Movatterモバイル変換


[0]ホーム

URL:


JP2008215422A - Ball screw for actuator and its screw grooving method - Google Patents

Ball screw for actuator and its screw grooving method
Download PDF

Info

Publication number
JP2008215422A
JP2008215422AJP2007050906AJP2007050906AJP2008215422AJP 2008215422 AJP2008215422 AJP 2008215422AJP 2007050906 AJP2007050906 AJP 2007050906AJP 2007050906 AJP2007050906 AJP 2007050906AJP 2008215422 AJP2008215422 AJP 2008215422A
Authority
JP
Japan
Prior art keywords
thread groove
screw
ball
groove
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007050906A
Other languages
Japanese (ja)
Inventor
Keisuke Kazuno
恵介 数野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co LtdfiledCriticalNTN Corp
Priority to JP2007050906ApriorityCriticalpatent/JP2008215422A/en
Publication of JP2008215422ApublicationCriticalpatent/JP2008215422A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a ball screw for an actuator and its screw grooving method superior in durability, while securing desired accuracy. <P>SOLUTION: This ball screw for the actuator has a screw shaft 2 forming a spiral screw groove 2a on the outer periphery, a cylindrical nut 3 forming a screw groove 3a corresponding to the screw groove 2a on the inner periphery, and a ball 4 rollingly stored between both screw grooves, and is formed so that the nut 3 is composed of a ball circulating part 6 for installing a support bearing 8 for rotatably supporting the nut 3 on the outer periphery, and a torque transmission part 7 for installing a torque transmission part for transmitting rotational driving force of an electric motor to the nut 3 on the outer periphery. The ball circulating part 6 is separately arranged in the axial direction from the torque transmission part 7. An annular partial cutout part 23 and a cylindrical part 24 extending in the axial direction via this partial cutout part 23, are formed on this inner periphery. An inner diameter of this cylindrical part 24 is formed in the substantially same diameter as an inner diameter of the screw groove 3a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

Translated fromJapanese

本発明は、自動車等のアクチュエータに用いられるアクチュエータ用ボールねじに関し、詳しくは、多数のボールが転動する螺旋状のねじ溝が形成され、ナットに支持軸受および電動モータの回転駆動力をナットに伝達するトルク伝達部品が装着されたアクチュエータ用ボールねじおよびそのねじ溝加工方法に関するものである。  The present invention relates to a ball screw for an actuator used for an actuator of an automobile or the like, and more specifically, a helical thread groove on which a large number of balls roll is formed, and the nut is used as a support bearing and the rotational driving force of an electric motor. The present invention relates to a ball screw for an actuator on which a torque transmitting component to be transmitted is mounted and a method for machining the thread groove.

ボールねじは、外周に螺旋状のねじ溝が形成されたボールねじ軸と、円筒面内に螺旋状のねじ溝が形成されたボールねじナットと、対向する両ねじ溝で構成されたボール転動路内に転動自在に収容された多数のボールとからなり、ボールねじ軸あるいはボールねじナットの回転を軸方向の並進運動に変換する機械要素である。  A ball screw has a ball screw shaft composed of a ball screw shaft having a spiral thread groove formed on the outer periphery, a ball screw nut having a spiral thread groove formed in a cylindrical surface, and both opposing screw grooves. It is a mechanical element that is composed of a large number of balls that are rotatably accommodated in the road, and converts the rotation of the ball screw shaft or ball screw nut into translational motion in the axial direction.

従来、自動車用のアクチュエータ等に使用されるボールねじにおいて、そのボールねじ軸またはナットのねじ溝は、生材にねじ溝を旋削する工程と、焼入工程と、ねじ溝を研削する工程を経て加工されている。なお、旋削工程では、ねじ溝と同じ形状の工具(総型バイト)を使用している。  2. Description of the Related Art Conventionally, in a ball screw used in an actuator for an automobile, the thread groove of the ball screw shaft or nut is subjected to a process of turning the thread groove on a raw material, a quenching process, and a process of grinding the thread groove. Has been processed. In the turning process, a tool (total type bite) having the same shape as the thread groove is used.

しかしながら、総型バイトで旋削すると、バイトに対する切削抵抗が大きくて剛性の不足が生じ、バイトの振動、所謂ビビリが生じ易い。その結果、加工精度が悪化すると共に、研削取代を大きく残しておく必要があり、研削工程に時間がかかる。こうした問題を解決するため、本出願人は、ねじ溝の形状変化に容易に対処でき、かつ総加工時間の短縮が図れるボールねじのねじ溝加工方法を既に提案している。  However, when turning with a full-size bite, the cutting resistance against the bite is large and the rigidity is insufficient, so that vibration of the bite, so-called chattering easily occurs. As a result, the machining accuracy deteriorates, and it is necessary to leave a large machining allowance, which takes time for the grinding process. In order to solve these problems, the present applicant has already proposed a method of processing a thread groove of a ball screw that can easily cope with a change in the shape of the thread groove and can reduce the total processing time.

このねじ溝加工方法は、図7に示すように、ねじ軸51におけるねじ溝52の加工を行う方法であって、生材からなるワークWにねじ溝52を旋削する工程と、この旋削したワークWを焼入れする工程と、焼入後のワークWのねじ溝52を研削する工程とを含む。まず、同図(A)に示すように、生材の棒状ワークWにねじ溝52を旋削する。(a)は、ワークWを旋盤の主軸チャック53で把持した状態を示し、(b)は旋削が進んだ段階におけるねじ溝52の拡大断面を示す。この場合の旋削は、所謂ポイント切削で行う。すなわち、切刃54aのノーズRがねじ溝52の曲率半径よりも小さな汎用バイト54を用い、この汎用バイト54をねじ溝52の有効長さ分だけ複数回移動させて、各回の移動経路P1、P2〜Pnをねじ溝52の断面形状の円弧方向に順次ずらせることによりねじ溝52の全体を旋削する。ねじ溝52の旋削が完了した後、ワークWを加熱炉55で焼入れし(図7(B))、この焼入れしたワークWを砥石56で研削してねじ軸51が完成する(図7(C))。
特開平6−249317号公報
As shown in FIG. 7, the thread groove machining method is a method of machining thethread groove 52 in thescrew shaft 51, and includes a step of turning thethread groove 52 to a workpiece W made of raw material, and the turned workpiece. A step of quenching W and a step of grinding thethread groove 52 of the workpiece W after quenching. First, as shown in FIG. 2A, thethread groove 52 is turned in the raw bar work W. (A) shows the state where the workpiece W is gripped by thespindle chuck 53 of the lathe, and (b) shows an enlarged cross section of thethread groove 52 at the stage where the turning has proceeded. The turning in this case is performed by so-called point cutting. That is, using a general-purpose tool 54 in which the nose R of thecutting edge 54a is smaller than the radius of curvature of thescrew groove 52, the general-purpose tool 54 is moved a plurality of times by the effective length of thescrew groove 52, and each movement path P1, Theentire thread groove 52 is turned by sequentially shifting P2 to Pn in the arc direction of the cross-sectional shape of thethread groove 52. After the turning of thethread groove 52 is completed, the workpiece W is quenched in the heating furnace 55 (FIG. 7B), and the quenched workpiece W is ground by thegrindstone 56 to complete the screw shaft 51 (FIG. 7C )).
JP-A-6-249317

