本発明は、プラスチックや紙を原料としたプラスチックボトルや紙容器等の3次元中空容器の表面にマイクロ波プラズマCVDコーティングを行う装置に関する。 The present invention relates to an apparatus for performing microwave plasma CVD coating on the surface of a three-dimensional hollow container such as a plastic bottle or paper container made of plastic or paper.
ガラス、金属、紙、プラスチック容器に代表される3次元中空容器は食品や医薬品など様々の分野で一般的に利用されている。特にプラスチック容器に関しては、軽量、低コストといったメリットを生かし広く用いられるようになってきている。3次元中空容器には様々な機能が要求されているが、プラスチック容器に対しては内容物保護の面から炭酸ガスや酸素に対するバリア性を持たせる要求がなされている。このため、プラスチック容器に所定の物質をコーティングする技術が開発されてきている(例えば、特許文献1、特許文献2参照。)。これらの技術は、金属中空胴体内部にプロセスガスを注入したプラスチック等の3次元容器を配置して金属中空胴体内に入力されたマイクロ波エネルギーにより発生したプラズマを利用して薄膜を成膜するものである。 Three-dimensional hollow containers represented by glass, metal, paper, and plastic containers are generally used in various fields such as food and medicine. In particular, plastic containers are widely used taking advantage of light weight and low cost. Various functions are required for three-dimensional hollow containers, but plastic containers are required to have a barrier property against carbon dioxide and oxygen from the viewpoint of protecting contents. For this reason, a technique for coating a plastic container with a predetermined substance has been developed (see, for example, Patent Document 1 and Patent Document 2). In these technologies, a thin film is formed using plasma generated by microwave energy input into a metal hollow body by placing a plastic or other three-dimensional container into which the process gas is injected inside the metal hollow body. It is.
以下に先行技術文献を示す。
しかしながら、上記のプラズマを利用して薄膜を成膜する場合、マイクロ波エネルギーをプラズマ容器処理装置に如何に効率よく供給してプラズマを発生させることが重要となる。コーティング対象容器を透過するようにマイクロ波エネルギーを供給する場合、コーティング対象容器が誘電体となりマイクロ波エネルギーの反射や損失をおこす。特にコーティング対象容器の一部分にマイクロ波エネルギーが集中した場合はコーティング膜品質のばらつきの原因となるだけでなく発熱による容器の変形といった問題が発生する。 However, when forming a thin film using the above plasma, it is important to generate plasma by efficiently supplying microwave energy to the plasma container processing apparatus. When microwave energy is supplied so as to pass through the container to be coated, the container to be coated becomes a dielectric and causes reflection or loss of the microwave energy. In particular, when the microwave energy is concentrated on a part of the container to be coated, not only will the coating film quality vary, but also problems such as deformation of the container due to heat generation will occur.
例えば、プラスチックボトルの底部の形状は強度を補う為に形状や厚さに変化をもたせているが、アンテナにより供給されたマイクロ波エネルギーがプラスチックボトルの底部を通してガス供給中心導体と結合する場合はボトルの底部の形状によってマイクロ波の結合状態が変化する。容器底面部に厚さがある場合、マイクロ波エネルギーの反射や損失が大きくなる。また、マイクロ波を対象容器の側面から供給する場合についても、矩形導波管等により容器の一方向からマイクロ波エネルギーを入力した場合、容器の片面のみにエネルギーが集中することによるコーティング品質のばらつきや容器の熱変形といった問題が発生しやすい。 For example, the shape of the bottom of a plastic bottle may vary in shape and thickness to supplement strength, but when the microwave energy supplied by the antenna is coupled to the gas supply center conductor through the bottom of the plastic bottle, the bottle The coupling state of the microwave changes depending on the shape of the bottom of the substrate. When the container bottom has a thickness, the reflection and loss of microwave energy increases. In addition, when microwaves are supplied from the side of the target container, if microwave energy is input from one direction of the container using a rectangular waveguide, etc., the coating quality varies due to the concentration of energy only on one side of the container. And problems such as thermal deformation of the container are likely to occur.
