




本発明は、例えば自動車のドアの施錠または開錠を操作するキーレスエントリーシステムの無線電波や、時計の時刻修正をするための標準電波等を受信するコイル式のアンテナであって、回路基板に搭載されるコイルアンテナに関する。 The present invention is, for example, a coiled antenna that receives radio waves of a keyless entry system for operating locking or unlocking of a door of a car, standard radio waves for correcting time of a clock, and the like mounted on a circuit board The present invention relates to a coil antenna.
従来、無線信号を送受信する小型アンテナを搭載した装置やシステムが各種提案されている。例えば、自動車の盗難防止用のイモビライザ、自動車や住宅のキーレスエントリーシステム、電波時計、AMラジオなどが代表的である。 Conventionally, various devices and systems equipped with small antennas for transmitting and receiving radio signals have been proposed. Typical examples include an immobilizer for preventing theft of automobiles, a keyless entry system for automobiles and houses, a radio clock, and an AM radio.
これらの装置やシステムに用いられるアンテナのうち最も一般的なものは棒状の焼成フェライトコアにコイルを巻回したバーアンテナであるが、無線信号に対する受信機の姿勢によってその受信感度が大きく変動しないよう、二本のコアの中心軸が平面内で直交するいわゆる十字アンテナが提案されている(例えば下記特許文献1を参照)。十字アンテナは、前記二本の中心軸によって張られる二次元平面内での受信感度が均一化された無指向性アンテナである。
さらに近年では、フェライト製のコアの形状を工夫して、互いに直交する三軸方向に一本の巻線を巻回すことのできる受信アンテナが提案されている(下記特許文献2および3を参照)。かかる受信アンテナは三次元空間内のいずれの方向に対しても受信感度が変動することのない無指向性のコイルアンテナである。
これらの無指向性アンテナによれば、無線信号の発信源と受信アンテナの相対的な姿勢が二次元平面内または三次元空間内で変化した場合でもアンテナの受信感度が大きく変動することがなく、安定した動作が行われるという利点がある。The most common antenna used in these devices and systems is a bar antenna in which a coil is wound around a rod-shaped fired ferrite core, but its reception sensitivity does not vary greatly depending on the attitude of the receiver with respect to radio signals. A so-called cross antenna in which the central axes of two cores are orthogonal in a plane has been proposed (see, for example, Patent Document 1 below). The cross antenna is an omnidirectional antenna with uniform reception sensitivity in a two-dimensional plane stretched by the two central axes.
Further, in recent years, a receiving antenna has been proposed in which the shape of the ferrite core is devised so that one winding can be wound in three mutually orthogonal directions (see Patent Documents 2 and 3 below). . Such a receiving antenna is an omnidirectional coil antenna whose receiving sensitivity does not fluctuate in any direction within the three-dimensional space.
According to these omnidirectional antennas, even when the relative attitude of the radio signal source and the receiving antenna changes in a two-dimensional plane or a three-dimensional space, the receiving sensitivity of the antenna does not fluctuate greatly. There is an advantage that stable operation is performed.
上記装置やシステムに用いられる無指向性アンテナにおいては、アンテナの受信感度の改善が図られる一方、回路基板への実装密度を高め、また携帯型機器などに搭載される場合は小型で持ち運びやすくするため、アンテナコイルおよびコアの小型/省スペース化が年々進められている。このため、アンテナコイルについては巻線の細径化と巻線密度の向上が、コアについては小型化と薄肉化が求められている。 The omnidirectional antennas used in the above devices and systems can improve the reception sensitivity of the antenna, while increasing the mounting density on the circuit board, and when mounted on a portable device, it is small and easy to carry. Therefore, miniaturization / space saving of the antenna coil and the core has been advanced year by year. For this reason, the antenna coil is required to have a smaller diameter and an improved winding density, and the core is required to be smaller and thinner.
しかし上記各特許文献に記載のコイル式アンテナでは、とくにフェライトコアの機械的強度の制約から小型化および薄肉化が容易ではなく、現時点においてコアの薄肉化はすでに限界に差し掛かっているものといえる。これは、フェライト材料が金属酸化物と酸化第二鉄の粉体を混合して焼成したセラミックあることから脆性が高く、所定の肉厚がなければ自動車ドアの開閉衝撃や走行時の振動、または携帯型機器の落下衝撃などによって容易に破損する虞があるためである。 However, in the coil-type antennas described in the above patent documents, it is not easy to reduce the size and thickness of the ferrite core due to the mechanical strength of the ferrite core. This is because the ferrite material is a ceramic obtained by mixing and firing powders of metal oxide and ferric oxide, so it is highly brittle. This is because the portable device may be easily damaged by a drop impact or the like.
これに対し、フェライト材料に比して耐振動・耐衝撃強度に優れ、かつ飽和磁束密度や透磁率の高い材料であるアモルファス合金の箔帯を複数枚積層した積層体を棒状コアとして用いる指向性のバーアンテナの発明が提案されている(例えば下記特許文献4,5を参照)。 On the other hand, the directivity of using a laminated body of multiple amorphous alloy foil strips, which are superior in vibration resistance and impact resistance strength as compared to ferrite materials, and having a high saturation magnetic flux density and magnetic permeability, as a rod-shaped core The invention of a bar antenna has been proposed (see, for example, Patent Documents 4 and 5 below).