こうした従来の加工方法によると、小さなバイト54でポイント切削を行うので、バイト54の経路変更を行うだけで容易にねじ溝52の形状変更ができ、バイト54に対する切削抵抗が小さくてなってビビリの問題もなく、高精度に旋削が行えるという特徴を有している。然しながら、総型バイトを使用する旋削加工に比べ、ある程度のコスト低減は可能であるが、研削工程は、加工の度に砥石56を成形して形状を管理する必要がある。この研削工程は、ねじ溝52の加工工程全体の加工コストに対して、大きなウェイトを占めているため、さらなる加工コストの低減を図るには限界があった。  According to such a conventional processing method, since point cutting is performed with asmall cutting tool 54, the shape of thethread groove 52 can be easily changed by simply changing the path of thecutting tool 54, and the cutting resistance with respect to thecutting tool 54 is reduced, resulting in chattering. It has the feature that it can be turned with high accuracy without any problems. However, it is possible to reduce the cost to some extent as compared with the turning process using the total tool, but in the grinding process, it is necessary to form thegrindstone 56 and manage the shape every time the machining is performed. Since this grinding process occupies a large weight with respect to the machining cost of the entire machining process of thethread groove 52, there is a limit to further reducing the machining cost.

ここで、加工コストの低減を図るには、ポイント切削によりねじ溝52の加工を完了させ、研削加工そのものを廃止することが考えられるが、切削加工でこのねじ溝52を完成形状に仕上げ加工した場合、後工程である熱処理時の変形を抑えることが重要となってくる。特に、図示しないナット回転で使用されるボールねじアクチュエータにおいては、ナット内径にねじ溝が形成されると共に、ナット外径にはこのナットを回転自在に支承するための支持軸受と、電動モータの回転駆動力をナットに伝達する歯車等のトルク伝達部品が装着される。そのため、ナットは均一な肉厚からなる単純な形状とはならず、外径形状が複雑になる。これにより、例え、低コストでねじ溝52を完成形状に仕上げ加工したとしても、熱処理変形による歪みでナットのねじ溝精度が低下し、ボールねじアクチュエータとして所望の精度と耐久性が得られないと言う問題があった。  Here, in order to reduce the processing cost, it is conceivable to complete the processing of thethread groove 52 by point cutting and to eliminate the grinding process itself, but thethread groove 52 is finished into a finished shape by the cutting process. In this case, it is important to suppress deformation during heat treatment, which is a subsequent process. In particular, in a ball screw actuator used for nut rotation (not shown), a thread groove is formed on the inner diameter of the nut, and a support bearing for rotatably supporting the nut on the outer diameter of the nut and rotation of the electric motor. A torque transmission component such as a gear for transmitting the driving force to the nut is mounted. Therefore, the nut does not have a simple shape having a uniform thickness, and the outer diameter shape is complicated. As a result, even if thethread groove 52 is finished into a finished shape at a low cost, the thread groove accuracy of the nut decreases due to distortion due to heat treatment deformation, and the desired accuracy and durability cannot be obtained as a ball screw actuator. There was a problem to say.

本発明は、こうした従来の問題に鑑みてなされたもので、所望の精度を確保すると共に、低コストで耐久性に優れたアクチュエータ用ボールねじおよびそのねじ溝加工方法を提供することを目的とする。  The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a ball screw for an actuator and a method for machining the thread groove thereof that ensure desired accuracy and are low in cost and excellent in durability. .

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、外周に螺旋状のねじ溝が形成されたねじ軸と、このねじ軸に外挿され、内周にねじ溝に対応する螺旋状のねじ溝が形成された円筒状のナットと、前記両ねじ溝間に転動自在に収容された多数のボールとを備え、前記ナットが、外周にこのナットを回転自在に支承するための支持軸受が装着され、内周に前記ねじ溝が形成されたボール循環部と、外周に電動モータの回転駆動力を当該ナットに伝達するトルク伝達部品が装着されたトルク伝達部とで構成されたアクチュエータ用ボールねじにおいて、前記ボール循環部が前記トルク伝達部と軸方向に離反して設けられると共に、このトルク伝達部の内周に環状のヌスミ部が形成されている。  In order to achieve such an object, the invention according toclaim 1 of the present invention corresponds to a screw shaft in which a spiral thread groove is formed on the outer periphery, and is extrapolated to the screw shaft and corresponds to the screw groove on the inner periphery. A cylindrical nut formed with a spiral thread groove and a plurality of balls rotatably accommodated between the thread grooves, and the nut rotatably supports the nut on the outer periphery. And a ball circulation part having the thread groove formed on the inner periphery, and a torque transmission part having a torque transmission component for transmitting the rotational driving force of the electric motor to the nut on the outer periphery. In the ball screw for actuator, the ball circulation portion is provided apart from the torque transmission portion in the axial direction, and an annular nuisance portion is formed on the inner periphery of the torque transmission portion.

このように、ナットが、外周に支持軸受が装着され、内周に螺旋状のねじ溝が形成されたボール循環部と、外周に電動モータの回転駆動力をナットに伝達するトルク伝達部品が装着されたトルク伝達部とで構成されたアクチュエータ用ボールねじにおいて、ボール循環部がトルク伝達部と軸方向に離反して設けられると共に、このトルク伝達部の内周に環状のヌスミ部が形成されているので、ボール循環部の最小肉厚を厚くすることができると共に、肉厚が不均一となるトルク伝達部に熱処理変形が生じてもボール循環部に影響を及ぼすことがない。したがって、従来の熱処理後の研削加工を廃止して低コスト化を図ることができると共に、所望のねじ溝の精度が確保でき、耐久性に優れたアクチュエータ用ボールねじを提供することができる。  In this way, the nut is mounted with a ball bearing with a support bearing on the outer periphery and a spiral thread groove formed on the inner periphery, and a torque transmission component that transmits the rotational driving force of the electric motor to the nut on the outer periphery. In the ball screw for an actuator composed of the torque transmission portion, the ball circulation portion is provided away from the torque transmission portion in the axial direction, and an annular nuisance portion is formed on the inner periphery of the torque transmission portion. Therefore, the minimum thickness of the ball circulation portion can be increased, and even if heat treatment deformation occurs in the torque transmission portion where the thickness is non-uniform, the ball circulation portion is not affected. Accordingly, it is possible to reduce the cost by eliminating the conventional grinding after the heat treatment, and it is possible to provide a ball screw for an actuator that can ensure the accuracy of a desired screw groove and has excellent durability.

