渉縞情報の取得操作が極めて繁雑となる。 However, in the method described in the above-mentioned patent documents, particularly in the above-mentioned patent document 1, etc., the reason that the deviation of each optical axis between the reference aspheric surface (aspheric reference surface) and the measured aspheric surface greatly affects the measurement. Therefore, good interference fringes cannot be obtained simultaneously for the entire region of the test surface having an aspherical shape. Eventually, in order to obtain interference fringe information for the entire test surface, it is necessary to repeat imaging every time interference fringe information appears for each region, and to perform processing such as combining a number of these captured interference fringe information. The operation of acquiring interference fringe information becomes extremely complicated.
したがって、上記各特許文献に記載された手法では、いずれも膨大な測定時間を要することになる。 Therefore, all of the methods described in the above patent documents require enormous measurement time.
さらに、上記特許文献1記載のものでは、装置の製造コストが高価になってしまい、また、上記特許文献4記載のものでは、装置構成が複雑になるという問題もある。 Further, the device described in Patent Document 1 has a high manufacturing cost of the device, and the device described in Patent Document 4 has a problem that the device configuration is complicated.
本発明は、このような事情に鑑みなされたものであり、非球面光学素子の表面形状を簡易かつ低コストで短時間のうちに測定し得る光波干渉測定装置を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical interference measuring apparatus capable of measuring the surface shape of an aspherical optical element easily and at low cost in a short time. It is.
本発明に係る光波干渉測定装置は、
光源からの光束を光束分離合成手段により二分して、一方を被検体方向に向かう第1光束とするとともに、他方を参照体方向に向かう第2光束とし、
前記光束分離合成手段によって、該第1光束の該被検体からの戻り光と該第2光束の該参照体からの戻り光とを合成して干渉光となし、所定位置に配された撮像体上に前記被検体の表面形状情報に基づく干渉縞像を形成する光波干渉測定装置において、
前記被検体が表面形状を測定すべき非球面光学素子であり、前記参照体が該被検体の基準とすべき形状をなす非球面光学素子であり、
前記光束分離合成手段と前記被検体との間には、前記光束分離合成手段からの前記第1光束を前記被検体の表面に入射させるとともに、該被検体の表面から反射された該第1光束を前記光束分離合成手段に戻すように構成され、該被検体に対向する面を第1基準球面とされた第1球面基準レンズが配され、
前記光束分離合成手段と前記参照体との間には、前記光束分離合成手段からの前記第2光束を前記参照体の表面に入射させるとともに、該参照体の表面から反射された該第2光束を前記光束分離合成手段に戻すように構成され、該参照体に対向する面を、前記第1基準球面と同一曲率の第2基準球面を有する第2球面基準レンズが配されてなることを特徴とするものである。The optical interference measuring apparatus according to the present invention is
The light beam from the light source is divided into two by the light beam separating / synthesizing means, and one is used as the first light beam directed toward the subject, and the other as the second light beam directed toward the reference body.
An imaging body arranged at a predetermined position by combining the return light of the first light flux from the subject and the return light of the second light flux from the reference body to form interference light by the light beam separating and combining means. In the light wave interference measurement apparatus for forming an interference fringe image based on the surface shape information of the subject on the top,
The subject is an aspherical optical element whose surface shape is to be measured, and the reference body is an aspherical optical element having a shape to be a standard of the subject;
The first light beam from the light beam separation / synthesis unit is incident on the surface of the subject and the first light beam reflected from the surface of the subject is interposed between the light beam separation / synthesis unit and the subject. And a first spherical reference lens having a surface facing the subject as a first reference spherical surface,
Between the light beam separation / synthesis unit and the reference body, the second light beam from the light beam separation / synthesis unit is incident on the surface of the reference body and the second light beam reflected from the surface of the reference body And a second spherical reference lens having a second reference spherical surface having the same curvature as that of the first reference spherical surface on the surface facing the reference body. It is what.
この場合において、上記装置は、等光路長型のマイケルソンタイプとすることが好ましい。 In this case, the device is preferably a Michelson type having an equal optical path length.