本発明は、このような従来技術の問題点を解決しようとするものであり、プラズマ発生の為に外部より供給されたマイクロ波エネルギーの偏りや集中を防ぎ、コーティング層の厚さのばらつきや発熱による容器の変形を抑えることができるプラズマを使用した容器処理装置を提供することを目的とする。 The present invention is intended to solve such problems of the prior art, and prevents biasing and concentration of microwave energy supplied from the outside for plasma generation, variation in coating layer thickness and heat generation. An object of the present invention is to provide a container processing apparatus using plasma that can suppress deformation of the container due to the above.
本発明は、上記の課題を解決するために成されたものであり、本発明の請求項1に係る発明は、円筒形のプラズマ処理を行う処理チャンバー(1)を取り囲むように配置された外部導波路空洞体(2)とマイクロ波を供給する為の同軸導波管(3)とを備えたプラズマを使用した容器処理装置において、前記同軸導波管(3)から供給されたマイクロ波エ
ネルギーは第一外部導波路(11)により同心円状に均等に分配され、第二外部導波路(12)を通り容器側面の任意の箇所よりガス導入管(5)を中心導体とする同軸導波路に結合することを特徴とするプラズマを使用した容器処理装置である。The present invention has been made to solve the above problems, and the invention according to claim 1 of the present invention is an external device disposed so as to surround a processing chamber (1) for performing a cylindrical plasma processing. In a container processing apparatus using plasma having a waveguide cavity (2) and a coaxial waveguide (3) for supplying microwaves, microwave energy supplied from the coaxial waveguide (3) Are uniformly distributed concentrically by the first external waveguide (11) and pass through the second external waveguide (12) to a coaxial waveguide having the gas introduction pipe (5) as a central conductor from any location on the side of the container. It is a container processing apparatus using plasma characterized by combining.
本発明の請求項2に係る発明は、請求項1記載のプラズマを使用した容器処理装置において、前記第一外部導波路(11)及び第二外部導波路(12)を構成する処理チャンバー(1)と外部導波路空洞体(2)との間隙が1/2λ以下となることを特徴とするプラズマを使用した容器処理装置である。 According to a second aspect of the present invention, in the container processing apparatus using the plasma according to the first aspect, the processing chamber (1) constituting the first external waveguide (11) and the second external waveguide (12). ) And the external waveguide cavity (2) is a container processing apparatus using plasma, wherein the gap is 1 / 2λ or less.
本発明の請求項3に係る発明は、請求項1又は2記載のプラズマを使用した容器処理装置において、前記プラズマ処理を行う処理チャンバー(1)と第二外部導波路(12)の境界部分にガラス、水晶体等のマイクロ波を透過する誘電体リング(4)を配置したことを特徴とするプラズマを使用した容器処理装置である。 According to a third aspect of the present invention, in the container processing apparatus using the plasma according to the first or second aspect, a boundary portion between the processing chamber (1) performing the plasma processing and the second external waveguide (12) is provided. A container processing apparatus using plasma, characterized in that a dielectric ring (4) that transmits microwaves, such as glass and a crystalline lens, is disposed.
本発明の請求項4に係る発明は、請求項1乃至3のいずれか1項記載のプラズマを使用した容器処理装置において、前記プラズマ処理を行う処理チャンバー(1)とガス導入管(5)との間にマイクロ波の反射を調整する整合調整板(6)を配置したことを特徴とするプラズマを使用した容器処理装置である。 According to a fourth aspect of the present invention, there is provided a container processing apparatus using plasma according to any one of the first to third aspects, wherein a processing chamber (1) for performing the plasma processing, a gas introduction pipe (5), A container processing apparatus using plasma, characterized in that an alignment adjustment plate (6) for adjusting the reflection of microwaves is arranged between the two.
本発明に係るプラズマを使用した容器処理装置は、円筒形のプラズマ処理を行う処理チャンバーを取り囲むように配置された外部導波路空洞体とマイクロ波を供給する為の同軸導波管とを備えたプラズマを使用した容器処理装置において、前記同軸導波管から供給されたマイクロ波エネルギーは第一外部導波路により同心円状に均等に分配され、第二外部導波路を通り容器側面の任意の箇所よりガス導入管を中心導体とする同軸導波路に結合することにより、プラズマ発生の為に外部より供給されたマイクロ波エネルギーの偏りや集中を防ぎ、コーティング層の厚さのばらつきや発熱による容器の変形を抑えることができる。 A container processing apparatus using plasma according to the present invention includes an external waveguide cavity disposed so as to surround a processing chamber for performing cylindrical plasma processing, and a coaxial waveguide for supplying microwaves. In the container processing apparatus using plasma, the microwave energy supplied from the coaxial waveguide is uniformly distributed concentrically by the first external waveguide, passes through the second external waveguide, and from any location on the side of the container Coupling to the coaxial waveguide with the gas inlet tube as the central conductor prevents the bias and concentration of microwave energy supplied from outside for plasma generation, and changes in the thickness of the coating layer and deformation of the container due to heat generation Can be suppressed.
