Movatterモバイル変換


[0]ホーム

URL:


JP2006153878A - Intruder detecting device and radiowave reflector - Google Patents

Intruder detecting device and radiowave reflector
Download PDF

Info

Publication number
JP2006153878A
JP2006153878AJP2005341131AJP2005341131AJP2006153878AJP 2006153878 AJP2006153878 AJP 2006153878AJP 2005341131 AJP2005341131 AJP 2005341131AJP 2005341131 AJP2005341131 AJP 2005341131AJP 2006153878 AJP2006153878 AJP 2006153878A
Authority
JP
Japan
Prior art keywords
reflector
radar
intruder
detection
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005341131A
Other languages
Japanese (ja)
Inventor
Eiji Takemoto
英治 竹本
Tadao Nishiguchi
直男 西口
Ryuji Kawamoto
竜二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics CofiledCriticalOmron Corp
Priority to JP2005341131ApriorityCriticalpatent/JP2006153878A/en
Publication of JP2006153878ApublicationCriticalpatent/JP2006153878A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable intruder detecting device capable of reducing false detection, by enhancing identification accuracy between detecting objects and non-detecting objects. <P>SOLUTION: A transmitting and receiving antenna 1a of the radar 1 is configured with a parabolic antenna, a radiowave reflector 2 is configured with a reflector array 6 consisting of a plurality of reflectors, and the beam widths A1 and A2 of the transmitter wave 5 in the vicinity of the radar 1 and of the reflected wave 7 in the vicinity of the radiowave reflector 2, respectively, are established to be larger than the beam width C the non-detecting objects, such as a bird 9 to be removed from detecting objects, can interrupt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

Translated fromJapanese

本発明は、発射した電波の反射波を受信して、検知領域内に侵入した侵入物を検知する侵入物検知装置、および侵入物検知装置などに用いられて好適な電波反射器に関するものである。  The present invention relates to an intruder detection device that receives a reflected wave of emitted radio waves and detects an intruder that has entered a detection region, and a radio wave reflector that is suitable for use in an intruder detection device and the like. .

従来、防犯などの用途において侵入者や侵入物の検知を行うものとして、赤外線センサ装置、超音波センサ装置、電波式レーダ装置などの種々の侵入物検知装置が提案されている。これらの侵入物検知装置のなかでも、電波を利用した方式の電波式レーダ装置は、雨、雪、風あるいは粉塵などの自然環境変動要因に対する影響を極めて受けづらいという利点を有するため、屋外などの設置場所において信頼性の高い侵入物検知を実現できるものとして注目を集めている。  2. Description of the Related Art Conventionally, various intruder detection devices such as an infrared sensor device, an ultrasonic sensor device, and a radio wave radar device have been proposed as devices for detecting intruders and intruders in applications such as crime prevention. Among these intruder detection devices, radio wave type radar devices using radio waves have the advantage that they are extremely insensitive to natural environment fluctuation factors such as rain, snow, wind, and dust, and so on. It is attracting attention as being able to achieve highly reliable intrusion detection at the installation site.

この種の電波式レーダ装置としては、たとえば図18に示すようなものが知られている。このレーダ100は、電波の送受信を行うアンテナ103を備えて構成されている。レーダ100は、アンテナ103から所定の方向に送信波105を発射しておき、ビームを遮った物体により反射された反射波をアンテナ103で受信し、その受信電力強度を観測することで侵入物の在・不在を検知している。
特開昭55−72883号公報特開昭55−74690号公報特開昭64−31292号公報特開2000−266861号公報特開平1−170103号公報特開平8−181535号公報
As this type of radio wave radar device, for example, one shown in FIG. 18 is known. Theradar 100 includes anantenna 103 that transmits and receives radio waves. Theradar 100 emits atransmission wave 105 in a predetermined direction from theantenna 103, receives a reflected wave reflected by an object that blocks the beam, and observes the received power intensity of the intruder. The presence / absence is detected.
JP 55-72883 A JP 55-74690 A JP-A-64-31292 JP 2000-266861 A JP-A-1-170103 JP-A-8-181535

一般に、侵入物検知装置にあっては、検知の対象とすべき検知対象物と、検知の対象から除外すべき非検知対象物とが予め明確になっていることが多い。たとえば、防犯用の侵入物検知装置の場合では、検知対象物は侵入者たる人間(特に成人)に限られ、それ以外の物体、すなわち鳥や犬などの小動物やボールなどの飛来物などは非検知対象物となる。誤検知(非検知対象物を侵入物と誤って検知すること)を無くし、侵入物検知装置の信頼性を高めるためには、このような検知対象物と非検知対象物の識別精度をいかに高めるかが大きな技術的課題として存在する。  Generally, in an intruder detection apparatus, a detection target to be detected and a non-detection target to be excluded from the detection target are often clarified in advance. For example, in the case of an intruder detection device for crime prevention, the object to be detected is limited to an intruder (particularly an adult), and other objects, that is, small animals such as birds and dogs, and flying objects such as balls are not included. It becomes a detection target. In order to eliminate false detection (detecting a non-detected object as an intruder) and improve the reliability of the intruder detection device, how to improve the discrimination accuracy between such a detected object and non-detected object Kaga exists as a major technical issue.

ところで、上記従来技術の侵入物検知装置では、レーダ100から発射された送信波105は、アンテナ103の指向性に依存して、レーダ100から離れるにつれ広がりながら伝搬していく。それゆえ、レーダ100から十分に離れた場所では、鳥109などの非検知対象物に対してビーム幅(ビーム径)が十分な広がりを持つ。  By the way, in the above-described intruder detection apparatus according to the prior art, thetransmission wave 105 emitted from theradar 100 propagates while spreading away from theradar 100 depending on the directivity of theantenna 103. Therefore, at a location sufficiently away from theradar 100, the beam width (beam diameter) has a sufficiently wide range with respect to a non-detection target such as thebird 109.

その付近を鳥109などが通過した場合は、ビームの全ては遮られず、ビームの一部が反射されるにすぎないので、レーダ100で観測される受信電力強度は小さいが、侵入者108が通過した場合はビームの大半が反射されるため受信電力強度が大きなものとなる。これにより、侵入者108と鳥109との識別を比較的容易に行うことができていた。  When abird 109 or the like passes in the vicinity, all of the beam is not blocked and only a part of the beam is reflected, so that the received power intensity observed by theradar 100 is small, but theintruder 108 If it passes, most of the beam is reflected, so that the received power intensity is high. As a result, theintruder 108 and thebird 109 can be identified relatively easily.

しかしながら、レーダ100近傍においては、ビーム幅A100が狭いため、鳥109など人間よりも小型の物体が通過した場合であっても、大半のビームが遮蔽・反射されて
しまうこととなり、鳥109と侵入者108との場合でレーダ100の受信電力にほとんど差がみられない。
However, since the beam width A100 is narrow in the vicinity of theradar 100, even when a small object such as abird 109 passes through, the majority of the beam is shielded and reflected, and thebird 109 enters the radar. There is almost no difference in the received power of theradar 100 in the case of theperson 108.

したがって、従来構成の装置では、レーダ100近傍において、検知対象物と非検知対象物との識別を行うことが非常に困難であり、鳥など(特にカラス)を侵入者として誤検知してしまうという問題が極めて深刻なものとなっていた。  Therefore, it is very difficult to distinguish between the detection target object and the non-detection target object in the vicinity of theradar 100 in the apparatus having the conventional configuration, and a bird or the like (particularly a crow) is erroneously detected as an intruder. The problem was very serious.

上記課題を解決するための方法として、たとえば特開昭55−72883号公報や特開昭55−74690号公報では、次のような構成が提案されている。すなわち、送信波と受信波の偏波面が互いに略直交するようにアンテナを構成することで、アンテナ近傍を通過する昆虫などの小物体からの一次反射波は受信せず、遠方を通過する人間などの大物体からの二次反射波だけを主に受信するようにして、誤検知の低減を図らんとするものである。  As a method for solving the above problems, for example, Japanese Patent Application Laid-Open Nos. 55-72883 and 55-74690 propose the following configurations. That is, by configuring the antenna so that the polarization planes of the transmitted wave and the received wave are substantially orthogonal to each other, a primary reflected wave from a small object such as an insect that passes near the antenna is not received, and a human that passes far In this way, only the secondary reflected wave from the large object is received mainly to reduce false detection.

確かに、送信波の波長に対して十分小さい昆虫ならば、一次反射において偏波面が変化しないので誤検知を防ぐことができる。しかしながら、鳥などの小動物のように波長に対してかなりの大きさをもつ物体の場合は、一次反射においても偏波面が変化してしまうし、人間と同様の二次反射を生ずるため、上記方法では誤検知を防ぐことはできない。ましてや、レーダ近傍においては、人間の場合と鳥の場合とでビームの遮蔽・反射の状態に異なるところがないので、両者を明確に識別することは不可能であるといえる。  Certainly, if the insect is sufficiently small with respect to the wavelength of the transmitted wave, the polarization plane does not change in the primary reflection, so that erroneous detection can be prevented. However, in the case of an object having a considerable size with respect to the wavelength, such as a small animal such as a bird, the polarization plane changes even in the primary reflection, and the secondary reflection similar to that of humans is generated. However, it cannot prevent false detection. Furthermore, in the vicinity of the radar, there is no difference in the shielding / reflection state of the beam between humans and birds, so it can be said that it is impossible to clearly distinguish both.

また、この方法では、二度以上反射を繰り返した二次反射波を主に受信することになるため、受信波が明りょうなピークを有さず、受信電力も小さくなってしまうので、全体としての検知精度を高めることが難しい。また、地面での反射を前提としているので、ビームを地面方向に傾ける必要があり、自ずから検知領域が狭い範囲に限定されてしまうという問題もある。  In addition, this method mainly receives secondary reflected waves that have been reflected twice or more, so the received wave does not have a clear peak, and the received power is also reduced. It is difficult to improve the detection accuracy. Further, since reflection on the ground is assumed, it is necessary to tilt the beam toward the ground, and there is a problem that the detection region is naturally limited to a narrow range.

本発明は上記実情を鑑みてなされたものであって、その目的とするところは、検知対象物と非検知対象物との識別精度を高め、誤検知を低減し得る信頼性の高い侵入物検知装置を提供することにある。  The present invention has been made in view of the above circumstances, and the object of the present invention is to provide highly reliable intruder detection that can increase the accuracy of discrimination between a detection object and a non-detection object and reduce false detections. To provide an apparatus.

また、この種の装置に用いられて好適な電波反射器を提供することにある。  Another object of the present invention is to provide a radio wave reflector suitable for use in this type of apparatus.

上記目的を達成するために本発明にあっては、電波の送信および受信を行う送受信手段を有するレーダと、該レーダから送信された電波を同レーダに向けて反射する反射手段と、を備え、前記レーダと前記反射手段の間を伝搬している電波のビームからなる検知領域内に侵入した侵入物を検知する侵入物検知装置において、前記レーダ近傍の送信波および前記反射手段近傍の反射波のビーム断面積を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくしたことを特徴とする。  In order to achieve the above object, the present invention comprises a radar having transmission / reception means for transmitting and receiving radio waves, and reflection means for reflecting the radio waves transmitted from the radar toward the radar, In an intruder detection apparatus that detects an intruder that has entered a detection area composed of a beam of radio waves propagating between the radar and the reflecting means, a transmitted wave near the radar and a reflected wave near the reflecting means The beam cross-sectional area is made larger than a beam cross-sectional area that can be shielded by a predetermined non-detection target to be excluded from the detection target.

この発明によれば、レーダ近傍あるいは反射手段近傍の検知領域内を非検知対象物が通過した場合であっても、当該非検知対象物がビームを全て遮ることがない。それゆえ、検知対象物がビームを遮った場合と非検知対象物がビームを遮った場合とで、レーダによって受信される受信電力に明確な差異が生じ、両対象物を容易に識別できるようになる。  According to the present invention, even when a non-detection object passes through a detection region in the vicinity of the radar or the reflection means, the non-detection object does not block all the beams. Therefore, there is a clear difference in the received power received by the radar when the detected object blocks the beam and when the non-detected object blocks the beam so that both objects can be easily identified. Become.

発射した電波の反射波を利用するレーダには、発射する電波にパルス波を用いるパルスレーダと周波数変調波を用いる連続波レーダとがあり、さらに変調方式にもFM(frequency modulation),AM(amplitude modulation),PAM(pulse amplitude modulation)等の方式があるが、本発明にはいずれのレーダも好適に用いることができる。使用す
る電波の周波数帯は特に限定されることはないが、好適にはミリ波またはマイクロ波を用いるとよい。
Radars that use reflected waves of emitted radio waves include pulse radars that use pulse waves for emitted radio waves and continuous wave radars that use frequency-modulated waves. Further, FM (frequency modulation) and AM (amplitude) modulation methods are also used. There are methods such as modulation and PAM (pulse amplitude modulation), and any radar can be suitably used in the present invention. The frequency band of the radio wave to be used is not particularly limited, but it is preferable to use millimeter waves or microwaves.

また、レーダと反射手段の配置としては、両者を互いに対向するように設置して検知領域を直線状にする構成が最も単純な構成であるが、レーダと反射手段との間にビームの進路を偏向させる偏向部材を設けて、検知領域を非直線状に構成することもできる。単数または複数の偏向部材によりビームの進路を曲げて中継することにより、設置場所の制約などに応じて、検知領域をたとえばくの字やコの字、あるいはロの字のように構成することもできる。なお、偏向とは、反射、屈折、回折などの作用により電波の進行方向を曲げることをいう。偏向部材としてはたとえば平面反射板のようなものを好適に用いることができる。  As for the arrangement of the radar and the reflecting means, the simplest structure is to install the radar and the reflecting means so that they are opposed to each other, and the beam path is arranged between the radar and the reflecting means. It is also possible to provide a deflecting member for deflecting and configure the detection region to be non-linear. By bending the beam path with one or more deflecting members and relaying it, the detection area may be configured like, for example, a U-shape, U-shape, or B-shape, depending on the location restrictions. it can. Note that deflection refers to bending of the traveling direction of a radio wave by an action such as reflection, refraction, or diffraction. As the deflecting member, for example, a flat reflector or the like can be suitably used.