また、この場合において、前記第1光束と前記第2光束を光反射と光透過により分離し、かつ合成する前記光束分離合成手段の分離面が、前記ビームスプリッタの一面に設けられ、
前記ビームスプリッタが断面楔形状をなす板状に構成されていることが好ましい。In this case, a separation surface of the light beam separation / combination means for separating and combining the first light beam and the second light beam by light reflection and light transmission is provided on one surface of the beam splitter,
It is preferable that the beam splitter has a plate shape having a wedge shape in cross section.
また、該ビームスプリッタの前記一面側に射出される光束の光路中であって、この光路中に配されたいずれかの前記球面基準レンズと該ビームスプリッタとの間に、前記第1光束と前記第2光束の光路長の差を補償する補償板が配されていることが好ましい。 Further, in the optical path of the light beam emitted to the one surface side of the beam splitter, the first light beam and the beam splitter between any of the spherical reference lenses arranged in the optical path and the beam splitter It is preferable that a compensation plate for compensating for the difference in optical path length of the second light beam is provided.
さらに、前記参照体の表面にデフォーマブルミラーを付設するように構成することが可能である。 Furthermore, a deformable mirror can be provided on the surface of the reference body.
なお、前記基準球面は、上記参照体表面形状を表す非球面のベースとなる球面とされている。すなわち、該非球面を周知の非球面式で表した場合における曲率C(または曲率半径R)の値を、その曲率(または曲率半径)とした球面とされる。 The reference spherical surface is a spherical surface serving as an aspherical base representing the reference body surface shape. That is, the spherical surface having the curvature (or radius of curvature) as the value of curvature C (or radius of curvature R) when the aspheric surface is expressed by a well-known aspherical expression is used.
本発明に係る光波干渉測定装置は、光源からの光束を光束分離合成手段により二分して、一方を被検体方向に向かう第1光束とするとともに、他方を参照体方向に向かう第2光束としており、また、被検体から反射された第1光束と参照体から反射された第2光束とを該光束分離合成手段により合成することにより、その被検体表面形状情報を干渉縞情報として得ることができるようにしている。 In the light wave interference measuring apparatus according to the present invention, the light beam from the light source is divided into two by the light beam separation / combination means, and one is used as the first light beam directed toward the subject and the other as the second light beam directed toward the reference body. Moreover, the subject surface shape information can be obtained as interference fringe information by combining the first light beam reflected from the subject and the second light beam reflected from the reference body by the light beam separation and synthesis means. I am doing so.
そして、光束分離合成手段により合成せしめられる干渉光は、被検体表面での第1光束の反射光と、この被検体表面形状の基準となる参照体表面での第2光束の反射光との差に応じたものであるが、上記第1光束の反射光は被検体表面と第1基準球面との形状差に基づく情報(以下、形状差情報と称する)を有しており、一方、上記第2光束の反射光は参照体表面と第2基準球面との形状差情報を有しているから、両反射光束の干渉により形成された干渉縞は、上記2つの形状差情報によるものとなり、縞感度が大幅に小さいものとされている。これにより、干渉縞を撮像体上に良好に形成することが可能となり、非球面に極めて近い被検体表面の全領域に係る干渉縞情報を同時に取得することが可能である。 The interference light combined by the light beam separation / combination means is the difference between the reflected light of the first light beam on the surface of the subject and the reflected light of the second light beam on the surface of the reference body that is the reference for the shape of the subject surface. However, the reflected light of the first light flux has information based on the shape difference between the subject surface and the first reference spherical surface (hereinafter referred to as shape difference information). Since the reflected light of the two light beams has shape difference information between the surface of the reference body and the second reference spherical surface, the interference fringes formed by the interference between the two reflected light beams are based on the above two shape difference information. Sensitivity is supposed to be greatly reduced. As a result, it is possible to satisfactorily form interference fringes on the imaging body, and it is possible to simultaneously obtain interference fringe information relating to the entire region of the subject surface extremely close to an aspherical surface.
したがって、本発明に係る光波干渉測定装置によれば、非球面光学素子の表面形状を簡易かつ低コストで短時間のうちに測定することが可能となる。 Therefore, according to the light wave interference measuring apparatus according to the present invention, the surface shape of the aspherical optical element can be measured easily and at low cost in a short time.