好ましくは、請求項2に記載の発明のように、前記ヌスミ部が所定の範囲に形成され、このヌスミ部を介して前記トルク伝達部の内周に軸方向に延びる円筒部が形成されると共に、この円筒部の内径が前記ねじ溝の内径と略同径に形成されていれば、ボール循環部だけでなく、トルク伝達部の最小肉厚を厚くすることができ、ナットの熱処理変形を抑制することができる。したがって、ねじ溝の研削加工工程を廃止して低コスト化を図ると共に、ねじ溝の精度を高めることができる。  Preferably, as in the invention described inclaim 2, the Nusumi part is formed in a predetermined range, and a cylindrical part extending in the axial direction is formed on the inner periphery of the torque transmission part via the Nusumi part. If the inner diameter of this cylindrical part is formed to be substantially the same as the inner diameter of the thread groove, the minimum thickness of not only the ball circulation part but also the torque transmission part can be increased, and the heat treatment deformation of the nut can be suppressed. can do. Accordingly, it is possible to reduce the cost by eliminating the grinding process of the thread groove and to increase the precision of the thread groove.

また、請求項3に記載の発明のように、前記ボール循環部の胴部に複数の駒部材が装着され、この駒部材の内周に前記ねじ溝を連結するための円弧状の連結溝が形成されていれば、多数のボールが無限循環することができると共に、ボール循環部の構成が簡素となりコンパクト化することができる。  Further, as in a third aspect of the present invention, a plurality of piece members are mounted on the body portion of the ball circulation portion, and an arc-shaped connection groove for connecting the screw groove to the inner periphery of the piece member. If formed, a large number of balls can circulate indefinitely, and the configuration of the ball circulator can be simplified and downsized.

また、請求項4に記載の発明のように、前記支持軸受が4点接触玉軸受で構成されていれば、軸方向のすきまを抑制することができ、ボール循環部に交番荷重等が負荷されても振動の発生を防止して騒音の小さいコンパクトなアクチュエータを提供することができる。  Further, if the support bearing is constituted by a four-point contact ball bearing as in the invention described in claim 4, the axial clearance can be suppressed, and an alternating load or the like is applied to the ball circulation portion. However, generation of vibration can be prevented and a compact actuator with low noise can be provided.

また、本発明のうち請求項5に記載の方法発明は、生材からなるワークにねじ溝を旋削する工程と、この旋削したワークを焼入れする工程とを含むアクチュエータ用ボールねじのねじ溝加工方法において、前記旋削工程で、切刃のノーズ半径が前記ねじ溝の溝曲率半径よりも小さな汎用バイトを用い、この汎用バイトを前記ねじ溝の有効長さ分だけ複数回移動させて、各回の移動経路を当該ねじ溝の断面形状の円弧方向に順次ずらせることにより、前記ねじ溝の全体が旋削されると共に、前記焼入れ工程の後に、少なくとも前記ねじ溝にショットピーニングによる仕上げ加工が施されている。  According to a fifth aspect of the present invention, there is provided a method for machining a thread groove of a ball screw for an actuator, comprising a step of turning a thread groove on a workpiece made of raw material and a step of quenching the turned workpiece. In the turning step, a general-purpose tool having a cutting blade nose radius smaller than the groove radius of curvature of the thread groove is used, and the general-purpose tool is moved a plurality of times by the effective length of the thread groove to move each time. By sequentially shifting the path in the arc direction of the cross-sectional shape of the thread groove, the entire thread groove is turned and at least the thread groove is subjected to finish processing by shot peening after the quenching step. .

このように、切刃のノーズ半径をねじ溝の溝曲率半径よりも小さくしてねじ溝がポイント切削によって成形加工されると共に、焼入れ工程の後に、少なくともねじ溝にショットピーニングによる仕上げ加工が施されているので、ねじ溝に所望の表面粗さが得られ、ポイント切削によってねじ溝の成形加工を完了させることができる。したがって、従来の熱処理後の研削加工を廃止することができ、ボールねじの精度・耐久性を確保することができると共に、加工コストを低減したアクチュエータ用ボールねじを提供することができる。  Thus, the nose radius of the cutting edge is made smaller than the groove curvature radius of the thread groove, and the thread groove is formed by point cutting, and at least the thread groove is subjected to finish processing by shot peening after the quenching process. Therefore, a desired surface roughness can be obtained in the thread groove, and the forming process of the thread groove can be completed by point cutting. Therefore, the conventional grinding process after heat treatment can be abolished, the accuracy and durability of the ball screw can be ensured, and the ball screw for an actuator with reduced machining cost can be provided.

本発明に係るアクチュエータ用ボールねじは、外周に螺旋状のねじ溝が形成されたねじ軸と、このねじ軸に外挿され、内周にねじ溝に対応する螺旋状のねじ溝が形成された円筒状のナットと、前記両ねじ溝間に転動自在に収容された多数のボールとを備え、前記ナットが、外周にこのナットを回転自在に支承するための支持軸受が装着され、内周に前記ねじ溝が形成されたボール循環部と、外周に電動モータの回転駆動力を当該ナットに伝達するトルク伝達部品が装着されたトルク伝達部とで構成されたアクチュエータ用ボールねじにおいて、前記ボール循環部が前記トルク伝達部と軸方向に離反して設けられると共に、このトルク伝達部の内周に環状のヌスミ部が形成されているので、ボール循環部の最小肉厚を厚くすることができると共に、肉厚が不均一となるトルク伝達部に熱処理変形が生じてもボール循環部に影響を及ぼすことがない。したがって、従来の熱処理後の研削加工を廃止して低コスト化を図ることができると共に、所望のねじ溝の精度が確保でき、耐久性に優れたアクチュエータ用ボールねじを提供することができる。The ball screw for an actuator according to the present invention has a screw shaft having a spiral thread groove formed on the outer periphery thereof, and is extrapolated to the screw shaft, and a spiral screw groove corresponding to the screw groove is formed on the inner periphery thereof. A cylindrical nut and a large number of balls rotatably accommodated between the two screw grooves, and the nut is mounted on the outer periphery with a support bearing for rotatably supporting the nut; In the ball screw for an actuator, the ball circulating portion having a screw groove formed on the outer periphery thereof, and a torque transmission portion having a torque transmission component mounted on the outer periphery thereof to transmit the rotational driving force of the electric motor to the nut. Since the circulating portion is provided away from the torque transmitting portion in the axial direction and an annular nuisance portion is formed on the inner periphery of the torque transmitting portion, the minimum thickness of the ball circulating portion can be increased. Together with A wall thickness does not affect the ball circulation portion even when the heat treatment deformation torque transmitting portion becomes uneven. Accordingly, it is possible to reduce the cost by eliminating the conventional grinding after the heat treatment, and it is possible to provide a ball screw for an actuator that can ensure the accuracy of a desired screw groove and has excellent durability.