設置場所に関していえば、本発明では電波を利用しているため、雨、雪、風あるいは粉塵などの自然環境変動要因に対する影響を極めて受けづらく屋外などの設置環境下でも好適に用いることができる。特にレーダの電波発射部分や反射手段の反射部分、偏向部材などが埃や砂粒で汚れたとしても、ビーム強度の減衰や乱反射などの影響を受けることがほとんどなく、赤外線や光を用いた侵入物検知装置に比べて、耐環境性、信頼性および利便性に優れる。  With regard to the installation location, since the present invention uses radio waves, it can be suitably used even in an installation environment such as outdoors, which is hardly affected by natural environment fluctuation factors such as rain, snow, wind, or dust. In particular, even if the radio wave emission part of the radar, the reflection part of the reflecting means, or the deflecting member is contaminated with dust or sand particles, it is hardly affected by attenuation of the beam intensity or irregular reflection, and intrusions using infrared rays or light. Compared to the detection device, it excels in environmental resistance, reliability and convenience.

上記検知対象物および非検知対象物の選び方は、本発明を適用する用途によって異なる。たとえば防犯上の目的で侵入者たる人間を検知する場合には、人間(特に成人)が検知対象物であり、人間よりも小型の物体、すなわち鳥や犬などの小動物やボールなどの飛来物などが非検知対象物に該当する。あるいは、本発明を規格外品を検出する目的、たとえば所定のサイズを超える物体と当該サイズ以下の物体とを識別する目的で用いる場合には、当該サイズを超える物体が検知対象物となり、それ以下の物体が非検知対象物となる。  The method of selecting the detection object and the non-detection object differs depending on the application to which the present invention is applied. For example, when detecting humans who are intruders for crime prevention purposes, humans (especially adults) are objects to be detected, such as objects that are smaller than humans, such as small animals such as birds and dogs, and flying objects such as balls. Corresponds to an undetected object. Alternatively, when the present invention is used for the purpose of detecting a nonstandard product, for example, for the purpose of discriminating between an object exceeding a predetermined size and an object having the size or less, the object exceeding the size becomes a detection target, and less The object becomes a non-detection target.

レーダ近傍の送信波および反射手段近傍の反射波のビーム断面積を、非検知対象物が遮蔽し得るビーム断面積に比べてどの程度大きくすればよいかの選び方についても、本発明を適用する用途によって異なる。一つに、検知対象物と非検知対象物の大きさの差、すなわち検知対象物が遮蔽し得るビーム断面積と非検知対象物が遮蔽し得るビーム断面積との差が、レーダの受信電力の差として十分に観測可能となる程度に、上記送信波および反射波のビーム断面積を設定するとよい。また、電波は光に比べて波長が長いため、物体の材質や厚みによっては照射された電波の一部が物体内を通過することがある。それゆえ、検知対象物と非検知対象物のそれぞれの材質や厚み、電波の透過率などが予定されている場合は、かかる条件を加味して上記送信波および反射波のビーム断面積を設定することも好適である。  The application of the present invention also for selecting how much the beam cross-sectional area of the transmitted wave near the radar and the reflected wave near the reflecting means should be larger than the beam cross-sectional area that can be shielded by the non-detection object It depends on. For one thing, the difference in size between the detection object and the non-detection object, that is, the difference between the beam cross-sectional area that can be shielded by the detection object and the beam cross-section area that can be shielded by the non-detection object is the received power of the radar. It is advisable to set the beam cross-sectional areas of the transmitted wave and the reflected wave to such an extent that the difference can be sufficiently observed. In addition, since radio waves have a longer wavelength than light, some of the irradiated radio waves may pass through the object depending on the material and thickness of the object. Therefore, when the material and thickness of each of the detection target object and the non-detection target object and the radio wave transmittance are planned, the beam cross-sectional areas of the transmission wave and the reflected wave are set in consideration of such conditions. It is also suitable.

また、この発明の一実施態様においては、前記レーダ近傍の送信波および前記反射手段近傍の反射波のビーム断面が、前記非検知対象物が遮蔽し得る最大のビーム断面に対して、少なくとも一方向に広がりを有する構成を好適に採用できる。  In one embodiment of the present invention, the beam cross section of the transmission wave in the vicinity of the radar and the reflection wave in the vicinity of the reflection means is at least in one direction with respect to the maximum beam cross section that can be shielded by the non-detection object. It is possible to suitably adopt a configuration having a spread.

このように少なくとも一方向に送信波および反射波のビーム断面が広がりを有していれば、非検知対象物がビームを全て遮ることがないので、レーダによって受信される受信電力に明確な差異が生じ、両対象物の識別が可能となる。また、送信波および反射波のビーム断面を多方向または全方向に広げる構成を採用すれば、両対象物の識別性がさらに向上する。ただし、ビーム断面の拡大は、レーダおよび反射手段の大型化を招く要因ともなることから、本装置の設置条件と両対象物の識別性とのバランスを加味して、ビーム断面の拡大方向を決定することが好ましい。たとえば、設置条件としてレーダや反射手段の水平方向(幅方向)の上限が定められている場合には、垂直方向(高さ方向)にビーム断面を拡大すればよいし、逆の場合は水平方向にビーム断面を拡大すればよい。  In this way, if the beam cross sections of the transmitted wave and the reflected wave are spread in at least one direction, the non-detection object does not block all the beams, so there is a clear difference in the received power received by the radar. And both objects can be identified. Moreover, if the configuration in which the beam cross sections of the transmitted wave and the reflected wave are expanded in multiple directions or in all directions, the distinguishability between both objects is further improved. However, since the enlargement of the beam cross section also causes an increase in the size of the radar and reflection means, the enlargement direction of the beam cross section is determined by taking into account the balance between the installation conditions of this equipment and the distinguishability of both objects. It is preferable to do. For example, if the upper limit in the horizontal direction (width direction) of the radar or reflecting means is set as the installation condition, the beam cross section may be enlarged in the vertical direction (height direction), and vice versa. What is necessary is just to expand a beam cross section.

上記送受信手段は、電波の送信を行う送信手段と電波の受信を行う受信手段とをそれぞれ別体で設ける構成とすることもできるし、送信機能と受信機能とを兼ね備えた単一の部材で構成することもできる。  The transmission / reception means may be configured such that a transmission means for transmitting radio waves and a reception means for receiving radio waves are provided separately from each other, or a single member having both a transmission function and a reception function. You can also

そして、レーダ近傍のビーム断面を広げるための一実施態様としては、送受信手段として、前記非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有する開口面アンテナを用いる構成が好適である。  As an embodiment for widening the beam cross section in the vicinity of the radar, a configuration using an aperture antenna having an aperture area larger than the beam cross sectional area that can be shielded by the non-detection object is preferable as the transmitting / receiving means. .

開口面アンテナとは、開口状の面から電波を放射するアンテナであり、たとえばパラボラアンテナのように一次放射源からの電波を反射させる反射部材を備えたもの、電波レンズのように電磁的なレンズを用いて一次放射源からの電波を拡大するものなどを含む。この中でも、オフセットパラボラアンテナや誘電体レンズを用いたレンズアンテナを好適に採用することができる。このような開口面アンテナを用いることにより、ビーム断面(ビーム幅)が大きく、広がりの少ない平行ビームであって、且つ高利得の平面波を容易に得ることができる。  An aperture surface antenna is an antenna that radiates radio waves from an aperture-shaped surface. For example, a parabolic antenna that includes a reflective member that reflects radio waves from a primary radiation source, or an electromagnetic lens such as a radio lens. The one that expands the radio wave from the primary radiation source using the. Among these, a lens antenna using an offset parabolic antenna or a dielectric lens can be preferably used. By using such an aperture antenna, it is possible to easily obtain a plane wave having a high beam section with a wide beam cross section (beam width) and a small parallel beam.

なお、アンテナの送受可逆性により、かかる構成を反射手段近傍のビーム断面を広げるための手段として適用することも可能である。すなわち、パラボラアンテナの一次放射源の代わりに電波を反射するリフレクタなどの副反射部材を用い、前記反射手段が、前記非検知対象物が遮蔽し得るビーム断面積よりも大きい開口面積を有する主反射部材と、この主反射部材で反射・集中された電波を主反射部材に向けて反射する副反射部材とを備える構成、あるいは、レンズアンテナの一次放射源の代わりに副反射部材を用い、前記反射手段が、前記非検知対象物が遮蔽し得るビーム断面積よりも大きい開口面積を有する電波レンズと、この電波レンズで集中された電波を電波レンズに向けて反射する副反射部材とを備える構成などを採り得る。これらの構成により、反射手段近傍においてビーム断面(ビーム幅)が大きく、広がりの少ない平行ビームであって、平面波となる反射波を容易に得ることができる。  It should be noted that this configuration can be applied as means for expanding the beam cross section in the vicinity of the reflecting means due to the transmission and reception reversibility of the antenna. That is, a sub-reflection member such as a reflector that reflects radio waves is used instead of the primary radiation source of the parabolic antenna, and the reflection means has a main reflection area having an opening area larger than a beam cross-sectional area that can be shielded by the non-detection target. A member and a sub-reflecting member that reflects the radio waves reflected and concentrated by the main reflecting member toward the main reflecting member, or the sub-reflecting member is used instead of the primary radiation source of the lens antenna, and the reflection is performed. The means includes a radio lens having an aperture area larger than a beam cross-sectional area that can be shielded by the non-detection object, and a sub-reflection member that reflects radio waves concentrated by the radio lens toward the radio lens. Can be taken. With these configurations, it is possible to easily obtain a reflected wave which is a parallel beam having a large beam cross section (beam width) and a small spread in the vicinity of the reflecting means.

反射手段の他の実施態様として、前記反射手段は、開口面を揃えて配置された複数のリフレクタからなるリフレクタアレイであって、該リフレクタアレイ全体の開口面積が前記非検知対象物が遮蔽し得るビーム断面積よりも大きい構成を好適に採用することができる。  As another embodiment of the reflecting means, the reflecting means is a reflector array composed of a plurality of reflectors arranged with the opening surfaces aligned, and the opening area of the entire reflector array can be shielded by the non-detection object. A configuration larger than the beam cross-sectional area can be preferably employed.

ここでいうリフレクタとは、少なくとも電波を反射する反射部と、反射部で反射された電波が平面波として放射される開口面とを有した部材をいう。この開口面は、物理的に現れる面の場合もあれば、反射波が同位相となる平面を仮想的に定義した面の場合もある。  The reflector here refers to a member having at least a reflection part that reflects radio waves and an opening surface through which the radio waves reflected by the reflection part are radiated as plane waves. The opening surface may be a surface that physically appears or a surface that virtually defines a plane in which the reflected waves have the same phase.

この構成により、個々のリフレクタの反射波のビーム幅は小さいものの、リフレクタアレイ全体としてみれば、非検知対象物が遮蔽し得るビーム断面よりも大きいので、反射手段近傍における非検知対象物の識別精度を確保することができる。また、リフレクタの配置構成の選び方により、リフレクタアレイの形状を自由に設定することができるので、上述したように反射波のビーム断面を一方向または多方向に広げるような構成を容易に実現できる。この点は、設置場所の制約など反射手段のサイズに制限がある場合に特に有利となる。  With this configuration, although the beam width of the reflected wave of each reflector is small, the overall accuracy of the reflector array is larger than the beam cross-section that can be shielded by the non-detection target. Can be secured. In addition, since the shape of the reflector array can be freely set by selecting the arrangement configuration of the reflectors, it is possible to easily realize a configuration that widens the beam cross section of the reflected wave in one direction or multiple directions as described above. This is particularly advantageous when the size of the reflecting means is limited, such as restrictions on the installation location.

なお、リフレクタの開口面の配置態様としては、全てのリフレクタの開口面を同一平面上に揃える構成が最も単純である。この構成は製造が容易であるという利点を有する。  In addition, as an arrangement mode of the opening surfaces of the reflectors, a configuration in which the opening surfaces of all the reflectors are aligned on the same plane is the simplest. This configuration has the advantage of being easy to manufacture.

また、他の配置態様としては、複数のリフレクタのそれぞれの開口面が電波の同位相面
に略沿うように配置されている構成を好適に採用できる。
Moreover, as another arrangement | positioning aspect, the structure arrange | positioned so that each opening surface of a some reflector may substantially follow the same phase surface of an electromagnetic wave can be employ | adopted suitably.

複数のリフレクタを並べて構成したリフレクタアレイにあっては、ビーム軸近傍に配置されたリフレクタとビーム軸から遠方に配置されたリフレクタとで、レーダの電波放射源からの距離にわずかながら差異が生ずる。その差異が電波の波長に比べて無視できる程度に小さい場合には、開口面を同一平面上に揃える上記の構成で特に問題が生ずることはない。しかし、その差異が大きくなると、各リフレクタの反射波同士に位相のズレが生じ、電波の干渉が起こることがある。そこで、各リフレクタの開口面を電波の同位相面に略沿わせることで、反射波同士に位相のズレが生じることを防止でき、リフレクタの反射効率を高めて、反射手段近傍における非検知対象物の識別精度を確保することができる。  In a reflector array in which a plurality of reflectors are arranged side by side, there is a slight difference in the distance from a radio wave radiation source of a radar between a reflector arranged near the beam axis and a reflector arranged far from the beam axis. In the case where the difference is so small that it can be ignored compared to the wavelength of the radio wave, there is no particular problem with the above configuration in which the aperture surfaces are aligned on the same plane. However, when the difference becomes large, a phase shift occurs between the reflected waves of the reflectors, and radio wave interference may occur. Therefore, by making the opening surface of each reflector substantially follow the same phase surface of the radio wave, it is possible to prevent the phase shift between the reflected waves, and the reflection efficiency of the reflector is improved, and the non-detection object in the vicinity of the reflection means Identification accuracy can be ensured.

