Movatterモバイル変換


[0]ホーム

URL:


JP2007322572A - Anti-reflection optical element - Google Patents

Anti-reflection optical element
Download PDF

Info

Publication number
JP2007322572A
JP2007322572AJP2006150850AJP2006150850AJP2007322572AJP 2007322572 AJP2007322572 AJP 2007322572AJP 2006150850 AJP2006150850 AJP 2006150850AJP 2006150850 AJP2006150850 AJP 2006150850AJP 2007322572 AJP2007322572 AJP 2007322572A
Authority
JP
Japan
Prior art keywords
antireflection
optical element
element according
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150850A
Other languages
Japanese (ja)
Inventor
Toru Shimizu
徹 清水
Yoshinori Ito
嘉則 伊藤
Osamu Nishizaki
修 西崎
Keiji Kobayashi
圭二 小林
Shigeru Aoyama
茂 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics CofiledCriticalOmron Corp
Priority to JP2006150850ApriorityCriticalpatent/JP2007322572A/en
Publication of JP2007322572ApublicationCriticalpatent/JP2007322572A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection optical element excellent in mass productivity, and to which oil film (finger print), fine dust or the like hardly adheres, and which has large pressurization strength. <P>SOLUTION: An antireflection film 13 (multilayer antireflection film) composed of a plurality of layers of transparent thin films 13a is formed on the surface of a substrate 12 and an antireflection structured film 14 is formed on the antireflection film 13. The antireflection structured film 14 has a structure in which a lot of fine recessed portions 16 (antireflection structure) are formed on the surface of a thin film 15 composed of a transparent resin including fluorine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

Translated fromJapanese

本発明は、或る波長域の光の反射を防止する反射防止光学素子に関する。  The present invention relates to an antireflection optical element that prevents reflection of light in a certain wavelength range.

可視光のような或る波長域の光の反射を防止するための反射防止用の光学素子としては、従来より多層反射防止膜(非特許文献1)と反射防止構造(特許文献1)とが知られている。  As an anti-reflection optical element for preventing reflection of light in a certain wavelength range such as visible light, a multilayer anti-reflection film (Non-patent Document 1) and an anti-reflection structure (Patent Document 1) have been conventionally used. Are known.

前記多層反射防止膜は、金属酸化物などの透明薄膜を積層させて多層膜としたものであり、各透明薄膜による反射光を干渉効果により打ち消し合わせることで反射光を消失させるものである。  The multilayer antireflection film is a multilayer film formed by laminating transparent thin films such as metal oxides, and the reflected light disappears by canceling the reflected light from each transparent thin film by the interference effect.

しかしながら、多層反射防止膜では、広帯域の波長に対して反射率を小さくしようとすると、積層する透明薄膜の枚数を増加させる必要がある。多層反射防止膜では、積層する各透明薄膜の屈折率と膜厚や各透明薄膜間の密着性を保つための応力などを高精度に制御する必要があるため、透明薄膜の積層数が増加すると、それだけ多くの時間や工数が掛かり、製造効率が大きく低下するという問題がある。さらに、透明薄膜の積層枚数が増加すると、膜の耐久性が低下する恐れがある。また、多層反射膜では、金属薄膜の表面に指紋(油膜)が付着したり、撮像素子などで視認性の低下を招く数μm〜数十μmの大きさの微細な異物が付着したりすることによる汚染で反射防止効果が著しく低下するという難点がある。  However, in the multilayer antireflection film, it is necessary to increase the number of transparent thin films to be laminated in order to reduce the reflectance with respect to a broadband wavelength. In multilayer antireflection coatings, it is necessary to control the refractive index and film thickness of each transparent thin film to be laminated and the stress to maintain the adhesion between each transparent thin film with high precision. There is a problem that much time and man-hours are required, and the production efficiency is greatly reduced. Furthermore, when the number of laminated transparent thin films increases, the durability of the film may decrease. In addition, in a multilayer reflective film, fingerprints (oil film) adhere to the surface of a metal thin film, or fine foreign matters having a size of several μm to several tens of μm that cause a decrease in visibility due to an image pickup device or the like. There is a drawback that the antireflection effect is remarkably lowered due to the contamination due to.

前記反射防止構造は、透明な基材の表面にAR(Anti-Reflective)格子と呼ばれる多数の微細な突起や穴を形成することにより、基板の表面における屈折率の変化を緩やかにし、それによって光の反射を防ぐようにしたものである。  The antireflection structure forms a large number of fine projections and holes called AR (Anti-Reflective) gratings on the surface of a transparent base material, so that the refractive index change on the surface of the substrate is moderated. This is intended to prevent reflection of light.

しかしながら、AR格子による反射防止構造では、反射防止特性を高めるためには基板表面の開口率を大きくする必要がある。開口率を大きくすると、突起で構成されたAR格子の場合には押圧力によって突起が潰れ易くなる。また、穴で構成されたAR格子の場合でも、反射防止特性を上げるために穴径を大きくすると基板表面の開口率が大きくなるので、反射防止特性を上げようとすると押圧力に弱くなってしまう。そのため、特許文献1に開示されているような反射防止構造では、外力によってパターン崩れが発生し易く、反射防止効果の低下を招くという問題がある。  However, in the antireflection structure using the AR grating, it is necessary to increase the aperture ratio of the substrate surface in order to improve the antireflection characteristics. When the aperture ratio is increased, in the case of an AR lattice composed of protrusions, the protrusions are easily crushed by the pressing force. Also, even in the case of an AR grating composed of holes, if the hole diameter is increased in order to increase the antireflection characteristic, the aperture ratio of the substrate surface increases, so that if the antireflection characteristic is increased, it becomes weak against the pressing force. . Therefore, in the antireflection structure as disclosed in Patent Document 1, there is a problem that pattern collapse is likely to occur due to an external force, resulting in a decrease in the antireflection effect.

特開2004−177806号公報Japanese Patent Application Laid-Open No. 2004-177806花岡英章 外著、「反射防止膜の特性と最適設計・膜製作技術」、技術情報協会Hideaki Hanaoka, “The characteristics and optimum design of anti-reflective coating and film fabrication technology”, Technical Information Association

本発明の課題は、量産性に優れると共に油膜(指紋)や微細やゴミ等が付着しにくく、しかも押圧強度の高い反射防止光学素子を提供することである。  An object of the present invention is to provide an anti-reflection optical element that is excellent in mass productivity, is less likely to adhere to an oil film (fingerprint), fine particles, dust, and the like and has high pressing strength.

本発明にかかる反射防止光学素子は、透光性の基板と、1層又は複数層の透明薄膜からなる反射防止膜と、薄膜層の表面に微細な凹部又は凸部を入射光の波長よりも短いピッチで複数形成した反射防止構造を有する反射防止構造膜とを順次積層したことを特徴としている。なお、ここでいう入射光とは実際の入射光ではなく、設計上想定されるある波長(域)の入射光である。  An antireflection optical element according to the present invention includes a translucent substrate, an antireflection film composed of one or more transparent thin films, and a fine concave or convex portion on the surface of the thin film layer, which is smaller than the wavelength of incident light. It is characterized in that an antireflection structure film having an antireflection structure formed in plural at a short pitch is sequentially laminated. Here, the incident light is not actual incident light but incident light having a certain wavelength (range) assumed in design.

本発明の反射防止光学素子にあっては、反射防止膜と反射防止構造膜との相乗作用により少ない層数の反射防止膜及び反射防止構造膜によって広い入射波長域において優れた反射防止効果を得ることができる。反射防止膜における透明薄膜の層数を減らすことができれば、反射防止膜を形成するための時間や工数を削減でき、反射防止光学素子の量産性が向上する。さらに、透明薄膜の積層枚数を減らすことによって反射防止膜の耐久性も向上する。しかも、表面に反射防止構造膜が形成されているので、反射防止光学素子の表面に指紋や微細な異物等が付着しにくくなり、反射防止光学素子の表面が汚染されにくくなる。一方、反射防止構造膜は、従来例に比較して開口率を小さくできるので、反射防止構造膜の押圧強度を高くすることができる。よって、反射防止光学素子の防汚性が高くなることによる反射防止効果が経年的に低下しにくくなり、また押圧強度が高くなることによって耐久性が向上するので、反射防止光学素子の寿命が長くなる。  In the antireflection optical element of the present invention, the antireflection film having a small number of layers and the antireflection structure film have an excellent antireflection effect in a wide incident wavelength range due to the synergistic action of the antireflection film and the antireflection structure film. be able to. If the number of transparent thin films in the antireflection film can be reduced, the time and man-hours for forming the antireflection film can be reduced, and the mass productivity of the antireflection optical element is improved. Furthermore, the durability of the antireflection film is improved by reducing the number of laminated transparent thin films. In addition, since the antireflection structure film is formed on the surface, fingerprints, fine foreign matters, and the like are hardly attached to the surface of the antireflection optical element, and the surface of the antireflection optical element is hardly contaminated. On the other hand, since the opening ratio of the antireflection structure film can be reduced as compared with the conventional example, the pressing strength of the antireflection structure film can be increased. Therefore, the antireflection effect due to the increase in the antifouling property of the antireflection optical element is less likely to deteriorate over time, and the durability is improved by increasing the pressing strength. Become.

本発明にかかる反射防止光学素子のある実施態様は、前記反射防止膜を構成する各透明薄膜の膜厚が400nm以下であり、かつ、前記反射防止構造膜のうち前記反射防止構造を含まない層の厚みが400nm以下であることを特徴としている。かかる実施態様によれば、反射防止膜の各透明薄膜で反射した可視光と反射防止構造膜の反射防止構造を含まない層で反射した可視光を干渉させることによって反射光を低減させることができる。よって、入射光が可視光である場合に、入射光の反射を低減することができる。  In one embodiment of the antireflection optical element according to the present invention, the thickness of each transparent thin film constituting the antireflection film is 400 nm or less, and the antireflection structure film does not include the antireflection structure. Is characterized by having a thickness of 400 nm or less. According to such an embodiment, the reflected light can be reduced by causing the visible light reflected by each transparent thin film of the antireflection film to interfere with the visible light reflected by the layer not including the antireflection structure of the antireflection structure film. . Therefore, when incident light is visible light, reflection of incident light can be reduced.