以下、本発明の実施形態について図面を用いて説明する。図1は本発明の第1の実施形態に係る光波干渉測定装置の構成を概略的に示す図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing the configuration of a lightwave interference measuring apparatus according to the first embodiment of the present invention.
図1に示すように、この装置10は、光源11と、光源11からの光束を平行光束とするコリメートレンズ12と、このコリメートレンズ12からの平行光束を透過/反射分離面13aにより二分するビームスプリッタ13と、この透過/反射分離面13aにより反射された第1の平行光束を、被検非球面レンズ17上に照射するとともに、被検非球面レンズ17からの反射光を透過/反射分離面13aに戻す高NA球面基準レンズ(第1球面基準レンズ)15と、この透過/反射分離面13aを透過した第2の平行光束を、参照非球面レンズ27上に照射するとともに、参照非球面レンズ27からの反射光を透過/反射分離面13aに戻す高NA球面基準レンズ(第2球面基準レンズ)25と、透過/反射分離面13aにおける被検非球面レンズ17からの反射光と参照非球面レンズ27からの反射光との干渉により生じる干渉縞を撮像する干渉計CCDカメラ31と、合波された上記両反射光による干渉縞を干渉計CCDカメラ31の撮像面上に結像させる結像レンズ29を備えている。 As shown in FIG. 1, the
また、上記ビームスプリッタ13は、透過/反射分離面13aとは反対側の面からの反射光によりノイズ干渉縞が発生するのを防止するため、対向する両面が互いに非平行となるように楔形状に構成されている。 Further, the
また、光束がビームスプリッタ13中を通過する回数が、第1の平行光束によるものでは1回であるのに対し、第2の平行光束によるものでは3回となっており、互いの光路長を一致させるために補償板14が設けられ、かつビームスプリッタ13と同一の楔方向となるように配された略同一の楔形状体にて構成されている。 In addition, the number of times the light beam passes through the
また、高NA球面基準レンズ(第1球面基準レンズ)15と、高NA球面基準レンズ25(第2球面基準レンズ)は主要部のみを模式的に描いたものであって、各凹面は基準球面15a、25aとされ、互いに同一曲率に形成されている。 Further, the high NA spherical reference lens (first spherical reference lens) 15 and the high NA spherical reference lens 25 (second spherical reference lens) schematically depict only main parts, and each concave surface has a reference spherical surface. 15a and 25a, which are formed with the same curvature.
すなわち、この基準球面15a、25aは、入射された平行光束をこの基準球面15a、25aから垂直に射出させるもので、被検非球面レンズ17と参照非球面レンズ27のベースとなる仮想球面に対して垂直に入射するように構成されている。ただし、被検非球面レンズ17および参照非球面レンズ27は、その表面形状がいずれも非球面であるから、これらレンズ17、27に対する光束の入射角は0度ではなく、若干の角度をもったものとなっている。 That is, the reference spherical surfaces 15a and 25a are for emitting the incident parallel light beam perpendicularly from the reference spherical surfaces 15a and 25a, and for the virtual spherical surface serving as the base of the test aspheric lens 17 and the reference aspheric lens 27. So that the light is incident vertically. However, since the aspherical lens 17 to be examined and the reference aspherical lens 27 are both aspherical, the incident angle of the light flux with respect to these lenses 17 and 27 is not 0 degrees but has a slight angle. It has become a thing.
また、高NA球面基準レンズ25にはピエゾ素子41が付設されており、周知の位相シフト法を採用することが可能となっている。 Further, the high NA spherical reference lens 25 is provided with a
なお、被検非球面レンズ17は、一般に、形状の基準となる参照非球面レンズ27に対して、若干の形状誤差を有しているものであり、この光波干渉測定装置10は、このような被検非球面レンズ17の形状誤差を定量的に測定するものである。 The aspherical lens 17 to be examined generally has a slight shape error with respect to the reference aspherical lens 27 serving as a shape standard. The shape error of the test aspheric lens 17 is quantitatively measured.