上記特許文献4または5に記載のコイル式アンテナは、リボン状のアモルファス合金箔帯を積層した細長形状の棒状コアを備え、コアの軸方向についてのみ高い受信感度を有する指向性のアンテナであるため、二次元平面内または三次元空間内の受信感度を均一化した無指向性アンテナとして用いることはできない。
そこで本発明者らは、図5に参考例として示すように、磁性体薄膜であるアモルファス合金箔帯の積層体からなる従来の棒状コアを組み合わせて無指向性のコイル式アンテナを得ることを検討した。同図(a)は、X軸方向に伸びる棒状コア(X軸コア)101と、Y軸方向に伸びる二本に分割された棒状コア(Y軸コア)102とをそれぞれアモルファス合金箔帯の積層体によりまず成形したのち、X軸コア101の側面中央部に対しY軸コア102の先端面をそれぞれ接着剤にて接合して十字状のコアを構成し、さらに該コアにアンテナコイル103を巻回した十字アンテナ100の斜視図である。また同図(b)は、互いにねじれ位置に置かれたX軸コア101とY軸コア102とを中間部同士で接着接合して平面視十字状のコアを構成し、これにアンテナコイル103を巻回した十字アンテナ100の斜視図である。The coiled antenna described in Patent Document 4 or 5 is a directional antenna having an elongated rod-like core in which ribbon-like amorphous alloy foil strips are stacked and having high reception sensitivity only in the axial direction of the core. It cannot be used as an omnidirectional antenna with uniform reception sensitivity in a two-dimensional plane or a three-dimensional space.
Therefore, as shown in FIG. 5 as a reference example, the present inventors studied to obtain a non-directional coiled antenna by combining a conventional rod-shaped core made of a laminated body of amorphous alloy foil strips that are magnetic thin films. did. FIG. 4A shows a stack of amorphous alloy foil strips each comprising a rod-shaped core (X-axis core) 101 extending in the X-axis direction and a bar-shaped core (Y-axis core) 102 divided into two extending in the Y-axis direction. First, the tip end surface of the Y-
これらの十字アンテナ100によれば、XY平面内の受信感度が平均化された無指向性アンテナとしての機能を得ることができ、かつアモルファス合金材料のもつ高い飽和磁束密度と透磁率によりその受信感度を改善することもできる。
しかし同図(a)にかかる十字アンテナ100の場合、箔帯を複数枚積層したY軸コア102の先端面は平滑でないため、特別な表面研磨等を行うか、または接着剤を多量に塗布しない限りX軸コア101との接着性が十分には得られず、従来のフェライトコアと比較して良好な耐振動・耐衝撃強度を得ることが困難である。なお、Y軸コア102の先端面に塗布する接着剤を増量してX軸コア101と接着した場合は、非磁性材料である接着剤の存在により特にコアのY軸方向の透磁率が低下し、アンテナの無指向性や受信感度が損なわれるという問題が生じる。According to these
However, in the case of the
他方、同図(b)にかかる十字アンテナ100の場合、コア同士の接着が平滑な箔帯表面同士によって行われるため、かかる箇所についての接着性は良好といえる。しかし、両コアが高さ方向(Z軸方向)にオフセットして接合されることから、アンテナに作用する振動や衝撃などの外力は接着面に剪断力として作用することとなり、また接着接合がコアの表面同士の当接部分のみで行われることから、その機械的強度が従来のフェライトコアアンテナに対して十分に高められたとは言い難い。また棒状の両コアがねじれ位置にあることで、アンテナコアの高さ寸法は、棒状コア二本分の合計厚さに加え、更にこれにアンテナコイルの巻線厚さを加えた量に達することとなる。したがってかかるコイルアンテナを回路基板に搭載する場合は相当の実装体積を要し、ロススペースが大きくなるため、回路基板への実装密度の向上を図るという当初の目的を達成することができないという問題がある。 On the other hand, in the case of the
本発明は上記課題を解決するためになされたものであり、耐振動・耐衝撃強度に優れ、小型化および省スペース化が可能であって回路基板への実装密度が高く、かつ低コストで受信感度の良好な無指向性のコイルアンテナを提供することを目的とするものである。 The present invention has been made to solve the above-mentioned problems, and is excellent in vibration resistance and impact resistance strength, can be downsized and saved in space, has a high mounting density on a circuit board, and is received at low cost. An object of the present invention is to provide a non-directional coil antenna with good sensitivity.
本発明は、
(1)帯状の磁性体薄膜からなる複数枚の薄板が互いに交差して交互に積層され少なくとも二方向の巻軸が形成されたコアと、前記コアに巻回されたコイルと、を備えるコイルアンテナ;
(2)前記二方向と互いに直交する方向を巻軸とする他の巻芯が磁性体薄膜を積層して形成されている上記(1)に記載のコイルアンテナ;
(3)一本または二本以上の前記他の巻芯が、前記二方向の巻軸に挟まれた位置に、前記コアと別離して形成されている上記(2)に記載のコイルアンテナ;
(4)交互に積層された薄板同士の隙間に、該薄板の法線方向を巻軸とする他のコイルが巻回されている上記(1)に記載のコイルアンテナ;
を要旨とする。The present invention
(1) A coil antenna comprising: a core in which a plurality of thin plates made of a strip-like magnetic thin film cross each other and are alternately stacked to form a winding shaft in at least two directions; and a coil wound around the core ;
(2) The coil antenna according to (1), wherein another winding core having a winding axis perpendicular to the two directions as a winding axis is formed by laminating magnetic thin films;
(3) The coil antenna according to (2), wherein one or more of the other winding cores are formed separately from the core at a position sandwiched between the two-direction winding shafts;
(4) The coil antenna according to (1), in which another coil having a winding axis in the normal direction of the thin plate is wound in a gap between the alternately stacked thin plates;
Is the gist.
