本発明はテレビジョンカメラの固定パターンノイズの温度補償に関するものである。 The present invention relates to temperature compensation for fixed pattern noise of a television camera.
可視光と近赤外線と近紫外線を撮像するシリコンCCD撮像素子の暗電流の温度変化の平均値は遮光した画素の暗電流で検出できる。しかし、画素ごとの暗電流の温度変化が不規則で大きいシリコンCMOS撮像素子もある。従来の撮像素子の温度補償を考慮した画素ごとの暗電流変化による固定パターンノイズの除去方法としては、全画素に対し、リアルタイムで隣接する画素との比較判定を行い、画素ごとの暗電流変化固定パターンノイズ補正を除去する方法がある(特許文献1参照)。特定の温度条件下の1点の画素ごとの暗電流変化補正データを基準とし、温度変化に対しては、一定の温度環境に対するで固定パターン温度条件化で補正データを生成し、撮像素子の固定パターンノイズを近似した計算式から任意の温度における固定パターンノイズの補正係数を求める方法などもある(特許文献2参照)。 The average value of the temperature change of the dark current of the silicon CCD image pickup device that captures visible light, near infrared light, and near ultraviolet light can be detected by the dark current of the shielded pixel. However, there is also a silicon CMOS image sensor in which the temperature change of the dark current for each pixel is irregular and large. As a method for removing fixed pattern noise due to changes in dark current for each pixel in consideration of temperature compensation of conventional image sensors, all pixels are compared with adjacent pixels in real time, and the dark current change is fixed for each pixel. There is a method of removing pattern noise correction (see Patent Document 1). Based on dark current change correction data for each pixel under a specific temperature condition, the correction data is generated under a fixed pattern temperature condition for a constant temperature environment, and the image sensor is fixed. There is also a method of obtaining a correction coefficient of fixed pattern noise at an arbitrary temperature from a calculation formula approximating pattern noise (see Patent Document 2).
また、遮光した画素の作成が困難な遠赤外線撮像素子の画素ごとの感度変化の固定パターンノイズの低減方法としては、3点の温度条件下の感度補正データを基準とし、温度変化に対しては、2次元曲線近似した感度補正データを生成する方法などもある(特許文献3参照)。 In addition, as a method of reducing fixed pattern noise of sensitivity change for each pixel of a far-infrared imaging device where it is difficult to create a light-shielded pixel, sensitivity correction data under three temperature conditions is used as a reference, and for temperature change There is also a method of generating sensitivity correction data that approximates a two-dimensional curve (see Patent Document 3).
さらに、複数の温度の撮像素子全体の暗電流データを記憶し、上下の温度の暗電流データから補間計算して撮像時の温度の暗電流データを算出し、画像データの補正に用いる方法も提案されている(特許文献4参照)。
従来の技術のみを用いた場合に次のような問題点がある。 When only the conventional technology is used, there are the following problems.
隣接する画素との比較判定を行う方法では常に画素ごとの暗電流変化による固定パターンノイズの測定を行うため、温度補償が不要となる利点がある。しかし、被写体を画素ごとの暗電流変化による固定パターンノイズとして誤検出することによって生じる、偽信号による画像劣化が問題となる。 The method of performing comparison determination with adjacent pixels always has an advantage that temperature compensation is not required because measurement of fixed pattern noise due to a change in dark current for each pixel is always performed. However, there is a problem of image degradation due to false signals caused by erroneously detecting a subject as fixed pattern noise due to a dark current change for each pixel.
また、特定の温度条件下の1点の補正データを基準とする方法では、予めカメラを遮光状態で画素ごとの暗電流変化による固定パターンノイズを測定することが可能であるため、隣接する画素との比較判定を行う方法のような問題は無いが、画素ごとの暗電流変化による固定パターンノイズすべてが同じ温度特性を持たない場合、すべての固定パターンノイズを一様に近似した補正式では、部分的に過補正または、補正不足が生じ温度環境によって補正精度にばらつきが生じる。 Further, in the method based on one point of correction data under a specific temperature condition, it is possible to measure fixed pattern noise due to a dark current change for each pixel in a light-shielded state in advance. However, if all the fixed pattern noises due to the dark current change for each pixel do not have the same temperature characteristics, the correction formula that uniformly approximates all the fixed pattern noises In particular, overcorrection or insufficient correction occurs, and the correction accuracy varies depending on the temperature environment.