すなわち、透過/反射分離面13aにおいて二分された光原11からの光束は、それぞれ対応する高NA球面基準レンズ15、25によって、被検非球面レンズ17と参照非球面レンズ27の表面形状の差に応じた波面情報を担持した状態で再び合波され、参照非球面レンズ27に対する被検非球面レンズ17の波面の相対誤差分が干渉縞情報とされて干渉計CCDカメラ31の撮像面上に形成される。この際に、これら2つのレンズ17、27からの両反射光を互いに合波せしめて、参照非球面レンズ27の形状に対する被検非球面レンズ17の形状を干渉縞情報として求めるようにしている。 That is, the luminous flux from the photogenerator 11 divided into two at the transmission /
また、被検非球面レンズ17からの反射光は被検非球面レンズ17の表面と第1基準球面15aとの形状差に基づく形状差情報を担持しており、一方、参照非球面レンズ27からの反射光は参照非球面レンズ27の表面と第2基準球面25aとの形状差に基づく形状差情報を担持しているから、両反射光束の干渉により形成された干渉縞は、これら2つの形状差情報同士の差情報に基づくものとなる。これにより、縞感度を大幅に小さいものとすることができることから、全有効領域の形状を同時に取得することが可能となる。 The reflected light from the test aspheric lens 17 carries shape difference information based on the shape difference between the surface of the test aspheric lens 17 and the first reference spherical surface 15a. Reflected light carries shape difference information based on the shape difference between the surface of the reference aspheric lens 27 and the second reference spherical surface 25a, and therefore the interference fringes formed by the interference of both reflected light beams have these two shapes. This is based on the difference information between the difference information. Thereby, since the fringe sensitivity can be greatly reduced, the shapes of all effective regions can be acquired simultaneously.
したがって、被検体の各領域の干渉縞情報を部分的に求めた後、互いに組み合わせる必要があった、従来の非球面光学素子の干渉縞形状測定に比べて、測定解析時間を大幅に軽減することが可能である。また、解析ソフトも簡易なものとすることができ、測定に要するコストを低減することができる。 Therefore, the measurement analysis time can be greatly reduced compared to the conventional interference fringe shape measurement of aspherical optical elements, which must be combined with each other after partially obtaining the interference fringe information of each region of the subject. Is possible. Also, the analysis software can be simplified, and the cost required for measurement can be reduced.
また、本実施形態装置は、等光路長型を構築し得る、マイケルソンタイプに構成されており、また、補償板14を用いビームスプリッタ13中の光束通過に応じて生じた光路長の差を補償しているので、光源11からの出力光を低可干渉光とすることができる。これによって光路中の他の光学面からの反射光に基づくノイズ干渉縞の発生を回避することができる。 In addition, the apparatus according to the present embodiment is configured as a Michelson type capable of constructing an equal optical path length type, and the difference in optical path length generated according to the passage of the light beam in the
なお、補償板14はビームスプリッタ13と同様の硝材によって形成されており、屈折率および分散値は同一とされている。また、形状も同様に形成されている。ただし、補償板14の屈折率、分散値および形状は、必ずしもビームスプリッタ13のものと一致していなくともよく、要は、光路中にビームスプリッタ13を挿入したことにより生じた上記両光路の光路長の差を補償しうるものであればよい。 The compensation plate 14 is formed of the same glass material as that of the
図2は本発明の第2の実施形態に係る光波干渉測定装置の構成を概略的に示す図である。 FIG. 2 is a diagram schematically showing a configuration of a lightwave interference measuring apparatus according to the second embodiment of the present invention.