本発明の実施の形態を図1に基づいて詳細に説明する。 An embodiment of the present invention will be described in detail with reference to FIG.
図1は本発明に係るプラズマを使用した容器処理装置の1実施例を示す側断面図である。 FIG. 1 is a side sectional view showing an embodiment of a container processing apparatus using plasma according to the present invention.
本発明に係るプラズマを使用した容器処理装置の1実施例は、図1に示すように、同軸導波管(3)及びガス導入管(5)を中心軸として、処理チャンバー(1)の外部導波路空洞体(2)と誘電体リング(4)が軸に対称となるように配置される。マイクロ供給装置(8)より発生したマイクロ波エネルギーは、同軸導波管(3)によってプラズマ処理装置内に導かれる。本実施例のマグネトロンの発振周波数は2.45GHzを使用しているが他の周波数を使用しても問題はない。 As shown in FIG. 1, one embodiment of a container processing apparatus using plasma according to the present invention is arranged outside a processing chamber (1) with a coaxial waveguide (3) and a gas introduction pipe (5) as central axes. The waveguide cavity (2) and the dielectric ring (4) are arranged so as to be symmetrical about the axis. Microwave energy generated from the micro supply device (8) is guided into the plasma processing apparatus by the coaxial waveguide (3). Although the oscillation frequency of the magnetron of the present embodiment uses 2.45 GHz, there is no problem even if other frequencies are used.
前記同軸導波管(3)より供給されたマイクロ波エネルギーは第一外部導波路(11)を構成する外部導波路空洞体(2)と処理チャンバー(1)との間にある空間を同心円状に広がってゆく。第一外部導波路(11)及び第二外部導波路(12)は平行板線路と考えることが出来るためにTEM波(Transverse Electomagnetic Wave)によってエネルギーが伝送される。 The microwave energy supplied from the coaxial waveguide (3) is concentrically formed in a space between the external waveguide cavity (2) constituting the first external waveguide (11) and the processing chamber (1). Will spread. Since the first external waveguide (11) and the second external waveguide (12) can be considered as parallel plate lines, energy is transmitted by a TEM wave (Transverse Electromagnetic Wave).
外部導波路空洞体(2)と処理チャンバー(1)との間隙については、高次モードの発生を防ぐ為に1/2λ以下が望ましく、装置の小型化を考慮した場合、25〜35mmの
範囲が好適である。The gap between the external waveguide cavity (2) and the processing chamber (1) is preferably ½λ or less in order to prevent the generation of higher-order modes. Is preferred.
第一外部導波路(11)によって分配されたマイクロ波エネルギーは、誘電体リング(4)を通して処理チャンバー(1)内に導かれる。該誘電体リング(4)の材質は石英ガラスなどマイクロ波の損失の少ない物を使用するのが望ましい。該誘電体リング(4)の高さは外部導波路の間隙と同じ25〜35mmが好適であり、該誘電体リング(4)の周方向の厚さは5〜15mmの範囲とする。 The microwave energy distributed by the first external waveguide (11) is guided into the processing chamber (1) through the dielectric ring (4). As the material of the dielectric ring (4), it is desirable to use a material such as quartz glass with little microwave loss. The height of the dielectric ring (4) is preferably 25 to 35 mm, which is the same as the gap of the external waveguide, and the thickness of the dielectric ring (4) in the circumferential direction is in the range of 5 to 15 mm.