さらに、複数の温度において撮像素子全体の暗電流データを記憶し、撮像時には上下の温度の暗電流データをそれぞれ読み出し、この2つの暗電流データを必要に応じて補間計算する提案を実行するには暗電流が画素ごとに不規則に大きく温度変化するCMOS撮像素子では、急激な温度変化に対しても、補正データの切り替えショックが生ずる問題がある。 In addition, the dark current data of the entire image sensor is stored at a plurality of temperatures, the dark current data of the upper and lower temperatures are read out at the time of imaging, and the proposal to perform interpolation calculation of the two dark current data as necessary is executed. In a CMOS image sensor in which the dark current changes in temperature irregularly for each pixel, there is a problem that correction data switching shock occurs even when the temperature changes suddenly.
本発明は、上記問題を解決し、温度によって変化する撮像素子の画素ごとの暗電流変化による固定パターンノイズを低減させることを目的とする。 An object of the present invention is to solve the above-described problem and reduce fixed pattern noise due to a dark current change for each pixel of an image sensor that changes according to temperature.
本発明は、上記の目的を達成するために、温度センサと、暗電流が画素ごとに不規則に温度変化するCMOS撮像素子と、該撮像素子の画素ごとの暗電流変化を検出する手段と、該画素ごとの暗電流変化の補正データを複数保存し読み出す不揮発性メモリと、画素ごとの暗電流変化を映像信号から減算する補正回路とを有し、遮光状態で複数の温度条件における画素ごとの暗電流変化の補正データを記憶し、前記温度センサで検出する温度に対し、複数の温度毎の前記記憶補正データから、現在の温度に近い2つ以上の前記記憶補正データを選択し、該2つ以上の前記記憶補正データから現在の温度に対し適合する画素ごとの暗電流変化を生成し、補正データと前回の補正データとの間で1倍未満の値をもつ係数βで循環フィルタを構成し、該循環フィルタ出力の補正データで、画素ごとの暗電流変化を撮像素子から出力される映像信号から減算することを特徴とした撮像装置である。 In order to achieve the above object, the present invention provides a temperature sensor, a CMOS image sensor in which the dark current changes irregularly for each pixel, means for detecting a dark current change for each pixel of the image sensor, A non-volatile memory that stores and reads a plurality of dark current change correction data for each pixel, and a correction circuit that subtracts the dark current change for each pixel from the video signal. Correction data for dark current change is stored, and two or more stored correction data close to the current temperature are selected from the stored correction data for each of a plurality of temperatures for the temperature detected by the temperature sensor, and the 2 A dark current change for each pixel that matches the current temperature is generated from two or more of the stored correction data, and a circulation filter is configured with a coefficient β having a value less than 1 time between the correction data and the previous correction data. And In the correction data of the circulation filter output, an imaging apparatus characterized by subtracting from the video signal output of the dark current change for each pixel from the image sensor.
つまり、温度環境の変化に対しても、ノイズの少ない良好な映像信号を得るために、本発明のテレビジョンカメラ装置は、従来の固定パターンノイズ除去機能に加え、予め、複数の温度環境における補正データを装置内部に保存しておき、それらのデータから最適な補正データをリアルタイムで生成し、この生成補正データの切り替えを循環フィルタを通して行うものである。 In other words, in order to obtain a good video signal with less noise even when the temperature environment changes, the television camera apparatus of the present invention is previously corrected in a plurality of temperature environments in addition to the conventional fixed pattern noise removal function. Data is stored in the apparatus, optimal correction data is generated from the data in real time, and the generated correction data is switched through a circulation filter.