本発明にかかる反射防止光学素子の別な実施態様は、前記反射防止構造の深さもしくは高さが、400nm以下であることを特徴としている。かかる実施態様によれば、透明薄膜等で反射した可視光と反射防止構造で反射した可視光とを干渉させることによって反射率を低減すると共に、反射防止構造膜の表面において可視光に対する屈折率の変化を小さくすることによって反射率を低減することができ、可視光に対する反射率を小さくすることができる。また、この実施態様では、前記反射防止構造の深さもしくは高さを50nm以上(つまり、50nm以上400nm以下)とすることが望ましい。50nmよりも小さいと、反射防止光学素子の防汚効果が低下するためである。さらに、この実施態様では、前記反射防止構造の深さもしくは高さが入射光の波長の1/4倍に等しいことが望ましい。反射防止構造の深さもしくは高さが入射光の波長の1/4倍に等しいと、反射防止構造の上端又は下端で反射した光と薄膜層の表面で反射した光を干渉により消失させることができる。  In another embodiment of the antireflection optical element according to the present invention, the depth or height of the antireflection structure is 400 nm or less. According to such an embodiment, the reflectance is reduced by causing the visible light reflected by the transparent thin film or the like to interfere with the visible light reflected by the antireflection structure, and the refractive index of the visible light on the surface of the antireflection structure film is reduced. By reducing the change, the reflectance can be reduced, and the reflectance for visible light can be reduced. In this embodiment, it is desirable that the depth or height of the antireflection structure be 50 nm or more (that is, 50 nm or more and 400 nm or less). This is because if it is smaller than 50 nm, the antifouling effect of the antireflection optical element is lowered. Furthermore, in this embodiment, it is desirable that the depth or height of the antireflection structure is equal to ¼ times the wavelength of incident light. If the depth or height of the antireflection structure is equal to ¼ times the wavelength of the incident light, the light reflected at the upper or lower end of the antireflection structure and the light reflected at the surface of the thin film layer may be lost by interference. it can.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面積がそれぞれ一様であることを特徴としている。かかる実施態様によれば、反射防止構造が潰れにくくて押圧強度が高くなる。  Still another embodiment of the antireflection optical element according to the invention is characterized in that the cross-sectional areas of the antireflection structure are uniform in cross section parallel to the back surface of the thin film layer. According to such an embodiment, the antireflection structure is not easily crushed and the pressing strength is increased.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面積が、前記薄膜層の前記反射防止構造が設けられていない箇所の表面から離れるに従って徐々に小さくなっていることを特徴としている。かかる実施態様によれば、反射防止構造膜を成形する際の離型性が向上する。また、反射防止構造膜の表面における実効的な屈折率の変化をより緩やかにできるので、反射防止構造膜の表面における反射率をより小さくできる。  Still another embodiment of the antireflection optical element according to the present invention is such that the cross-sectional area of the antireflection structure, which is parallel to the back surface of the thin film layer, is not provided with the antireflection structure of the thin film layer. It is characterized by being gradually smaller as it gets farther from the surface. According to this embodiment, the releasability when forming the antireflection structural film is improved. Moreover, since the effective refractive index change on the surface of the antireflection structure film can be made more gradual, the reflectance on the surface of the antireflection structure film can be made smaller.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面形状が、円形であることを特徴としている。また、本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造の凹部又は凸部が六方配列されていることを特徴としている。本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造の凹部又は凸部がランダムに配列されていることを特徴としている。これらの実施態様によれば、押圧強度の方向依存性が小さくなり、反射防止構造がどの方向から押圧力を受けても潰れにくくなる。  Yet another embodiment of the antireflection optical element according to the present invention is characterized in that a cross-sectional shape of a cross section of the antireflection structure parallel to the back surface of the thin film layer is circular. Further, another embodiment of the antireflection optical element according to the present invention is characterized in that the concave portions or the convex portions of the antireflection structure are arranged in a hexagonal manner. Yet another embodiment of the antireflection optical element according to the present invention is characterized in that the concave portions or the convex portions of the antireflection structure are arranged at random. According to these embodiments, the direction dependency of the pressing strength is reduced, and the antireflection structure is hardly crushed regardless of the pressing force from any direction.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記薄膜層の材料がフッ素を含有する樹脂であることを特徴としている。薄膜層としてフッ素を含有する樹脂を用いれば、反射防止構造膜が微小なゴミや油膜などで汚染されるのを防止する効果(防汚効果)が高くなる。特に、前記薄膜層の材料がフッ素を含有する光硬化性樹脂であれば、反射防止構造膜の防汚効果が高くなると共に、反射防止構造膜の作製時に光照射によって薄膜層を硬化させることができるので、反射防止膜に熱負荷が掛からない。  Yet another embodiment of the antireflection optical element according to the present invention is characterized in that the material of the thin film layer is a resin containing fluorine. If a resin containing fluorine is used as the thin film layer, the effect (antifouling effect) of preventing the antireflection structure film from being contaminated with minute dust or an oil film is enhanced. In particular, if the material of the thin film layer is a photocurable resin containing fluorine, the antifouling structure film has a high antifouling effect, and the thin film layer can be cured by light irradiation during the production of the antireflection structure film. As a result, no heat load is applied to the antireflection film.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記薄膜層の材料がシリコーン樹脂であることを特徴としている。シリコーン樹脂も防汚性を有しており、しかも光(紫外線)照射によって硬化させることもでき、熱硬化させることもできる。  Yet another embodiment of the antireflection optical element according to the present invention is characterized in that the material of the thin film layer is a silicone resin. Silicone resins also have antifouling properties, and can be cured by irradiation with light (ultraviolet rays) or can be cured by heat.

本発明にかかる反射防止光学素子のさらに別な実施態様は、前記反射防止構造膜は、前記反射防止構造を有する領域と、前記反射防止構造を有しない領域とを含み、前記反射防止構造を有する領域の周囲に前記反射防止構造を有しない領域があることを特徴としている。かかる実施態様によれば、反射防止構造を有する領域の周囲に、反射防止構造を有する領域を設けているので、反射防止構造を有しない領域を掴むことができ、機器への組み込み時などに取り扱いが容易になる。  Still another embodiment of the antireflection optical element according to the present invention is such that the antireflection structure film includes a region having the antireflection structure and a region not having the antireflection structure, and has the antireflection structure. It is characterized in that there is a region that does not have the antireflection structure around the region. According to such an embodiment, since the region having the antireflection structure is provided around the region having the antireflection structure, the region having no antireflection structure can be grasped and handled at the time of incorporation in a device. Becomes easier.

上記実施態様においては、前記反射防止構造を有する領域が前記反射防止構造を有しない領域よりも低くなっていれば、反射防止光学素子の上に他の部材を重ねたときに他の部材が反射防止構造を有する領域に触れることがない。よって、反射防止構造を有する領域が反射防止構造を有しない領域によって保護され、反射防止構造が押圧力を受けて潰れたり、反射防止構造を有する領域が油膜やゴミ等によって汚れにくくなる。  In the above embodiment, if the region having the antireflection structure is lower than the region not having the antireflection structure, the other member reflects when another member is stacked on the antireflection optical element. The area having the prevention structure is not touched. Therefore, the region having the antireflection structure is protected by the region not having the antireflection structure, and the antireflection structure is crushed by the pressing force, or the region having the antireflection structure is not easily contaminated by an oil film or dust.

また、上記実施態様においては、前記反射防止構造を有する領域が前記反射防止構造を有しない領域よりも高くなっていてもよい。この場合には、反射防止構造を有する領域に微細なゴミ等が付着しても、付着したゴミ等が反射防止構造を有しない領域へ落ちやすく、反射防止構造を有する領域がより一層汚れにくい。  Moreover, in the said embodiment, the area | region which has the said antireflection structure may be higher than the area | region which does not have the said antireflection structure. In this case, even if fine dust or the like adheres to the region having the antireflection structure, the attached dust or the like tends to fall into a region that does not have the antireflection structure, and the region having the antireflection structure is further less likely to become dirty.

また、上記実施態様においては、前記反射防止構造を有しない領域にシボ加工が施されていることを特徴としている。反射防止構造は微細で視覚では認識することができないが、反射防止構造を有しない領域に視覚で認識可能なシボ加工を施してあれば、視覚によって反射防止構造を有する領域を認識することができ、反射防止光学素子の取り扱いが容易になる。  Moreover, in the said embodiment, the embossing process is given to the area | region which does not have the said antireflection structure, It is characterized by the above-mentioned. The anti-reflection structure is fine and cannot be visually recognized, but if the area that does not have the anti-reflection structure has been visually recognizable, it can visually recognize the area that has the anti-reflection structure. This makes it easy to handle the antireflection optical element.

なお、本発明にかかる反射防止光学素子は、CCDカメラ等の撮像装置に用いられる撮像素子、プロジェクタ等の表示装置に用いられる表示素子、煙感知センサのようなセンサなどに利用することができる。  The antireflection optical element according to the present invention can be used for an imaging element used in an imaging apparatus such as a CCD camera, a display element used in a display apparatus such as a projector, and a sensor such as a smoke detection sensor.

なお、本発明の以上説明した構成要素は、可能な限り任意に組み合わせることができる。  In addition, the component demonstrated above of this invention can be combined arbitrarily as much as possible.

以下、本発明の実施例を図面に従って詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1による反射防止光学素子11を示す斜視図、図2はその平面図、図3はその断面図である。この反射防止光学素子11は、透光性を有する基板12の表面に反射防止膜13を形成し、さらに反射防止膜13の表面に反射防止構造膜14を形成したものである。  1 is a perspective view showing an antireflectionoptical element 11 according to a first embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a sectional view thereof. This antireflectionoptical element 11 is formed by forming anantireflection film 13 on the surface of a light-transmittingsubstrate 12 and further forming anantireflection structure film 14 on the surface of theantireflection film 13.

基板12としては、例えばプラスチックやガラスから成る基板を用いることができ、入射光の波長域(設計波長域)で透過率の高いものが望ましい。以下の説明においては平板状の基板12を用いた場合を説明するが、基板12の表面は図4に示すように曲面であっても差し支えない。特に、基板12としてレンズを用いれば、本発明の反射防止光学素子を反射防止用コーティング材でコートされたレンズとして用いることができる。  As thesubstrate 12, for example, a substrate made of plastic or glass can be used, and a substrate having a high transmittance in the wavelength range (design wavelength range) of incident light is desirable. In the following description, the case where theflat substrate 12 is used will be described. However, the surface of thesubstrate 12 may be a curved surface as shown in FIG. In particular, if a lens is used as thesubstrate 12, the antireflection optical element of the present invention can be used as a lens coated with an antireflection coating material.

反射防止膜13は金属酸化物などの透明薄膜13aから成り、真空蒸着法やプラズマコーティング法などによって基板12の表面に成膜される。反射防止膜13は単層の透明薄膜13aでもよく、膜厚や屈折率の異なる透明薄膜13aを複数層積層したものでもよく、入射光の波長域で反射率が小さくなるように設計される。なお、反射防止膜13は基板12の裏面にも設けてあってもよいが、基板12の表面にのみ設けることで反射防止光学素子11の製造や取扱いが容易になる。  Theantireflection film 13 is made of a transparentthin film 13a such as a metal oxide, and is formed on the surface of thesubstrate 12 by a vacuum deposition method or a plasma coating method. Theantireflection film 13 may be a single-layer transparentthin film 13a, or may be a laminate of a plurality of transparentthin films 13a having different film thicknesses and refractive indexes, and is designed so that the reflectance is reduced in the wavelength range of incident light. Although theantireflection film 13 may be provided on the back surface of thesubstrate 12, the antireflectionoptical element 11 can be easily manufactured and handled by being provided only on the surface of thesubstrate 12.