また、反射手段の他の実施態様として、前記反射手段は、前記非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有するリフレクタであることが好適である。  As another embodiment of the reflecting means, the reflecting means is preferably a reflector having an opening area larger than a beam cross-sectional area that can be shielded by the non-detection object.

この構成によれば、リフレクタアレイのようにリフレクタ同士の位相ズレを防ぐような手立てを講じる必要がなくなり、製造が極めて容易となる。かかる簡易な構成によっても、反射手段近傍における非検知対象物の識別精度を確保することができる。  According to this configuration, it is not necessary to take steps to prevent the phase shift between the reflectors as in the reflector array, and the manufacturing becomes extremely easy. Even with such a simple configuration, it is possible to ensure the accuracy of identifying the non-detection object in the vicinity of the reflecting means.

このようなリフレクタの形状としては種々のものが考えられるが、その一つとして、リフレクタは、側面を反射面、底面を開口面とする錐体状または錐台状を呈して、且つ、底面を含む角部のうち少なくとも1つが切り欠かれた形状を有することが好適である。さらに好ましくは、前記リフレクタは、互いに直交する3つの反射面を備えた三角錐体状または三角錐台状を呈しているとよい。  Various shapes of such a reflector are conceivable. As one of the reflectors, the reflector has a conical shape or a frustum shape having a side surface as a reflection surface and a bottom surface as an opening surface, and the bottom surface has a bottom surface. It is preferable that at least one of the included corners has a cut-out shape. More preferably, the reflector may have a triangular pyramid shape or a triangular frustum shape having three reflecting surfaces orthogonal to each other.

上述したように、設置場所の制約などにより反射手段のサイズに制限がある場合も多いが、底面を含む角部を切り欠いたことで、限られた範囲の中で、リフレクタの開口面積を確保しつつ、リフレクタ外形の小型化を図ることができる。また、錐台状の形状を採用した場合は、頂部が平らになっているので、錐体状の形状に比べ、さらなる小型化を図ることができる。  As mentioned above, there are many cases where the size of the reflecting means is limited due to restrictions on the installation location, etc., but the opening area of the reflector is secured within a limited range by cutting out the corners including the bottom surface. However, the reflector outer shape can be reduced in size. In addition, when the frustum-shaped shape is adopted, the top is flat, so that further downsizing can be achieved as compared with the frustum-shaped shape.

また、上記本発明の構成を別の観点から捉えれば、本発明は、電波の送信および受信を行う送受信手段を有するレーダと、該レーダから送信された電波を同レーダに向けて反射する反射手段と、を備え、前記レーダと前記反射手段の間を伝搬している電波のビームからなる検知領域内に侵入した侵入物を検知する侵入物検知装置において、前記レーダ近傍の送信波を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくする送信波拡大手段を設けたことを特徴とする。そして、前記反射手段の反射波を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくする反射波拡大手段を設けたこと特徴とする。  Further, if the configuration of the present invention is viewed from another point of view, the present invention includes a radar having transmission / reception means for transmitting and receiving radio waves, and reflection means for reflecting the radio waves transmitted from the radar toward the radar. And an intruder detection apparatus that detects an intruder that has entered a detection area composed of a beam of radio waves propagating between the radar and the reflecting means, and detects a transmission wave in the vicinity of the radar as a detection target. Transmission wave expanding means is provided that makes a beam cross-sectional area larger than a beam cross-sectional area that can be shielded by a predetermined non-detected object to be excluded from. And the reflected wave expanding means for making the reflected wave of the reflecting means larger than the beam cross-sectional area that can be shielded by a predetermined non-detected object to be excluded from the detection target is provided.

また、上記各構成は回帰反射型の侵入物検知装置に関する構成として述べたが、これらのうちレーダに関する構成については直接反射型の侵入物検知装置にも好適に適用することができる。すなわち、直接反射型の侵入物検知装置に係る発明は、電波の送信および受信を行う送受信手段を有するレーダを備え、侵入物からの反射波を受信して侵入物を検知する侵入物検知装置において、前記レーダ近傍の送信波のビーム断面積を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくしたことを特徴とする構成である。この場合も、送受信手段として上記開口面アンテナを好適に用いることができる。  Moreover, although each said structure was described as a structure regarding a regression reflection type intrusion detection apparatus, among these, the structure regarding a radar can be applied suitably also to a direct reflection type intrusion detection apparatus. That is, an invention relating to a direct reflection type intruder detection apparatus includes a radar having transmission / reception means for transmitting and receiving radio waves, and receives an reflected wave from the intruder to detect the intruder. The beam cross-sectional area of the transmission wave in the vicinity of the radar is larger than the beam cross-sectional area that can be shielded by a predetermined non-detection object to be excluded from the detection object. Also in this case, the aperture antenna can be preferably used as a transmission / reception means.

上記各構成の送受信手段または反射手段を支持する支持体としては、送受信手段または反射手段が固定される固定部と、支持体が傾斜したときに固定部を支持体設置面に対して
平行運動可能とする平行運動機構と、を備えている構成を好適に採用することができる。
As the support for supporting the transmission / reception means or the reflection means of each of the above configurations, the fixed portion to which the transmission / reception means or the reflection means is fixed, and the fixed portion can be moved in parallel with the support installation surface when the support is inclined. It is possible to suitably employ a configuration including the parallel motion mechanism.

この構成によれば、支持体が、風雨や飛来物の衝突など、外環境から何らかの衝撃を受けて傾きを生じたとしても、固定部と支持体設置面との平行は保たれるので、送受信手段および反射手段が支持体の傾きの影響を受けることはない。したがって、送受信手段から発射されるビームの進行方向、および反射手段開口面とビームとの相対角度が常に一定に保たれ、ビーム軸のズレによる受信電力の低下や識別精度の低下などを未然に防止することができる。  According to this configuration, even if the support is tilted due to some impact from the outside environment such as wind and rain or a collision of flying objects, the fixed part and the support installation surface are kept parallel, so The means and the reflection means are not affected by the tilt of the support. Therefore, the traveling direction of the beam emitted from the transmission / reception means and the relative angle between the opening surface of the reflection means and the beam are always kept constant to prevent a reduction in received power and a decrease in identification accuracy due to beam axis misalignment. can do.

加えて、前記送受信手段または前記反射手段と前記支持体とを覆うレドームを備えて、且つ、前記支持体は前記レドームに対して弾性部材を介して接続されていることが好適である。  In addition, it is preferable that a radome covering the transmitting / receiving means or the reflecting means and the support is provided, and the support is connected to the radome via an elastic member.

この構成によれば、弾性部材が外環境からの衝撃を緩和する衝撃吸収手段としての機能を果たすとともに、支持体が傾きを生じたとしても、弾性部材の弾性復元力により支持体の傾きが是正されることとなるので、ビーム軸のズレによる受信電力の低下や識別精度の低下などをより一層防止することが可能となる。  According to this configuration, the elastic member functions as an impact absorbing means for mitigating the impact from the outside environment, and even if the support is tilted, the elastic restoring force of the elastic member corrects the tilt of the support. Therefore, it is possible to further prevent a decrease in received power and a decrease in identification accuracy due to beam axis misalignment.

さらに、上述した反射手段の各構成は、独立して電波反射器の発明として捉えることができる。これらの電波反射器は、上述した作用効果を奏するものであり、侵入物検知装置の反射手段として用いられて好適なものであるが、その適用範囲は侵入物検知装置に限られず、電波式レーダ装置全般に用いることが可能である。  Furthermore, each structure of the reflection means mentioned above can be grasped independently as an invention of a radio wave reflector. These radio wave reflectors have the above-described effects, and are suitable for use as the reflection means of the intruder detection device. However, the application range is not limited to the intruder detection device. It can be used for all devices.

以上説明したように、本発明の構成によれば、検知対象物と非検知対象物との識別精度が向上するので、誤検知を低減することができる。  As described above, according to the configuration of the present invention, the accuracy of discrimination between the detection target object and the non-detection target object is improved, so that erroneous detection can be reduced.

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ここでは本発明を防犯用の侵入物検知装置に適用した例を示す。なお、侵入物検知装置で検知すべき検知対象物としては人間(特に成人)を、検知対象から除外すべき非検知対象物としては、鳥や犬などの小動物およびボールなどの飛来物を想定している。  Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. Here, an example in which the present invention is applied to an intruder detection apparatus for crime prevention is shown. In addition, humans (especially adults) are assumed as detection objects to be detected by the intruder detection device, and small animals such as birds and dogs and flying objects such as balls are assumed as non-detection objects to be excluded from detection objects. ing.

(第1の実施の形態)
図1〜図7を参照して、本発明の第1の実施の形態に係る侵入物検知装置について説明する。
(First embodiment)
With reference to FIGS. 1-7, the intruder detection apparatus which concerns on the 1st Embodiment of this invention is demonstrated.

図1は、本実施の形態の侵入物検知装置の全体構成を示す概略図である。同図に示すように、侵入物検知装置は、レーダ1と、レーダ1に対向して設置された電波反射器2とから構成される、いわゆる回帰反射型レーダ装置である。  FIG. 1 is a schematic diagram showing the overall configuration of the intruder detection apparatus according to the present embodiment. As shown in the figure, the intruder detection apparatus is a so-called regressive reflection type radar apparatus including aradar 1 and aradio wave reflector 2 installed to face theradar 1.

レーダ1は、電波の送信および受信を行う送受信手段としての送受信アンテナ1aを備える。送受信アンテナ1aは、開口面アンテナの一形態であるオフセットパラボラアンテナとして構成され、電波の一次放射源3と反射鏡4を備えている。反射鏡4は、回転放物面からなる反射面を有するもので、その形状は一次放射源3から放射される電波の周波数に依存して決定されている。また、反射鏡4の開口面は、非検知対象物たる鳥9に比べて十分に大きな開口面積を有している。すなわち、送受信アンテナ1aは、非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有している。  Theradar 1 includes a transmission /reception antenna 1a as transmission / reception means for transmitting and receiving radio waves. The transmission /reception antenna 1a is configured as an offset parabolic antenna which is a form of an aperture antenna, and includes aprimary radiation source 3 and a reflectingmirror 4 of radio waves. The reflectingmirror 4 has a reflecting surface composed of a rotating paraboloid, and its shape is determined depending on the frequency of the radio wave radiated from theprimary radiation source 3. Further, the opening surface of the reflectingmirror 4 has a sufficiently large opening area as compared with thebird 9 which is a non-detection object. That is, the transmission /reception antenna 1a has an opening area larger than the beam cross-sectional area that can be shielded by the non-detection target.

電波の送信時、一次放射源3から反射鏡4に向けて放射された送信波(電波)5は、反
射鏡4によって反射され、その開口面において位相の揃った平面波として放射される。この平面波としての送信波5は、比較的鋭い指向性を有し、広がりの少ない平行ビームとなる。この送信波5は、レーダ1近傍において既に、検知対象物たる人間8の高さHよりも小さく、且つ、非検知対象物たる鳥9の高さCよりも十分に大きな垂直方向のビーム幅A1を有することとなる。
During transmission of radio waves, a transmission wave (radio wave) 5 radiated from theprimary radiation source 3 toward the reflectingmirror 4 is reflected by the reflectingmirror 4 and radiated as a plane wave having a uniform phase at the opening surface. Thetransmission wave 5 as a plane wave has a relatively sharp directivity and becomes a parallel beam with little spread. Thistransmission wave 5 is already in the vicinity of theradar 1 and has a beam width A1 in the vertical direction that is smaller than the height H of theperson 8 as the detection target and sufficiently larger than the height C of thebird 9 as the non-detection target. It will have.

また、電波の受信時には、電波反射器2によって反射された反射波7は、反射鏡4によって反射・集中されて、一次放射源3にて受信される。  At the time of receiving a radio wave, the reflectedwave 7 reflected by theradio wave reflector 2 is reflected and concentrated by the reflectingmirror 4 and received by theprimary radiation source 3.

電波反射器2は、レーダ1から送信された送信波5を同レーダ1に向けて反射する反射手段としてのリフレクタアレイ6を備えて構成されている。このリフレクタアレイ6は、入射された電波を入射方向と略反対の方向に向けて反射する性質を有するリフレクタを複数配置して構成されたもので、リフレクタアレイ6全体としてもその性質を保存している。  Theradio wave reflector 2 includes areflector array 6 as a reflection unit that reflects thetransmission wave 5 transmitted from theradar 1 toward theradar 1. Thereflector array 6 is configured by arranging a plurality of reflectors having a property of reflecting incident radio waves in a direction substantially opposite to the incident direction. Thereflector array 6 as a whole preserves the property. Yes.

本実施の形態のリフレクタアレイ6の構成を図2および図3に示す。図2(a)は、リフレクタアレイ6の一部分を示す斜視図であり、同図(b)は、リフレクタアレイ6の構成要素であるリフレクタ11の形状を示す斜視図である。図3(a)は、リフレクタアレイ6の正面図であり、同図(b)は、リフレクタアレイ6のB−B断面図である。  The structure of thereflector array 6 of this Embodiment is shown in FIG. 2 and FIG. FIG. 2A is a perspective view showing a part of thereflector array 6, and FIG. 2B is a perspective view showing the shape of thereflector 11 that is a component of thereflector array 6. FIG. 3A is a front view of thereflector array 6, and FIG. 3B is a BB cross-sectional view of thereflector array 6.