以上のように本発明によれば、温度変化する撮像素子の画素ごとの暗電流変化をリアルタイムで高精度に補正することができ、これにより、暗電流が画素ごとに不規則に大きく温度変化する安価な撮像素子を使用した場合でも、画素ごとの暗電流変化が少なく、温度変化も一定な選別した高価な撮像素子を使用した場合に匹敵する固定パターンノイズの少ない画質が得られるテレビジョンカメラを実現することができる As described above, according to the present invention, the dark current change for each pixel of the image sensor that changes in temperature can be corrected with high accuracy in real time, whereby the dark current changes in temperature irregularly and greatly for each pixel. Even when an inexpensive image sensor is used, there is a television camera that can obtain image quality with less fixed pattern noise comparable to that when using an expensive image sensor with little change in dark current for each pixel and constant temperature change. Can be realized
本発明の構成を、本発明による1実施例の撮像装置の構成を示すブロック図の図1を使用して説明する。図1において1はレンズ、2は色分解プリズムで入射光をR、G、Bの光の3原色に分光する。3R、3G、3BはCMOS撮像素子で、光を光電変換し雑音低減し利得調整しA/D変換しデジタル映像信号を出力する。4は映像信号処理部で、DSPやFPGAで構成され、5はCPU&MEMORY部で、4の映像信号処理部を制御し、カメラの動作を維持するとともに必要に応じ調整データ等を不揮発性メモリに保存ずる。4の映像信号処理部は、CMOS撮像素子の画素ごとの暗電流変化の情報をCPU&MEMORY部6へ渡すと共に固定パターンノイズの補正及びディテール補正、ガンマ補正等の所要の信号処理を行い映像信号を外部機器へと出力する。 The configuration of the present invention will be described with reference to FIG. 1 which is a block diagram showing the configuration of an imaging apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a lens, and 2 is a color separation prism, which splits incident light into three primary colors of R, G, and B light. 3R, 3G, and 3B are CMOS image sensors, which photoelectrically convert light to reduce noise, adjust gain, perform A / D conversion, and output a digital video signal. Reference numeral 4 denotes a video signal processing unit, which is composed of a DSP or FPGA. Reference numeral 5 denotes a CPU & MEMORY unit that controls the four video signal processing units, maintains the operation of the camera, and stores adjustment data or the like in a nonvolatile memory as necessary. Sway. The video signal processing unit 4 passes dark current change information for each pixel of the CMOS image sensor to the CPU & MEMORY unit 6 and performs necessary signal processing such as fixed pattern noise correction, detail correction, and gamma correction, and externally outputs the video signal. Output to the device.
次に、固定パターンノイズ補正の詳細について本発明による1実施例の画素ごとの暗電流変化温度補償の模式図の図2を用いて説明する。図2において、5の温度別固定パターンノイズデータは、予め、本発明のカメラを遮光状態で周囲温度を低温から高温まで連続的に変化させることが可能な環境におき、その周囲温度変化の過程でカメラに搭載されたCPUのプログラムにより、一定の温度間隔で自動的に測定した画素ごとの暗電流変化データであり、温度に応じた複数の画素ごとの暗電流変化が格納されている。6の撮像素子からの信号は通常の撮影時における撮像素子から入力される映像信号データであり、7の画素ごとの暗電流変化補正済み映像信号データは6の撮像素子からの信号に対し9の固定パターンノイズが除去された映像信号データである。 Next, details of the fixed pattern noise correction will be described with reference to FIG. 2 which is a schematic diagram of dark current change temperature compensation for each pixel according to an embodiment of the present invention. In FIG. 2, the fixed pattern noise data for each temperature of 5 is preliminarily placed in an environment where the ambient temperature can be continuously changed from a low temperature to a high temperature while the camera of the present invention is in a light-shielded state. The dark current change data for each pixel automatically measured at a constant temperature interval by the program of the CPU installed in the camera, and the dark current change for each of the plurality of pixels corresponding to the temperature is stored. The signal from the image pickup device 6 is video signal data input from the image pickup device at the time of normal shooting, and the dark signal change corrected video signal data for each pixel of 7 is 9 for the signal from the image pickup device 6. This is video signal data from which fixed pattern noise has been removed.