該誘電体リング(4)は処理チャンバー(1)の気密性を確保することでプラズマを安定して発生させる目的で配置される。但し、処理チャンバー(1)内部にコーティング対象容器であるプラスチック容器(9)を取り囲むようにガラス容器を配置するなど、処理チャンバー(1)内部の気密性が保たれている場合は誘電体リング(4)を省略可能である。 The dielectric ring (4) is disposed for the purpose of stably generating plasma by ensuring the hermeticity of the processing chamber (1). However, if the inside of the processing chamber (1) is kept airtight, for example, a glass container is disposed inside the processing chamber (1) so as to surround the plastic container (9) that is a coating target container, a dielectric ring ( 4) can be omitted.
該処理チャンバー(1)の内径は対象となるプラスチック容器(3次元中空容器)(9)の形状により変更可能である。今回の実施例ではプラスチックボトルを処理することを想定しているため内径は90〜110mmとする。 The inner diameter of the processing chamber (1) can be changed depending on the shape of the target plastic container (three-dimensional hollow container) (9). In this embodiment, since it is assumed that plastic bottles are processed, the inner diameter is 90 to 110 mm.
該処理チャンバー(1)内は導体であるガス導入管(5)を中心導体とした同軸導波管の構成をとる。プラスチックボトルからなるプラスチック容器(9)の口栓側となるガス導入管(5)の根元部分は、プロセスガスを排出するため気体を透過出来るようなメッシュ状の金属からなる金属メッシュ(13)により支持台(10)を通して外部導波路空洞体(2)に電気的に短絡されており短絡箇所からガス管の先端までの長さ(L)は120〜140mmまたは180〜200mmの値をとる。 The processing chamber (1) has a coaxial waveguide structure having a gas introduction pipe (5) as a conductor as a central conductor. The base part of the gas introduction pipe (5) on the side of the stopper of the plastic container (9) made of plastic bottles is made of a metal mesh (13) made of mesh-like metal that allows gas to pass through to discharge the process gas. It is electrically short-circuited to the external waveguide cavity (2) through the support base (10), and the length (L) from the short-circuit point to the tip of the gas pipe takes a value of 120 to 140 mm or 180 to 200 mm.
ガス導入管(5)と処理チャンバー(1)との間には、プラスチックボトルの底部の形状による影響を防ぐ為に整合調整板(6)を設置することが可能である。該ガス導入管(5)の先端部分と該整合調整板(6)の軸方向に対する間隙の最短距離は20〜40mmの範囲とする。該整合調整板(6)はプラスチックボトルの底面の形状に合わせたものとする。
該整合調整版(6)を使用しない場合のガス導入管(5)の先端部分と処理チャンバー(1)の軸方向に対する間隙の距離は20〜40mmの範囲とする。An alignment adjustment plate (6) can be installed between the gas introduction pipe (5) and the processing chamber (1) in order to prevent the influence of the shape of the bottom of the plastic bottle. The shortest distance of the gap with respect to the axial direction of the front end portion of the gas introduction pipe (5) and the alignment adjusting plate (6) is in the range of 20 to 40 mm. The alignment adjusting plate (6) is adapted to the shape of the bottom surface of the plastic bottle.
When the alignment adjustment plate (6) is not used, the distance between the distal end portion of the gas introduction pipe (5) and the axial direction of the processing chamber (1) is in the range of 20 to 40 mm.
本装置によるプラズマ処理を行う容器はプラスチック等の3次元中空容器が対象としているが、ここではポリエチレンテレフタレート等のポリエステル材料を原料とした容量500ml、平均肉厚0.5mmのプラスッチック容器(9)を対象にプラズマ化学蒸着法[PECVD(Plasma Enhancement Chemical Vapor
Depositionの略)法]により容器内面に薄膜を成膜した実施例を以下に示す。The container for plasma treatment by this apparatus is a three-dimensional hollow container such as plastic. Here, a plastic container (9) having a capacity of 500 ml and an average thickness of 0.5 mm made of a polyester material such as polyethylene terephthalate is used. Plasma chemical vapor deposition method [Plasma Enhancement Chemical Vapor
An example in which a thin film is formed on the inner surface of the container by the abbreviation (deposition method)] of the container is shown below.