図2および図3に併せ示すように、リフレクタアレイ6は、開口面11bを揃えて配置された比較的小型の複数のリフレクタ11の集合体として構成されている。このリフレクタアレイ6は、たとえば樹脂製の基体10の表面を切削加工して三角錐体状の凹部を複数形成し、その凹部の表面にAlなどの金属を蒸着することにより作製することができる。  As shown in FIGS. 2 and 3, thereflector array 6 is configured as an aggregate of a plurality of relativelysmall reflectors 11 arranged with the opening surfaces 11 b aligned. Thereflector array 6 can be manufactured, for example, by cutting the surface of aresin base 10 to form a plurality of triangular pyramid-shaped recesses and depositing a metal such as Al on the surface of the recesses.

各々のリフレクタ11は、互いに直交する3つの反射面11aを備えた三角錐体状を呈しており、その底面に相当するところが開口面11bとなっている。反射面11aはそれぞれ合同の直角二等辺三角形であり、開口面11bは正三角形となる。なお、リフレクタの形状はこれに限られず、例えば開口面が四角形のものや六角形のものなど種々の形状のものを採用することができる。  Eachreflector 11 has a triangular pyramid shape including three reflectingsurfaces 11a orthogonal to each other, and a portion corresponding to the bottom surface is anopening surface 11b. Each of thereflection surfaces 11a is a congruent right isosceles triangle, and theopening surface 11b is an equilateral triangle. The shape of the reflector is not limited to this, and various shapes such as a rectangular opening or a hexagon can be employed.

電波反射器2は屋外での耐環境性向上のために円筒状の縦長のレドームなどに収納されるケースが多く、外形サイズの制限を受けることが多い。しかし、上記のように比較的小型のリフレクタ11を複数配置する構成とすれば、リフレクタ11の配置構成の選び方しだいで、最適な開口面積を確保したまま電波反射器2の小型化を図ることができる。  In many cases, theradio wave reflector 2 is housed in a cylindrical vertically long radome in order to improve the outdoor environment resistance, and is often limited by the outer size. However, if a plurality of relativelysmall reflectors 11 are arranged as described above, theradio wave reflector 2 can be reduced in size while ensuring an optimum opening area depending on how thereflectors 11 are arranged. it can.

本実施の形態では、電波反射器2を縦長のレドームに収納することを想定して、水平方向に4列、垂直方向に7行の28個のリフレクタ11を配列した縦長のリフレクタアレイ6を用いている。すなわち、水平方向の幅については、設置場所の制約から比較的小さく設定し、垂直方向の幅については、リフレクタアレイ6全体の開口面積が非検知対象物が遮蔽し得るビーム断面積よりも大きくなるように設定している。  In the present embodiment, assuming that theradio wave reflector 2 is housed in a vertically long radome, a verticallylong reflector array 6 in which 28reflectors 11 in 4 rows in the horizontal direction and 7 rows in the vertical direction are arranged is used. ing. That is, the horizontal width is set to be relatively small due to restrictions on the installation location, and the vertical width is larger than the beam cross-sectional area that can be shielded by the non-detection target for theentire reflector array 6. It is set as follows.

かかる構成のリフレクタアレイ6を用いた場合、図1に示すように、リフレクタアレイ6によって反射された反射波(電波)7は、その開口面において位相の揃った平面波として放射され、送信波5と略同様の平行ビームとなる。この反射波7は、電波反射器2近傍において既に、検知対象物たる人間8の高さHよりも小さく、且つ、非検知対象物たる鳥9の高さCよりも十分に大きな垂直方向のビーム幅A2を有することとなる。  When thereflector array 6 having such a configuration is used, as shown in FIG. 1, the reflected wave (radio wave) 7 reflected by thereflector array 6 is radiated as a plane wave having a uniform phase at its opening surface, It becomes a substantially similar parallel beam. This reflectedwave 7 is a beam in the vertical direction which is already smaller than the height H of theperson 8 as the detection target and sufficiently larger than the height C of thebird 9 as the non-detection target in the vicinity of theradio wave reflector 2. It will have width A2.

このように本装置では、レーダ1と電波反射器2との間に、平行ビームからなる検知領域D(警戒線とも称す。)が形成される。この検知領域Dは、レーダ1の送受信アンテナ
1a開口面から電波反射器2のリフレクタアレイ6開口面までの全域に亘り、少なくとも垂直方向において、鳥9などの非検知対象物が遮蔽し得る最大のビーム断面よりも広い幅を有している。したがって、レーダ1近傍または電波反射器2近傍においても、検知領域D中間部と同様の精度で侵入物検知を行うことができる。
As described above, in the present apparatus, a detection region D (also referred to as a warning line) composed of parallel beams is formed between theradar 1 and theradio wave reflector 2. This detection area D is the maximum that can be shielded by non-detection objects such asbirds 9 at least in the vertical direction over the entire area from the opening surface of the transmission /reception antenna 1a of theradar 1 to the opening surface of thereflector array 6 of theradio wave reflector 2. It has a width wider than the beam cross section. Therefore, intruder detection can be performed with the same accuracy as that in the detection region D intermediate portion in the vicinity of theradar 1 or theradio wave reflector 2.

次に、図4を参照してレーダ1の内部構成について詳しく説明する。図4は、レーダ1の構成を示す機能ブロック図である。  Next, the internal configuration of theradar 1 will be described in detail with reference to FIG. FIG. 4 is a functional block diagram showing the configuration of theradar 1.

レーダ1はFM−CW方式(FM - continuous wave method)ミリ波レーダを構成して
おり、同図に示すように、送受信アンテナ1a、FM変調器12、発信器13、サーキュレータ14、ミキサ15、A/D変換器16、FFT処理部17、および信号解析部18を備えた構成となっている。FM−CW方式とは、連続波にFMの変調をかけて送信し、送信波と反射波の位相差に基づいて物体の存在および物体までの距離を検知する方式である。
Theradar 1 constitutes an FM-CW method (FM-continuous wave method) millimeter wave radar, and as shown in the figure, a transmission /reception antenna 1a, anFM modulator 12, atransmitter 13, acirculator 14, amixer 15, A The D /D converter 16, theFFT processing unit 17, and thesignal analysis unit 18 are provided. The FM-CW method is a method in which FM is modulated on a continuous wave and transmitted, and the presence of the object and the distance to the object are detected based on the phase difference between the transmitted wave and the reflected wave.

FM変調器12は、発信器13にて生成される送信波信号の周波数を制御するためのブロックである。FM変調器12は、送信周波数が基準周波数を中心にして所定の周波数偏移で直線的に変化するように制御信号を生成し、発信器13に出力する。本実施の形態では、基準周波数を76GHz、最大周波数偏移を±100MHzに設定しており、電波の波長は約4mmとなる。  TheFM modulator 12 is a block for controlling the frequency of the transmission wave signal generated by thetransmitter 13. TheFM modulator 12 generates a control signal so that the transmission frequency changes linearly with a predetermined frequency shift around the reference frequency, and outputs the control signal to thetransmitter 13. In this embodiment, the reference frequency is set to 76 GHz, the maximum frequency deviation is set to ± 100 MHz, and the wavelength of the radio wave is about 4 mm.

発信器13は、FM変調器12から入力された制御信号に基づいて送信波信号を変調するブロックである。ここで変調された送信波信号は、サーキュレータ14およびミキサ15に入力される。  Thetransmitter 13 is a block that modulates the transmission wave signal based on the control signal input from theFM modulator 12. The transmission wave signal modulated here is input to thecirculator 14 and themixer 15.

サーキュレータ14は、送信波と受信波の信号を分波するための装置である。このサーキュレータ14は3つの端子を有し、それぞれ発信器13、送受信アンテナ1a、ミキサ15に接続されている。サーキュレータ14の3つの端子間では、入力と出力の方向が循環的に定まっており、発信器13から入力された送信波信号は送受信アンテナ1aに出力され、送受信アンテナ1aから入力された受信波信号はミキサ15に出力される。  Thecirculator 14 is a device for demultiplexing the signals of the transmission wave and the reception wave. Thecirculator 14 has three terminals and is connected to thetransmitter 13, the transmitting / receivingantenna 1a, and themixer 15, respectively. Between the three terminals of thecirculator 14, the input and output directions are cyclically determined. The transmission wave signal input from thetransmitter 13 is output to the transmission /reception antenna 1a, and the reception wave signal input from the transmission /reception antenna 1a. Is output to themixer 15.

ミキサ15は、発信器13から入力された送信波信号の周波数と、サーキュレータ14から入力された受信波信号の周波数との間の位相差に基づきビート信号を生成するための周波数混合器である。  Themixer 15 is a frequency mixer for generating a beat signal based on the phase difference between the frequency of the transmission wave signal input from thetransmitter 13 and the frequency of the reception wave signal input from thecirculator 14.

A/D変換器16は、ミキサ15から得られたビート信号をディジタル信号に変換するための装置である。  The A /D converter 16 is a device for converting the beat signal obtained from themixer 15 into a digital signal.

FFT処理部17は、ミキサ15において生成されA/D変換器16によってディジタル信号に変換されたビート信号に対して、FFT(fast fourier transform;高速フーリエ変換)処理を行うブロックである。FFT処理が行われたビート信号は、スペクトル変換されて、周波数と受信電力強度のパラメータによって表されるスペクトルデータに変換される。  TheFFT processing unit 17 is a block that performs FFT (fast fourier transform) processing on the beat signal generated in themixer 15 and converted into a digital signal by the A /D converter 16. The beat signal on which the FFT processing has been performed is subjected to spectrum conversion and converted into spectrum data represented by parameters of frequency and received power intensity.

図5は、横軸に周波数、縦軸に受信電力強度をとったスペクトルデータの一例を示すグラフである。このグラフにおいて、ピークは何らかの物体からの反射波を示しており、ピークの周波数は、その物体のレーダ1からの距離を示していることになる。このグラフにおいて、ピークP1は検知領域内に侵入した物体からの直接反射波に対応しており、ピークP2は、電波反射器2からの回帰反射波に対応している。ピークの周波数は、その物体または電波反射器2のレーダ1からの距離に対応している。  FIG. 5 is a graph showing an example of spectrum data in which the horizontal axis represents frequency and the vertical axis represents received power intensity. In this graph, the peak indicates a reflected wave from some object, and the peak frequency indicates the distance of the object from theradar 1. In this graph, the peak P1 corresponds to a direct reflected wave from an object that has entered the detection region, and the peak P2 corresponds to a regressive reflected wave from theradio wave reflector 2. The peak frequency corresponds to the distance of the object orradio wave reflector 2 from theradar 1.

信号解析部18は、FFT処理部17によって得られたスペクトルデータ(観測波形)に基づいて、検知領域内への侵入者あるいは侵入物を検知するブロックである。侵入者あるいは侵入物が不在の場合には、ピークP1は現れず、ピークP2が定常的に現れるスペクトルデータを観測することができる。そして、侵入者等が存在する場合には、ピークP1が出現し、逆にピークP2の強度が弱くなる。このときのピーク強度の変動量は物体が遮蔽するビーム量によって異なる。信号解析部18は、これらのピークの変動量を観測することで、侵入した物体が検知対象物か否かの判定を行う。  Thesignal analysis unit 18 is a block that detects an intruder or an intruder in the detection area based on the spectrum data (observation waveform) obtained by theFFT processing unit 17. In the absence of an intruder or intruder, the peak P1 does not appear, and spectral data in which the peak P2 appears constantly can be observed. When an intruder or the like exists, the peak P1 appears, and conversely, the intensity of the peak P2 becomes weak. The amount of fluctuation in peak intensity at this time varies depending on the amount of beam shielded by the object. Thesignal analysis unit 18 determines whether or not the intruding object is a detection target object by observing the fluctuation amount of these peaks.

信号解析部18において行われる判定処理の流れについて、図6のフローチャートを参照しながら説明する。侵入物検知装置の稼動中は、以下の判定処理が所定の単位時間間隔で実行される。  The flow of determination processing performed in thesignal analysis unit 18 will be described with reference to the flowchart of FIG. While the intruder detection apparatus is in operation, the following determination process is executed at predetermined unit time intervals.

まず判定処理が開始されると、ステップS1において、本装置が回帰反射波の測定処理を実行可能か否かの判断を行う。実行不可と判断された場合は、回帰反射波に基づく判定処理をスキップする。ここで実行不可と判断されるケースとしては、たとえば、本装置を直接反射型レーダ装置として使用しているケース、何らかの要因により電波反射器2からの回帰反射波の定常観測ができないケースなどが考えられる。  First, when the determination process is started, in step S1, it is determined whether or not the apparatus can execute the measurement process of the return reflection wave. When it is determined that the execution is impossible, the determination process based on the regression reflected wave is skipped. Cases that are determined to be infeasible include, for example, a case where the present apparatus is used as a direct reflection type radar apparatus, and a case where a stationary reflected wave from theradio wave reflector 2 cannot be observed for some reason. It is done.

一方、ステップS1において実行可能と判断された場合には、ステップS2において回帰反射波に基づく判定処理を実行する。ここでは、まず単位時間について所定回数の回帰反射波の観測を行い、得られたスペクトルデータの平均化処理を行って、単位時間のFFT瞬時値を演算する。一般に、瞬間的に得られるデータは、物体の移動や向きなどの状態によって増減があり、ノイズ成分の影響も大きいので、このように単位時間あたりの複数の観測データを平均することでS/N比の高いデータを得ることができる。  On the other hand, if it is determined in step S1 that it can be executed, a determination process based on the regression reflected wave is executed in step S2. Here, first, the regression reflected wave is observed a predetermined number of times per unit time, the obtained spectrum data is averaged, and the FFT instantaneous value per unit time is calculated. In general, the data obtained instantaneously varies depending on the state of movement and orientation of the object, and the influence of noise components is large. Thus, by averaging a plurality of observation data per unit time in this way, the S / N Data with a high ratio can be obtained.