外周に螺旋状のねじ溝が形成されたねじ軸と、このねじ軸に外挿され、内周にねじ溝に対応する螺旋状のねじ溝が形成された円筒状のナットと、前記両ねじ溝間に転動自在に収容された多数のボールとを備え、前記ナットが、外周にこのナットを回転自在に支承するための支持軸受が装着され、内周に前記ねじ溝が形成されたボール循環部と、外周に電動モータの回転駆動力を当該ナットに伝達するトルク伝達部品が装着されたトルク伝達部とで構成されたアクチュエータ用ボールねじにおいて、前記ボール循環部が前記トルク伝達部と軸方向に離反して設けられ、このトルク伝達部の内周に環状のヌスミ部と、このヌスミ部を介して軸方向に延びる円筒部が形成されると共に、この円筒部の内径が前記ねじ溝の内径と略同径に形成されている。  A screw shaft having a spiral thread groove formed on the outer periphery, a cylindrical nut formed on the inner periphery and having a spiral thread groove corresponding to the screw groove, and both the thread grooves A ball circulation circuit comprising a plurality of balls rotatably accommodated between the nuts, a support bearing for rotatably supporting the nuts on the outer periphery, and a thread groove formed on the inner periphery. And a ball screw for an actuator having a torque transmission part mounted with a torque transmission component that transmits the rotational driving force of the electric motor to the nut on the outer periphery. Are formed on the inner periphery of the torque transmitting portion, and a cylindrical portion extending in the axial direction is formed through the pussy portion. The inner diameter of the cylindrical portion is the inner diameter of the thread groove. And is formed with the same diameter .

以下、本発明の実施の形態を図面に基いて詳細に説明する。
図1は、本発明に係るアクチュエータ用ボールねじの第1の実施形態を示す縦断面図、図2は、図1の要部断面図、図3は、本発明に係るねじ軸のねじ溝加工状態を示す説明図、図4は、本発明に係るナットのねじ溝加工状態を示す説明図、図5は、本発明に係るねじ軸のねじ溝加工工程におけるねじ溝の拡大断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a ball screw for an actuator according to the present invention, FIG. 2 is a sectional view of an essential part of FIG. 1, and FIG. 3 is a thread groove machining of a screw shaft according to the present invention. FIG. 4 is an explanatory view showing a state of thread groove machining of a nut according to the present invention, and FIG. 5 is an enlarged sectional view of the thread groove in the thread groove machining step of the screw shaft according to the present invention.

このアクチュエータ用ボールねじ1は、S55C等の中炭素鋼やSCM415等の肌焼き鋼からなり、外周に螺旋状のねじ溝2aが形成されたねじ軸2と、このねじ軸2に外挿され、内周にねじ溝2aに対応する螺旋状のねじ溝3aが形成された円筒状のナット3と、両ねじ溝2a、3a間に転動自在に収容された多数のボール4とを備えている。  Theactuator ball screw 1 is made of medium carbon steel such as S55C or case-hardened steel such as SCM415, and is externally inserted into thescrew shaft 2 having aspiral thread groove 2a formed on the outer periphery thereof. Acylindrical nut 3 in which aspiral thread groove 3a corresponding to thethread groove 2a is formed on the inner periphery, and a large number of balls 4 accommodated so as to roll between thethread grooves 2a and 3a are provided. .

ナット3はSCM430等の肌焼き鋼からなり、一端部に配されたボール循環部6と、他端部に配されたトルク伝達部7とで構成されている。ボール循環部6は、図2に示すように、その胴部に複数の駒部材5と、外周にナット3を回転自在に支承するための支持軸受8が装着されている。駒部材5の内周にはねじ溝3aを連結するための円弧状の連結溝5aが形成されており、この連結溝5aと両ねじ溝2a、3aによりボール転動路が構成され、多数のボール4が無限循環することができる。また、駒方式を採用することによりボール循環部6の構成が簡素となりコンパクト化することができる。  Thenut 3 is made of case-hardened steel such as SCM430, and includes aball circulation portion 6 disposed at one end portion and atorque transmission portion 7 disposed at the other end portion. As shown in FIG. 2, theball circulation portion 6 is provided with a plurality ofpiece members 5 on the body portion and a support bearing 8 for rotatably supporting thenut 3 on the outer periphery. An arc-shaped connectinggroove 5a for connecting thescrew groove 3a is formed on the inner periphery of thepiece member 5, and a ball rolling path is constituted by the connectinggroove 5a and the twoscrew grooves 2a, 3a. The ball 4 can endlessly circulate. In addition, by adopting the piece method, the configuration of theball circulation unit 6 is simplified and can be made compact.

また、支持軸受8は4点接触玉軸受からなり、図示しないハウジングに嵌合され、内周にゴシックアーチ状の外側転走面9aが形成された外輪9と、この外輪9に内嵌され、外周に外側転走面9aに対向するゴシックアーチ状の内側転走面10aが形成された内輪10と、両転走面9a、10a間に保持器(図示せず)を介して転動自在に収容された複数のボール11とを備えている(図1参照)。この支持軸受8は、軸方向のすきまを抑制することができ、ボール循環部6に交番荷重等が負荷されても振動の発生を防止して騒音の小さいコンパクトなアクチュエータを提供することができる。なお、支持軸受8は例示した4点接触玉軸受に限らず、深溝玉軸受やアンギュラ玉軸受、あるいはこのアンギュラ玉軸受を複列に組み合せたもの、さらに複列アンギュラ玉軸受であっても良い。  Further, the support bearing 8 is a four-point contact ball bearing, and is fitted into a housing (not shown), and anouter ring 9 having a gothic arch-shaped outer rollingsurface 9a formed on the inner periphery thereof, and is fitted into theouter ring 9. Theinner ring 10 having a Gothic arch-shapedinner rolling surface 10a opposite to the outer rollingsurface 9a on the outer periphery, and a rolling device (not shown) between the both rollingsurfaces 9a and 10a can be freely rolled. And a plurality ofballs 11 accommodated therein (see FIG. 1). The support bearing 8 can suppress the axial clearance, and can prevent the occurrence of vibration even when an alternating load or the like is applied to theball circulation portion 6 and provide a compact actuator with low noise. The support bearing 8 is not limited to the illustrated four-point contact ball bearing, but may be a deep groove ball bearing, an angular ball bearing, a combination of the angular ball bearings in a double row, or a double row angular ball bearing.