この図2に示す装置10aは、図1に示す装置10と基本的構成が略同様であるので、図1に示す装置10と同一の機能を示す部材については、同一の符号を付し、その詳細な説明は省略する。 The
この図2に示す装置10aは、図1に示す装置10と比べて、参照非球面レンズ27の表面にデフォーマブルミラー27aが付設(例えば貼着)されている。 The
デフォーマブルミラー27aは、反射型の光変調装置であって、電気信号により空間的な光の位相分布が変更可能とされている。すなわち、多数のミラーデバイスの位置や傾きが印加電圧によって各々変動可能に構成されており、多数のミラーデバイスによって形成される曲面も変形可能とされている。このようなデフォーマブルミラー27aに対して、時間的に変動する電気信号を入力することにより、参照非球面レンズ27の表面形状が理想的な基準形状となるように微小量だけ変形させることができる。このようにすることにより、参照非球面レンズ27を極めて高精度に加工せずとも、理想的な基準形状の参照非球面レンズ27を形成することができる。 The deformable mirror 27a is a reflection type light modulation device, and the spatial light phase distribution can be changed by an electric signal. That is, the positions and inclinations of a large number of mirror devices can be varied according to the applied voltage, and the curved surface formed by the large number of mirror devices can also be deformed. By inputting an electric signal that varies with time to such a deformable mirror 27a, the surface shape of the reference aspheric lens 27 can be deformed by a minute amount so as to be an ideal standard shape. . By doing so, the reference aspheric lens 27 having an ideal standard shape can be formed without processing the reference aspheric lens 27 with extremely high accuracy.
なお、図2中には、参照非球面レンズ27の表面と第2基準球面25aとの形状差に基づく形状差情報を担持した波面が模式的に描かれている。 In FIG. 2, a wavefront carrying shape difference information based on the shape difference between the surface of the reference aspheric lens 27 and the second reference spherical surface 25a is schematically drawn.
以上、本発明の実施形態について説明したが、本発明はかかる実施形態に限られるものではなく、種々に態様を変更することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, A mode can be variously changed.
例えば、上記態様のものは、低可干渉光束を用いて測定を行うようにしており、これにより高精度な測定結果を得ることが可能となるものであるが、高可干渉光束を用いて測定を行うようにしてもよい。この場合には、光学系の2つの光路の光路長を互いに高精度に一致させる必要がなくなり、光学系調整の簡易化を図ることが可能となる。 For example, in the above-described embodiment, measurement is performed using a low coherent light beam, and thus a highly accurate measurement result can be obtained. May be performed. In this case, it is not necessary to match the optical path lengths of the two optical paths of the optical system with high accuracy, and it becomes possible to simplify the adjustment of the optical system.
また、被検体としては、上記非球面レンズに限られるものではなく、球面レンズの測定に用いることができることは勿論であり、例えば反射ミラー等のレンズ以外の光学素子の表面形状(球面、非球面、自由曲面等)についても適用可能である。 Further, the subject is not limited to the above-mentioned aspherical lens, and can naturally be used for measurement of a spherical lens. For example, the surface shape (spherical surface, aspherical surface) of an optical element other than a lens such as a reflecting mirror is used. , Free-form surface, etc.).
10、10a 光波干渉測定装置
11 光源
12 コリメータレンズ
13 ビームスプリッタ
13a 透過/反射分離面
14 補償板
15 高NA球面基準レンズ(第1球面基準レンズ)
15a、25a 基準球面
17 被検非球面レンズ
25 高NA球面基準レンズ(第2球面基準レンズ)
27 参照非球面レンズ
27a デフォーマブルミラー
29 結像レンズ
31 干渉計CCDカメラ
41 ピエゾ素子
DESCRIPTION OF
15a, 25a Reference spherical surface 17 Tested aspheric lens 25 High NA spherical reference lens (second spherical reference lens)
27 Reference aspherical lens 27a Deformable mirror 29 Imaging lens 31
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007340136AJP2009162539A (en) | 2007-12-28 | 2007-12-28 | Lightwave interference measuring device |
| CN2008101855139ACN101469976B (en) | 2007-12-28 | 2008-12-12 | Light wave interferometer apparatus |
| US12/334,034US7880897B2 (en) | 2007-12-28 | 2008-12-12 | Light wave interferometer apparatus |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007340136AJP2009162539A (en) | 2007-12-28 | 2007-12-28 | Lightwave interference measuring device |
| Publication Number | Publication Date |
|---|---|
| JP2009162539Atrue JP2009162539A (en) | 2009-07-23 |
| JP2009162539A5 JP2009162539A5 (en) | 2010-07-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007340136AAbandonedJP2009162539A (en) | 2007-12-28 | 2007-12-28 | Lightwave interference measuring device |
| Country | Link |
|---|---|