また本発明においては、
(5)巻芯部を構成する薄板の積層枚数が、該巻芯部の伸びる方向ごとに相違することを特徴とする上記(1)から(4)のいずれかに記載のコイルアンテナ;
(6)それぞれの方向に伸びる巻芯部の長さが互いに相違することを特徴とする上記(1)から(5)に記載のコイルアンテナ;
によっても上記本発明の目的を達成することができる。In the present invention,
(5) The coil antenna according to any one of (1) to (4) above, wherein the number of laminated thin plates constituting the core portion is different for each direction in which the core portion extends.
(6) The coil antenna according to any one of (1) to (5) above, wherein the lengths of the winding core portions extending in the respective directions are different from each other;
The object of the present invention can also be achieved.
本発明にかかるコイルアンテナによれば、第一に、磁性体薄膜からなる帯状の薄板を複数枚積層してなるコア材料を用いることにより、その靭性ゆえフェライトコアアンテナに比べて特に耐振動・耐衝撃強度が向上する。このためコアを全体に小型化および薄肉化した場合も所定の機械的強度を維持することができ、アンテナ全体の省スペース化が可能となる。
第二に、少なくとも二方向に伸びる巻芯部が形成されることにより、例えばこれを略直交させることで二次元平面内における無指向性が得られる。
第三に、本発明においては、帯状の磁性体薄膜からなる薄板を互いに交差するよう交互に積層して一体化する方式を採るため、薄板の接合面が磁性体薄膜の表面同士となる。このため、例えば図5(a)に図示の如く予めブロック状に積層成形したコアの積層端面を接着する方式と異なり、良好な接合性が得られる。また本発明によれば、コアの各軸方向とも、ひと続きの帯状の磁性体薄膜が通じていることとなり、途中でこれが非磁性体の接着剤層によって分断されることがないため、コアの高い透磁率を得ることができる。
第四に、薄板同士が交互に積層して接合されることにより、例えば図5(b)に図示の接合方法に比べ、両コアがオフセットして接合されることがなく重心安定性に優れ、また両コアの接合面が各薄板の上下面にそれぞれ形成されるため十分な機械的強度が得られ、振動や衝撃などの外力に対する強度が格段に向上するという利点がある。
第五に、例えば予め十字状に打ち抜いたアモルファス合金シートを単純に厚さ方向に積層してコアを得る方法と異なり、帯状の薄膜を各軸方向ごとに長さを揃え、これらを交互に積層して一体に接合するだけで本発明にかかるコアが得られるため、材料どりに一切の無駄が生じることがなく、また加工コストが低いという利点がある。
第六に、本発明においては、例えば二方向に伸びる複数枚の薄板がその略中央部で互いに交差して巻芯部が積層形成される場合についていえば、薄板同士が交差する中央の交差部ではコアの厚さが他の部分の約二倍になるものの、かかる厚肉の交差部にはアンテナコイルが巻回されることがないため、図5(b)に図示の如き十字アンテナに比べ、アンテナコイルの巻線厚さに相当する分だけロススペースを削減することができる。According to the coil antenna of the present invention, firstly, by using a core material formed by laminating a plurality of strip-like thin plates made of magnetic thin films, its toughness makes it particularly resistant to vibration and resistance compared to a ferrite core antenna. Impact strength is improved. For this reason, even when the core is reduced in size and thickness as a whole, the predetermined mechanical strength can be maintained, and the space of the entire antenna can be saved.
Secondly, by forming the core portion extending in at least two directions, for example, the omnidirectionality in the two-dimensional plane can be obtained by making them substantially orthogonal.
Thirdly, in the present invention, a thin plate made of a strip-shaped magnetic thin film is alternately laminated so as to intersect with each other, so that the bonding surfaces of the thin plates are the surfaces of the magnetic thin film. For this reason, for example, as shown in FIG. 5A, unlike the method of adhering the laminated end faces of the cores that have been laminated in a block shape in advance, a good bondability can be obtained. Further, according to the present invention, a continuous belt-like magnetic thin film is connected in each axial direction of the core, and this is not divided by the nonmagnetic adhesive layer in the middle. High magnetic permeability can be obtained.
Fourthly, by laminating and joining the thin plates alternately, for example, compared to the joining method illustrated in FIG. 5B, both cores are offset and joined and excellent in center of gravity stability, In addition, since the joint surfaces of both cores are formed on the upper and lower surfaces of each thin plate, sufficient mechanical strength can be obtained, and the strength against external forces such as vibration and impact can be remarkably improved.
Fifth, unlike the method of obtaining a core by simply laminating amorphous alloy sheets punched in advance in the thickness direction, for example, strip-like thin films are aligned in length in each axial direction, and these are laminated alternately Thus, since the core according to the present invention can be obtained by simply joining together, there is an advantage that there is no waste of material and the processing cost is low.
Sixth, in the present invention, for example, in the case where a plurality of thin plates extending in two directions intersect with each other at the substantially central portion and the core portion is laminated, the central intersection where the thin plates intersect with each other. Then, although the thickness of the core is about twice that of the other parts, the antenna coil is not wound around the thick crossing portion, so that it is compared with the cross antenna as shown in FIG. The loss space can be reduced by an amount corresponding to the winding thickness of the antenna coil.