透明薄膜13aは、可干渉膜厚として干渉により反射率を低減するためには、その膜厚を入射光の波長よりも短い厚さにしなければならない。従って、可視光(波長域:約400nm〜700nm)の反射を防止する用途の場合には、各透明薄膜13aの膜厚は400nm以下にすればよい。特に、各透明薄膜13aの膜厚を100nmにすれば、反射防止膜13による反射率を0.1%以下にすることができる。  The transparentthin film 13a must have a thickness shorter than the wavelength of incident light in order to reduce the reflectivity by interference as a coherent film thickness. Therefore, in the case of an application for preventing reflection of visible light (wavelength range: about 400 nm to 700 nm), the thickness of each transparentthin film 13a may be 400 nm or less. In particular, if the thickness of each transparentthin film 13a is 100 nm, the reflectance by theantireflection film 13 can be reduced to 0.1% or less.

反射防止構造膜14は、フッ素を含有した樹脂からなる透明な薄膜層15の表面に入射光の波長よりも短いピッチで多数の微細な凹部16(反射防止構造)を形成したものである。反射防止構造膜14は、四周に比較的厚みの大きな額縁部17を有しており、額縁部17に囲まれた内側の領域18(以下、有効領域という。)の表面に前記凹部16がほぼ均一な密度で形成されている。また、額縁部17と有効領域18との間には傾斜面19が形成されている。各凹部16は薄膜層15の厚み方向に沿って均一な水平断面を有しており、凹部16内は空洞(空気)となっている。特にこの実施例では、図2に示すように凹部16は円柱状(水平断面が円形)に形成されており、六角形の頂点及び中心に凹部16が位置するようにして六方配列されている。  Theantireflection structure film 14 is formed by forming a large number of fine concave portions 16 (antireflection structures) at a pitch shorter than the wavelength of incident light on the surface of a transparentthin film layer 15 made of a resin containing fluorine. Theantireflection structure film 14 has aframe portion 17 having a relatively large thickness on the four sides, and theconcave portion 16 is almost formed on the surface of an inner region 18 (hereinafter referred to as an effective region) surrounded by theframe portion 17. It is formed with a uniform density. Aninclined surface 19 is formed between theframe portion 17 and theeffective area 18. Eachrecess 16 has a uniform horizontal cross section along the thickness direction of thethin film layer 15, and therecess 16 is hollow (air). In particular, in this embodiment, as shown in FIG. 2, therecesses 16 are formed in a columnar shape (horizontal section is circular), and are arranged in a hexagonal manner so that therecesses 16 are located at the apex and center of the hexagon.

また、凹部16は円柱状に限らず、楕円柱状(水平断面が楕円)や角柱状(水平断面が四角形)のものなどであってもよい。適当な断面形状の凹部16を選択すれば、設計の自由度が高くなる。もっとも、円柱状の凹部16によれば、耐圧強度が方向によらないので耐圧強度が優れるという長所がある。また、凹部16の配列方法としては、格子状(碁盤目状)でもよく、あるいはランダムであってもよい。格子配列よりも六方配列の方が、押圧強度が方向によらないという効果がある。  Further, therecess 16 is not limited to a cylindrical shape, and may be an elliptical column shape (horizontal section is oval), a prismatic shape (horizontal section is square), or the like. If theconcave section 16 having an appropriate cross-sectional shape is selected, the degree of freedom in design increases. However, thecylindrical recess 16 has an advantage that the pressure strength is excellent because the pressure strength does not depend on the direction. Further, the arrangement method of therecesses 16 may be a lattice shape (a grid pattern) or may be random. The hexagonal arrangement is more effective than the lattice arrangement in that the pressing strength does not depend on the direction.

この凹部16は、後述のように反射防止構造膜14の表面における屈折率の変化を緩和することによって反射光を低減するものであるが、さらに凹部16における反射光を干渉による反射光の低減に寄与させることもできる。よって、凹部16の深さDや断面サイズは入射光の波長以下となっている。例えば、可視光の反射を防止する用途の場合には、凹部16の深さDは400nm以下にすればよい。また、凹部16の深さDが50nmよりも小さくなると、反射防止構造膜が微小なゴミや油膜(指紋等)などで汚染されるのを防止する効果(防汚効果)が損なわれるので、凹部16の深さDは50nm以上にしておくのが望ましい。特に、凹部16の深さDを100nmとすれば、反射防止構造膜14による反射率を0.1%以下に抑えることができ、また防汚効果も良好となる。また、凹部16の深さDを入射光の波長λの1/4にすれば(D=λ/4)、反射防止構造膜14の表面における反射光と凹部16の底面における反射光を干渉させて反射光を低減させることができる。  As will be described later, theconcave portion 16 reduces reflected light by relaxing a change in the refractive index on the surface of the antireflectionstructural film 14, and further reduces the reflected light in theconcave portion 16 due to interference. You can also contribute. Therefore, the depth D and the cross-sectional size of therecess 16 are not more than the wavelength of the incident light. For example, in the case of an application for preventing reflection of visible light, the depth D of therecess 16 may be 400 nm or less. Further, if the depth D of therecess 16 is smaller than 50 nm, the effect of preventing the antireflection structure film from being contaminated with a minute dust or an oil film (fingerprint or the like) (antifouling effect) is impaired. The depth D of 16 is preferably 50 nm or more. In particular, if the depth D of therecess 16 is 100 nm, the reflectance by theantireflection structure film 14 can be suppressed to 0.1% or less, and the antifouling effect is also improved. If the depth D of theconcave portion 16 is set to ¼ of the wavelength λ of the incident light (D = λ / 4), the reflected light on the surface of theantireflection structure film 14 and the reflected light on the bottom surface of theconcave portion 16 are caused to interfere with each other. Thus, the reflected light can be reduced.

薄膜層15の材料としては、樹脂でも樹脂以外の材料でも透光性材料であれば使用することができるが、フッ素を含有した樹脂であれば、反射防止構造膜の防汚効果が高くなる。特に、薄膜層15がフッ素を含有する光硬化性樹脂であれば、後述のように反射防止膜に熱負荷が掛かるのを防ぐことができる。また、薄膜層15の材料としてはシリコーン樹脂を用いることもできる。シリコーン樹脂を用いても、反射防止構造膜14に防汚性を持たせることができ、またシリコーン樹脂を用いれば反射防止構造膜14の作製時に光照射によって硬化させることも熱によって硬化させることもできる。  As the material of thethin film layer 15, a resin or a material other than resin can be used as long as it is a translucent material. However, if the resin contains fluorine, the antifouling effect of the antireflection structure film is enhanced. In particular, if thethin film layer 15 is a photo-curing resin containing fluorine, it is possible to prevent a thermal load from being applied to the antireflection film as will be described later. Further, a silicone resin can also be used as the material of thethin film layer 15. Even if a silicone resin is used, theantireflection structure film 14 can be imparted with antifouling properties, and if a silicone resin is used, it can be cured by light irradiation or by heat when theantireflection structure film 14 is produced. it can.

また、反射防止構造膜14のうち凹部16を含まない層(以下、バッファ層ということがある。)の厚みを入射光の波長よりも薄くしておけば、可干渉膜厚として透明薄膜13aで反射した光との干渉により反射率を低減することができる。従って、可視光の反射を防止する用途の場合には、薄膜層15の膜厚は400nm以下にすればよい。  Further, if the thickness of theantireflection structure film 14 that does not include the recess 16 (hereinafter also referred to as a buffer layer) is made thinner than the wavelength of the incident light, the transparentthin film 13a can be formed as a coherent film thickness. The reflectivity can be reduced by interference with the reflected light. Therefore, in the case of an application for preventing reflection of visible light, the film thickness of thethin film layer 15 may be 400 nm or less.

このような反射防止光学素子11によれば、反射防止構造膜14側から光Lが入射したとき、図3に示すように、基板12と透明薄膜13aの境界面における反射光、各透明薄膜13aどうしの境界面における反射光、薄膜層15と透明薄膜13aとの境界面における反射光、凹部16と薄膜層15との境界における反射光、および薄膜層15の表面における反射光の干渉により反射光を消失させることができる。従って、基板12と透明薄膜13aの境界面における反射光と各透明薄膜13aどうしの境界面における反射光と表面における反射光との干渉だけで反射光を消失させる従来例に比べれば、少ない層数の透明薄膜13aや薄膜層15によってより多くの光を多重干渉させることができ、広い波長域において反射率を小さくすることができる。また、反射防止構造膜14の表面には、入射光の波長よりも微細な凹部16が形成されているので、反射防止構造膜14の表面の屈折率は薄膜層15の屈折率と空気の屈折率の中間となる。すなわち、凹部16(空気)の屈折率をn0、薄膜層15の屈折率をn1、反射防止構造膜14の凹部16を形成されている領域の開口率をM%とすれば、反射防止構造膜14の表面の屈折率の平均値は、
〔n0×M+n1×(100−M)〕/100
となる。よって、反射防止構造膜14の表面における屈折率の変化が緩やかになり、入射光が反射防止構造膜14の表面で反射しにくくなる。しかも、この反射防止構造膜14による反射防止効果は波長による依存性が小さい。よって、この反射防止光学素子11によれば、少ない層数によって入射光の広い波長域(広帯域)において優れた反射防止特性を得ることができる。
According to such an antireflectionoptical element 11, when the light L is incident from theantireflection structure film 14 side, as shown in FIG. 3, the reflected light at the interface between thesubstrate 12 and the transparentthin film 13a, each transparentthin film 13a, Reflected light by interference between reflected light at the boundary surface, reflected light at the boundary surface between thethin film layer 15 and the transparentthin film 13a, reflected light at the boundary between therecess 16 and thethin film layer 15, and reflected light at the surface of thethin film layer 15. Can be eliminated. Accordingly, the number of layers is smaller than in the conventional example in which the reflected light disappears only by interference between the reflected light at the boundary surface between thesubstrate 12 and the transparentthin film 13a and the reflected light at the boundary surface between the transparentthin films 13a and the reflected light at the surface. The transparentthin film 13a and thethin film layer 15 can cause more light to interfere with each other and reduce the reflectance in a wide wavelength range. Further, since theconcave portion 16 that is finer than the wavelength of incident light is formed on the surface of the antireflectionstructural film 14, the refractive index of the surface of the antireflectionstructural film 14 is the refractive index of thethin film layer 15 and the refraction of air. The middle of the rate. That is, if the refractive index of the recess 16 (air) is n0, the refractive index of thethin film layer 15 is n1, and the aperture ratio of the region where therecess 16 of theantireflection structure film 14 is formed is M%, the antireflection structure film The average value of the refractive index of the surface of 14 is
[N0 * M + n1 * (100-M)] / 100
It becomes. Therefore, the change in the refractive index on the surface of theantireflection structure film 14 becomes gradual, and the incident light becomes difficult to be reflected on the surface of theantireflection structure film 14. Moreover, the antireflection effect of theantireflection structure film 14 is less dependent on the wavelength. Therefore, according to this antireflectionoptical element 11, it is possible to obtain excellent antireflection characteristics in a wide wavelength region (broadband) of incident light with a small number of layers.

こうして反射防止膜13における透明薄膜13aの層数を減らすことができれば、反射防止膜13を形成するための時間や工数を削減でき、反射防止光学素子11の製造効率や量産性が向上する。さらに、透明薄膜の積層枚数を減らすことによって反射防止膜13の耐久性も向上する。  If the number of transparentthin films 13a in theantireflection film 13 can be reduced in this way, the time and man-hour for forming theantireflection film 13 can be reduced, and the production efficiency and mass productivity of the antireflectionoptical element 11 are improved. Furthermore, the durability of theantireflection film 13 is improved by reducing the number of laminated transparent thin films.