| JP (1) | JP2009162539A (en) |
| CN (1) | CN101469976B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102662237B (en)* | 2012-04-20 | 2015-03-04 | 华中科技大学 | Controllable interference system with small path difference |
| CN104634275A (en)* | 2015-01-26 | 2015-05-20 | 河南理工大学 | Non-spherical real-time interference measurement device based on Newton ring and non-spherical real-time interference measurement method based on Newton ring |
| CN105352451B (en)* | 2015-11-20 | 2018-04-13 | 北京理工大学 | A kind of accurate omnipotent compensating glass and design method based on deformable mirror |
| CN107702641B (en)* | 2016-08-09 | 2020-08-18 | 广西师范大学 | A system and method for detecting transmitted wavefront of aspheric lens |
| CN107085338A (en)* | 2017-05-25 | 2017-08-22 | 菏泽学院 | A blue-phase liquid crystal microlens self-adaptive debugging method and system used therefor |
| CN108036720B (en)* | 2017-11-09 | 2019-10-18 | 中国科学院上海光学精密机械研究所 | Measuring device and method for axial and radial runout of precision turntable |
| CN108344381B (en)* | 2018-02-09 | 2020-06-16 | 苏州大学 | Non-contact three-dimensional surface shape measuring method |
| CN108332683B (en)* | 2018-02-09 | 2020-09-18 | 苏州大学 | An Interferometric Optical Probe for Three-Dimensional Surface Measurement |
| CN108344383B (en)* | 2018-02-09 | 2020-09-18 | 苏州大学 | Non-contact coordinate measuring machine |
| CN110940298B (en)* | 2019-12-17 | 2021-07-27 | 重庆理工大学 | Autocollimator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61140802A (en)* | 1984-12-14 | 1986-06-27 | Hitachi Ltd | Lightwave interference device that prevents back-reflected light |
| US4725144A (en)* | 1986-02-25 | 1988-02-16 | R & D Associates | Optic element testing method and apparatus |
| JPS644702A (en)* | 1987-06-29 | 1989-01-09 | Hitachi Ltd | Mirror curvature varying device |
| JPH0425705A (en)* | 1990-05-22 | 1992-01-29 | Nec Corp | Optical interferometer |
| JPH06313707A (en)* | 1993-04-29 | 1994-11-08 | Olympus Optical Co Ltd | Shape measuring method and apparatus |
| JPH08193805A (en)* | 1995-01-13 | 1996-07-30 | Fuji Xerox Co Ltd | Optical interferometer and interference measuring method using the same |
| JPH1194515A (en)* | 1997-09-16 | 1999-04-09 | Fuji Photo Optical Co Ltd | Light wave interference device |
| JP2001349704A (en)* | 2000-06-12 | 2001-12-21 | Fuji Photo Optical Co Ltd | Interferometer device |
| JP2003035508A (en)* | 2001-07-24 | 2003-02-07 | Mitsutoyo Corp | Image measuring head and image measuring device |
| JP2005083954A (en)* | 2003-09-10 | 2005-03-31 | Fujinon Corp | Tomographic imaging system |
| JP2006064669A (en)* | 2004-08-30 | 2006-03-09 | Fujinon Corp | Interferometer device for virtual contact surface measurement |
| JP2006126103A (en)* | 2004-11-01 | 2006-05-18 | Canon Inc | Aspheric shape measurement method |
| JP2006242853A (en)* | 2005-03-04 | 2006-09-14 | Sony Corp | Interference device and measuring technique of planar shape |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005021783A1 (en)* | 2005-05-11 | 2006-11-16 | Carl Zeiss Smt Ag | Micro interferometer for micro roughness measurements on lithographic system optics has reference mirror generally curved to match object under test |
| CN2916623Y (en)* | 2006-07-05 | 2007-06-27 | 中国科学院上海光学精密机械研究所 | Frequency domain optical coherence tomography device for full-depth detection |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61140802A (en)* | 1984-12-14 | 1986-06-27 | Hitachi Ltd | Lightwave interference device that prevents back-reflected light |
| US4725144A (en)* | 1986-02-25 | 1988-02-16 | R & D Associates | Optic element testing method and apparatus |
| JPS644702A (en)* | 1987-06-29 | 1989-01-09 | Hitachi Ltd | Mirror curvature varying device |
| JPH0425705A (en)* | 1990-05-22 | 1992-01-29 | Nec Corp | Optical interferometer |