また本発明にかかるコイルアンテナにおいては、巻芯部の伸びる平面の法線方向を巻軸方向とする他の巻芯を形成することにより、三次元空間内にわたって受信感度を均一化した無指向性アンテナを得ることができる。
さらに本発明にかかるコイルアンテナにおいては、交互に積層された薄板同士の間に所定の隙間が形成される場合があることから、かかる隙間に他のコイルを挿通して巻回すことにより、新たな巻芯を設けることなく、薄板の交差部を巻芯として、三次元空間内の受信感度を均一化した無指向性アンテナが得られる。Further, in the coil antenna according to the present invention, the non-directivity in which the receiving sensitivity is made uniform in the three-dimensional space by forming another core whose winding direction is the normal direction of the plane in which the core extends. An antenna can be obtained.
Furthermore, in the coil antenna according to the present invention, since a predetermined gap may be formed between the alternately stacked thin plates, a new coil can be formed by inserting and winding another coil in the gap. Without providing a winding core, an omnidirectional antenna with a uniform receiving sensitivity in a three-dimensional space can be obtained by using the intersection of thin plates as a winding core.
以下、本発明を実施するための最良の形態について図面を用いて具体的に説明する。図1(a)は本発明の実施の形態にかかるコイルアンテナの斜視図であり、同図(b)はそのb−b断面図である。コイルアンテナ10は、複数枚の薄板111,121が互いに交差して交互に積層され、少なくとも二方向の巻軸が形成されたコア20に、コイル13aおよび13bを巻回してなる。
巻軸が二方向の場合、同図に示すように薄板111および121をそれぞれの長手方向の中央部で互いに直交するよう交差させることで、コイルアンテナ10はいわゆる十字アンテナとなり、二方向の巻軸によって張られる平面内での受信感度がもっとも平均化される。Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. Fig.1 (a) is a perspective view of the coil antenna concerning embodiment of this invention, The same figure (b) is the bb sectional drawing. The
When the winding axis is in two directions, the
ただし本発明においては、例えば巻軸を120度間隔で三方向に配するなど、コア20の備える巻軸の方向は二方向以上であれば特に限定されるものではない。
また例えば巻軸が二方向の場合、これを構成する薄板111および121の交差する角度は同図に示すように90度であるほか、60度や45度など各種を採り得る。すなわち本発明にかかるコイルアンテナ10においては、巻軸を少なくとも二方向に設けることで単方向性のバーアンテナよりも受信角度を拡大させつつ、例えば無線信号が送信される蓋然性の高い所定の方向について特に高い受信感度を得ることもできる。なお、本発明にかかる無指向性のコイルアンテナ10を回路基板に搭載するに際しては、表面実装方式とすることも、ピン挿入方式とすることもできる。However, in the present invention, the direction of the winding axis provided in the
Further, for example, when the winding axis is in two directions, the angle at which the
以下本実施の形態および実施例においては、X方向に長手方向が揃えられた薄板111を複数枚積層したX方向巻芯部11と、Y方向に長手方向が揃えられた薄板121を複数枚積層したY方向巻芯部12とからなる十字状のコア20について説明する。すなわち薄板111と薄板121とはそれぞれの長手方向の中央で互いに直交して交差し、また両者は交互に積層および一体化されて、XY平面内で中心軸が直交するX方向巻芯部11およびY方向巻芯部12を有するコア20が形成されている。 Hereinafter, in the present embodiment and examples, the
薄板111および121は、それぞれ帯状の磁性体薄膜を1枚または複数枚積層した積層体からなる。本発明において磁性体薄膜とは軟磁性材料からなる可撓性薄膜であって、一例として塩素化ポリエチレン、ポリエステル樹脂、ポリ塩化ビニル、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂もしくはシリコン樹脂などの樹脂材料をバインダーとして、センダスト(鉄シリコンアルミ合金粉末)、鉄コバルト合金、コバルト系アモルファス合金、鉄系アモルファス合金もしくはモリブデンパーマロイなどの磁性体粉末を混成したもの、またはアモルファス合金を溶湯急冷法によって薄膜化した箔帯や、いわゆるナノ結晶磁性体合金材料やパーマロイ(鉄ニッケル合金)からなる可撓性薄膜を挙げることができる。上記可撓性薄膜であれば、磁性特性上および材料物性上から、受信感度と機械的強度に優れるコイルアンテナを得ることができる。本発明に用いる磁性体薄膜は15〜35μm程度の厚さとし、さらに幅数mm乃至数十mmの帯状に切断して得ることができる。また薄板111および121には、巻軸方向ごとまたは積層される薄板ごとに異なる磁性体薄膜を使用してもよい。また薄板111および121の幅および厚さは個々に相違してもよい。すなわち薄板111、121の幅をそれぞれ均一とすることで、X方向巻芯部11、Y方向巻芯部12は縦断面が矩形となる。また例えば薄板111について、高さ(Z)方向の上方および下方の幅を小さく、中間部の幅を大きくすることで縦断面が円形のX方向巻芯部11を得ることもできるなどコア20の寸法や形状は特に限定されない。 Each of the
帯状の複数枚の磁性体薄膜を積層して薄板111または121を得る場合は、例えばエポキシ系などの熱硬化性接着剤を用いて磁性体薄膜同士を接着接合することができるほか、磁性体薄膜が熱可塑性の樹脂バインダーに磁性体粉末を混成してなる場合は薄膜同士を熱融着により一体化することもできる。
また、交差する薄板111および121を交互に積層してコア20を得るにあたっては、例えばその全面に熱硬化性接着剤を塗布し、全体を加熱押圧して一体成形することができる。When laminating a plurality of strip-shaped magnetic thin films to obtain the
Further, when the
コア20は、薄板111および121の交差する交差部21が高さ(Z)方向に膨出し、幅(X)方向および奥行(Y)方向の先端部では肉厚がこれよりも小さくなる。ただし図1(b)に示すように、肉厚の薄いコア20の各先端部にはコイル13a、13bが所定の巻厚にて巻回されることから、コイルの最外面とコア中央の膨出部とはほぼ面一となり、膨出部の厚さがアンテナ実装時にロススペースを生じる要因とはならない。
なお、コア20の中央の膨出部と両端部との間には薄板111または121の厚さに相当する隙間14が形成されるが、後述するようにコイルを巻回す挿通孔として利用する場合のほかは、これを接着剤などによって充填してもよい。
コイル13aの巻軸であるX方向巻芯部11の中心軸と、コイル13bの巻軸であるY方向巻芯部12の中心軸とは略同一のXY平面内にあるため、本実施の形態によれば、該平面内の受信感度が均一化された無指向性のコイルアンテナ10を得ることができる。In the
A
Since the central axis of the
本実施の形態にかかるコイルアンテナ10は、磁性体薄膜の靭性により、従来のフェライトコアアンテナに比べて特に耐振動・耐衝撃強度が向上する。特に磁性体薄膜を接着剤によって互いに積層接着する場合は、更に接着剤の靭性および衝撃吸収性がコア20に付与されるため、さらに高い耐振動・耐衝撃強度が発揮される。また交互に積層される薄板111および121がそれぞれ交差部21の上下面で互いに接着されることから十分な接着面積が確保され、全体に小型化・薄肉化が可能である。
また中心軸が互いに直交する二方向の巻芯部を有するコア20をもつことにより、該二方向の張る平面内において受信感度が均一化する。また二方向に伸びる薄板111および121を構成するアモルファスリボン箔帯は、コイルアンテナ10の幅方向および奥行方向の途中で分断されることがないため、コア20の高い透磁率が得られる。The
In addition, by having the core 20 having the core portions in two directions whose central axes are orthogonal to each other, the reception sensitivity is made uniform in a plane extending in the two directions. Moreover, since the amorphous ribbon foil strips constituting the
さらに薄板111もしくは121の積層枚数、または薄板111,121をそれぞれ構成する磁性体薄膜の積層枚数を変化させることにより、X方向巻芯部11もしくはY方向巻芯部12の肉厚を任意に調整することができる。また薄板111および121の交差角度、X方向巻芯部11またはY方向巻芯部12の長さ、交差部21の長手方向位置などについても巻軸方向ごとに任意に調整することができるなど、薄板を積層してコア20を成形する本発明は、フェライトコアアンテナに比べて設計自由度が格段に向上する。このため、例えば回路基板に対する実装上の制約から所定方向の巻芯部の長さが十分に確保されない場合は、該方向の薄板を短くするかわりにその肉厚や幅を拡大することで受信感度を維持するなど、軸単位でのアンテナ特性の設計が可能になるという利点がある。 Furthermore, the thickness of the
図2は、本発明の第一の実施例にかかるコイルアンテナ10の斜視図である。本実施例にかかるコイルアンテナ10は、X軸方向をコイルの巻軸とするX方向巻芯部11と、Y軸方向をコイルの巻軸とするY方向巻芯部12とが直交して形成された十字状のコア20に加え、これらの二方向と互いに直交するZ方向を巻軸とする他の巻芯であるZ方向巻芯部30を備えることを特徴とする。四本のZ方向巻芯部30がコア20と別離して形成され、これらは図示しないアンテナ基板に載置および固定されている。またZ方向巻芯部30にはそれぞれコイル13cが巻回されている。四本のZ方向巻芯部30は、それぞれX方向巻芯部11とY方向巻芯部12に挟まれる位置に設けられ、またコア20の厚さと同程度のZ方向長さを有している。このため、本実施例にかかるコイルアンテナ10は、X,Y,Zの三軸方向に受信感度が均一化された無指向性を有するとともに、その全体を包絡する実装体積は図1に図示のコイルアンテナと同程度である。Z方向巻芯部30は、磁性体薄膜を積層した薄板131から構成することができる。かかる構成とすることで、コア20と同程度の機械的強度を得ることができるとともに、Z方向の受信感度の設計自由度を高めることができ好適である。Z軸方向巻芯部30を構成する磁性体薄膜と、X軸方向またはY軸方向巻芯部を構成する磁性体薄膜とは同一材料であっても互いに相違してもよく、各軸方向に求められる磁性特性や荷重負荷環境などに基づいてそれぞれ決定することができる。 FIG. 2 is a perspective view of the