次に、得られたFFT瞬時値と、メモリなどの記憶部にあらかじめ記憶されているFFT平均値とを比較する。このFFT平均値は、検知領域内に侵入物が存在しない場合の定常的な受信電力強度を示す値である。  Next, the obtained FFT instantaneous value is compared with an FFT average value stored in advance in a storage unit such as a memory. This FFT average value is a value indicating the steady received power intensity when no intruder exists in the detection area.

図7(a)は、横軸に時間、縦軸に受信電力強度をとった、回帰反射波のスペクトルデータの一例を示すグラフである。このグラフは時間の経過に伴うFFT瞬時値の変化を示したものである。なお、縦軸の受信電力強度は、FFT平均値に対する相対値(差分値)を示している。  FIG. 7A is a graph showing an example of spectrum data of the regression reflected wave, with time on the horizontal axis and received power intensity on the vertical axis. This graph shows the change of the FFT instantaneous value with the passage of time. The received power intensity on the vertical axis indicates a relative value (difference value) with respect to the FFT average value.

このグラフにおいて、検知領域内に侵入物が存在しない場合には定常的な受信電力強度としてFFT平均値と略同じ値が観測されている。PB1の部分は、レーダ1近傍を鳥が横切った場合の観測データを示し、PH1の部分は、同様の箇所を人間が横切った場合の観測データを示している。  In this graph, when there is no intruder in the detection area, a value substantially equal to the FFT average value is observed as the steady received power intensity. The PB1 portion shows observation data when a bird crosses the vicinity of theradar 1, and the PH1 portion shows observation data when a human crosses a similar portion.

本実施の形態では、レーダ1近傍の送信波のビーム断面積を、鳥などの非検知対象物が遮蔽し得るビーム断面積よりも大きくしている。したがって、レーダ1近傍の検知領域内を鳥などが通過した場合であっても、一部のビームが遮られるにすぎないので、受信電力強度の低下は約6dB程度にとどまる。一方、検知領域内に人間が侵入した場合には、ビームの大半が遮られることとなり、受信電力強度が約14dBほど低下する。  In the present embodiment, the beam cross-sectional area of the transmission wave in the vicinity of theradar 1 is made larger than the beam cross-sectional area that can be shielded by a non-detection target such as a bird. Therefore, even if a bird or the like passes through the detection area in the vicinity of theradar 1, only a part of the beam is blocked, so that the reduction in received power intensity is only about 6 dB. On the other hand, when a person enters the detection area, most of the beam is blocked, and the received power intensity is reduced by about 14 dB.

このように、本実施の形態によれば、レーダ1近傍の検知領域であっても、検知対象物がビームを遮った場合と非検知対象物がビームを遮った場合とで、受信電力強度に明確な差異が生ずる。なお、電波反射器2近傍の検知領域についても同様の結果が得られる。  As described above, according to the present embodiment, even in the detection region in the vicinity of theradar 1, the received power intensity is increased when the detection object blocks the beam and when the non-detection object blocks the beam. There is a clear difference. Similar results can be obtained for the detection region in the vicinity of theradio wave reflector 2.

ステップS2においては、まずFFT瞬時値とFFT平均値との差分を計算する。そして、この差分値が−8dB未満であれば変数Aに0.9を代入し、−8以上−10dB未満であれば1.0を代入し、−10dB以上−12dB未満であれば1.2を代入し、−12dB以上であれば1.4を代入する。たとえば、図7(a)の例であれば、PB1の部分におけるFFT瞬時値については、差分値が約−6dBであるので、変数Aには0.9が代入される。また、PH1の部分におけるFFT瞬時値については、差分値が約−14dBであるので、変数Aには1.4が代入される。  In step S2, first, the difference between the FFT instantaneous value and the FFT average value is calculated. If the difference value is less than −8 dB, 0.9 is substituted for the variable A, 1.0 is substituted if it is −8 to −10 dB, and 1.2 if it is −10 dB to less than −12 dB. If it is -12 dB or more, 1.4 is substituted. For example, in the example of FIG. 7A, since the difference value is about −6 dB for the FFT instantaneous value in the portion PB1, 0.9 is substituted for the variable A. Further, with respect to the FFT instantaneous value in the PH1 portion, the difference value is about −14 dB, so that 1.4 is substituted for the variable A.

次に、ステップS3において、本装置が直接反射波の測定処理を実行可能か否かの判断を行う。実行不可と判断された場合は、ステップS4に移行し、異常終了である旨のエラーコードを返して処理を終了する。なお、ここで実行不可と判断された場合であっても、ステップS2において回帰反射波の測定処理を実行している場合には、直接反射波に基づく判定処理をスキップして、ステップS6に処理を進める。  Next, in step S3, it is determined whether or not the apparatus can execute the reflected wave measurement process. If it is determined that execution is not possible, the process proceeds to step S4, an error code indicating abnormal termination is returned, and the process is terminated. Even if it is determined that execution is not possible here, if the measurement processing of the return reflection wave is executed in step S2, the determination process based on the direct reflection wave is skipped and the process proceeds to step S6. To proceed.

一方、ステップS3において実行可能と判断された場合には、ステップS5において直接反射波に基づく判定処理を実行する。ここでは、まず単位時間について所定回数の直接反射波の観測を行い、得られたスペクトルデータの平均化処理を行って、単位時間のFFT瞬時値を演算する。平均化処理についてはステップS2で行ったものと同様である。  On the other hand, if it is determined in step S3 that it can be executed, a determination process based on the direct reflected wave is executed in step S5. Here, a direct reflected wave is observed a predetermined number of times per unit time, and the obtained spectrum data is averaged to calculate an FFT instantaneous value per unit time. The averaging process is the same as that performed in step S2.

次に、得られたFFT瞬時値と、メモリなどの記憶部にあらかじめ記憶されている侵入者の判定値とを比較する。この判定値は、検知領域内に検知対象物(侵入者)が存在する場合に得られる受信電力強度に基づき設定される値である。好ましくは、非検知対象物である鳥や飛来物などから得られうる受信電力強度よりも十分に大きく、且つ、検知対象物であるとの確実性を得るに足る下限値よりも小さく設定するとよい。下限値よりも小さく設定するのは、判定値にある程度の余裕をもたせることで、侵入者を非検知対象物と誤って判定してしまうことを防止するためである。なお、直接反射波の受信電力強度はレーダ1から侵入物までの距離に応じて変化するため、距離に応じた複数の判定値をあらかじめ用意しておき、直接反射波のピーク周波数に基づきステップS3で用いる判定値を選択することが好ましい。  Next, the obtained FFT instantaneous value is compared with an intruder determination value stored in advance in a storage unit such as a memory. This determination value is a value set based on the received power intensity obtained when a detection target (intruder) exists in the detection area. Preferably, the received power intensity that can be obtained from a bird or flying object that is a non-detection target is sufficiently larger than the lower limit that is sufficient to obtain certainty that it is a detection target. . The reason why the value is set to be smaller than the lower limit value is to prevent the intruder from being erroneously determined as a non-detection object by giving a certain margin to the determination value. Since the received power intensity of the directly reflected wave changes according to the distance from theradar 1 to the intruder, a plurality of determination values corresponding to the distance are prepared in advance, and step S3 is performed based on the peak frequency of the directly reflected wave. It is preferable to select a judgment value used in the above.

図7(b)は、横軸に時間、縦軸に受信電力強度をとった、直接反射波のスペクトルデータの一例を示すグラフである。このグラフは時間の経過に伴うFFT瞬時値の変化を示したものである。なお、縦軸の受信電力強度は、上記判定値に対する相対値(差分値)を示している。  FIG. 7B is a graph showing an example of spectral data of a directly reflected wave, with time on the horizontal axis and received power intensity on the vertical axis. This graph shows the change of the FFT instantaneous value with the passage of time. The received power intensity on the vertical axis indicates a relative value (difference value) with respect to the determination value.

このグラフにおいて、検知領域内に侵入物が存在しない場合には定常的な受信電力強度として−22dBのノイズが観測されている。PB2の部分は、レーダ1近傍を鳥が横切った場合の観測データを示し、PH2の部分は、同様の箇所を人間が横切った場合の観測データを示している。  In this graph, when there is no intruder in the detection area, a noise of −22 dB is observed as a steady received power intensity. The PB2 portion shows observation data when a bird crosses the vicinity of theradar 1, and the PH2 portion shows observation data when a human crosses a similar portion.

本実施の形態では、レーダ1近傍の送信波のビーム断面積を、鳥などの非検知対象物が遮蔽し得るビーム断面積よりも大きくしている。したがって、レーダ1近傍の検知領域内を鳥などが通過した場合であっても、一部のビームが反射されるにすぎないので、受信電力強度の増加は約18dB程度にとどまり、あらかじめ記憶している判定値(グラフでは0dB)には届かない(約−4dBほど小さい)。一方、検知領域内に人間が侵入した場合には、ビームの大半が反射されることとなり、受信電力強度が約26dBほど増加して、上記判定値を超えることがわかる。  In the present embodiment, the beam cross-sectional area of the transmission wave in the vicinity of theradar 1 is made larger than the beam cross-sectional area that can be shielded by a non-detection target such as a bird. Therefore, even if a bird or the like passes through the detection area in the vicinity of theradar 1, only a part of the beam is reflected, so that the increase in received power intensity is only about 18 dB and is stored in advance. The determination value (0 dB in the graph) does not reach (it is as small as about -4 dB). On the other hand, when a person enters the detection area, most of the beam is reflected, and it is understood that the received power intensity increases by about 26 dB and exceeds the determination value.

このように、本実施の形態によれば、レーダ1近傍の検知領域であっても、検知対象物がビームを遮った場合と非検知対象物がビームを遮った場合とで、受信電力強度に明確な
差異が生ずる。なお、電波反射器2近傍の検知領域についても同様の結果が得られる。
As described above, according to the present embodiment, even in the detection region in the vicinity of theradar 1, the received power intensity is increased when the detection object blocks the beam and when the non-detection object blocks the beam. There is a clear difference. Similar results can be obtained for the detection region in the vicinity of theradio wave reflector 2.

ステップS5においては、まずFFT瞬時値と判定値との差分を計算する。そして、この差分値が+0dB未満であれば変数Bに0.9を代入し、+0以上+1dB未満であれば1.0を代入し、+1dB以上+3dB未満であれば1.2を代入し、+3dB以上であれば1.4を代入する。たとえば、図7(b)の例であれば、PB2の部分におけるFFT瞬時値については、差分値が約−4dBであるので、変数Bには0.9が代入される。また、PH2の部分におけるFFT瞬時値については、差分値が約+4dBであるので、変数Bには1.4が代入される。  In step S5, first, the difference between the FFT instantaneous value and the determination value is calculated. Then, if this difference value is less than +0 dB, 0.9 is substituted for the variable B, 1.0 is substituted if it is +0 or more and less than +1 dB, 1.2 is substituted if it is +1 dB or more and less than +3 dB, and +3 dB. If so, 1.4 is substituted. For example, in the example of FIG. 7B, since the difference value is about −4 dB for the FFT instantaneous value in the portion of PB2, 0.9 is substituted for the variable B. Further, since the difference value is about +4 dB for the FFT instantaneous value in the PH2 portion, 1.4 is substituted for the variable B.

次に、ステップS6において、変数Aと変数Bの結果を乗算し、その結果が1.0以上か否かが判断される。なお、ステップS2またはステップS5の処理のいずれか一方しか実行していない場合には、変数同士の乗算は行わず、値の代入された変数のみで上記判断を行う。  Next, in step S6, the results of the variable A and the variable B are multiplied, and it is determined whether or not the result is 1.0 or more. Note that if only one of the processes of step S2 or step S5 is executed, the variables are not multiplied, and the above determination is made using only the variables to which the values are assigned.

ここで1.0以上と判断された場合は、観測されたピークが検知対象物のもの、すなわち侵入者が存在すると判定する。一方、1.0未満と判断された場合には、観測されたピークは検知対象物のものではない、すなわち侵入者は存在しないと判定する。  When it is determined that the value is 1.0 or more, it is determined that the observed peak is that of the detection target, that is, there is an intruder. On the other hand, when it is determined that it is less than 1.0, it is determined that the observed peak is not that of the object to be detected, that is, there is no intruder.

以上述べたように、本実施の形態によれば、レーダ1近傍あるいは電波反射器2近傍においても、検知対象物による受信電力と非検知対象物による受信電力とを明確に識別することができるので、侵入物が検知対象物であるか否かの判定を高精度に行うことができる。  As described above, according to the present embodiment, it is possible to clearly discriminate between the received power by the detection object and the reception power by the non-detection object even in the vicinity of theradar 1 or theradio wave reflector 2. It is possible to determine with high accuracy whether or not the intruder is a detection target.

また、回帰反射波の測定結果と直接反射波の測定結果とを組み合わせた値に基づき判定を行うため、ノイズなどの影響を受けづらく、判定結果の信頼性が向上し、誤検知が少なくなる。  In addition, since the determination is performed based on a value obtained by combining the measurement result of the return reflection wave and the measurement result of the direct reflection wave, the determination result is less affected by noise and the like, the reliability of the determination result is improved, and erroneous detection is reduced.

次に、本発明の他の実施の形態について説明を行う。以下の説明では、第1の実施の形態と同一の構成部分について同一の符号を付して詳しい説明は省略し、第1の実施の形態と異なる特徴部分を中心に説明を行う。  Next, another embodiment of the present invention will be described. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and description will be made focusing on characteristic portions different from those in the first embodiment.