本実施形態では、ねじ溝2a、3aは、ボール4の半径よりも僅かに大きい曲率半径からなる2つの円弧を組み合わせたゴシックアーチ溝に形成されている。無論、ねじ溝2a、3aは、このゴシックアーチ形状以外にも、ボール4とサーキュラコンタクトする円弧状の形状であっても良い。  In the present embodiment, thethread grooves 2 a and 3 a are formed in a Gothic arch groove in which two arcs having a radius of curvature slightly larger than the radius of the ball 4 are combined. Of course, thethread grooves 2a and 3a may have an arcuate shape in circular contact with the ball 4 other than the Gothic arch shape.

図3は、ねじ軸2におけるねじ溝2aの加工状態を示している。生材の棒状ワークW(2)が図示しない旋盤の主軸チャックで把持され、所定の方向に回転された状態で汎用バイト12によって旋削加工される。このバイト12は、径方向に進退自在に、かつ軸方向に移動自在に支持されたホルダー13に固定されている。この場合の旋削は、所謂ポイント切削で行われる。すなわち、バイト12の切刃12aのノーズ半径R2が、ねじ溝2aの溝曲率半径R1よりも小さな汎用バイト12を用い、このバイト12をねじ溝2aの有効長さ分だけ複数回移動させてねじ溝2aの成形が行われる。  FIG. 3 shows a processed state of thethread groove 2 a in thescrew shaft 2. A raw material bar-shaped workpiece W (2) is gripped by a spindle chuck of a lathe (not shown), and is turned by a general-purpose tool 12 while being rotated in a predetermined direction. The cuttingtool 12 is fixed to aholder 13 supported so as to be movable back and forth in the radial direction and movable in the axial direction. The turning in this case is performed by so-called point cutting. That is, a general-purpose tool 12 having a nose radius R2 of thecutting edge 12a of thecutting tool 12 smaller than the groove curvature radius R1 of thescrew groove 2a is used, and thetool 12 is moved a plurality of times by the effective length of thescrew groove 2a to Thegroove 2a is formed.

一方、図4に、本発明に係るナット3におけるねじ溝3aの加工状態を示す。前述したねじ軸2におけるねじ溝2aの加工と同様、生材の筒状ワークW(3)が図示しない旋盤の主軸チャックで把持され、所定の方向に回転された状態で汎用バイト14によって旋削加工される。このバイト14は、径方向に進退自在に、かつ軸方向に移動自在に支持されたホルダー15に固定されている。この場合の旋削もポイント切削で行われる。すなわち、バイト14の切刃14aのノーズ半径R4が、ねじ溝3aの溝曲率半径R3よりも小さな汎用バイト14を用い、バイト14をねじ溝3aの有効長さ分だけ複数回移動させて、各回の移動経路をねじ溝3aの円弧方向に順次ずらせることによりねじ溝3aが旋削される。  On the other hand, the processing state of thethread groove 3a in thenut 3 according to the present invention is shown in FIG. Similar to the processing of thethread groove 2a in thescrew shaft 2 described above, the raw material cylindrical workpiece W (3) is held by a spindle chuck of a lathe (not shown) and turned by a general-purpose tool 14 in a state rotated in a predetermined direction. Is done. The cuttingtool 14 is fixed to aholder 15 supported so as to be movable back and forth in the radial direction and movable in the axial direction. Turning in this case is also performed by point cutting. That is, using a general-purpose tool 14 in which the nose radius R4 of thecutting edge 14a of thetool 14 is smaller than the groove curvature radius R3 of thescrew groove 3a, thetool 14 is moved a plurality of times by the effective length of thescrew groove 3a, and each time Thethread groove 3a is turned by sequentially shifting the movement path in the arc direction of thethread groove 3a.

次に、図5(a)〜(j)を用いてねじ軸2におけるねじ溝2aの加工工程を詳細に説明する。なお、ナット3のねじ溝3aにおいても基本的には同様であるので、ここでは省略する。
図5(a)は、旋削加工前の棒状の生材を示し、(b)〜(d)の順に、切刃12aがワークWの軸心方向に送られて、ねじ溝2aの概略形状がバイト12の切刃12aによって成形される。ここで、切刃12aのノーズ半径R2をねじ溝2aの溝曲率半径R1に近付けて寸法設定することにより、切刃12aを軸方向に移動させることなくねじ溝2aの概略形状が得られ、加工時間を短縮することができる。
Next, the machining process of thethread groove 2a in thescrew shaft 2 will be described in detail with reference to FIGS. Thethread groove 3a of thenut 3 is basically the same and is omitted here.
Fig.5 (a) shows the rod-shaped raw material before turning, thecutting blade 12a is sent to the axial center direction of the workpiece | work W in order of (b)-(d), and the rough shape of thethread groove 2a is shown. It is formed by thecutting edge 12 a of thecutting tool 12. Here, by approximating the nose radius R2 of thecutting edge 12a to the groove curvature radius R1 of thethread groove 2a, the approximate shape of thethread groove 2a can be obtained without moving thecutting edge 12a in the axial direction. Time can be shortened.

そして、(e)に示すように、ねじ溝2aの旋削加工がある程度進んだ段階でポイント切削が開始される。(e)〜(j)に示すように、切刃12aをねじ溝2aの有効長さ分だけ複数回移動させて、各回の移動経路をねじ溝2aの円弧方向に順次ずらせることによりねじ溝2aの全体形状が旋削される。  Then, as shown in (e), point cutting is started when the turning of thethread groove 2a has progressed to some extent. As shown in (e) to (j), thecutting edge 12a is moved a plurality of times by the effective length of thethread groove 2a, and the thread path is sequentially shifted in the arc direction of thethread groove 2a. The entire shape of 2a is turned.

なお、本実施例では、ねじ溝2aがゴシックアーチ形状であっても、バイト12の切刃12aのノーズ半径R2がねじ溝2aの溝曲率半径R1よりも小さく設定されているので、加工するねじ溝2aと対向するねじ溝2aに干渉することはなく、ポイント切削によってねじ溝2aの成形加工を完了させることができる。  In the present embodiment, even if thethread groove 2a has a Gothic arch shape, the nose radius R2 of thecutting edge 12a of thecutting tool 12 is set smaller than the groove curvature radius R1 of thethread groove 2a. There is no interference with thethread groove 2a facing thegroove 2a, and the forming process of thethread groove 2a can be completed by point cutting.