すなわち本実施例では、十字状のコア20の二方向の巻軸をXY平面の座標軸と見立てた場合の第一乃至第四象限に相当する領域に、Z軸方向を巻軸とする一本または二本以上の巻芯を配設することにより、実装空間を有効に利用することができる。特に、X方向巻芯部11およびY方向巻芯部12の各先端を通る円を仮想した場合、かかる円の内部に収まる位置にZ方向巻芯部30が配設された場合、十字状のコア20を収納するための図示しないアンテナハウジングを拡大する必要がなく、高い実装効率を得ることができる。
なおZ方向巻芯部30は、図示のように各象限に一本ずつ合計四本を配置する態様に限らず、例えば十字アンテナの交差部21を中心に点対称の位置に二本配置してもよい。That is, in the present embodiment, one or more windings having the Z-axis direction as the winding axis in a region corresponding to the first to fourth quadrants when the two-direction winding axes of the
In addition, the Z
図3は、本発明の第二の実施例にかかるコイルアンテナ10の斜視図である。本実施例にかかるコイルアンテナ10は、X方向巻芯部11およびY方向巻芯部12を有する十字状のコア20の外周に、Z軸方向を巻軸とするコイル13cが巻回されている。すなわち本実施例にかかるコイルアンテナ10では、放射状に伸びる巻芯部を備えるコア20の先端面を他の巻軸として用い、Z軸方向を巻軸とするコイル13cを巻成している。
かかるコイルアンテナ10によれば、X,Y,Zの三軸方向に受信感度を均一化した無指向性アンテナの機能を得ることができる。またZ軸方向を巻軸とするコイル13cは、他のコイル13a、13bよりも口径が大きく、巻数あたりの受信感度がX軸方向およびY軸方向よりも高いことから、逆にいえばコイル13cは少ない巻数でコイルアンテナ10の無指向性を得ることができる。したがって同図に示すようにZ軸方向の巻軸の長さはコア20の厚さ程度で足り、またコア20の先端に膨出するコイル13cの巻厚も小さくてよいことから、コイルアンテナ10を包絡する体積を実質的に拡張することがない。FIG. 3 is a perspective view of the
According to the
図4は、本発明の第三の実施例にかかるコイルアンテナであり、同図(a)はその斜視図、同図(b)はそのb−b断面図である。本実施例にかかるコイルアンテナ10は、交互に積層された薄板111と121との隙間14にコイル13cを巻回してなることを特徴とするものである。すなわち、コア20のうち薄板111および121の交差部21の周囲には、それぞれの板厚に相当する隙間14が形成されるため、かかる隙間14に巻線を挿通することで、交差部21を巻芯としてコイル13cを設けることができる。換言すると、交差部21をZ方向巻芯部として利用することで、コア20の包絡域を拡大することなくその内部にコイル13cを設けたものである。
これにより、X,Y,Zの三軸方向に受信感度を均一化することができるとともに、その占有体積が図1に示す態様と実質的に同等となるため、高い実装効率が得られる。
なお、隙間14には一本または二本以上の巻線を挿通することができるため、コイルアンテナ10のZ軸方向の受信感度は、隙間14ごとの巻数によって調整可能である。また、磁性体薄膜を交互に積層する構造は、一枚ずつ交互積層するものであっても、任意の一枚または複数枚ごとに交互積層するものであってもよい。4A and 4B show a coil antenna according to a third embodiment of the present invention. FIG. 4A is a perspective view thereof, and FIG. 4B is a sectional view taken along line bb. The
As a result, the receiving sensitivity can be made uniform in the three axis directions of X, Y, and Z, and the occupied volume is substantially the same as the mode shown in FIG. 1, so that high mounting efficiency can be obtained.
Since one or more windings can be inserted into the
10 コイルアンテナ
11 X方向巻芯部
12 Y方向巻芯部
13a,13b,13c コイル
20 コア
30 Z方向巻芯部
111,121,131 薄板DESCRIPTION OF
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006087986AJP2007266892A (en) | 2006-03-28 | 2006-03-28 | Coil antenna |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006087986AJP2007266892A (en) | 2006-03-28 | 2006-03-28 | Coil antenna |
| Publication Number | Publication Date |
|---|---|
| JP2007266892Atrue JP2007266892A (en) | 2007-10-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006087986APendingJP2007266892A (en) | 2006-03-28 | 2006-03-28 | Coil antenna |
| Country | Link |
|---|---|
| JP (1) | JP2007266892A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009049840A (en)* | 2007-08-22 | 2009-03-05 | Panasonic Corp | ANTENNA DEVICE AND WIRELESS COMMUNICATION SYSTEM |
| EP2131444A1 (en)* | 2008-06-03 | 2009-12-09 | Sumida Corporation | Antenna coil for receiving an external magnetic field |
| JP2012504387A (en)* | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | Wireless energy transfer system |
| US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
| US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
| US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
| US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
| US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
| US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
| US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
| US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
| US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
| US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
| US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
| US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
| US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
| US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
| US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
| US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
| US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
| US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
| US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
| US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
| US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
| US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
| US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
| US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
| US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
| US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
| US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
| US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
| US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
| US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
| US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
| US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