(第2の実施の形態)
図8には、本発明の第2の実施の形態が示されている。上記第1の実施の形態では、送受信手段としてパラボラアンテナを用いたが、本実施の形態では、レンズアンテナで構成している。
(Second Embodiment)
FIG. 8 shows a second embodiment of the present invention. In the first embodiment, the parabolic antenna is used as the transmission / reception means. However, in the present embodiment, the antenna is configured by a lens antenna.

同図に示すように、本実施の形態の送受信アンテナ1bは、開口面アンテナの一形態であるレンズアンテナとして構成され、電波の一次放射源3と、電波レンズとしての凹レンズ19および凸レンズ20とを備えている。  As shown in the figure, the transmitting / receivingantenna 1b of the present embodiment is configured as a lens antenna that is a form of an aperture antenna, and includes aprimary radiation source 3 of radio waves, aconcave lens 19 and aconvex lens 20 as radio wave lenses. I have.

凹レンズ19および凸レンズ20は、セラミックや樹脂などの誘電率の高い材料からなる誘電体レンズである。これらは、光学レンズと同様な形状に構成することができる。なお、一次放射源3からの電波の広がりが大きい場合は、凹レンズ19を用いなくてもよい。  Theconcave lens 19 and theconvex lens 20 are dielectric lenses made of a material having a high dielectric constant such as ceramic or resin. These can be configured in the same shape as the optical lens. If the spread of the radio wave from theprimary radiation source 3 is large, theconcave lens 19 may not be used.

電波の送信時、一次放射源3から凹レンズ19に向けて放射された送信波21は、凹レンズ19により拡大され、凸レンズ20により平行ビームに屈折されて、その開口面において位相の揃った平面波として放射される。この平面波としての送信波21は、比較的鋭い指向性を有し、広がりの少ない平行ビームとなる。  During transmission of radio waves, thetransmission wave 21 radiated from theprimary radiation source 3 toward theconcave lens 19 is magnified by theconcave lens 19, refracted into a parallel beam by theconvex lens 20, and radiated as a plane wave having a uniform phase at the aperture surface. Is done. Thetransmission wave 21 as a plane wave has a relatively sharp directivity and becomes a parallel beam with little spread.

送受信アンテナ1bは、非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有するので、この送信波21は、レーダ近傍において既に、非検知対象物たる鳥よりも十分に大きなビーム幅を有することになる。  Since the transmission /reception antenna 1b has an opening area larger than the beam cross-sectional area that can be shielded by the non-detection object, thetransmission wave 21 already has a beam width sufficiently larger than that of the bird as the non-detection object in the vicinity of the radar. Will have.

したがって、本実施の形態の構成によっても、上記第1の実施の形態と同様の作用効果を奏することができる。  Therefore, even with the configuration of the present embodiment, the same operational effects as those of the first embodiment can be obtained.

(第3の実施の形態)
図9には、本発明の第3の実施の形態が示されている。
(Third embodiment)
FIG. 9 shows a third embodiment of the present invention.

レーダに使われる電波の周波数として76GHzのものを選んだ場合、その波長は4mmとなるので、レーダの電波が往復することを考えると、見通し直線距離(電波の経路差の半分)が2mmごとに電波が強めあう点が存在し、またその点から1mmずれたところに電波が弱めあう点が存在することになる。これは電波の干渉によるものである。したがって、図中破線で示したように、リフレクタ11の開口面11bを同一平面上に揃える構成とした場合、上記電波の干渉が生じ、反射効率が悪くなることがある。  If the frequency of the radio wave used for radar is 76 GHz, the wavelength is 4 mm. Therefore, considering that the radar radio wave reciprocates, the line-of-sight distance (half the radio wave path difference) is every 2 mm. There is a point where the radio waves strengthen each other, and there is a point where the radio waves weaken at aposition 1 mm away from the point. This is due to radio wave interference. Therefore, as shown by the broken line in the figure, when the openingsurface 11b of thereflector 11 is arranged on the same plane, the radio wave interference may occur and the reflection efficiency may deteriorate.

そこで本実施の形態では、リフレクタ11の開口面11b′が電波の同位相面23に略沿うように、各リフレクタ11を配置している。すなわち、レーダから各リフレクタ11までの距離が等距離Rとなるように、半径Rの球面上に開口面11b′を揃えた構成とする。  Therefore, in the present embodiment, eachreflector 11 is arranged so that the openingsurface 11 b ′ of thereflector 11 is substantially along thesame phase surface 23 of the radio wave. That is, theaperture surface 11b ′ is arranged on the spherical surface with the radius R so that the distance from the radar to eachreflector 11 becomes equal distance R.

なお、各開口面11b′を上記球面上に厳密に沿わせる必要はなく、電波の干渉を防止するためであれば、レーダから各リフレクタ11までの距離のバラツキが波長の1/4未満、すなわち1mm未満におさまれば十分である。  Note that it is not necessary for each openingsurface 11b 'to be exactly along the spherical surface, and in order to prevent radio wave interference, the variation in distance from the radar to eachreflector 11 is less than ¼ of the wavelength, that is, It is sufficient if it is less than 1 mm.

かかる構成によれば、上記第1の実施の形態と同様の作用効果に加えて、反射波同士の位相のズレや干渉が生じることを防止でき、リフレクタ22の反射効率を高めて、電波反射器2近傍における非検知対象物の識別精度を一層向上させることが可能となる。  According to such a configuration, in addition to the same effects as those of the first embodiment, it is possible to prevent the occurrence of phase shift and interference between the reflected waves, and the reflection efficiency of thereflector 22 can be improved, thereby improving the radio wave reflector. It becomes possible to further improve the identification accuracy of the non-detection target in the vicinity of 2.

(第4の実施の形態)
図10および図11には、本発明の第4の実施の形態が示されている。上記第1の実施の形態では、小型のリフレクタを複数並べたリフレクタアレイを用いたが、本実施の形態では、大型の単一のリフレクタを用いて電波反射器を構成している。
(Fourth embodiment)
10 and 11 show a fourth embodiment of the present invention. In the first embodiment, the reflector array in which a plurality of small reflectors are arranged is used. However, in the present embodiment, the radio wave reflector is configured by using a single large reflector.

一般に、リフレクタは、その開口面積に応じた反射電力を得ることができるので、リフレクタの開口面を大きく設けることが望ましい。しかしながら、リフレクタを実際に長期間屋外で用いる際には、気候変動や汚れなどの影響を避けるために、図10に示すように、電波を通しやすい物質で作られたレドーム25で覆い、リフレクタ24を保護するのが通例である。本来レドーム25そのものに大きさの制限はないが、実際に装置を設置する環境での制約や、受風面積を小さくして簡易に設置しようとすると、レドーム外形の大きさには一定の制約が生まれる。したがって、その限られた範囲の中でリフレクタ24の開口面積を大きくする必要がある。  In general, a reflector can obtain a reflected power corresponding to its opening area, so it is desirable to provide a large opening surface of the reflector. However, when the reflector is actually used outdoors for a long period of time, in order to avoid the influence of climate change, dirt, etc., as shown in FIG. It is customary to protect Originally, theradome 25 itself is not limited in size, but there are certain restrictions on the size of the outer shape of the radome if there are restrictions in the environment where the device is actually installed or if the installation is simplified with a reduced wind receiving area. to be born. Therefore, it is necessary to increase the opening area of thereflector 24 within the limited range.

そこで本実施の形態では、リフレクタ24を次のような形状とする。  Therefore, in the present embodiment, thereflector 24 has the following shape.

図10および図11に併せ示すように、リフレクタ24は、側面を反射面24b、底面を開口面24aとする三角錐体状を呈して、且つ、開口面24aを含む角部のうち1つの角部24cを切り欠いた形状を有している。本実施の形態では、設置環境の制約としてレ
ドーム25の高さが制限されている場合を想定し、リフレクタ24の上部に突出する角部24cを略水平方向に切り欠く形状とした。
As shown in FIGS. 10 and 11, thereflector 24 has a triangular pyramid shape having a side surface as areflection surface 24b and a bottom surface as anopening surface 24a, and one corner of the corner portion including theopening surface 24a. Thepart 24c is cut out. In the present embodiment, assuming that the height of theradome 25 is limited as a restriction on the installation environment, thecorner portion 24c protruding from the upper portion of thereflector 24 is cut out in a substantially horizontal direction.

また、リフレクタ24の開口面24aは、非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有するように設定されている。  The openingsurface 24a of thereflector 24 is set to have an opening area larger than the beam cross-sectional area that can be shielded by the non-detection target.

リフレクタ24は、板金等の電波反射材で構成するか、あるいは非金属の骨組の表面に電波反射材料を塗布することにより作製することができる。  Thereflector 24 can be made of a radio wave reflecting material such as a sheet metal, or can be manufactured by applying a radio wave reflecting material to the surface of a non-metallic framework.

このリフレクタ24を設置する際は、ビーム軸と開口面24aが所定の角度θをなすように傾けて設置することが好ましい。この角度θは、リフレクタ24の反射効率が最大となる角度をさす。このように開口面を傾けたときに最大反射効率が得られるのは、角部24cを切り欠いたことにより、開口面24aおよび反射面24bの形状が非対称形となったためと考えられる。なお、本実施の形態の形状の場合、ビーム軸とリフレクタ24の開口面24aとの成す角度θが約102°のときに、最大の反射効率が得られた。  When installing thereflector 24, it is preferable to install thereflector 24 so that the beam axis and theopening surface 24a are inclined at a predetermined angle θ. This angle θ indicates an angle at which the reflection efficiency of thereflector 24 is maximized. The reason why the maximum reflection efficiency is obtained when the opening surface is tilted in this way is considered to be that the shapes of the openingsurface 24a and the reflectingsurface 24b are asymmetrical because thecorner portion 24c is notched. In the case of the shape of the present embodiment, the maximum reflection efficiency was obtained when the angle θ formed by the beam axis and theopening surface 24a of thereflector 24 was about 102 °.

上記構成によれば、同一の高さ制限の下では、開口面が正三角形をなす従来形状のリフレクタに比べて、水平方向に広い開口面積を確保することができる。つまり、リフレクタ外形の小型化と、リフレクタ24の開口面積の拡大、ひいてはリフレクタ24の反射電力の増大を両立することができるのである。なお、角部24cを切り欠いた場合であっても、入射された電波を入射方向と略反対の方向に向けて反射する性質は保たれている。  According to the above configuration, under the same height restriction, it is possible to secure a wide opening area in the horizontal direction as compared with a reflector having a conventional shape in which the opening surface forms an equilateral triangle. That is, it is possible to simultaneously reduce the size of the reflector outer shape, increase the opening area of thereflector 24, and consequently increase the reflected power of thereflector 24. Even when thecorner 24c is notched, the property of reflecting the incident radio wave in a direction substantially opposite to the incident direction is maintained.

そして、リフレクタ24の開口面積を非検知対象物が遮蔽し得るビーム断面積よりも十分に大きくすることができるので、上記第1の実施の形態と同様の作用効果を得ることができる。  Since the opening area of thereflector 24 can be made sufficiently larger than the beam cross-sectional area that can be shielded by the non-detection object, the same effects as those of the first embodiment can be obtained.

加えて、単一のリフレクタ24により構成したので、上述したリフレクタアレイのようにリフレクタ同士の位相ズレや電波の干渉を防ぐような手立てを講じる必要がなくなり、製造が極めて容易となる。  In addition, since it is configured by asingle reflector 24, it is not necessary to take steps to prevent phase shift between the reflectors and radio wave interference as in the above-described reflector array, and manufacturing becomes extremely easy.

なお、図12〜図14は、本実施の形態のリフレクタの変形例である。図12に示すリフレクタ26は、頂部26cを開口面26aと略平行な平面にて構成した三角錐台形状を呈している。図13に示すリフレクタ27は、三角錐体状を呈して、且つ、開口面27aを含む角部のうち2つの角部27bを切り欠いた形状を呈している。また図14に示すリフレクタ28は、図13のリフレクタ27を三角錐台形状にしたものである。  12 to 14 are modifications of the reflector according to the present embodiment. Thereflector 26 shown in FIG. 12 has a triangular frustum shape in which thetop portion 26c is configured by a plane substantially parallel to theopening surface 26a. Thereflector 27 shown in FIG. 13 has a triangular pyramid shape and has a shape in which twocorners 27b are cut out from the corners including theopening surface 27a. Further, areflector 28 shown in FIG. 14 is obtained by making thereflector 27 of FIG. 13 into a triangular frustum shape.

これらのリフレクタ26,27,28であっても、本実施の形態のリフレクタ24に準じた作用効果を得ることができる。特に、リフレクタ24,26は、垂直方向の設置幅に制約があるときに、リフレクタ27,28は、水平方向の設置幅に制約があるときに有利となる。また、三角錐台形状を呈するリフレクタ26,28については、奥行き方向(ビーム軸方向)のサイズの小型化も図ることができる。  Even with thesereflectors 26, 27, and 28, it is possible to obtain operational effects according to thereflector 24 of the present embodiment. In particular, thereflectors 24 and 26 are advantageous when the vertical installation width is restricted, and thereflectors 27 and 28 are advantageous when the horizontal installation width is restricted. Further, thereflectors 26 and 28 having a triangular frustum shape can be reduced in size in the depth direction (beam axis direction).

(第5の実施の形態)
図15には、本発明の第5の実施の形態が示されている。
(Fifth embodiment)
FIG. 15 shows a fifth embodiment of the present invention.

同図に示すように、リフレクタアレイ6の支持枠(支持体)は、リフレクタアレイ6が固定される固定部29と、この固定部29を支える脚部31と、設置面上に配置される底部30とを備えて構成される。  As shown in the figure, the support frame (support) of thereflector array 6 includes a fixedportion 29 to which thereflector array 6 is fixed, aleg portion 31 that supports the fixedportion 29, and a bottom portion that is disposed on the installation surface. 30.