| JPH06313707A (en)* | 1993-04-29 | 1994-11-08 | Olympus Optical Co Ltd | Shape measuring method and apparatus |
| JPH08193805A (en)* | 1995-01-13 | 1996-07-30 | Fuji Xerox Co Ltd | Optical interferometer and interference measuring method using the same |
| JPH1194515A (en)* | 1997-09-16 | 1999-04-09 | Fuji Photo Optical Co Ltd | Light wave interference device |
| JP2001349704A (en)* | 2000-06-12 | 2001-12-21 | Fuji Photo Optical Co Ltd | Interferometer device |
| JP2003035508A (en)* | 2001-07-24 | 2003-02-07 | Mitsutoyo Corp | Image measuring head and image measuring device |
| JP2005083954A (en)* | 2003-09-10 | 2005-03-31 | Fujinon Corp | Tomographic imaging system |
| JP2006064669A (en)* | 2004-08-30 | 2006-03-09 | Fujinon Corp | Interferometer device for virtual contact surface measurement |
| JP2006126103A (en)* | 2004-11-01 | 2006-05-18 | Canon Inc | Aspheric shape measurement method |
| JP2006242853A (en)* | 2005-03-04 | 2006-09-14 | Sony Corp | Interference device and measuring technique of planar shape |
| Publication number | Publication date |
|---|---|
| CN101469976B (en) | 2011-04-06 |
| CN101469976A (en) | 2009-07-01 |
| Publication | Publication Date | Title |
|---|---|---|
| JP2009162539A (en) | Lightwave interference measuring device | |
| JP5394317B2 (en) | Rotationally symmetric aspherical shape measuring device | |
| US6771375B2 (en) | Apparatus and method for measuring aspherical optical surfaces and wavefronts | |
| US20130010286A1 (en) | Method and device of differential confocal and interference measurement for multiple parameters of an element | |
| JP5483993B2 (en) | Interferometer | |
| EP1840502A1 (en) | Optical interferometer for measuring changes in thickness | |
| JP2002071513A (en) | Interferometer for immersion microscope objective lens and method of evaluating immersion microscope objective lens | |
| JP2011252774A (en) | Measuring apparatus for inspection target surface | |
| US7649621B2 (en) | Optical inclinometer | |
| US8339612B2 (en) | Shape-measuring interferometer having low-coherence source conjugate to the examined object | |
| US20040150834A1 (en) | Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses | |
| JP2009244227A (en) | Light wave interference measuring method | |
| JP2025121323A (en) | Measurement device, measurement method, and optical system manufacturing method | |
| JP2007298281A (en) | Method and apparatus for measuring surface shape of subject | |
| JP2005201703A (en) | Interference measurement method and interference measurement system | |
| JP4667965B2 (en) | Light beam measuring device | |
| KR100903264B1 (en) | Wavefront Aberration Measuring Apparatus and Method | |
| JP2002286408A (en) | Optical system for grazing incidence interferometer and apparatus using the same | |
| JP2007093288A (en) | Optical measuring device and optical measuring method | |
| JPH116784A (en) | Aspherical shape measuring device and measuring method | |
| JP2014074620A (en) | Measuring device and measuring method | |
| JP2000088513A (en) | Aspheric wave generation lens system assembly adjustment device | |
| JP2008292218A (en) | Surface shape measuring device, surface shape measuring method, and microscope objective optical system | |
| JP2006284233A (en) | System error measuring device and wavefront measuring interferometer device having the same | |
| JP4667957B2 (en) | Light beam measuring device |
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20100603 | |
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20100603 | |
| A711 | Notification of change in applicant | Free format text:JAPANESE INTERMEDIATE CODE: A711 Effective date:20100621 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20110422 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20110427 | |
| A762 | Written abandonment of application | Free format text:JAPANESE INTERMEDIATE CODE: A762 Effective date:20110622 |