| US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
| US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
| US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
| US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
| US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
| US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
| JP2017135806A (en)* | 2016-01-26 | 2017-08-03 | 株式会社M.T.C | Vibration power generation element |
| US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
| US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
| US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
| US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
| US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
| US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
| US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
| US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
| US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
| US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
| US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
| US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
| US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
| US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
| US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
| EP3404768A1 (en)* | 2017-05-18 | 2018-11-21 | Premo, S.L. | Low profile triaxial antenna |
| US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
| CN109361061A (en)* | 2018-10-29 | 2019-02-19 | 湖南迈克森伟电子科技有限公司 | Antenna |
| US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
| US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
| US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
| US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
| US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
| WO2020127725A1 (en)* | 2018-12-21 | 2020-06-25 | Bombardier Primove Gmbh | An antenna arrangement and a method of operating an antenna arrangement |
| US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
| CN116264355A (en)* | 2021-12-14 | 2023-06-16 | 苏州大学 | Triaxial low-profile low-frequency magnetic field transmitting antenna |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| US10420951B2 (en) | 2007-06-01 | 2019-09-24 | Witricity Corporation | Power generation for implantable devices |
| US10348136B2 (en) | 2007-06-01 | 2019-07-09 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| US9943697B2 (en) | 2007-06-01 | 2018-04-17 | Witricity Corporation | Power generation for implantable devices |
| US9843230B2 (en) | 2007-06-01 | 2017-12-12 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
| US9318898B2 (en) | 2007-06-01 | 2016-04-19 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| US9101777B2 (en) | 2007-06-01 | 2015-08-11 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
| JP2009049840A (en)* | 2007-08-22 | 2009-03-05 | Panasonic Corp | ANTENNA DEVICE AND WIRELESS COMMUNICATION SYSTEM |
| EP2131444A1 (en)* | 2008-06-03 | 2009-12-09 | Sumida Corporation | Antenna coil for receiving an external magnetic field |
| US8077106B2 (en) | 2008-06-03 | 2011-12-13 | Sumida Corporation | Receiving antenna coil |
| US10410789B2 (en) | 2008-09-27 | 2019-09-10 | Witricity Corporation | Integrated resonator-shield structures |
| US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
| US12263743B2 (en) | 2008-09-27 | 2025-04-01 | Witricity Corporation | Wireless power system modules |
| US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
| US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
| US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
| US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
| US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
| US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
| US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
| US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
| US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
| US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
| US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
| US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
| US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
| US11958370B2 (en) | 2008-09-27 | 2024-04-16 | Witricity Corporation | Wireless power system modules |
| US11479132B2 (en) | 2008-09-27 | 2022-10-25 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
| US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
| US11114896B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power system modules |
| US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
| US11114897B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
| US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
| US10673282B2 (en) | 2008-09-27 | 2020-06-02 | Witricity Corporation | Tunable wireless energy transfer systems |
| US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
| US10559980B2 (en) | 2008-09-27 | 2020-02-11 | Witricity Corporation | Signaling in wireless power systems |
| US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
| US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
| US10536034B2 (en) | 2008-09-27 | 2020-01-14 | Witricity Corporation | Wireless energy transfer resonator thermal management |