また、反射防止膜13は反射防止構造膜14によって覆われており、しかも反射防止構造膜14の表面には多数の微細な凹部16が形成されているので、反射防止構造膜14の表面には指紋や微細な異物等が付着しにくく、反射防止光学素子11の表面が汚染されにくくなっている。一方、反射防止構造膜14は、従来例に比較して凹部16による開口率を小さくできるので、凹部16間の壁厚が厚くなり、反射防止構造膜14の押圧強度を高くすることができる。よって、反射防止光学素子11の防汚性が高くなることによっ反射防止効果が経年的に低下しにくくなり、また押圧強度が高くなることによって耐久性が向上するので、反射防止光学素子11の寿命が長くなる。  Further, since theantireflection film 13 is covered with theantireflection structure film 14 and manyfine recesses 16 are formed on the surface of theantireflection structure film 14, the surface of theantireflection structure film 14 is formed on the surface. Fingerprints and fine foreign matter are less likely to adhere, and the surface of the antireflectionoptical element 11 is less likely to be contaminated. On the other hand, theantireflection structure film 14 can reduce the aperture ratio due to therecesses 16 as compared with the conventional example. Therefore, the wall thickness between therecesses 16 is increased, and the pressing strength of theantireflection structure film 14 can be increased. Accordingly, the anti-reflection effect of the anti-reflectionoptical element 11 is less likely to deteriorate over time due to the increase in the antifouling property of the anti-reflectionoptical element 11, and the durability is improved by increasing the pressing strength. Long life.

額縁部17は図では幅を狭く描いているが、凹部16の形成されている有効領域18の面積は、額縁部17及び傾斜面19の面積よりも小さくなっている。有効領域18よりも周囲の額縁部17が高くなっているので、反射防止光学素子11の上に他の部材が重ねられても他の部材が有効領域18の領域に密着することがなく、反射防止光学素子11の光学的特性が変化しにくくなっている。有効領域18と額縁部17で段差があるため、両者の境界や反射防止光学素子11の表裏を視覚によって識別できるようになっている。  Although theframe portion 17 is drawn with a narrow width in the figure, the area of theeffective region 18 in which theconcave portion 16 is formed is smaller than the areas of theframe portion 17 and theinclined surface 19. Since the surroundingframe portion 17 is higher than theeffective region 18, even if another member is stacked on the antireflectionoptical element 11, the other member does not adhere to the region of theeffective region 18 and is reflected. The optical characteristics of the preventionoptical element 11 are difficult to change. Since there is a step between theeffective region 18 and theframe portion 17, the boundary between them and the front and back of the antireflectionoptical element 11 can be visually identified.

凹部16を形成されている有効領域18の判別を行い易いよう、額縁部17の表面にはシボ加工を施しておいてもよい。よって、このシボ加工は、視覚によって認識できる程度の大きさ又は深さを有している必要がある。  The surface of theframe portion 17 may be textured so that theeffective area 18 in which theconcave portion 16 is formed can be easily identified. Therefore, the embossing needs to have a size or depth that can be recognized visually.

また、額縁部17と傾斜面19との境界や傾斜面19と有効領域18の境界は、面取りをして滑らかな曲面により形成してもよい。あるいは、額縁部17と有効領域18との間の段差部分は傾斜面でなく、垂直な壁面となっていてもよい。あるいは、図5(a)に示すように、有効領域18と額縁部17とが同じ高さであっても、有効領域18と額縁部17との間に突壁部20を突設することにより、有効領域18の凹部16を保護することができる。また、図5(b)に示すように、額縁部17が有効領域18よりも高い場合であっても、有効領域18と額縁部17との間に突壁部20を突設することにより確実に有効領域18の凹部16を保護することができる。  Further, the boundary between theframe portion 17 and theinclined surface 19 and the boundary between theinclined surface 19 and theeffective area 18 may be chamfered to form a smooth curved surface. Or the level | step-difference part between theframe part 17 and the effective area |region 18 may be a vertical wall surface instead of an inclined surface. Alternatively, as shown in FIG. 5A, even if theeffective area 18 and theframe portion 17 are the same height, a protrudingwall portion 20 is provided between theeffective area 18 and theframe portion 17 so as to project. Therecess 16 in theeffective area 18 can be protected. Further, as shown in FIG. 5 (b), even when theframe portion 17 is higher than theeffective region 18, the protrudingwall portion 20 is reliably provided between theeffective region 18 and theframe portion 17. In addition, therecess 16 in theeffective area 18 can be protected.

次に、入射光が可視光である場合に、その中心波長550nmで最も反射率が低くなるように設計された反射防止光学素子11の一具体化例を説明する。この反射防止光学素子11では、反射防止膜13は屈折率の異なる2層の透明薄膜13aからなり、薄膜層15を合わせて3層構造となっている。以下詳細を説明する。  Next, a specific example of the antireflectionoptical element 11 designed to have the lowest reflectance at the center wavelength of 550 nm when the incident light is visible light will be described. In the antireflectionoptical element 11, theantireflection film 13 is composed of two transparentthin films 13 a having different refractive indexes, and thethin film layer 15 is combined to form a three-layer structure. Details will be described below.

基板12は、屈折率が1.54の透光性ガラスからなり、適宜厚みを有している。反射防止膜13は、屈折率が1.46で膜厚が100nmの下層の透明薄膜13aと屈折率が1.38で膜厚が100nmの上層の透明薄膜13aの2層によって構成されている。この透明薄膜13aは、一般的に使用されるMgF、Al、TiO、OH-5、SiOなどの光学材料から2種の材料を選択して用いられている。反射防止構造膜14は、屈折率が1.46で膜厚が200nmの薄膜層15の表面に多数の微細な凹部16を形成したものである。薄膜層15はフッ素を含有する光硬化性樹脂によって形成されている。凹部16は円柱状をしており、ピッチpが200nmで、かつ、平面視における開口率が50%の六方配列となるように形成されている(凹部16の半径は86nm程度)。凹部16の深さDは100nmとなっており、反射防止構造膜14のバッファ層の厚みTが100nmとなっている。また、反射防止構造膜14は、密着性を向上させるため、反射防止膜13の上にプライマを塗布して反射防止膜13に積層されている。Thesubstrate 12 is made of translucent glass having a refractive index of 1.54, and has an appropriate thickness. Theantireflection film 13 is composed of two layers: a lower transparentthin film 13a having a refractive index of 1.46 and a film thickness of 100 nm and an upper transparentthin film 13a having a refractive index of 1.38 and a film thickness of 100 nm. The transparentthin film 13a is used by selecting two kinds of materials from optical materials such as MgF2 , Al2 O3 , TiO2 , OH-5, and SiO2 that are generally used. Theantireflection structure film 14 is formed by forming a large number offine recesses 16 on the surface of thethin film layer 15 having a refractive index of 1.46 and a film thickness of 200 nm. Thethin film layer 15 is formed of a photocurable resin containing fluorine. Therecesses 16 have a cylindrical shape, and are formed to be a hexagonal array with a pitch p of 200 nm and an aperture ratio of 50% in plan view (the radius of therecesses 16 is about 86 nm). The depth D of therecess 16 is 100 nm, and the thickness T of the buffer layer of theantireflection structure film 14 is 100 nm. Theantireflection structure film 14 is laminated on theantireflection film 13 by applying a primer on theantireflection film 13 in order to improve adhesion.

図6はこの反射防止光学素子11の反射率をシミュレーションした結果を表わした特性図であって、比較のため3層の多層反射防止膜と4層の多層反射防止膜の反射率特性を合わせて表わしている。これらはいずれも550nmで反射率が最小となるように設計されている。図6から分かるように、3層の多層反射防止膜と本発明の実施例1とを比較すると、同じ3層であっても、本発明の実施例1によれば波長依存性が小さくなることが分かる。また、4層の多層反射防止膜と本発明の実施例1とを比較すると、本発明の実施例1によれば4層の多層反射防止膜と同等以上の効果が得られるので、層数の低減が可能となる。  FIG. 6 is a characteristic diagram showing the result of simulating the reflectance of the antireflectionoptical element 11, and for comparison, the reflectance characteristics of the three-layer multilayer antireflection film and the four-layer multilayer antireflection film are combined. It represents. These are all designed to have a minimum reflectance at 550 nm. As can be seen from FIG. 6, when the three-layer multilayer antireflection film is compared with the first embodiment of the present invention, the wavelength dependency is reduced according to the first embodiment of the present invention even with the same three layers. I understand. In addition, when comparing the four-layer multilayer antireflection film and the first embodiment of the present invention, according to the first embodiment of the present invention, an effect equal to or greater than that of the four-layer multilayer antireflection film can be obtained. Reduction is possible.

つぎに、本発明の実施例1による反射防止光学素子11の製造方法を図7(a)〜(e)により説明する。まず、基板12の表面に蒸着法で反射防止膜13を作製した(図7(a))後、反射防止膜13の上にフッ素を含有した光硬化性樹脂21(溶媒希釈樹脂)を塗布し(図7(b))、スピンコートによって反射防止膜13の上に光硬化性樹脂21を薄く均一に広げ、これを乾燥させて溶媒を蒸発させて薄膜層15を形成する(図7(c))。  Next, a method for manufacturing the antireflectionoptical element 11 according to Example 1 of the present invention will be described with reference to FIGS. First, after theantireflection film 13 was produced on the surface of thesubstrate 12 by vapor deposition (FIG. 7A), a photocurable resin 21 (solvent dilution resin) containing fluorine was applied on theantireflection film 13. (FIG. 7 (b)), thephotocurable resin 21 is spread thinly and uniformly on theantireflection film 13 by spin coating, dried, and the solvent is evaporated to form the thin film layer 15 (FIG. 7 (c). )).

ついで、薄膜層15の上にスタンパ22を押圧して薄膜層15の表面に額縁部17、傾斜面19及び有効領域18を成形すると共に有効領域18の表面に多数の凹部16を形成する。その状態で基板12側から薄膜層15に紫外線(UV)を照射して薄膜層15(光硬化性樹脂21)を硬化させ、反射防止膜13の上に反射防止構造膜14を作製する(図7(d))。このとき紫外線照射により薄膜層15を硬化させることができるので、熱硬化型樹脂を用いる場合のように反射防止膜13に熱負荷が掛からず、反射防止膜13の特性を損ねる恐れがない。  Next, thestamper 22 is pressed on thethin film layer 15 to form theframe portion 17, theinclined surface 19 and theeffective region 18 on the surface of thethin film layer 15, and a large number ofrecesses 16 are formed on the surface of theeffective region 18. In this state, the thin film layer 15 (photocurable resin 21) is cured by irradiating thethin film layer 15 with ultraviolet rays (UV) from thesubstrate 12 side, and the antireflectionstructural film 14 is formed on the antireflection film 13 (FIG. 7 (d)). At this time, since thethin film layer 15 can be cured by ultraviolet irradiation, a heat load is not applied to theantireflection film 13 as in the case of using a thermosetting resin, and there is no possibility of impairing the characteristics of theantireflection film 13.