固定部29と脚部31はピン継手をもって連結されており、所定の大きさ以上の外力を
受けたときには、互いに回動する構成となっている。また、脚部31と底部30も同様にピン継手により連結されている。すなわち、この支持枠は、固定部29を自由クランク、底部30を固定クランク、脚部31をリンクとした平行クランク機構(平行運動機構)を備えている。
The fixedportion 29 and theleg portion 31 are connected with a pin joint, and are configured to rotate with each other when receiving an external force of a predetermined magnitude or more. Moreover, theleg part 31 and thebottom part 30 are similarly connected by the pin joint. That is, the support frame includes a parallel crank mechanism (parallel motion mechanism) in which the fixedportion 29 is a free crank, thebottom portion 30 is a fixed crank, and theleg portion 31 is a link.

この構成によれば、動物の衝突や飛来物の衝突、風雨の影響など、支持枠が外環境から何らかの衝撃を受けても、脚部31が傾くことでその衝撃が吸収され、支持枠が屈曲などの変形を起こすことがない。そして、脚部31が傾斜しても、固定部29と設置面との平行は保たれるので、リフレクタアレイ6の開口面とビームとの相対角度は常に一定に保たれ、ビーム軸のズレによる反射電力、受信電力の低下や識別精度の低下などを防止することができる。  According to this configuration, even if the support frame receives some impact from the outside environment, such as an impact of an animal, a collision of flying objects, or the influence of wind and rain, the impact is absorbed by the inclination of theleg 31 and the support frame is bent. It will not cause any deformation. Even if theleg portion 31 is inclined, the fixedportion 29 and the installation surface are kept parallel, so that the relative angle between the opening surface of thereflector array 6 and the beam is always kept constant, and is caused by the deviation of the beam axis. It is possible to prevent a decrease in reflected power and received power, a decrease in identification accuracy, and the like.

また、図16に示すように、支持枠の一部を、リフレクタアレイ6および支持枠を覆うレドーム32に対して、スプリング33などの弾性部材を介して接続する構成を採るとより好ましい。  In addition, as shown in FIG. 16, it is more preferable to adopt a configuration in which a part of the support frame is connected to thereflector array 6 and theradome 32 that covers the support frame via an elastic member such as aspring 33.

この構成によれば、スプリング33が外環境からの衝撃を緩和する衝撃吸収手段としての機能を果たすとともに、脚部31が傾斜したとしても、スプリング33の弾性復元力により脚部31の傾きが是正され、リフレクタアレイ6が正位置に戻されることとなる。したがって、反射電力や受信電力の低下や、識別精度の低下などをより一層防止することが可能となる。  According to this configuration, thespring 33 functions as an impact absorbing unit that reduces the impact from the outside environment, and even if theleg 31 is inclined, the inclination of theleg 31 is corrected by the elastic restoring force of thespring 33. Thus, thereflector array 6 is returned to the normal position. Therefore, it is possible to further prevent a decrease in reflected power and received power, a decrease in identification accuracy, and the like.

(他の実施の形態)
上記第1の実施の形態では、レーダ1と電波反射器2とを互いに対向するように設置して、検知領域Dを直線状にしているが、本装置の配置はこれに限られない。たとえば、図17に示すように、レーダ1と電波反射器2の間にビームの進路(電波の進行方向)を偏向させる偏向部材としての反射器34を配設することにより、ビームの進路を曲げて、検知領域をたとえばくの字(同図(a))やコの字、あるいはロの字(同図(b))のように構成することもできる。なお、本実施の形態では、反射器34として、入射角に等しい反射角で電波を反射する平面反射板を用いている。
(Other embodiments)
In the first embodiment, theradar 1 and theradio wave reflector 2 are installed so as to face each other, and the detection area D is linear, but the arrangement of the apparatus is not limited to this. For example, as shown in FIG. 17, by arranging areflector 34 as a deflecting member for deflecting the beam path (radio wave traveling direction) between theradar 1 and theradio wave reflector 2, the beam path is bent. For example, the detection area can be configured as a square shape (FIG. 1A), a U shape, or a square shape (FIG. 2B). In the present embodiment, a planar reflector that reflects radio waves at a reflection angle equal to the incident angle is used as thereflector 34.

かかる構成により検知領域を非直線状にすることができるので、たとえば、建物の全周囲や見通しの悪い曲がりくねった場所などに、検知領域を張り巡らせることが容易となる。つまり、単一のレーダ1で複数箇所の侵入物検知を行うことが可能となり、装置の利便性が向上するとともに、レーダ1に比べて安価な反射器34の追加だけで済むので、コストメリットが大きい。  Such a configuration makes it possible to make the detection area non-linear, and for example, it is easy to spread the detection area around the entire periphery of the building or in a winding place with poor visibility. In other words, it is possible to detect intrusions at a plurality of locations with asingle radar 1, improving the convenience of the apparatus and adding only areflector 34 that is less expensive than theradar 1, resulting in cost merit. large.

赤外線センサや光センサなどで同様の構成を採った場合、反射器34に埃や砂粒等が付着すると赤外線や光の減衰が激しく実用にはならなかったが、本装置では赤外線等よりも波長がはるかに長い電波を採用しているため、反射器34の反射面に埃や砂粒等が付着した場合であっても減衰が少なく、屋外環境で長期間の使用をすることが可能である。  In the case of adopting the same configuration with an infrared sensor, an optical sensor, etc., if dust, sand particles, etc. adhere to thereflector 34, the attenuation of infrared light and light was severely impractical, but this apparatus has a wavelength longer than that of infrared light, etc. Since a much longer radio wave is employed, there is little attenuation even when dust or sand particles adhere to the reflecting surface of thereflector 34, and it can be used for a long time in an outdoor environment.

本発明の第1の実施の形態に係る侵入物検知装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the intrusion detection apparatus which concerns on the 1st Embodiment of this invention.(a)は、同実施の形態に係るリフレクタアレイの一部分を示す斜視図であり、(b)は、同リフレクタアレイの構成要素であるリフレクタの形状を示す斜視図である。(A) is a perspective view which shows a part of reflector array which concerns on the embodiment, (b) is a perspective view which shows the shape of the reflector which is a component of the reflector array.同リフレクタアレイの構成を示す概略図であり、(a)は正面図、(b)は(a)のB−B断面図である。It is the schematic which shows the structure of the reflector array, (a) is a front view, (b) is BB sectional drawing of (a).同実施の形態に係るレーダの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the radar which concerns on the same embodiment.横軸に周波数、縦軸に受信電力強度をとったスペクトルデータの一例を示すグラフである。It is a graph which shows an example of the spectrum data which took the frequency on the horizontal axis and the received power intensity on the vertical axis.検知対象物か否かを判定する判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the determination process which determines whether it is a detection target object.横軸に時間、縦軸に受信電力強度をとったスペクトルデータの一例を示すグラフであり、(a)は回帰反射波のデータの一例、(b)は直接反射波のデータの一例を示すものである。It is a graph which shows an example of the spectrum data which took time on the horizontal axis and took the received power intensity on the vertical axis, where (a) shows an example of regression reflected wave data, and (b) shows an example of directly reflected wave data. It is.本発明の第2の実施の形態に係るレーダの構成を示す概略図である。It is the schematic which shows the structure of the radar which concerns on the 2nd Embodiment of this invention.本発明の第3の実施の形態に係るリフレクタアレイを示す断面図である。It is sectional drawing which shows the reflector array which concerns on the 3rd Embodiment of this invention.本発明の第4の実施の形態に係る侵入物検知装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the intrusion detection apparatus which concerns on the 4th Embodiment of this invention.同実施の形態に係るリフレクタの構成を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows the structure of the reflector which concerns on the embodiment, (a) is a front view, (b) is a side view.同リフレクタの変形例を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows the modification of the reflector, (a) is a front view, (b) is a side view.同リフレクタの変形例を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows the modification of the reflector, (a) is a front view, (b) is a side view.同リフレクタの変形例を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows the modification of the reflector, (a) is a front view, (b) is a side view.本発明の第5の実施の形態に係る電波反射器の構成を示す概略図である。It is the schematic which shows the structure of the electromagnetic wave reflector which concerns on the 5th Embodiment of this invention.同電波反射器の変形例を示す概略図である。It is the schematic which shows the modification of the same wave reflector.本発明の実施の形態に係る侵入物検知装置の他の構成例を示す概略図である。It is the schematic which shows the other structural example of the intrusion detection apparatus which concerns on embodiment of this invention.従来の侵入物検知装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the conventional intrusion detection apparatus.

符号の説明Explanation of symbols

1 レーダ
1a,1b 送受信アンテナ(送受信手段)
2 電波反射器(反射手段)
3 一次放射源
4 反射鏡
5 送信波
6 リフレクタアレイ
7 反射波
8 人間
9 鳥
10 基体
11 リフレクタ
11a 反射面
11b 開口面
12 FM変調器
13 発信器
14 サーキュレータ
15 ミキサ
16 A/D変換器
17 FFT処理部
18 信号解析部
19 凹レンズ
20 凸レンズ
21 送信波
22 リフレクタ
23 同位相面
24 リフレクタ
24a 開口面
24b 反射面
24c 角部
25 レドーム
26 リフレクタ
26a 開口面
26c 頂部
27 リフレクタ
27a 開口面
27b 角部
28 リフレクタ
29 固定部
30 底部
31 脚部
32 レドーム
33 スプリング(弾性部材)
34 反射器(偏向部材)
1Radar 1a, 1b Transmission / reception antenna (transmission / reception means)
2 Radio wave reflector (reflection means)
DESCRIPTION OFSYMBOLS 3Primary radiation source 4Reflector 5 Transmittedwave 6Reflector array 7Reflected wave 8Human 9Bird 10Base body 11 Reflector 11aReflective surface11b Aperture surface 12FM modulator 13Transmitter 14Circulator 15 Mixer 16 A /D converter 17FFT processing Section 18Signal analysis section 19Concave lens 20Convex lens 21 Transmittedwave 22Reflector 23 In-phase surface 24Reflector24a Open surface 24bReflective surface24c Corner portion 25Radome 26Reflector26a Open surface 26cTop portion 27Reflector27a Open surface27b Corner portion 28Reflector 29Part 30Bottom part 31Leg part 32 Radome 33 Spring (elastic member)
34 Reflector (deflection member)

Claims (17)