さらに、本実施例では、ポイント切削によってねじ溝2a、3aの成形加工を完了させた後、熱処理によってその表面に55〜62HRCの範囲の硬化処理が施されている。熱処理は、浸炭焼入れでも高周波誘導加熱による焼入れでも良いが、表層に粒界酸化層が抑制でき、また、局部加熱ができて硬化層深さの設定が比較的容易にできる高周波焼入れが好適である。  Further, in this embodiment, after the forming of thethread grooves 2a and 3a is completed by point cutting, the surface is subjected to a curing process in the range of 55 to 62HRC by heat treatment. The heat treatment may be carburization quenching or quenching by high frequency induction heating, but it is preferable to use induction hardening that can suppress the grain boundary oxide layer on the surface layer and that can locally heat and set the hardened layer depth relatively easily. .

そして、熱処理によりねじ溝2a、3a等に付着したスケールや表層の粒界酸化層を除去するためにショットピーニングによる仕上げ加工(図示せず)が行われている。このショットピーニングは、スチールビーズの粒径を20〜100μm、噴射時間は約90秒、噴射圧は1〜3kg/cm、噴射ノズルとワークの表面までの距離は略140mmとした。Then, finish processing (not shown) by shot peening is performed in order to remove scales and surface grain boundary oxide layers attached to thethread grooves 2a, 3a, etc. by heat treatment. In this shot peening, the particle size of the steel beads was 20 to 100 μm, the injection time was about 90 seconds, the injection pressure was 1 to 3 kg / cm2 , and the distance between the injection nozzle and the surface of the workpiece was about 140 mm.

ここで、トルク伝達部7は、図1に示すように、前述したボール循環部6と軸方向に離反して設けられ、外周に電動モータ(図示せず)の回転駆動力をナット3に伝達する歯車16が固定ナット17を介して軸方向に位置決め固定されると共に、内周には軸方向に延びる環状のヌスミ部18が形成されている。歯車16は、ナット3の外周に形成されたキー溝19に介装されたキー20によってトルク伝達可能に固定されている。なお、ここでは、キー20によって歯車16をナット3に固定するようにしたが、これに限らず、インボリュートスプライン係合やローレット等の圧入固定手段であっても良い。  Here, as shown in FIG. 1, thetorque transmission unit 7 is provided apart from the above-describedball circulation unit 6 in the axial direction, and transmits the rotational driving force of an electric motor (not shown) to thenut 3 on the outer periphery. Thegear 16 is positioned and fixed in the axial direction via a fixingnut 17, and anannular nuisance portion 18 extending in the axial direction is formed on the inner periphery. Thegear 16 is fixed so that torque can be transmitted by a key 20 interposed in akey groove 19 formed on the outer periphery of thenut 3. Here, thegear 16 is fixed to thenut 3 by the key 20, but the present invention is not limited to this, and press-fitting fixing means such as involute spline engagement or knurling may be used.

一方、ヌスミ部18は、ねじ溝3の溝底径よりも僅かに大径に形成され、この部位にはボール循環部6のねじ溝3aは形成されていない。このように、本実施形態では、トルク伝達部7がボール循環部6と軸方向に離反して設けられ、外周にキー溝19が形成されて歯車16がキー20を介して固定されると共に、内周に環状のヌスミ部18が形成されているので、ボール循環部6の最小肉厚を厚くすることができると共に、肉厚が不均一となるキー溝19部分に熱処理変形が生じてもボール循環部6に影響を及ぼすことがない。したがって、従来の熱処理後の研削加工を廃止して低コスト化を図ることができると共に、所望のねじ溝3aの精度が確保でき、耐久性に優れたアクチュエータ用ボールねじ1を提供することができる。  On the other hand, theNusumi portion 18 is formed to have a diameter slightly larger than the groove bottom diameter of thescrew groove 3, and thescrew groove 3 a of theball circulation portion 6 is not formed at this portion. Thus, in this embodiment, thetorque transmission part 7 is provided away from theball circulation part 6 in the axial direction, thekey groove 19 is formed on the outer periphery, and thegear 16 is fixed via the key 20. Since theannular nuisance portion 18 is formed on the inner periphery, the minimum thickness of theball circulation portion 6 can be increased, and even if heat treatment deformation occurs in thekey groove 19 where the thickness is non-uniform, the ball Thecirculation part 6 is not affected. Therefore, it is possible to reduce the cost by eliminating the conventional grinding process after the heat treatment, and it is possible to provide theball screw 1 for the actuator that can secure the accuracy of the desiredscrew groove 3a and has excellent durability. .

図6は、本発明に係るアクチュエータ用ボールねじの第2の実施形態を示す縦断面図である。なお、この実施形態は、前述した第1の実施形態と基本的にはナットの構成が一部異なるだけで、その他前述した実施形態と同一部品同一部位あるいは同様の機能を有する部位等には同じ符号を付して詳細な説明を省略する。  FIG. 6 is a longitudinal sectional view showing a second embodiment of the ball screw for an actuator according to the present invention. Note that this embodiment is basically the same as the first embodiment described above except that the configuration of the nut is partially different, and other parts that are the same as or similar to the above-described embodiment. Reference numerals are assigned and detailed description is omitted.

このナット21はSCM430等の肌焼き鋼からなり、一端部に配されたボール循環部6と、他端部に配されたトルク伝達部22とで構成されている。このトルク伝達部22は、ボール循環部6と軸方向に離反して設けられ、外周に電動モータ(図示せず)の回転駆動力をナット21に伝達する歯車16が固定ナット17を介して軸方向に位置決め固定されている。また、内周には環状のヌスミ部23がキー溝19の近傍まで形成されると共に、このヌスミ部23を介して軸方向に延びる円筒部24が形成されている。なお、この円筒部24の内径はねじ溝3の内径と略同径に形成され、この部位にはボール循環部6のねじ溝3aは形成されていない。  Thenut 21 is made of case-hardened steel such as SCM430, and includes aball circulation portion 6 disposed at one end portion and atorque transmission portion 22 disposed at the other end portion. Thetorque transmission unit 22 is provided to be separated from theball circulation unit 6 in the axial direction, and agear 16 that transmits a rotational driving force of an electric motor (not shown) to thenut 21 is provided on the outer periphery via a fixednut 17. Positioned and fixed in the direction. In addition, anannular nose portion 23 is formed on the inner periphery up to the vicinity of thekey groove 19, and acylindrical portion 24 extending in the axial direction via thenose portion 23 is formed. The inner diameter of thecylindrical portion 24 is formed to be substantially the same as the inner diameter of thethread groove 3, and thethread groove 3a of theball circulation portion 6 is not formed at this portion.