この後、反射防止構造膜14からスタンパ22を離型して反射防止光学素子11を得る(図7(e))。額縁部17と有効領域18の間には傾斜面19が形成されているので、スタンパ22を離型するとき、容易に離型することができる。  Thereafter, thestamper 22 is released from the antireflectionstructural film 14 to obtain the antireflection optical element 11 (FIG. 7E). Since theinclined surface 19 is formed between theframe portion 17 and theeffective area 18, when thestamper 22 is released, it can be easily released.

図8(a)〜(e)は反射防止光学素子11の別な製造方法を説明する概略断面図である。この製造方法は熱転写式によるものである。まず、基板12の表面に蒸着法で反射防止膜13を作製した(図8(a))後、反射防止膜13の上にシリコーン樹脂23(溶媒希釈樹脂)をロール24を用いて薄膜状に塗布し(図8(b))、これを乾燥させて溶媒を蒸発させ薄膜層15を形成する(図8(c))。  8A to 8E are schematic cross-sectional views illustrating another method for manufacturing the antireflectionoptical element 11. This manufacturing method is based on a thermal transfer method. First, anantireflection film 13 was formed on the surface of thesubstrate 12 by vapor deposition (FIG. 8A), and then a silicone resin 23 (solvent diluted resin) was formed into a thin film on theantireflection film 13 using aroll 24. It is applied (FIG. 8B) and dried to evaporate the solvent to form the thin film layer 15 (FIG. 8C).

ついで、薄膜層15の上にスタンパ22を押圧して薄膜層15の表面に額縁部17、傾斜面19及び有効領域18を成形すると共に有効領域18の表面に多数の凹部16を形成する。そのときスタンパ22の上に置かれた加熱ヘッド25でスタンパ22を加熱し、シリコーン樹脂23を熱硬化させて反射防止膜13の上に反射防止構造膜14を作製する(図8(d))。この後、反射防止構造膜14からスタンパ22を離型すれば、反射防止光学素子11が得られる(図8(e))。  Next, thestamper 22 is pressed on thethin film layer 15 to form theframe portion 17, theinclined surface 19 and theeffective region 18 on the surface of thethin film layer 15, and a large number ofrecesses 16 are formed on the surface of theeffective region 18. At that time, thestamper 22 is heated by theheating head 25 placed on thestamper 22, and thesilicone resin 23 is thermally cured to produce theantireflection structure film 14 on the antireflection film 13 (FIG. 8D). . Thereafter, when thestamper 22 is released from theantireflection structure film 14, the antireflectionoptical element 11 is obtained (FIG. 8E).

なお、上記実施例においては、凹部16は一定サイズの断面形状を有する柱状に形成されていたが、凹部16はこのような形状のものに限らない。例えば、円錐状のもの、半球状のもの、あるいは断面が二次関数形状(例えば、回転放物面状)をしたものなど、開口側から底に向けて徐々に断面積が小さくなった凹部16であってもよい。これら形状の凹部16では、開口側で広くなっているので、成形時にスタンパを離型し易く成形性がよい。また、反射防止構造膜14における実効的な屈折率が徐々に変化するので、反射防止の効果もより向上する。  In the above-described embodiment, therecess 16 is formed in a columnar shape having a constant cross-sectional shape. However, therecess 16 is not limited to such a shape. For example, theconcave portion 16 whose cross-sectional area gradually decreases from the opening side toward the bottom, such as a conical shape, a hemispherical shape, or a shape whose cross section is a quadratic function (for example, a paraboloid). It may be. Since theconcave portions 16 having these shapes are wide on the opening side, it is easy to release the stamper at the time of molding, and the moldability is good. In addition, since the effective refractive index in theantireflection structure film 14 gradually changes, the antireflection effect is further improved.

凹部16はその開口率が約50%であれば、反射防止効果と凹部16の押圧強度とのバランスがよく、反射防止効果と押圧強度とを両立できる。また、凹部16の開口率が40%以下であれば、凹部16の押圧強度を高めることができ、凹部16の開口率が60%以上であれば、凹部16による反射防止効果を高めることができる。ここで、円錐状の凹部16のように深さ方向で断面積が変化する凹部16の場合には、凹部16のどの位置(深さ)で計算するかによって開口率が変化する。従って、凹部16の開口率は次のように定義する。凹部16の上端(開口)と下端(底)の中央を通過する水平断面において、有効領域18の面積に対する凹部16(反射防止構造)の全断面積の割合に100を掛けたものを開口率(%)という。  If the opening ratio of therecess 16 is about 50%, the balance between the antireflection effect and the pressing strength of therecess 16 is good, and both the antireflection effect and the pressing strength can be achieved. Moreover, if the opening rate of the recessedpart 16 is 40% or less, the press strength of the recessedpart 16 can be raised, and if the opening rate of the recessedpart 16 is 60% or more, the antireflection effect by the recessedpart 16 can be improved. . Here, in the case of theconcave portion 16 whose cross-sectional area changes in the depth direction, such as the conicalconcave portion 16, the aperture ratio changes depending on which position (depth) of theconcave portion 16 is calculated. Therefore, the aperture ratio of therecess 16 is defined as follows. In the horizontal cross section passing through the center of the upper end (opening) and the lower end (bottom) of therecess 16, the ratio of the total cross-sectional area of the recess 16 (antireflection structure) to the area of theeffective region 18 is multiplied by 100. %).

また、凹部16の深さは有効領域18における反射防止構造膜14の厚みと等しくて、凹部16が薄膜層15の底面まで貫通していてもよい。従って、薄膜層15のバッファ層の厚みTは0nm〜400nmが好ましく、特に100nmとすれば干渉により反射率を低減させることができ反射率0.1%以下の特性を達成することができる。  The depth of therecess 16 is equal to the thickness of theantireflection structure film 14 in theeffective region 18, and therecess 16 may penetrate to the bottom surface of thethin film layer 15. Accordingly, the thickness T of the buffer layer of thethin film layer 15 is preferably 0 nm to 400 nm. Particularly, when the thickness T is 100 nm, the reflectance can be reduced by interference, and a characteristic with a reflectance of 0.1% or less can be achieved.

図9は本発明の実施例2による反射防止光学素子31を示す断面図である。この反射防止光学素子31では、MgF、Al、TiO、OH-5、SiOなどの光学材料から屈折率の異なる2種の材料を選択し、その材料を用いて屈折率の異なる透明薄膜13aを交互に5層積層して反射防止膜13を作製している。反射防止構造膜14は、フッ素を含有する樹脂からなる薄膜層15に多数の微細な凹部16を形成したものであり、密着性を上げるためにプライマを介して反射防止膜13の表面に積層されている。よって、反射防止光学素子31は全部で6層となっている。FIG. 9 is a sectional view showing an antireflectionoptical element 31 according to Embodiment 2 of the present invention. In this antireflectionoptical element 31, two kinds of materials having different refractive indexes are selected from optical materials such as MgF2 , Al2 O3 , TiO2 , OH-5, and SiO2, and the refractive index of the materials is determined using the materials. Theantireflection film 13 is produced by alternately stacking five different transparentthin films 13a. Theantireflection structure film 14 is formed by forming a large number offine recesses 16 in athin film layer 15 made of fluorine-containing resin, and is laminated on the surface of theantireflection film 13 via a primer in order to improve adhesion. ing. Therefore, the antireflectionoptical element 31 has a total of six layers.

実施例2の反射防止光学素子31でも、可視光の反射を抑制するためには、400nm〜700nmの波長域で反射率が小さくなるようにすればよく、特にその中央の550nmの波長で反射率が最小となるようにすればよい。  Even in the antireflectionoptical element 31 of the second embodiment, in order to suppress the reflection of visible light, the reflectance may be reduced in the wavelength region of 400 nm to 700 nm, and particularly at the central wavelength of 550 nm. Should be minimized.

図10は、波長550nmで反射率が最小となった実施例2の反射防止光学素子31(6層)の反射率をシミュレーションした結果と、波長550nmで反射率が最小となった実施例1の反射防止光学素子11(3層)の反射率をシミュレーションした結果とを表わした特性図である。図10によれば、実施例2の反射防止光学素子31では、400nm〜500nmの波長域で実施例1の反射防止光学素子11よりも良好な反射率特性を得られることが分かる。また、図10によれば、500nm〜700nmの波長域では実施例1の反射防止光学素子11でも実施例2の反射防止光学素子31と同等の反射率特性を得られることが分かる。  FIG. 10 shows the result of simulating the reflectance of the antireflection optical element 31 (six layers) of Example 2 in which the reflectance is minimized at a wavelength of 550 nm, and that of Example 1 in which the reflectance is minimized at a wavelength of 550 nm. It is a characteristic view showing the result of having simulated the reflectance of antireflection optical element 11 (three layers). 10, it can be seen that the antireflectionoptical element 31 of Example 2 can obtain better reflectance characteristics than the antireflectionoptical element 11 of Example 1 in the wavelength region of 400 nm to 500 nm. Further, according to FIG. 10, it can be seen that, in the wavelength range of 500 nm to 700 nm, the antireflectionoptical element 11 of Example 1 can obtain the same reflectance characteristics as the antireflectionoptical element 31 of Example 2.

なお、実施例2では全部で6層の反射防止光学素子31を説明したが、反射防止膜13を構成する透明薄膜13aの層数は5層以外の何層であっても差し支えない。また、実施例2では2種類の透明薄膜13aを交互に積層したが、透明薄膜13aの種類は何種類であってもよく、また同種の透明薄膜13aが隣接しない限りどのような順序で積層してもよい。例えば、密着性のよい透明薄膜13aどうしが重なり合うように積層すればよい。つまり、目的とする反射率特性に合わせて、透明薄膜13aの層数、用いる材料の種類やその種類の数、積層順序などを任意に組み合わせればよい。  Although the antireflectionoptical element 31 having six layers in total is described in the second embodiment, the number of the transparentthin film 13a constituting theantireflection film 13 may be any number other than five. In Example 2, two types of transparentthin films 13a are alternately stacked. However, any number of types of transparentthin films 13a may be used, and in any order as long as the same type of transparentthin films 13a are not adjacent to each other. May be. For example, the transparentthin films 13a having good adhesion may be stacked so as to overlap each other. That is, the number of layers of the transparentthin film 13a, the type of material used, the number of types, the stacking order, and the like may be arbitrarily combined in accordance with the target reflectance characteristics.

図11は本発明の実施例3による反射防止光学素子41の構造を示す断面図である。実施例3の反射防止光学素子41にあっては、反射防止構造膜14の有効領域18に凹部に代えて多数の微細な凸部42(反射防止構造)を形成している。凸部42は円柱状、楕円柱状、角柱状などの形状を有している。反射防止構造として凸部42を設けた場合でも、凹部16を設けた場合と同様な作用効果を奏し、反射防止の効果と防汚効果と押圧強度を得ることができ、また透明薄膜13a等の層数を減らすことができる。  FIG. 11 is a sectional view showing the structure of an antireflectionoptical element 41 according to Embodiment 3 of the present invention. In the antireflectionoptical element 41 of Example 3, a large number of fine convex portions 42 (antireflection structures) are formed in theeffective region 18 of the antireflectionstructural film 14 instead of the concave portions. Theconvex portion 42 has a shape such as a columnar shape, an elliptical column shape, or a prismatic shape. Even when theconvex portion 42 is provided as the antireflection structure, the same effect as the case where theconcave portion 16 is provided can be obtained, the antireflection effect, the antifouling effect, and the pressing strength can be obtained, and the transparentthin film 13a and the like can be obtained. The number of layers can be reduced.