通常の撮影状態における実施例のについてカメラ検出温度が27.5℃だった場合を例に説明する。はじめに、CPUは、現在の検出温度(27.5℃)に対する補正データを検索し、最も温度が近い補正データDataT(n) と DataT(n+1) を不揮発性メモリから読み込む。次に、現在の検出温度Tcと補正データDataT(n) と DataT(n+1)の関係から、補正データDataT(n) と DataT(n+1)の混合比αを計算し、現在の検出温度TCに対し、最適な補正データを補正データDataT(n) と DataT(n+1)から補間によって生成する。 A case where the camera detection temperature is 27.5 ° C. will be described as an example in the normal shooting state. First, the CPU searches for correction data for the current detected temperature (27.5 ° C.), and reads correction data DataT (n) and DataT (n + 1) having the closest temperatures from the nonvolatile memory. Next, the mixture ratio α of the correction data DataT (n) and DataT (n + 1) is calculated from the relationship between the current detection temperature Tc and the correction data DataT (n) and DataT (n + 1), and the current detection is performed. For the temperature TC, optimal correction data is generated from the correction data DataT (n) and DataT (n + 1) by interpolation.
カメラ電源投入時の初期化では、この補正用生成データをそのまま、6の撮像素子からの信号と加算処理を行い8の画素ごとの暗電流変化補正済み映像信号データとして出力する。電源投入時の初期化時以外は、温度変化に追従しリアルタイムに生成される9の画素ごとの暗電流変化補正データの更新による映像信号の変化が、運用上違和感ない映像とするため、9の補正データと10の前回の補正データとの間で1倍未満の値をもつ係数βで循環フィルタを構成し、急激な温度変化に対しても、画素ごとの暗電流変化補正データの切り替えショックが無い安定した映像を実現する。 In initialization at the time of camera power-on, the correction generation data is added as it is to the signal from the image pickup device 6 and output as dark signal change corrected video signal data for every 8 pixels. Since the change in the video signal due to the update of the dark current change correction data for each of the nine pixels generated in real time following the temperature change except for the initialization at the time of power-on is an image that does not feel strange in operation. A circulation filter is configured with a coefficient β having a value less than 1 times between the correction data and the previous correction data, and the shock of switching the dark current change correction data for each pixel even for a sudden temperature change. Realize stable video without any problems.
したがって、暗電流が画素ごとに不規則に大きく温度変化するCMOS撮像素子でも、固定パターンノイズの少ない画質が得られる。 Therefore, even with a CMOS image sensor in which the dark current changes in temperature irregularly for each pixel, an image quality with little fixed pattern noise can be obtained.
1:撮像レンズ、2:色分解プリズム、3R,3G,3B:CMOS撮像素子、
4:映像信号処理部、5:CPUとMEMORY、
6:温度別画素ごとの暗電流変化データ、7:撮像素子からの信号、
8:画素ごとの暗電流変化補正済み映像信号データ、
9:画素ごとの暗電流変化補正データ、10:前回の補正データ1: imaging lens, 2: color separation prism, 3R, 3G, 3B: CMOS imaging device,
4: Video signal processing unit, 5: CPU and MEMORY,
6: Dark current change data for each pixel by temperature, 7: Signal from the image sensor,
8: Dark signal change corrected video signal data for each pixel,
9: Dark current change correction data for each pixel, 10: Previous correction data
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007271749AJP2009100380A (en) | 2007-10-18 | 2007-10-18 | Imaging device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007271749AJP2009100380A (en) | 2007-10-18 | 2007-10-18 | Imaging device |
| Publication Number | Publication Date |
|---|---|
| JP2009100380Atrue JP2009100380A (en) | 2009-05-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007271749APendingJP2009100380A (en) | 2007-10-18 | 2007-10-18 | Imaging device |
| Country | Link |
|---|---|
| JP (1) | JP2009100380A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015530785A (en)* | 2012-07-26 | 2015-10-15 | オリーブ・メディカル・コーポレーション | Camera system using minimum area monolithic CMOS image sensor |
| US10517471B2 (en) | 2011-05-12 | 2019-12-31 | DePuy Synthes Products, Inc. | Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects |
| US10750933B2 (en) | 2013-03-15 | 2020-08-25 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| US10980406B2 (en) | 2013-03-15 | 2021-04-20 | DePuy Synthes Products, Inc. | Image sensor synchronization without input clock and data transmission clock |