このように、本実施形態では、トルク伝達部22がボール循環部6と軸方向に離反して設けられ、内周に形成された環状のヌスミ部23を介して円筒部24が形成されているので、ボール循環部6だけでなく、肉厚が不均一となるキー溝19部分の最小肉厚を厚くすることができ、ナット21の熱処理変形を抑制することができる。したがって、ねじ溝3aの研削加工工程を廃止して低コスト化を図ると共に、前述した実施形態よりもねじ溝3aの精度を高めることができる。  Thus, in this embodiment, thetorque transmission part 22 is provided away from theball circulation part 6 in the axial direction, and thecylindrical part 24 is formed via theannular nuisance part 23 formed on the inner periphery. Therefore, it is possible to increase the minimum thickness of not only theball circulation portion 6 but also thekey groove 19 where the thickness is non-uniform, and the heat treatment deformation of thenut 21 can be suppressed. Accordingly, it is possible to reduce the cost by eliminating the grinding process of thethread groove 3a, and it is possible to improve the accuracy of thethread groove 3a as compared with the embodiment described above.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。  The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係るアクチュエータ用ボールねじは、特に自動車等のアクチュエータに用いられ、ナットに支持軸受および電動モータの回転駆動力をナットに伝達するトルク伝達部品が装着されたアクチュエータ用ボールねじに適用できる。  The ball screw for an actuator according to the present invention is used particularly for an actuator of an automobile or the like, and can be applied to a ball screw for an actuator in which a support bearing and a torque transmission component that transmits the rotational driving force of an electric motor are attached to the nut.

本発明に係るアクチュエータ用ボールねじの第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a ball screw for actuators concerning the present invention.図1の要部断面図である。It is principal part sectional drawing of FIG.本発明に係るねじ軸のねじ溝加工状態を示す説明図である。It is explanatory drawing which shows the thread groove processing state of the screw shaft which concerns on this invention.本発明に係るナットのねじ溝加工状態を示す説明図である。It is explanatory drawing which shows the thread groove processing state of the nut which concerns on this invention.(a)〜(j)は、本発明に係るねじ軸のねじ溝加工工程におけるねじ溝の拡大断面図である。(A)-(j) is an expanded sectional view of the thread groove in the thread groove processing process of the threaded shaft which concerns on this invention.本発明に係るアクチュエータ用ボールねじの第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the ball screw for actuators which concerns on this invention.従来のねじ軸のねじ溝加工方法を示す工程説明図である。It is process explanatory drawing which shows the thread groove processing method of the conventional screw shaft.

符号の説明Explanation of symbols

1・・・・・・・・・・・アクチュエータ用ボールねじ
2・・・・・・・・・・・ねじ軸
2a、3a・・・・・・・ねじ溝
3、21・・・・・・・・ナット
4、11・・・・・・・・ボール
5・・・・・・・・・・・駒部材
5a・・・・・・・・・・連結溝
6・・・・・・・・・・・ボール循環部
7、22・・・・・・・・トルク伝達部
8・・・・・・・・・・・支持軸受
9・・・・・・・・・・・外輪
10・・・・・・・・・・内輪
12、14・・・・・・・汎用バイト
12a、14a・・・・・切刃
13、15・・・・・・・ホルダー
16・・・・・・・・・・歯車
17・・・・・・・・・・固定ナット
18、23・・・・・・・ヌスミ部
19・・・・・・・・・・キー溝
20・・・・・・・・・・キー
24・・・・・・・・・・円筒部
51・・・・・・・・・・ねじ軸
52・・・・・・・・・・ねじ溝
53・・・・・・・・・・主軸チャック
54・・・・・・・・・・汎用バイト
54a・・・・・・・・・切刃
55・・・・・・・・・・加熱炉
56・・・・・・・・・・砥石
P1〜Pn・・・・・・・バイトの移動経路
R1、R3・・・・・・・ねじ溝の溝曲率半径
R2、R4・・・・・・・切刃のノーズ半径
W・・・・・・・・・・・ワーク
1. Ball screw foractuator 2 ...Screw shaft 2a, 3a ...Screw groove 3, 21 ... ...Nuts 4 and 11 ...Ball 5 ...Piece member 5a ...Connecting groove 6 ... ......Ball circulation part 7, 22 ... Torque transmission part 8 ...Support bearing 9 ...Outer ring 10 ............ Inner rings 12, 14 ...General purpose tools 12a, 14a ... Cuttingblades 13, 15 ...Holder 16 ... ......Gear 17 ...... Fixingnuts 18, 23 ......Nusumi 19 ......Keyway 20 ......・ ・ ・ ・ ・Key 24 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・Cylindrical part 1 ...Screw shaft 52 ...Screw groove 53 ...Spindle chuck 54 ... General-purpose tool 54a ... Cuttingedge 55 ...Heating furnace 56 ... Grinding stones P1-Pn ... Tool Movement path R1, R3 ········ Surve curvature radius R2, R4 ········· Nose radius W ············ Workpiece

Claims (5)