薄膜形成を行うための原料ガスは、主ガスとしてヘキサ・メチル・ジ・シロキサン(以下、HMDSOと記載。)、またはテトラ・メチル・ジ・シロキサンなどを用いることが可能であり、サブガスとして酸素、窒素といったものが用いられる。これらの原料ガスはガス導入管(5)側面及び天面に開けられた穴からコーティング対象容器であるプラスッチック容器(9)内部に供給される。 As a raw material gas for forming a thin film, hexamethyl disiloxane (hereinafter referred to as HMDSO) or tetramethyl disiloxane can be used as a main gas, and oxygen, Something like nitrogen is used. These source gases are supplied into the plastic container (9), which is a container to be coated, from holes formed in the side surface and the top surface of the gas introduction pipe (5).
上記のガスを使用して形成される薄膜は、いわゆるセラミック層SiOxCy(x=1〜2.2/y=0.3〜3)を主成分とするものである。次に成膜プロセスについて以下に示す。The thin film formed using the above-mentioned gas has a so-called ceramic layer SiOx Cy (x = 1 to 2.2 / y = 0.3 to 3) as a main component. Next, the film forming process is described below.
本装置の処理チャンバー(1)内部に薄膜を形成するためのプラスッチック容器(9)を設置して、該チャンバー(1)内部を1.333Pa(パスカル)まで真空装置で吸引して減圧環境を保つ。次にプラスッチック容器(9)内面にバリア性の薄膜コーティングを行うための原料ガスHMDSOを流量10ml/分にて、かつ酸素の流量を50ml/分にて注入してプラスッチック容器(9)内の真空度を13.33Paの真空圧力に調整した状態において、マイクロ波供給装置(8)よりマイクロ波エネルギーを約5秒間に渡り供給する。このとき電源から供給されるマイクロ波の周波数は2.45GHz、電力300〜500Wの値に設定される。同軸導波管(3)を通して入力されたマイクロ波エネルギーは第一外部導波路(11)及び第二外部導波路(12)を通して処理チャンバー(1)内部に供給されて内部の原料ガスにプラズマを発生させ薄膜を形成する。以上の条件でPECDV法により容器内面に薄膜を成膜したプラスチック容器(9)はマイクロ波による熱変形は認められず酸素バリア値は1.03〜1.66(fmol/m2/s/Pa)を示した。A plastic container (9) for forming a thin film is installed inside the processing chamber (1) of this apparatus, and the inside of the chamber (1) is sucked up to 1.333 Pa (Pascal) with a vacuum device to maintain a reduced pressure environment. . Next, a raw material gas HMDSO for performing barrier thin film coating on the inner surface of the plastic container (9) is injected at a flow rate of 10 ml / min and an oxygen flow rate of 50 ml / min to vacuum the plastic container (9). In a state where the degree is adjusted to a vacuum pressure of 13.33 Pa, microwave energy is supplied from the microwave supply device (8) for about 5 seconds. At this time, the frequency of the microwave supplied from the power supply is set to a value of 2.45 GHz and power of 300 to 500 W. Microwave energy input through the coaxial waveguide (3) is supplied into the processing chamber (1) through the first external waveguide (11) and the second external waveguide (12), and plasma is generated in the internal source gas. Generate a thin film. Under the above conditions, the plastic container (9) having a thin film formed on the inner surface of the container by the PECDV method does not show thermal deformation due to microwaves, and the oxygen barrier value is 1.03-1.66 (fmol / m2 / s / Pa). )showed that.
以下に、本発明の具体的実施例を挙げて、さらに詳しく説明するが、それに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto.