また、実施例1及び2で述べた凹部16の深さDや密度、配置、開口率などに関する好ましい条件は、凹部16の深さDを凸部42の高さHと読み替えて適用することができる。例えば、可視光の反射を防止する用途の場合には、凸部42の高さHは400nm以下にすればよい。また、凸部42の高さHが50nmよりも小さくなると、反射防止構造膜が微小なゴミや油膜(指紋等)などで汚染されるのを防止する効果(防汚効果)が損なわれるので、凸部42の高さHは50nm以上にしておくのが望ましい。特に、凸部42の高さHを100nmとすれば、反射防止構造膜14による反射率を0.1%以下に抑えることができ、また防汚効果も良好となる。また、凸部42の高さHを入射光の波長λの1/4にすれば(D=λ/4)、薄膜層15の表面における反射光と凸部42の頂面における反射光を干渉させて反射光を低減させることができる。ただし、バッファ層の厚みTは、有効領域18における薄膜層15の膜厚となる。  Moreover, the preferable conditions regarding the depth D, density, arrangement, aperture ratio, and the like of theconcave portion 16 described in the first and second embodiments may be applied by replacing the depth D of theconcave portion 16 with the height H of theconvex portion 42. it can. For example, in the case of an application for preventing reflection of visible light, the height H of theconvex portion 42 may be 400 nm or less. Further, if the height H of theconvex portion 42 is smaller than 50 nm, the effect of preventing the antireflection structure film from being contaminated with minute dust or an oil film (fingerprints, etc.) (antifouling effect) is impaired. It is desirable that the height H of theconvex portion 42 be 50 nm or more. In particular, if the height H of theconvex portion 42 is set to 100 nm, the reflectance by theantireflection structure film 14 can be suppressed to 0.1% or less, and the antifouling effect is also improved. Further, if the height H of theconvex portion 42 is set to 1/4 of the wavelength λ of the incident light (D = λ / 4), the reflected light on the surface of thethin film layer 15 interferes with the reflected light on the top surface of theconvex portion 42. Thus, the reflected light can be reduced. However, the thickness T of the buffer layer is the thickness of thethin film layer 15 in theeffective region 18.

また、凸部42は一定サイズの断面形状を有する柱状に形成されたものに限らず、例えば円錐状のもの、半球状のもの、あるいは断面が二次関数形状(例えば、回転放物面状)をしたものなど、底面から頂部に向けて徐々に断面積が小さくなった凸部42であってもよい。これら形状の凸部42では、頂部で狭くなっているので、成形時にスタンパを離型し易く成形性がよい。また、反射防止構造膜14における実効的な屈折率が徐々に変化するので、反射防止の効果もより向上する。  Further, theconvex portion 42 is not limited to a columnar shape having a cross-sectional shape of a certain size. For example, theconvex portion 42 has a conical shape, a hemispherical shape, or a quadratic function shape (for example, a paraboloid). Theconvex part 42 in which the cross-sectional area gradually decreased from the bottom surface toward the top part may be used. Since theconvex portions 42 of these shapes are narrow at the top, the stamper is easy to release during molding and has good moldability. In addition, since the effective refractive index in theantireflection structure film 14 gradually changes, the antireflection effect is further improved.

凸部42はその開口率が約50%であれば、反射防止効果と凹部16の押圧強度とのバランスがよく、反射防止効果と押圧強度とを両立できる。また、凸部42の開口率が40%以下であれば、凸部42の押圧強度を高めることができ、凸部42の開口率が60%以上であれば、凸部42による反射防止効果を高めることができる。ここで、円錐状の凸部42のように高さ方向で断面積が変化する凸部42の場合には、凸部42のどの位置(高さ)で計算するかによって開口率が変化する。従って、凸部42の開口率は次のように定義する。凸部42の上端(頂部)と下端(底面)の中央を通過する水平断面において、有効領域18の面積に対する凸部42(反射防止構造)間の空間の全断面積の割合に100を掛けたものを開口率(%)という。  If the opening ratio of theconvex portion 42 is about 50%, the balance between the antireflection effect and the pressing strength of theconcave portion 16 is good, and both the antireflection effect and the pressing strength can be achieved. Moreover, if the opening ratio of theconvex part 42 is 40% or less, the pressing strength of theconvex part 42 can be increased, and if the opening ratio of theconvex part 42 is 60% or more, the antireflection effect by theconvex part 42 is obtained. Can be increased. Here, in the case of theconvex part 42 whose cross-sectional area changes in the height direction like the conicalconvex part 42, the aperture ratio changes depending on which position (height) of theconvex part 42 is calculated. Therefore, the aperture ratio of theconvex portion 42 is defined as follows. In a horizontal section passing through the center of the upper end (top) and the lower end (bottom) of theconvex portion 42, the ratio of the total cross-sectional area of the space between the convex portions 42 (antireflection structure) to the area of theeffective region 18 is multiplied by 100. The thing is called aperture ratio (%).

また、図12に示すように、薄膜層15の表面に凹部16と凸部42が一緒に形成されていてもよい。この場合にも、凹部16と凸部42からなる反射防止構造の開口率は、凹部16及び凸部42の上端(頂部)と下端(底部)の中央を通過する水平断面Kにおいて、有効領域18の面積に対する空間(凹部16及び凸部42間の空間)の全断面積の割合に100を掛けたものを開口率(%)という。  Moreover, as shown in FIG. 12, theconcave part 16 and theconvex part 42 may be formed on the surface of thethin film layer 15 together. Also in this case, the aperture ratio of the antireflection structure including theconcave portion 16 and theconvex portion 42 has aneffective area 18 in a horizontal section K passing through the centers of the upper end (top portion) and the lower end (bottom portion) of theconcave portion 16 and theconvex portion 42. The ratio of the total cross-sectional area of the space (the space between theconcave portion 16 and the convex portion 42) to the area is multiplied by 100 and is referred to as the aperture ratio (%).

図13は本発明の実施例4にかかる反射防止光学素子51の構造を示す断面図である。実施例4の反射防止光学素子51にあっては、有効領域18の外周部に形成されている額縁部17が、有効領域18よりも低くなっていて有効領域18よりも引っ込んでいる。このような構造によれば、有効領域18にゴミなどの異物が付着しても異物が額縁部17へ落ち易く、有効領域18の防汚性能が高くなる。  FIG. 13 is a sectional view showing the structure of an antireflectionoptical element 51 according to Example 4 of the invention. In the antireflectionoptical element 51 of Example 4, theframe portion 17 formed on the outer peripheral portion of theeffective region 18 is lower than theeffective region 18 and retracted from theeffective region 18. According to such a structure, even if foreign matter such as dust adheres to theeffective area 18, the foreign substance easily falls to theframe portion 17, and the antifouling performance of theeffective area 18 is improved.

図13においては、額縁部17と有効領域18との間は傾斜面19となっているが、額縁部17と傾斜面19との境界や傾斜面19と有効領域18の境界は、面取りをして滑らかな曲面により形成してもよい。あるいは、額縁部17と有効領域18との間の段差部分は傾斜面でなく、垂直な壁面となっていてもよい。  In FIG. 13, aninclined surface 19 is formed between theframe portion 17 and theeffective region 18, but the boundary between theframe portion 17 and theinclined surface 19 and the boundary between theinclined surface 19 and theeffective region 18 are chamfered. And a smooth curved surface. Or the level | step-difference part between theframe part 17 and the effective area |region 18 may be a vertical wall surface instead of an inclined surface.

図14は本発明の実施例5(応用例)を示す断面図であって、撮像装置(カメラ)61を表わしている。この撮像装置61では、ケーシング62内の底面にCCDセンサ63(CMOSセンサでもよい。)を設置してあり、ケーシング62の開口部は保護ガラス64で塞がれている。この保護ガラス64の表面には、保護ガラス64を基板12として反射防止光学素子65が形成されており、反射防止光学素子65の反射防止構造を形成された面はケーシング62の外面側に向けられている。また、CCDセンサ63と対向する位置にはレンズ66が設けられている。  FIG. 14 is a cross-sectional view showing a fifth embodiment (application example) of the present invention, and shows an image pickup apparatus (camera) 61. In thisimaging device 61, a CCD sensor 63 (or a CMOS sensor) may be installed on the bottom surface in thecasing 62, and the opening of thecasing 62 is closed with aprotective glass 64. An antireflectionoptical element 65 is formed on the surface of theprotective glass 64 using theprotective glass 64 as thesubstrate 12, and the surface of the antireflectionoptical element 65 on which the antireflection structure is formed is directed to the outer surface side of thecasing 62. ing. Alens 66 is provided at a position facing theCCD sensor 63.

この撮像装置61では、レンズ66から画像情報を持った光を取り込み、CCDセンサ63により画像の記録を行なう。また、CCDセンサ63から出力されたデータは電荷というアナログデータであるから、デジタルデータとして画像を得るには画像処理系67を通して数値データに変換する。  In thisimage pickup device 61, light having image information is taken in from alens 66 and an image is recorded by theCCD sensor 63. Further, since the data output from theCCD sensor 63 is analog data called electric charge, it is converted into numerical data through theimage processing system 67 in order to obtain an image as digital data.

このような撮像装置61に本発明にかかる反射防止光学素子65を用いれば、保護ガラス64の表面の反射率を下げることにより、強い光が入り込んだときに保護ガラス64の表面で反射した光がレンズ66や撮像装置61の内部で乱反射を起し、フレア(写真が白っぽくなったり、光がにじんだりするもの)やゴースト(光源とは違った場所にできる光の輪や玉)を引き起こすことを防ぐことができる。しかも、レンズ66を交換する際に発生する反射防止光学素子65の汚れに対し、防汚効果が得られる。また、押圧強度が高いので、レンズ66を交換する際に反射防止光学素子65が押圧されても反射防止光学素子65の表面が損傷を受けにくい。  When the antireflectionoptical element 65 according to the present invention is used in such animaging device 61, the light reflected by the surface of theprotective glass 64 when strong light enters by reducing the reflectance of the surface of theprotective glass 64. It causes irregular reflection inside thelens 66 and theimage pickup device 61, and causes flare (a thing that makes a photograph whitish or light bleeds) or a ghost (a ring or ball of light that can be in a different place from the light source). Can be prevented. In addition, an antifouling effect can be obtained against contamination of the antireflectionoptical element 65 that occurs when thelens 66 is replaced. Further, since the pressing strength is high, even when the antireflectionoptical element 65 is pressed when thelens 66 is replaced, the surface of the antireflectionoptical element 65 is hardly damaged.