| CN114143482A (en)* | 2021-11-30 | 2022-03-04 | 中国科学院长春光学精密机械与物理研究所 | Dark signal deduction method of TDICMOS detector |
| JP2023061660A (en)* | 2021-10-20 | 2023-05-02 | シャープセミコンダクターイノベーション株式会社 | Imaging apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001054005A (en)* | 1999-08-16 | 2001-02-23 | Matsushita Electric Ind Co Ltd | Motion detection device and image motion correction device |
| JP2002044688A (en)* | 2000-07-31 | 2002-02-08 | Hitachi Kokusai Electric Inc | Pixel defect detection method for solid-state imaging device and imaging apparatus using the method |
| JP2003078821A (en)* | 2001-08-31 | 2003-03-14 | Hitachi Kokusai Electric Inc | Imaging device |
| JP2003079569A (en)* | 2001-09-11 | 2003-03-18 | Pentax Corp | Electronic imaging device and electronic endoscope |
| JP2003259217A (en)* | 2002-02-27 | 2003-09-12 | Nissan Motor Co Ltd | Infrared camera |
| JP2005051697A (en)* | 2003-07-31 | 2005-02-24 | Canon Inc | Imaging device |
| JP2005236550A (en)* | 2004-02-18 | 2005-09-02 | Mitsubishi Electric Corp | Infrared camera |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001054005A (en)* | 1999-08-16 | 2001-02-23 | Matsushita Electric Ind Co Ltd | Motion detection device and image motion correction device |
| JP2002044688A (en)* | 2000-07-31 | 2002-02-08 | Hitachi Kokusai Electric Inc | Pixel defect detection method for solid-state imaging device and imaging apparatus using the method |
| JP2003078821A (en)* | 2001-08-31 | 2003-03-14 | Hitachi Kokusai Electric Inc | Imaging device |
| JP2003079569A (en)* | 2001-09-11 | 2003-03-18 | Pentax Corp | Electronic imaging device and electronic endoscope |
| JP2003259217A (en)* | 2002-02-27 | 2003-09-12 | Nissan Motor Co Ltd | Infrared camera |
| JP2005051697A (en)* | 2003-07-31 | 2005-02-24 | Canon Inc | Imaging device |
| JP2005236550A (en)* | 2004-02-18 | 2005-09-02 | Mitsubishi Electric Corp | Infrared camera |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11109750B2 (en) | 2011-05-12 | 2021-09-07 | DePuy Synthes Products, Inc. | Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects |
| US10517471B2 (en) | 2011-05-12 | 2019-12-31 | DePuy Synthes Products, Inc. | Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects |
| US10537234B2 (en) | 2011-05-12 | 2020-01-21 | DePuy Synthes Products, Inc. | Image sensor with tolerance optimizing interconnects |
| US11682682B2 (en) | 2011-05-12 | 2023-06-20 | DePuy Synthes Products, Inc. | Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects |
| US12100716B2 (en) | 2011-05-12 | 2024-09-24 | DePuy Synthes Products, Inc. | Image sensor with tolerance optimizing interconnects |
| US10863894B2 (en) | 2011-05-12 | 2020-12-15 | DePuy Synthes Products, Inc. | System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects |
| US11432715B2 (en) | 2011-05-12 | 2022-09-06 | DePuy Synthes Products, Inc. | System and method for sub-column parallel digitizers for hybrid stacked image sensor using vertical interconnects |
| US11848337B2 (en) | 2011-05-12 | 2023-12-19 | DePuy Synthes Products, Inc. | Image sensor |
| US11026565B2 (en) | 2011-05-12 | 2021-06-08 | DePuy Synthes Products, Inc. | Image sensor for endoscopic use |
| US11179029B2 (en) | 2011-05-12 | 2021-11-23 | DePuy Synthes Products, Inc. | Image sensor with tolerance optimizing interconnects |
| JP2015530785A (en)* | 2012-07-26 | 2015-10-15 | オリーブ・メディカル・コーポレーション | Camera system using minimum area monolithic CMOS image sensor |
| US11089192B2 (en) | 2012-07-26 | 2021-08-10 | DePuy Synthes Products, Inc. | Camera system with minimal area monolithic CMOS image sensor |
| US11766175B2 (en) | 2012-07-26 | 2023-09-26 | DePuy Synthes Products, Inc. | Camera system with minimal area monolithic CMOS image sensor |