<実施例1>
本装置(誘電体リング(4):あり、整合調整板(6):なし、ガス導入管(5)の長さ(L):190mm)の処理チャンバー(1)内部に薄膜を形成するための500mlPETボトル(9)を設置して、該チャンバー(1)内部を1.333Pa(パスカル)まで真空装置で吸引して減圧環境を保った。該PETボトル(9)内面にバリア性の薄膜コーティングを行うための原料ガスは、ヘキサ・メチル・ジ・シロキサン(HMDSO)を使用して、流量10ml/分にて、かつ酸素の流量を50ml/分にて注入して該PETボトル(9)内の真空度を13.33Paの真空圧力に調整した状態において、マイクロ波供給装置よりマイクロ波エネルギーを約5秒間に渡り供給した。このとき電源から供給されるマイクロ波の周波数は2.45GHz、電力400Wの値に設定した。同軸導波管(3)を通して入力したマイクロ波エネルギーは第一外部導波路(11)及び第二外部導波路(12)を通して処理チャンバー(1)内部に供給され内部の原料ガスにプラズマを発生させ該PETボトル(9)内面に薄膜を形成した。<Example 1>
This apparatus (dielectric ring (4): present, alignment adjusting plate (6): none, length (L) of gas introduction pipe (5): 190 mm) for forming a thin film inside the processing chamber (1) A 500 ml PET bottle (9) was installed, and the inside of the chamber (1) was suctioned to 1.333 Pa (Pascal) with a vacuum device to maintain a reduced pressure environment. The raw material gas for performing the barrier thin film coating on the inner surface of the PET bottle (9) is hexamethyldisiloxane (HMDSO) at a flow rate of 10 ml / min and an oxygen flow rate of 50 ml / min. The microwave energy was supplied over about 5 seconds from the microwave supply apparatus in a state where the PET bottle (9) was injected in minutes and the degree of vacuum in the PET bottle (9) was adjusted to a vacuum pressure of 13.33 Pa. At this time, the frequency of the microwave supplied from the power source was set to a value of 2.45 GHz and power of 400 W. Microwave energy input through the coaxial waveguide (3) is supplied to the inside of the processing chamber (1) through the first external waveguide (11) and the second external waveguide (12) to generate plasma in the internal source gas. A thin film was formed on the inner surface of the PET bottle (9).
<実施例2>
実施例1において、本装置に整合調整板(6)を備えた以外は、実施例1と同様にしてPETボトル(9)内面に薄膜を形成した。<Example 2>
In Example 1, a thin film was formed on the inner surface of the PET bottle (9) in the same manner as in Example 1 except that this apparatus was provided with an alignment adjustment plate (6).
<実施例3>
実施例1において、本装置のガス導入管(5)の長さ(L)を130mmにした以外は、実施例1と同様にしてPETボトル(9)内面に薄膜を形成した。<Example 3>
In Example 1, a thin film was formed on the inner surface of the PET bottle (9) in the same manner as in Example 1 except that the length (L) of the gas introduction pipe (5) of the present apparatus was 130 mm.
以下に、本発明の比較例について説明する。 Below, the comparative example of this invention is demonstrated.
<比較例1>
実施例1において、本装置のガス導入管(5)の長さ(L)を160mmにした以外は、実施例1と同様にしてPETボトル(9)内面に薄膜を形成した。<Comparative Example 1>
In Example 1, a thin film was formed on the inner surface of the PET bottle (9) in the same manner as in Example 1 except that the length (L) of the gas introduction tube (5) of the present apparatus was 160 mm.
<評価>
実施例1〜3、及び比較例1で得たPETボトル(9)の容器変形の有無の観察、酸素バリア値の測定、総合評価(○:合格、×:不合格)を行なった。その結果を表1に示す。<Evaluation>
The PET bottle (9) obtained in Examples 1 to 3 and Comparative Example 1 was observed for the presence or absence of container deformation, the oxygen barrier value was measured, and comprehensive evaluation (◯: pass, x: fail) was performed. The results are shown in Table 1.
<評価結果>
実施例1〜3は、マイクロ波の熱による容器変形は認められず、酸素バリア値は1.03〜1.66(fmol/m2/s/Pa)の範囲内を示し、総合評価は合格であった。比較例1は容器変形が有り、酸素バリア性は全く無く、総合評価は不合格であった<Evaluation results>
In Examples 1 to 3, container deformation due to microwave heat was not observed, the oxygen barrier value was in the range of 1.03 to 1.66 (fmol / m2 / s / Pa), and the overall evaluation was acceptable. Met. Comparative Example 1 had container deformation, no oxygen barrier property, and overall evaluation was unacceptable.