図15は本発明の実施例6(応用例)を示す断面図であって、表示装置(プロジェクタ)71を表わしている。この表示装置71にあっては、液晶ユニット72の表裏両面にそれぞれ透明な接着剤73で本発明にかかる反射防止光学素子74を接合している。表裏いずれの反射防止光学素子74も、反射防止構造を形成された面は外側に向けられている。また、液晶ユニット72の裏面側(光入射側)には光源75を設置し、液晶ユニット72の表面側(光出射側)にはレンズ76を設けている。  FIG. 15 is a cross-sectional view showing a sixth embodiment (application example) of the present invention, and shows a display device (projector) 71. In thedisplay device 71, the antireflectionoptical element 74 according to the present invention is bonded to both the front and back surfaces of theliquid crystal unit 72 with atransparent adhesive 73. In both the front and back antireflectionoptical elements 74, the surface on which the antireflection structure is formed is directed outward. A light source 75 is provided on the back side (light incident side) of theliquid crystal unit 72, and alens 76 is provided on the front side (light emission side) of theliquid crystal unit 72.

この表示装置71では、光源75から出射した光を液晶ユニット72に透過させることによって画像情報を持たせ、画像情報を持った光をレンズ76を通してスクリーン77に投射してスクリーン77に画像を投影する。  In thisdisplay device 71, the light emitted from the light source 75 is transmitted through theliquid crystal unit 72 so as to have image information, and the light having the image information is projected onto thescreen 77 through thelens 76 to project the image onto thescreen 77. .

このような表示装置71に本発明にかかる反射防止光学素子74を用いれば、液晶ユニット72へ光源75からの光が入射する際に、液晶ユニット72の光入射側表面における反射を反射防止光学素子74によって低減し、表示装置71の内部で起こる乱反射による画像を乱れを防ぐことができる。また、光出射側の反射防止光学素子74では反射防止構造を形成された面が光出射側(空気層側)を向いているので、光入射側と同様に反射防止効果と防汚効果を奏する。また、DLP(Digital Light Processing)やLCOS(Liquid Crystal On Silicon)などの反射光学系を用いた表示素子においても適用可能となる。  When the antireflectionoptical element 74 according to the present invention is used for such adisplay device 71, when light from the light source 75 enters theliquid crystal unit 72, reflection on the light incident side surface of theliquid crystal unit 72 is prevented from being reflected. The image can be prevented from being disturbed by the irregular reflection occurring inside thedisplay device 71. In addition, since the surface on which the antireflection structure is formed faces the light emitting side (air layer side) in the antireflectionoptical element 74 on the light emitting side, the antireflection effect and the antifouling effect are exhibited as in the light incident side. . Further, the present invention can be applied to a display element using a reflection optical system such as DLP (Digital Light Processing) or LCOS (Liquid Crystal On Silicon).

図16は本発明の実施例7(応用例)を示す断面図であって、煙感知センサ81を表わしている。煙感知センサ81は、煙の侵入する開口82を有するチャンバ83を備えており、チャンバ83内には受光素子84が設置されている。受光素子84の表面には、反射防止構造を形成された面が外側を向くようにして本発明にかかる反射防止光学素子85が設けられている。また、チャンバ83内には、直接に受光素子84に入射しない方向へ向けて光源86からの光が導入されている。  FIG. 16 is a sectional view showing a seventh embodiment (application example) of the present invention, and shows asmoke detection sensor 81. Thesmoke detection sensor 81 includes achamber 83 having anopening 82 through which smoke enters, and alight receiving element 84 is installed in thechamber 83. An antireflectionoptical element 85 according to the present invention is provided on the surface of thelight receiving element 84 so that the surface on which the antireflection structure is formed faces outward. In addition, light from thelight source 86 is introduced into thechamber 83 in a direction not directly incident on thelight receiving element 84.

しかして、チャンバ83内に煙粒子87が存在しない場合には、光源86からの光は、受光素子84で受光されない。これに対し、チャンバ83内に煙粒子87が浮遊している場合には、チャンバ83内に導入された光源86の光は煙粒子87に散乱され、受光素子84が受光するので煙粒子87が検知される。受光素子84が煙粒子87を検知すると、処理回路88によって検知信号が出力される。  Therefore, when thesmoke particles 87 are not present in thechamber 83, the light from thelight source 86 is not received by thelight receiving element 84. On the other hand, when thesmoke particles 87 are floating in thechamber 83, the light from thelight source 86 introduced into thechamber 83 is scattered by thesmoke particles 87, and thelight receiving element 84 receives the light. Detected. When thelight receiving element 84 detects thesmoke particles 87, theprocessing circuit 88 outputs a detection signal.

このような煙感知センサ81において本発明にかかる反射防止光学素子85を用いれば、受光素子84の表面の反射率を下げることにより、煙感知センサ81の感度を高めることができる。また、反射防止光学素子85の防汚効果が高いので、反射防止光学素子85によって受光素子84の表面に煙粒子87が固着するのを防ぎ、煙感知センサ81のS/N比の長期的な低下を防ぐことができる。  If the antireflectionoptical element 85 according to the present invention is used in such asmoke detection sensor 81, the sensitivity of thesmoke detection sensor 81 can be increased by reducing the reflectance of the surface of thelight receiving element 84. Moreover, since the antifouling effect of the antireflectionoptical element 85 is high, the antireflectionoptical element 85 prevents thesmoke particles 87 from adhering to the surface of thelight receiving element 84, and the S / N ratio of thesmoke detection sensor 81 is long-term. Decline can be prevented.

図1は、本発明の実施例1による反射防止光学素子を示す斜視図である。FIG. 1 is a perspective view showing an antireflection optical element according to Embodiment 1 of the present invention.図2は、実施例1による反射防止光学素子の平面図である。FIG. 2 is a plan view of the antireflection optical element according to the first embodiment.図3は、実施例1による反射防止光学素子の断面図である。FIG. 3 is a cross-sectional view of the antireflection optical element according to the first embodiment.図4は、湾曲した基板の曲面に反射防止膜及び反射防止構造膜を作製した反射防止光学素子の部分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view of an antireflection optical element in which an antireflection film and an antireflection structure film are formed on the curved surface of a curved substrate.図5(a)及び図5(b)は、有効領域と額縁部の間に形成された突壁部を示す部分拡大断面図である。FIG. 5A and FIG. 5B are partially enlarged cross-sectional views showing a protruding wall portion formed between the effective region and the frame portion.図6は、実施例1の反射防止光学素子と3層の多層反射防止膜と4層の多層反射防止膜の反射率をシミュレーションした結果を表わした特性図である。FIG. 6 is a characteristic diagram showing the results of simulating the reflectance of the antireflection optical element of Example 1, the three-layer multilayer antireflection film, and the four-layer multilayer antireflection film.図7(a)〜(e)は、実施例1による反射防止光学素子の製造方法を説明する概略断面図である。7A to 7E are schematic cross-sectional views illustrating a method for manufacturing an antireflection optical element according to Example 1.図8(a)〜(e)は、実施例1による反射防止光学素子の別な製造方法を説明する概略断面図である。FIGS. 8A to 8E are schematic cross-sectional views illustrating another method for manufacturing the antireflection optical element according to Example 1. FIGS.図9は、本発明の実施例2による反射防止光学素子を示す断面図である。FIG. 9 is a sectional view showing an antireflection optical element according to Example 2 of the present invention.図10は、波長550nmで反射率が最小となった実施例2の反射防止光学素子(6層)の反射率と、波長550nmで反射率が最小となった実施例1の反射防止光学素子(3層)の反射率とをシミュレーションした結果を表わした特性図である。FIG. 10 shows the reflectance of the antireflection optical element (six layers) of Example 2 having a minimum reflectance at a wavelength of 550 nm, and the antireflection optical element of Example 1 having a minimum reflectance at a wavelength of 550 nm. It is a characteristic diagram showing the result of having simulated the reflectance of (3 layers).図11は、本発明の実施例3による反射防止光学素子の構造を示す断面図である。FIG. 11 is a cross-sectional view showing the structure of an antireflection optical element according to Example 3 of the present invention.図12は、薄膜層の表面に形成された凹部と凸部からなる反射防止構造を示す一部破断した断面図である。FIG. 12 is a partially broken cross-sectional view showing an antireflection structure including a concave portion and a convex portion formed on the surface of the thin film layer.図13は、本発明の実施例4にかかる反射防止光学素子の構造を示す断面図である。FIG. 13: is sectional drawing which shows the structure of the reflection preventing optical element concerning Example 4 of this invention.図14は、本発明の実施例5(応用例)を示す断面図であって、撮像装置(カメラ)を表わしている。FIG. 14 is a cross-sectional view showing a fifth embodiment (application example) of the present invention, and represents an image pickup apparatus (camera).図15は、本発明の実施例6(応用例)を示す断面図であって、表示装置(プロジェクタ)を表わしている。FIG. 15 is a cross-sectional view showing Embodiment 6 (application example) of the present invention, and shows a display device (projector).図16は、本発明の実施例7(応用例)を示す断面図であって、煙感知センサを表わしている。FIG. 16 is a cross-sectional view showing a seventh embodiment (application example) of the present invention, and shows a smoke detection sensor.

符号の説明Explanation of symbols

11 反射防止光学素子
12 基板
13 反射防止膜
13a 透明薄膜
14 反射防止構造膜
15 薄膜層
16 凹部
17 額縁部
18 有効領域
19 傾斜面
20 突壁部
21 光硬化性樹脂
22 スタンパ
23 シリコーン樹脂
31 反射防止光学素子
41 反射防止光学素子
42 凸部
51 反射防止光学素子
DESCRIPTION OFSYMBOLS 11 Antireflectionoptical element 12Substrate 13Antireflection film 13a Transparentthin film 14Antireflection structure film 15Thin film layer 16Concave part 17Frame part 18Effective area 19Inclined surface 20 Projectingwall part 21Photocurable resin 22Stamper 23Silicone resin 31Antireflection Optical element 41 Antireflectionoptical element 42Convex part 51 Antireflection optical element

Claims (20)