Translated fromJapanese
外周に螺旋状のねじ溝が形成されたねじ軸と、
このねじ軸に外挿され、内周にねじ溝に対応する螺旋状のねじ溝が形成された円筒状のナットと、
前記両ねじ溝間に転動自在に収容された多数のボールとを備え、
前記ナットが、外周にこのナットを回転自在に支承するための支持軸受が装着され、内周に前記ねじ溝が形成されたボール循環部と、外周に電動モータの回転駆動力を当該ナットに伝達するトルク伝達部品が装着されたトルク伝達部とで構成されたアクチュエータ用ボールねじにおいて、
前記ボール循環部が前記トルク伝達部と軸方向に離反して設けられると共に、このトルク伝達部の内周に環状のヌスミ部が形成されていることを特徴とするアクチュエータ用ボールねじ。
A screw shaft having a helical thread formed on the outer periphery;
A cylindrical nut that is extrapolated to the screw shaft and has a spiral thread groove corresponding to the thread groove on the inner periphery;
A plurality of balls accommodated in a freely rollable manner between the both screw grooves,
The nut is mounted on the outer periphery with a support bearing for rotatably supporting the nut, the ball circulation part having the thread groove formed on the inner periphery, and the rotational driving force of the electric motor on the outer periphery is transmitted to the nut. In a ball screw for an actuator configured with a torque transmission part to which a torque transmission component is mounted,
The ball screw for an actuator is characterized in that the ball circulation portion is provided apart from the torque transmission portion in the axial direction, and an annular nuisance portion is formed on the inner periphery of the torque transmission portion.
前記ヌスミ部が所定の範囲に形成され、このヌスミ部を介して前記トルク伝達部の内周に軸方向に延びる円筒部が形成されると共に、この円筒部の内径が前記ねじ溝の内径と略同径に形成されている請求項1に記載のアクチュエータ用ボールねじ。  The Nusumi part is formed in a predetermined range, and a cylindrical part extending in the axial direction is formed on the inner periphery of the torque transmission part via the Nusumi part, and the inner diameter of the cylindrical part is substantially equal to the inner diameter of the screw groove. The ball screw for an actuator according to claim 1, wherein the ball screw is formed to have the same diameter. 前記ボール循環部の胴部に複数の駒部材が装着され、この駒部材の内周に前記ねじ溝を連結するための円弧状の連結溝が形成されている請求項1または2に記載のアクチュエータ用ボールねじ。  3. The actuator according to claim 1, wherein a plurality of piece members are mounted on a body portion of the ball circulation portion, and an arc-shaped connection groove for connecting the screw groove is formed on an inner periphery of the piece member. Ball screw. 前記支持軸受が4点接触玉軸受で構成されている請求項1乃至3いずれかに記載のアクチュエータ用ボールねじ。  The ball screw for an actuator according to any one of claims 1 to 3, wherein the support bearing is a four-point contact ball bearing. 生材からなるワークにねじ溝を旋削する工程と、この旋削したワークを焼入れする工程とを含むアクチュエータ用ボールねじのねじ溝加工方法において、前記旋削工程で、切刃のノーズ半径が前記ねじ溝の溝曲率半径よりも小さな汎用バイトを用い、この汎用バイトを前記ねじ溝の有効長さ分だけ複数回移動させて、各回の移動経路を当該ねじ溝の断面形状の円弧方向に順次ずらせることにより、前記ねじ溝の全体が旋削されると共に、前記焼入れ工程の後に、少なくとも前記ねじ溝にショットピーニングによる仕上げ加工が施されていることを特徴とするアクチュエータ用ボールねじのねじ溝加工方法。  In the thread groove machining method of a ball screw for an actuator including a step of turning a thread groove on a workpiece made of raw material and a step of quenching the turned workpiece, the nose radius of the cutting blade is the thread groove in the turning step. Using a general-purpose bit smaller than the groove curvature radius of this, move this general-purpose bit several times by the effective length of the thread groove, and sequentially shift the movement path in the arc direction of the cross-sectional shape of the thread groove Thus, the entire thread groove is turned, and after the quenching step, at least the thread groove is subjected to finish machining by shot peening.
JP2007050906A2007-03-012007-03-01Ball screw for actuator and its screw grooving methodPendingJP2008215422A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2007050906AJP2008215422A (en)2007-03-012007-03-01Ball screw for actuator and its screw grooving method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2007050906AJP2008215422A (en)2007-03-012007-03-01Ball screw for actuator and its screw grooving method

Publications (1)

Publication NumberPublication Date
JP2008215422Atrue JP2008215422A (en)2008-09-18

Family

ID=39835707

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2007050906APendingJP2008215422A (en)2007-03-012007-03-01Ball screw for actuator and its screw grooving method

Country Status (1)

CountryLink
JP (1)JP2008215422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2010090953A (en)*2008-10-072010-04-22Ntn CorpBall screw and pulley width driving mechanism with the same for v-belt type continuously variable transmission
US8118656B2 (en)2005-02-172012-02-21Sega CorporationGame device
JP5418667B2 (en)*2010-03-172014-02-19日本精工株式会社 Ball screw and ball screw nut manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS59131059A (en)*1983-11-281984-07-27Hiroshi TeramachiBall screw with angular contact ball bearing
JP2005212593A (en)*2004-01-292005-08-11Ntn CorpElectric power steering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS59131059A (en)*1983-11-281984-07-27Hiroshi TeramachiBall screw with angular contact ball bearing
JP2005212593A (en)*2004-01-292005-08-11Ntn CorpElectric power steering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8118656B2 (en)2005-02-172012-02-21Sega CorporationGame device
JP2010090953A (en)*2008-10-072010-04-22Ntn CorpBall screw and pulley width driving mechanism with the same for v-belt type continuously variable transmission
JP5418667B2 (en)*2010-03-172014-02-19日本精工株式会社 Ball screw and ball screw nut manufacturing method
US9737926B2 (en)2010-03-172017-08-22Nsk Ltd.Ball screw and manufacturing method of nut for ball screw
EP2532924A4 (en)*2010-03-172018-04-25NSK Ltd.Ball screw, manufacturing method of nut for ball screw

Similar Documents

PublicationPublication DateTitle
JP6090436B2 (en) Method of manufacturing race ring member and metal material for race ring member
JP2008275095A (en)Ball screw and manufacturing method thereof
JP2008281063A (en) Ball screw mechanism
CN203272651U (en)Lead screw shaft and ball screw
JP2011255834A (en)Rack shaft, method of manufacturing the same, and rack pinion type steering gear unit
JP2005083549A (en)Ball screw nut and its manufacturing method
JP5121656B2 (en) Ball screw
JP2008215422A (en)Ball screw for actuator and its screw grooving method
JP6365796B1 (en) Track groove processing method, ball screw device, machine and vehicle manufacturing method
US20070137350A1 (en)Ball screw nut and method of producing the same
JP4679257B2 (en) Thread groove processing method for ball screw shaft
JP2006266310A (en)Electric linear actuator
JP2009191902A (en)Wheel bearing device
JP2012180091A (en)Bearing device for wheel
JP2005090570A (en)Ball screw nut and manufacturing method thereof
JP2010043691A (en)Constant velocity universal joint and method for manufacturing the same
JP2012189217A (en)Wheel bearing device
JP4467349B2 (en) Ball screw for automobile
JP2007016848A (en)Ball screw nut and manufacturing method thereof
JP2014109319A (en)Ball screw mechanism
JP4993705B2 (en) Ball screw and thread groove machining method thereof
JP5708552B2 (en) Method for manufacturing variator part of continuously variable transmission and hard broach tool used in this method
JP2005273870A (en)Rolling bearing device for vehicle wheel
JP2009191907A (en)Wheel bearing device
JP2009185831A (en)Inside joint member for constant velocity universal joint and method for manufacturing the same, and constant velocity universal joint

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20100226

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20110816

A131Notification of reasons for refusal

Effective date:20110818

Free format text:JAPANESE INTERMEDIATE CODE: A131

A521Written amendment

Effective date:20111014

Free format text:JAPANESE INTERMEDIATE CODE: A523

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20120327


[8]ページ先頭

©2009-2025 Movatter.jp