1・・・処理チャンバー(導体)
2・・・外部導波路空洞体(導体)
3・・・同軸導波管
4・・・誘電体リング
5・・・ガス導入管(中心導体)
6・・・整合調整板(導体)
7・・・同軸導波管中心導体
8・・・マイクロ波供給装置
9・・・プラスチック容器(3次元中空容器・PETボトル)
10・・・支持台(導体)
11・・・第一外部導波路
12・・・第二外部導波路
13・・・金属メッシュ1 ... Processing chamber (conductor)
2 ... External waveguide cavity (conductor)
3 ... Coaxial waveguide 4 ... Dielectric ring 5 ... Gas introduction tube (central conductor)
6 ... Alignment adjustment plate (conductor)
7 ... Coaxial waveguide center conductor 8 ... Microwave supply device 9 ... Plastic container (3D hollow container / PET bottle)
10 ... Support base (conductor)
DESCRIPTION OF SYMBOLS 11 ... 1st external waveguide 12 ... 2nd external waveguide 13 ... Metal mesh
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006056064AJP2007231386A (en) | 2006-03-02 | 2006-03-02 | Container treatment apparatus using plasma |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006056064AJP2007231386A (en) | 2006-03-02 | 2006-03-02 | Container treatment apparatus using plasma |
Publication Number | Publication Date |
---|---|
JP2007231386Atrue JP2007231386A (en) | 2007-09-13 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006056064APendingJP2007231386A (en) | 2006-03-02 | 2006-03-02 | Container treatment apparatus using plasma |
Country | Link |
---|---|
JP (1) | JP2007231386A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
KR101097460B1 (en) | 2009-11-25 | 2011-12-23 | 한국전기연구원 | Chemical reaction apparatus utilizing microwave heating and method thereof |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US12257371B2 (en) | 2012-07-03 | 2025-03-25 | Sio2 Medical Products, Llc | SiOx barrier for pharmaceutical package and coating process |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US8834954B2 (en) | 2009-05-13 | 2014-09-16 | Sio2 Medical Products, Inc. | Vessel inspection apparatus and methods |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
KR101097460B1 (en) | 2009-11-25 | 2011-12-23 | 한국전기연구원 | Chemical reaction apparatus utilizing microwave heating and method thereof |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10577154B2 (en) | 2011-11-11 | 2020-03-03 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US12257371B2 (en) | 2012-07-03 | 2025-03-25 | Sio2 Medical Products, Llc | SiOx barrier for pharmaceutical package and coating process |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US12239606B2 (en) | 2013-03-11 | 2025-03-04 | Sio2 Medical Products, Llc | PECVD coated pharmaceutical packaging |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
Publication | Publication Date | Title |
---|---|---|
JP2007231386A (en) | Container treatment apparatus using plasma | |
JP4732685B2 (en) | Equipment for coating articles | |
JP6501493B2 (en) | Plasma processing system | |
WO2004081254A1 (en) | Microwave plasma processing device and plasma processing gas supply member | |
US11898241B2 (en) | Method for a treatment to deposit a barrier coating | |
KR101882608B1 (en) | Plasma processing apparatus and plasma processing method | |
JP5555930B2 (en) | Method for processing inner surface of plastic bottle and apparatus for processing inner surface of plastic bottle | |
KR20060019513A (en) | Microwave Plasma Treatment | |
JP2007204065A (en) | Container processing apparatus using plasma | |
JP4904840B2 (en) | 3D hollow container thin film deposition system | |
JP2012188701A (en) | Apparatus and method for forming coating film | |
WO2005035825A1 (en) | Cvd film-forming device and method of manufacturing cvd film coating plastic container | |
JP2008106333A (en) | Container treatment device by plasma cvd | |
JP4910403B2 (en) | Plasma processing apparatus having two-branch waveguide | |
JP5233333B2 (en) | Hollow container deposition system | |
JP2007204774A (en) | Vessel treatment device using plasma | |
JP2007204773A (en) | Vessel treatment device using plasma | |
JP4747566B2 (en) | Plasma processing equipment | |
JP7309270B2 (en) | MICROWAVE PLASMA CVD DEVICE, METHOD FOR MANUFACTURING SYNTHETIC RESIN CONTAINER, AND SYNTHETIC RESIN CONTAINER | |
JP2008106331A (en) | Container treatment device by plasma cvd | |
JP4876611B2 (en) | Plasma deposition system | |
JP2008106332A (en) | Container treatment device by plasma cvd | |
CN107663629B (en) | High frequency waves supplying structure | |
JP2006089846A (en) | Microwave treatment device, microwave feed/treatment system and microwave treatment method | |
US20250095966A1 (en) | Plasma-enhanced chemical vapour deposition apparatus |