Translated fromJapanese
透光性の基板と、1層又は複数層の透明薄膜からなる反射防止膜と、薄膜層の表面に微細な凹部又は凸部を入射光の波長よりも短いピッチで複数形成した反射防止構造を有する反射防止構造膜と、を順次積層したことを特徴とする反射防止光学素子。  An antireflection structure in which a light-transmitting substrate, an antireflection film composed of one or more transparent thin films, and a plurality of fine concave portions or convex portions on the surface of the thin film layer are formed at a pitch shorter than the wavelength of incident light. An antireflection optical element, comprising: an antireflection structure film that is sequentially laminated. 前記反射防止膜を構成する各透明薄膜の膜厚が400nm以下であり、かつ、前記反射防止構造膜のうち前記反射防止構造を含まない層の厚みが400nm以下であることを特徴とする、請求項1に記載の反射防止光学素子。  The film thickness of each transparent thin film constituting the antireflection film is 400 nm or less, and the thickness of the antireflection structure film that does not include the antireflection structure is 400 nm or less. Item 2. The antireflection optical element according to Item 1. 前記反射防止構造の深さもしくは高さが、400nm以下であることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection optical element according to claim 1, wherein a depth or a height of the antireflection structure is 400 nm or less. 前記反射防止構造の深さもしくは高さが、50nm以上であることを特徴とする、請求項3に記載の反射防止光学素子。  The antireflection optical element according to claim 3, wherein a depth or a height of the antireflection structure is 50 nm or more. 前記反射防止構造の深さもしくは高さが、入射光の波長の1/4倍に等しいことを特徴とする、請求項4に記載の反射防止光学素子。  The antireflection optical element according to claim 4, wherein the depth or height of the antireflection structure is equal to ¼ times the wavelength of incident light. 前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面積がそれぞれ一様であることを特徴とする、請求項1に記載の反射防止光学素子。  2. The antireflection optical element according to claim 1, wherein a cross-sectional area of a cross section of the antireflection structure parallel to the back surface of the thin film layer is uniform. 前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面積が、前記薄膜層の前記反射防止構造が設けられていない箇所の表面から離れるに従って徐々に小さくなっていることを特徴とする、請求項1に記載の反射防止光学素子。  The cross-sectional area of the cross section of the antireflection structure parallel to the back surface of the thin film layer is gradually reduced as the distance from the surface of the thin film layer where the antireflection structure is not provided is increased. The antireflection optical element according to claim 1. 前記反射防止構造の、前記薄膜層の裏面に平行な断面の断面形状が、円形であることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection optical element according to claim 1, wherein a cross-sectional shape of a cross section of the antireflection structure parallel to the back surface of the thin film layer is a circle. 前記反射防止構造の凹部又は凸部が六方配列されていることを特徴とする、請求項1に記載の反射防止光学素子。  2. The antireflection optical element according to claim 1, wherein the concave portions or the convex portions of the antireflection structure are arranged in a hexagonal manner. 前記反射防止構造の凹部又は凸部がランダムに配列されていることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection optical element according to claim 1, wherein the concave portions or the convex portions of the antireflection structure are randomly arranged. 前記薄膜層の材料が、フッ素を含有する樹脂であることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection optical element according to claim 1, wherein a material of the thin film layer is a resin containing fluorine. 前記薄膜層の材料が、フッ素を含有する光硬化性樹脂であることを特徴とする、請求項11に記載の反射防止光学素子。  The antireflection optical element according to claim 11, wherein the material of the thin film layer is a photocurable resin containing fluorine. 前記薄膜層の材料が、シリコーン樹脂であることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection optical element according to claim 1, wherein the material of the thin film layer is a silicone resin. 前記反射防止構造膜は、前記反射防止構造を有する領域と、前記反射防止構造を有しない領域とを含み、前記反射防止構造を有する領域の周囲に前記反射防止構造を有しない領域があることを特徴とする、請求項1に記載の反射防止光学素子。  The antireflection structure film includes a region having the antireflection structure and a region not having the antireflection structure, and there is a region having no antireflection structure around the region having the antireflection structure. The antireflection optical element according to claim 1, wherein the optical element is an antireflection optical element. 前記反射防止構造を有する領域が、前記反射防止構造を有しない領域よりも低くなっていることを特徴とする、請求項14に記載の反射防止光学素子。  The antireflection optical element according to claim 14, wherein a region having the antireflection structure is lower than a region not having the antireflection structure. 前記反射防止構造を有する領域が、前記反射防止構造を有しない領域よりも高くなっていることを特徴とする、請求項14に記載の反射防止光学素子。  The antireflection optical element according to claim 14, wherein a region having the antireflection structure is higher than a region not having the antireflection structure. 前記反射防止構造を有しない領域に、シボ加工が施されていることを特徴とする、請求項14に記載の反射防止光学素子。  The antireflection optical element according to claim 14, wherein the region that does not have the antireflection structure is subjected to graining. 請求項1乃至17のいずれか1項に記載の反射防止光学素子を備えた撮像素子。  An image pickup device comprising the antireflection optical element according to claim 1. 請求項1乃至17のいずれか1項に記載の反射防止光学素子を備えた表示素子。  A display element comprising the antireflection optical element according to claim 1. 請求項1乃至17のいずれか1項に記載の反射防止光学素子を備えたセンサ。  A sensor comprising the antireflection optical element according to claim 1.
JP2006150850A2006-05-312006-05-31Anti-reflection optical elementPendingJP2007322572A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2006150850AJP2007322572A (en)2006-05-312006-05-31Anti-reflection optical element

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2006150850AJP2007322572A (en)2006-05-312006-05-31Anti-reflection optical element

Publications (1)

Publication NumberPublication Date
JP2007322572Atrue JP2007322572A (en)2007-12-13

Family

ID=38855463

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2006150850APendingJP2007322572A (en)2006-05-312006-05-31Anti-reflection optical element

Country Status (1)

CountryLink
JP (1)JP2007322572A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009175481A (en)*2008-01-252009-08-06Sumitomo Electric Ind Ltd Antireflection optical member and optical module
JP2009198626A (en)*2008-02-202009-09-03Nissan Motor Co LtdAnti-reflective structure and anti-reflective molded body
JP2009198627A (en)*2008-02-202009-09-03Nissan Motor Co LtdAnti-reflective structure and anti-reflective molded body
JP2009210733A (en)*2008-03-032009-09-17Hoya CorpAntireflective film, optical component incorporating it, interchangeable lens, and image pickup device
JP2010153173A (en)*2008-12-252010-07-08Semiconductor Energy Lab Co LtdSubstrate for film-formation, and method of manufacturing light emitting device
JP2012073487A (en)*2010-09-292012-04-12Dainippon Printing Co LtdAntireflection article and display device
JP2013003383A (en)*2011-06-172013-01-07Nissan Motor Co Ltd Abrasion-resistant microstructure and manufacturing method thereof
WO2013122253A1 (en)*2012-02-172013-08-22株式会社ニコン・エシロールOptical component, spectacle lens, and manufacturing methods therefor
JP2014010217A (en)*2012-06-282014-01-20Dainippon Printing Co LtdAntireflective laminate
JP2021500746A (en)*2017-10-202021-01-07マジック リープ, インコーポレイテッドMagic Leap,Inc. Optical layer configuration in imprint lithography process

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS574001A (en)*1980-06-101982-01-09Sony CorpNonreflective optical element
JP2003066203A (en)*2001-08-282003-03-05Hitachi Maxell Ltd Method for forming fine uneven structure and member having the unevenness
JP2003215303A (en)*2002-01-182003-07-30Dainippon Printing Co LtdAntireflection article
JP2005037534A (en)*2003-07-172005-02-10Mitsubishi Chemicals Corp Transparent substrate for filter for display device, filter for display device, and display device
JP2005234554A (en)*2004-01-232005-09-02Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2005317186A (en)*2004-04-022005-11-10Konica Minolta Opto IncObjective lens and optical pickup apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS574001A (en)*1980-06-101982-01-09Sony CorpNonreflective optical element
JP2003066203A (en)*2001-08-282003-03-05Hitachi Maxell Ltd Method for forming fine uneven structure and member having the unevenness
JP2003215303A (en)*2002-01-182003-07-30Dainippon Printing Co LtdAntireflection article
JP2005037534A (en)*2003-07-172005-02-10Mitsubishi Chemicals Corp Transparent substrate for filter for display device, filter for display device, and display device
JP2005234554A (en)*2004-01-232005-09-02Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2005317186A (en)*2004-04-022005-11-10Konica Minolta Opto IncObjective lens and optical pickup apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009175481A (en)*2008-01-252009-08-06Sumitomo Electric Ind Ltd Antireflection optical member and optical module
JP2009198626A (en)*2008-02-202009-09-03Nissan Motor Co LtdAnti-reflective structure and anti-reflective molded body
JP2009198627A (en)*2008-02-202009-09-03Nissan Motor Co LtdAnti-reflective structure and anti-reflective molded body
JP2009210733A (en)*2008-03-032009-09-17Hoya CorpAntireflective film, optical component incorporating it, interchangeable lens, and image pickup device
JP2010153173A (en)*2008-12-252010-07-08Semiconductor Energy Lab Co LtdSubstrate for film-formation, and method of manufacturing light emitting device
JP2012073487A (en)*2010-09-292012-04-12Dainippon Printing Co LtdAntireflection article and display device
JP2013003383A (en)*2011-06-172013-01-07Nissan Motor Co Ltd Abrasion-resistant microstructure and manufacturing method thereof
CN104115037B (en)*2012-02-172016-03-02株式会社尼康依视路 Optical component, spectacle lens and manufacturing method thereof
WO2013122253A1 (en)*2012-02-172013-08-22株式会社ニコン・エシロールOptical component, spectacle lens, and manufacturing methods therefor
CN104115037A (en)*2012-02-172014-10-22株式会社尼康依视路Optical component, spectacle lens, and manufacturing methods therefor
JP2014010217A (en)*2012-06-282014-01-20Dainippon Printing Co LtdAntireflective laminate
JP2021500746A (en)*2017-10-202021-01-07マジック リープ, インコーポレイテッドMagic Leap,Inc. Optical layer configuration in imprint lithography process
US11281109B2 (en)2017-10-202022-03-22Magic Leap, Inc.Configuring optical layers in imprint lithography processes
JP7169350B2 (en)2017-10-202022-11-10マジック リープ, インコーポレイテッド Configuration of optical layers in imprint lithography process
US11550226B2 (en)2017-10-202023-01-10Magic Leap, Inc.Configuring optical layers in imprint lithography processes
US12044976B2 (en)2017-10-202024-07-23Magic Leap, Inc.Configuring optical layers in imprint lithography processes
US12332572B2 (en)2017-10-202025-06-17Magic Leap, Inc.Configuring optical layers in imprint lithography processes

Similar Documents

PublicationPublication DateTitle
JP2007322572A (en)Anti-reflection optical element
JP7442501B2 (en) Light control film and its manufacturing method
JP7348263B2 (en) Optical system and method of manufacturing the optical system
JP5512269B2 (en) Antireflection structure, optical unit and optical device
CN101233429B (en)Imaging optical system
CN101135743B (en) Optical filter and camera
JP2005157119A (en)Reflection preventing optical element and optical system using the same
US20090190225A1 (en)Optical member and optical device including the optical member
JP2015068853A (en)Laminated body, imaging element package, imaging apparatus, and electronic apparatus
CN112712039B (en)Fingerprint module and electronic equipment
WO2016035245A1 (en)Laminate, imaging device package, image acquisition apparatus, and electronic equipment
US20140029103A1 (en)Optical black surface
US20230228910A1 (en)Optical devices including metastructures and methods for fabricating the optical devices
US20130107246A1 (en)Optical touch sensing structure and manufacturing method thereof
CN102692662B (en)Optical filter and image pickup apparatus
US20230194757A1 (en)Optical devices including metastructures and methods for fabricating the optical devices
JP5105771B2 (en) Anti-reflection structure and optical device having the same
KR20150020994A (en)Optical element, optical system, capturing apparatus, optical equipment, and original recording and manufacturing method therefor
JPWO2007142186A1 (en) Optical member
JP2009128539A (en) Method for manufacturing antireflection structure
CN220121016U (en) electronic device
JP2009128541A (en) Method for manufacturing antireflection structure
TW200949297A (en)Microlens
JP2020071431A (en)Optical element
US11841517B2 (en)Diffractive optical element

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20090309

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20110407

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20110510

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20111004


[8]ページ先頭

©2009-2025 Movatter.jp