| US10701254B2 (en) | 2012-07-26 | 2020-06-30 | DePuy Synthes Products, Inc. | Camera system with minimal area monolithic CMOS image sensor |
| US10881272B2 (en) | 2013-03-15 | 2021-01-05 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| US11344189B2 (en) | 2013-03-15 | 2022-05-31 | DePuy Synthes Products, Inc. | Image sensor synchronization without input clock and data transmission clock |
| US11253139B2 (en) | 2013-03-15 | 2022-02-22 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| US10980406B2 (en) | 2013-03-15 | 2021-04-20 | DePuy Synthes Products, Inc. | Image sensor synchronization without input clock and data transmission clock |
| US11903564B2 (en) | 2013-03-15 | 2024-02-20 | DePuy Synthes Products, Inc. | Image sensor synchronization without input clock and data transmission clock |
| US10750933B2 (en) | 2013-03-15 | 2020-08-25 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| US12150620B2 (en) | 2013-03-15 | 2024-11-26 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| JP2023061660A (en)* | 2021-10-20 | 2023-05-02 | シャープセミコンダクターイノベーション株式会社 | Imaging apparatus |
| CN114143482A (en)* | 2021-11-30 | 2022-03-04 | 中国科学院长春光学精密机械与物理研究所 | Dark signal deduction method of TDICMOS detector |
| CN114143482B (en)* | 2021-11-30 | 2023-12-19 | 中国科学院长春光学精密机械与物理研究所 | Dark signal deduction method of TDICMOS detector |
| Publication | Publication Date | Title |
|---|---|---|
| KR101604068B1 (en) | High dynamic range imaging apparatus and method | |
| US6940550B2 (en) | Digital camera and a method for correcting dust images in the camera | |
| JP4337857B2 (en) | Image data noise processing method, noise processing apparatus, and imaging apparatus | |
| US8988561B2 (en) | Imaging apparatus having temperature sensor within image sensor wherein apparatus outputs an image whose quality does not degrade if temperature increases within image sensor | |
| JP5312246B2 (en) | Imaging apparatus and control method | |
| JP5526014B2 (en) | Imaging device | |
| JP5855035B2 (en) | Solid-state imaging device | |
| JP4341528B2 (en) | Signal processing apparatus and method for solid-state imaging device, and imaging apparatus | |
| US8497922B2 (en) | Image processing apparatus and image processing method | |
| US9025065B2 (en) | Solid-state imaging device, image processing method, and camera module for creating high dynamic range images | |
| JP2009100380A (en) | Imaging device | |
| JP2012253725A (en) | Image processor | |
| JP4363308B2 (en) | Signal processing apparatus and method for solid-state imaging device, and imaging apparatus | |
| JP2011044813A (en) | Imaging apparatus, correction value calculation method, and imaging method | |
| JP2008306565A (en) | Imaging apparatus and signal correction method thereof | |
| JPH11112884A (en) | Method for correcting dark current of video camera device and video camera device using the method | |
| JP2020092346A (en) | Imaging device and method of controlling the same | |
| KR100657146B1 (en) | Image sensor and camera system including the same | |
| JP4661168B2 (en) | Signal processing apparatus and method for solid-state imaging device, and imaging apparatus | |
| JP5195289B2 (en) | Imaging device | |
| JP2006157242A (en) | Image signal clamping apparatus and clamping method | |
| JP6730436B2 (en) | Imaging device and method of adjusting imaging device | |
| KR100712809B1 (en) | Automatic white balance adjuster and automatic white adjustment method | |
| JP2004023231A (en) | Imaging device and mobile phone device provided with the imaging device | |
| JP2005341261A (en) | Imaging device |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20100929 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20120207 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20120216 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20120614 |