| US10446317B2 (en) | 2008-09-27 | 2019-10-15 | Witricity Corporation | Object and motion detection in wireless power transfer systems |
| JP2012504387A (en)* | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | Wireless energy transfer system |
| US9496719B2 (en) | 2008-09-27 | 2016-11-15 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
| US9515495B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless energy transfer in lossy environments |
| US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
| US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US9584189B2 (en) | 2008-09-27 | 2017-02-28 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
| US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US9596005B2 (en) | 2008-09-27 | 2017-03-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and systems monitoring |
| US10340745B2 (en) | 2008-09-27 | 2019-07-02 | Witricity Corporation | Wireless power sources and devices |
| US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
| US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
| US10300800B2 (en) | 2008-09-27 | 2019-05-28 | Witricity Corporation | Shielding in vehicle wireless power systems |
| US9662161B2 (en) | 2008-09-27 | 2017-05-30 | Witricity Corporation | Wireless energy transfer for medical applications |
| US9698607B2 (en) | 2008-09-27 | 2017-07-04 | Witricity Corporation | Secure wireless energy transfer |
| US9711991B2 (en) | 2008-09-27 | 2017-07-18 | Witricity Corporation | Wireless energy transfer converters |
| US10264352B2 (en) | 2008-09-27 | 2019-04-16 | Witricity Corporation | Wirelessly powered audio devices |
| US9742204B2 (en) | 2008-09-27 | 2017-08-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
| US9748039B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | Wireless energy transfer resonator thermal management |
| US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
| US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
| US10230243B2 (en) | 2008-09-27 | 2019-03-12 | Witricity Corporation | Flexible resonator attachment |
| US9780605B2 (en) | 2008-09-27 | 2017-10-03 | Witricity Corporation | Wireless power system with associated impedance matching network |
| US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
| KR101789214B1 (en)* | 2008-09-27 | 2017-10-23 | 위트리시티 코포레이션 | Wireless energy transfer systems |
| US9806541B2 (en) | 2008-09-27 | 2017-10-31 | Witricity Corporation | Flexible resonator attachment |
| CN107415706A (en)* | 2008-09-27 | 2017-12-01 | 韦特里西提公司 | Wireless energy transfer systems |
| JP2018174704A (en)* | 2008-09-27 | 2018-11-08 | ウィトリシティ コーポレーション | Wireless energy transfer system |
| US10097011B2 (en) | 2008-09-27 | 2018-10-09 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
| US10084348B2 (en) | 2008-09-27 | 2018-09-25 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
| US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
| US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
| US9843228B2 (en) | 2008-09-27 | 2017-12-12 | Witricity Corporation | Impedance matching in wireless power systems |
| US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
| US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
| US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
| US10734842B2 (en) | 2011-08-04 | 2020-08-04 | Witricity Corporation | Tunable wireless power architectures |
| US11621585B2 (en) | 2011-08-04 | 2023-04-04 | Witricity Corporation | Tunable wireless power architectures |
| US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
| US9787141B2 (en) | 2011-08-04 | 2017-10-10 | Witricity Corporation | Tunable wireless power architectures |
| US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10027184B2 (en) | 2011-09-09 | 2018-07-17 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10778047B2 (en) | 2011-09-09 | 2020-09-15 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US11097618B2 (en) | 2011-09-12 | 2021-08-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
| US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
| US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
| US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
| US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
| US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
| US10158251B2 (en) | 2012-06-27 | 2018-12-18 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
| US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
| US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
| US9465064B2 (en) | 2012-10-19 | 2016-10-11 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10686337B2 (en) | 2012-10-19 | 2020-06-16 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10211681B2 (en) | 2012-10-19 | 2019-02-19 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
| US10186372B2 (en) | 2012-11-16 | 2019-01-22 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
| US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
| US11112814B2 (en) | 2013-08-14 | 2021-09-07 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
| US11720133B2 (en) | 2013-08-14 | 2023-08-08 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
| US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
| US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
| US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
| US10186373B2 (en) | 2014-04-17 | 2019-01-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
| US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
| US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
| US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
| US10371848B2 (en) | 2014-05-07 | 2019-08-06 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US11637458B2 (en) | 2014-06-20 | 2023-04-25 | Witricity Corporation | Wireless power transfer systems for surfaces |
| US10923921B2 (en) | 2014-06-20 | 2021-02-16 | Witricity Corporation | Wireless power transfer systems for surfaces |
| US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
| US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
| US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
| US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
| US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
| US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
| US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US10651688B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
| US10651689B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
| US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
| US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
| JP7083985B2 (en) | 2016-01-26 | 2022-06-14 | 株式会社M.T.C | Vibration power generation element and its manufacturing method |
| JP2017135806A (en)* | 2016-01-26 | 2017-08-03 | 株式会社M.T.C | Vibration power generation element |
| US10637292B2 (en) | 2016-02-02 | 2020-04-28 | Witricity Corporation | Controlling wireless power transfer systems |
| US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
| US10913368B2 (en) | 2016-02-08 | 2021-02-09 | Witricity Corporation | PWM capacitor control |
| US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
| US11807115B2 (en) | 2016-02-08 | 2023-11-07 | Witricity Corporation | PWM capacitor control |
| EP3404768A1 (en)* | 2017-05-18 | 2018-11-21 | Premo, S.L. | Low profile triaxial antenna |
| TWI695548B (en)* | 2017-05-18 | 2020-06-01 | 西班牙商普萊默有限公司 | Low profile triaxial antenna |
| US10637144B2 (en) | 2017-05-18 | 2020-04-28 | Premo, S.A. | Low profile tri-axial antenna |
| CN108963413A (en)* | 2017-05-18 | 2018-12-07 | 普莱默公司 | Thin type three-axis antenna |
| US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
| US11588351B2 (en) | 2017-06-29 | 2023-02-21 | Witricity Corporation | Protection and control of wireless power systems |
| US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
| US11637452B2 (en) | 2017-06-29 | 2023-04-25 | Witricity Corporation | Protection and control of wireless power systems |
| CN109361061A (en)* | 2018-10-29 | 2019-02-19 | 湖南迈克森伟电子科技有限公司 | Antenna |
| WO2020127725A1 (en)* | 2018-12-21 | 2020-06-25 | Bombardier Primove Gmbh | An antenna arrangement and a method of operating an antenna arrangement |
| US11764612B2 (en) | 2018-12-21 | 2023-09-19 | Bombardier Primove Gmbh | Antenna arrangement and a method of operating an antenna arrangement |
| CN116264355A (en)* | 2021-12-14 | 2023-06-16 | 苏州大学 | Triaxial low-profile low-frequency magnetic field transmitting antenna |
| Publication | Publication Date | Title |
|---|---|---|
| JP2007266892A (en) | Coil antenna | |
| JP4894974B2 (en) | Antenna device and portable terminal | |
| EP2381532B1 (en) | Resonant receiving antenna and reception device | |
| JP2008131115A (en) | Antenna coil and communication apparatus | |
| JP2005080023A (en) | Magnetic core member, antenna module and portable communication terminal provided with the same | |
| JP6179543B2 (en) | 3-axis antenna | |
| JP2009296107A (en) | Receiving antenna coil | |
| US10374313B2 (en) | Multilayer electronic component and multilayer chip antenna including the same | |
| JP2006245950A (en) | Magnetic core member, manufacturing method thereof, antenna module and portable information terminal therewith | |
| JP2009124595A (en) | Board mounted antenna device | |
| CN112117088A (en) | Coil electronic component | |
| JP2007110290A (en) | Loop antenna | |
| JP2007149847A (en) | Sintered ferrite laminate | |
| JP4673577B2 (en) | Coil antenna | |
| KR20180054259A (en) | Sheet for shielding electromagneric wave for wireless charging element | |
| US10553949B2 (en) | Wireless communication antenna including magnetic body | |
| CN209016269U (en) | Radio antenna | |
| CN112290212A (en) | Magnetic field shielding sheet, wireless power receiving module and portable terminal device thereof | |
| KR102480127B1 (en) | Wireless communication antenna and fabrication method thereof | |
| JP2005277524A (en) | Magnetic antenna | |
| JP2005065151A (en) | Antenna, radio-controlled watch using the same, keyless entry system, rfid tag, and its system | |
| US10573969B2 (en) | Wireless communication antenna | |
| US20180261919A1 (en) | Method of manufacturing magnetic substance and method of manufacturing wireless communications antenna including the same | |
| KR101813408B1 (en) | Wireless communication antenna including magnetic substance | |
| US20240379280A1 (en) | Inductor component and inductor component-embedded substrate |