Translated fromJapanese
電波の送信および受信を行う送受信手段を有するレーダと、
該レーダから送信された電波を同レーダに向けて反射する反射手段と、を備え、
前記レーダと前記反射手段の間を伝搬している電波のビームからなる検知領域内に侵入した侵入物を検知する侵入物検知装置において、
前記レーダ近傍の送信波および前記反射手段近傍の反射波のビーム断面積を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくしたことを特徴とする侵入物検知装置。
A radar having transmission / reception means for transmitting and receiving radio waves;
Reflecting means for reflecting the radio wave transmitted from the radar toward the radar,
In an intruder detection apparatus for detecting an intruder that has entered a detection area composed of a beam of radio waves propagating between the radar and the reflecting means,
An intruder having a beam cross-sectional area of a transmission wave in the vicinity of the radar and a reflected wave in the vicinity of the reflecting means larger than a beam cross-sectional area that can be shielded by a predetermined non-detection object to be excluded from the detection object Detection device.
前記レーダ近傍の送信波および前記反射手段近傍の反射波のビーム断面は、前記非検知対象物が遮蔽し得る最大のビーム断面に対して、少なくとも一方向に広がりを有していることを特徴とする請求項1に記載の侵入物検知装置。  The beam cross section of the transmission wave near the radar and the reflection wave near the reflection means has a spread in at least one direction with respect to the maximum beam cross section that can be shielded by the non-detection object. The intruder detection apparatus according to claim 1. 前記送受信手段は、前記非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有する開口面アンテナであることを特徴とする請求項1または2に記載の侵入物検知装置。  The intruder detection apparatus according to claim 1, wherein the transmission / reception unit is an aperture plane antenna having an aperture area larger than a beam cross-sectional area that can be shielded by the non-detection target. 前記反射手段は、開口面を揃えて配置された複数のリフレクタからなるリフレクタアレイであって、
該リフレクタアレイ全体の開口面積が前記非検知対象物が遮蔽し得るビーム断面積よりも大きいことを特徴とする請求項1,2または3に記載の侵入物検知装置。
The reflecting means is a reflector array composed of a plurality of reflectors arranged with the opening surfaces aligned,
4. The intruder detection apparatus according to claim 1, wherein an opening area of the entire reflector array is larger than a beam cross-sectional area that can be shielded by the non-detection object.
前記複数のリフレクタは、それぞれの開口面が電波の同位相面に略沿うように配置されていることを特徴とする請求項4に記載の侵入物検知装置。  The intruder detection device according to claim 4, wherein the plurality of reflectors are arranged so that each opening surface thereof is substantially along the same phase surface of the radio wave. 前記反射手段は、前記非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有するリフレクタであることを特徴とする請求項1,2または3に記載の侵入物検知装置。  The intrusion detection apparatus according to claim 1, wherein the reflection unit is a reflector having an opening area larger than a beam cross-sectional area that can be shielded by the non-detection object. 前記リフレクタは、側面を反射面、底面を開口面とする錐体状または錐台状を呈して、且つ、底面を含む角部のうち少なくとも1つが切り欠かれた形状を有することを特徴とする請求項6に記載の侵入物検知装置。  The reflector has a shape of a cone or a truncated cone with a side surface as a reflection surface and a bottom surface as an opening surface, and has a shape in which at least one of corner portions including the bottom surface is cut out. The intruder detection device according to claim 6. 前記リフレクタは、互いに直交する3つの反射面を備えた三角錐体状または三角錐台状を呈していることを特徴とする請求項7に記載の侵入物検知装置。  The intruder detection apparatus according to claim 7, wherein the reflector has a triangular pyramid shape or a triangular frustum shape having three reflecting surfaces orthogonal to each other. 前記送受信手段または前記反射手段を支持する支持体は、
該送受信手段または該反射手段が固定される固定部と、
支持体が傾斜したときに該固定部を支持体設置面に対して平行運動可能とする平行運動機構と、を備えていることを特徴とする請求項1乃至8のうちいずれか1項に記載の侵入物検知装置。
The support that supports the transmission / reception means or the reflection means,
A fixing portion to which the transmitting / receiving means or the reflecting means is fixed;
A parallel movement mechanism that enables the fixed portion to move in parallel with respect to the support installation surface when the support is tilted, according to any one of claims 1 to 8. Intruder detection device.
前記送受信手段または前記反射手段と前記支持体とを覆うレドームを備えて、且つ、前記支持体は前記レドームに対して弾性部材を介して接続されていることを特徴とする請求項9に記載の侵入物検知装置。  The radome which covers the said transmission / reception means or the said reflection means, and the said support body is provided, and the said support body is connected to the said radome via the elastic member. Intruder detection device. 前記レーダと前記反射手段との間にビームの進路を偏向させる偏向部材を設けて、検知領域を非直線状に構成したことを特徴とする請求項1乃至10のうちいずれか1項に記載の侵入物検知装置。  11. The detection region according to claim 1, wherein a deflection member that deflects a beam path is provided between the radar and the reflection unit, and the detection region is configured to be non-linear. Intruder detection device. 電波の送信および受信を行う送受信手段を有するレーダを備え、侵入物からの反射波を受信して侵入物を検知する侵入物検知装置において、
前記レーダ近傍の送信波のビーム断面積を、検知対象から除外すべき所定の非検知対象物が遮蔽し得るビーム断面積よりも大きくしたことを特徴とする侵入物検知装置。
In an intruder detection apparatus that includes a radar having transmission / reception means for transmitting and receiving radio waves, and detects an intruder by receiving a reflected wave from the intruder,
An intruder detection apparatus characterized in that a beam cross-sectional area of a transmission wave in the vicinity of the radar is made larger than a beam cross-sectional area that can be shielded by a predetermined non-detection target to be excluded from a detection target.
前記送受信手段は、前記非検知対象物が遮蔽し得るビーム断面積よりも大きな開口面積を有する開口面アンテナであることを特徴とする請求項12に記載の侵入物検知装置。  The intruder detection apparatus according to claim 12, wherein the transmission / reception means is an aperture plane antenna having an aperture area larger than a beam cross-sectional area that can be shielded by the non-detection target. 入射された電波を入射方向と略反対の方向に反射する電波反射器であって、
開口面を揃えて配置された複数のリフレクタからなるリフレクタアレイを備えたことを特徴とする電波反射器。
A radio wave reflector that reflects incident radio waves in a direction substantially opposite to the incident direction,
A radio wave reflector characterized by comprising a reflector array comprising a plurality of reflectors arranged with their aperture surfaces aligned.
前記複数のリフレクタは、それぞれの開口面が電波の同位相面に略沿うように配置されていることを特徴とする請求項14に記載の電波反射器。  The radio wave reflector according to claim 14, wherein the plurality of reflectors are arranged so that each opening surface thereof is substantially along the same phase surface of the radio wave. 入射された電波を入射方向と略反対の方向に反射する電波反射器であって、
側面を反射面、底面を開口面とする錐体状または錐台状を呈して、且つ、底面を含む角部のうち少なくとも1つが切り欠かれた形状を有するリフレクタを備えたことを特徴とする電波反射器。
A radio wave reflector that reflects incident radio waves in a direction substantially opposite to the incident direction,
A reflector having a conical shape or a truncated cone shape with a side surface as a reflection surface and a bottom surface as an opening surface and having a shape in which at least one of corners including the bottom surface is cut out is provided. Radio wave reflector.
前記リフレクタは、互いに直交する3つの反射面を備えた三角錐体状または三角錐台状を呈していることを特徴とする請求項16に記載の電波反射器。  17. The radio wave reflector according to claim 16, wherein the reflector has a triangular pyramid shape or a triangular frustum shape having three reflecting surfaces orthogonal to each other.
JP2005341131A2005-11-252005-11-25Intruder detecting device and radiowave reflectorPendingJP2006153878A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2005341131AJP2006153878A (en)2005-11-252005-11-25Intruder detecting device and radiowave reflector

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2005341131AJP2006153878A (en)2005-11-252005-11-25Intruder detecting device and radiowave reflector

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
JP2001338325ADivisionJP3778056B2 (en)2001-11-022001-11-02 Intruder detection device

Publications (1)

Publication NumberPublication Date
JP2006153878Atrue JP2006153878A (en)2006-06-15

Family

ID=36632324

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2005341131APendingJP2006153878A (en)2005-11-252005-11-25Intruder detecting device and radiowave reflector

Country Status (1)

CountryLink
JP (1)JP2006153878A (en)

Cited By (170)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2013131010A (en)*2011-12-212013-07-04Chino CorpMonitoring device
EP2738875A4 (en)*2011-07-262015-04-29Kuang Chi Innovative Tech Ltd CASSEGRAIN MICROWAVE ANTENNA
EP2738877A4 (en)*2011-07-262015-05-06Kuang Chi Innovative Tech Ltd OFFSET PRIMARY SOURCE SATELLITE TELEVISION ANTENNA AND ITS SATELLITE TELEVISION RECEPTION SYSTEM
JP5868504B2 (en)*2012-06-252016-02-24三菱電機株式会社 Wind measurement coherent rider device
US9312919B1 (en)2014-10-212016-04-12At&T Intellectual Property I, LpTransmission device with impairment compensation and methods for use therewith
US9461706B1 (en)2015-07-312016-10-04At&T Intellectual Property I, LpMethod and apparatus for exchanging communication signals
US9467870B2 (en)2013-11-062016-10-11At&T Intellectual Property I, L.P.Surface-wave communications and methods thereof
US9479266B2 (en)2013-12-102016-10-25At&T Intellectual Property I, L.P.Quasi-optical coupler
US9490869B1 (en)2015-05-142016-11-08At&T Intellectual Property I, L.P.Transmission medium having multiple cores and methods for use therewith
US9503189B2 (en)2014-10-102016-11-22At&T Intellectual Property I, L.P.Method and apparatus for arranging communication sessions in a communication system
US9509415B1 (en)2015-06-252016-11-29At&T Intellectual Property I, L.P.Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9520945B2 (en)2014-10-212016-12-13At&T Intellectual Property I, L.P.Apparatus for providing communication services and methods thereof
US9525524B2 (en)2013-05-312016-12-20At&T Intellectual Property I, L.P.Remote distributed antenna system
US9525210B2 (en)2014-10-212016-12-20At&T Intellectual Property I, L.P.Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9531427B2 (en)2014-11-202016-12-27At&T Intellectual Property I, L.P.Transmission device with mode division multiplexing and methods for use therewith
US9564947B2 (en)2014-10-212017-02-07At&T Intellectual Property I, L.P.Guided-wave transmission device with diversity and methods for use therewith
US9577306B2 (en)2014-10-212017-02-21At&T Intellectual Property I, L.P.Guided-wave transmission device and methods for use therewith
US9608740B2 (en)2015-07-152017-03-28At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US9608692B2 (en)2015-06-112017-03-28At&T Intellectual Property I, L.P.Repeater and methods for use therewith
US9615269B2 (en)2014-10-022017-04-04At&T Intellectual Property I, L.P.Method and apparatus that provides fault tolerance in a communication network
US9628116B2 (en)2015-07-142017-04-18At&T Intellectual Property I, L.P.Apparatus and methods for transmitting wireless signals
US9628854B2 (en)2014-09-292017-04-18At&T Intellectual Property I, L.P.Method and apparatus for distributing content in a communication network
US9640850B2 (en)2015-06-252017-05-02At&T Intellectual Property I, L.P.Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9654173B2 (en)2014-11-202017-05-16At&T Intellectual Property I, L.P.Apparatus for powering a communication device and methods thereof
US9653770B2 (en)2014-10-212017-05-16At&T Intellectual Property I, L.P.Guided wave coupler, coupling module and methods for use therewith
US9667317B2 (en)2015-06-152017-05-30At&T Intellectual Property I, L.P.Method and apparatus for providing security using network traffic adjustments
US9680670B2 (en)2014-11-202017-06-13At&T Intellectual Property I, L.P.Transmission device with channel equalization and control and methods for use therewith
US9685992B2 (en)2014-10-032017-06-20At&T Intellectual Property I, L.P.Circuit panel network and methods thereof
US9692101B2 (en)2014-08-262017-06-27At&T Intellectual Property I, L.P.Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9699785B2 (en)2012-12-052017-07-04At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US9705561B2 (en)2015-04-242017-07-11At&T Intellectual Property I, L.P.Directional coupling device and methods for use therewith
US9722318B2 (en)2015-07-142017-08-01At&T Intellectual Property I, L.P.Method and apparatus for coupling an antenna to a device
US9729197B2 (en)2015-10-012017-08-08At&T Intellectual Property I, L.P.Method and apparatus for communicating network management traffic over a network
US9735833B2 (en)2015-07-312017-08-15At&T Intellectual Property I, L.P.Method and apparatus for communications management in a neighborhood network
US9742462B2 (en)2014-12-042017-08-22At&T Intellectual Property I, L.P.Transmission medium and communication interfaces and methods for use therewith
US9749053B2 (en)2015-07-232017-08-29At&T Intellectual Property I, L.P.Node device, repeater and methods for use therewith
US9749013B2 (en)2015-03-172017-08-29At&T Intellectual Property I, L.P.Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en)2015-05-142017-08-29At&T Intellectual Property I, L.P.Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9755697B2 (en)2014-09-152017-09-05At&T Intellectual Property I, L.P.Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9762289B2 (en)2014-10-142017-09-12At&T Intellectual Property I, L.P.Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en)2014-10-212017-09-19At&T Intellectual Property I, L.P.Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en)2015-09-282017-09-19At&T Intellectual Property I, L.P.Method and apparatus for encryption of communications over a network
US9780834B2 (en)2014-10-212017-10-03At&T Intellectual Property I, L.P.Method and apparatus for transmitting electromagnetic waves
US9793955B2 (en)2015-04-242017-10-17At&T Intellectual Property I, LpPassive electrical coupling device and methods for use therewith
US9793951B2 (en)2015-07-152017-10-17At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US9793954B2 (en)2015-04-282017-10-17At&T Intellectual Property I, L.P.Magnetic coupling device and methods for use therewith
US9800327B2 (en)2014-11-202017-10-24At&T Intellectual Property I, L.P.Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en)2015-06-122017-11-14At&T Intellectual Property I, L.P.Method and apparatus for authentication and identity management of communicating devices
US9836957B2 (en)2015-07-142017-12-05At&T Intellectual Property I, L.P.Method and apparatus for communicating with premises equipment
US9838896B1 (en)2016-12-092017-12-05At&T Intellectual Property I, L.P.Method and apparatus for assessing network coverage
US9847566B2 (en)2015-07-142017-12-19At&T Intellectual Property I, L.P.Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en)2014-10-142017-12-19At&T Intellectual Property I, L.P.Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en)2015-07-142017-12-26At&T Intellectual Property I, L.P.Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en)2016-08-262018-01-02At&T Intellectual Property I, L.P.Method and communication node for broadband distribution
US9865911B2 (en)2015-06-252018-01-09At&T Intellectual Property I, L.P.Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en)2015-07-232018-01-16At&T Intellectual Property I, LpTransmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en)2015-05-142018-01-16At&T Intellectual Property I, L.P.At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9876571B2 (en)2015-02-202018-01-23At&T Intellectual Property I, LpGuided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en)2016-10-212018-01-23At&T Intellectual Property I, L.P.Launcher and coupling system to support desired guided wave mode
US9876264B2 (en)2015-10-022018-01-23At&T Intellectual Property I, LpCommunication system, guided wave switch and methods for use therewith
US9882257B2 (en)2015-07-142018-01-30At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US9882277B2 (en)2015-10-022018-01-30At&T Intellectual Property I, LpCommunication device and antenna assembly with actuated gimbal mount
US9893795B1 (en)2016-12-072018-02-13At&T Intellectual Property I, LpMethod and repeater for broadband distribution
US9904535B2 (en)2015-09-142018-02-27At&T Intellectual Property I, L.P.Method and apparatus for distributing software
US9906269B2 (en)2014-09-172018-02-27At&T Intellectual Property I, L.P.Monitoring and mitigating conditions in a communication network
US9912381B2 (en)2015-06-032018-03-06At&T Intellectual Property I, LpNetwork termination and methods for use therewith
US9913139B2 (en)2015-06-092018-03-06At&T Intellectual Property I, L.P.Signal fingerprinting for authentication of communicating devices
US9911020B1 (en)2016-12-082018-03-06At&T Intellectual Property I, L.P.Method and apparatus for tracking via a radio frequency identification device
US9912027B2 (en)2015-07-232018-03-06At&T Intellectual Property I, L.P.Method and apparatus for exchanging communication signals
US9912419B1 (en)2016-08-242018-03-06At&T Intellectual Property I, L.P.Method and apparatus for managing a fault in a distributed antenna system
US9917341B2 (en)2015-05-272018-03-13At&T Intellectual Property I, L.P.Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en)2016-12-062018-03-27At&T Intellectual Property I, L.P.Apparatus and methods for sensing rainfall
US9935703B2 (en)2015-06-032018-04-03At&T Intellectual Property I, L.P.Host node device and methods for use therewith
US9948354B2 (en)2015-04-282018-04-17At&T Intellectual Property I, L.P.Magnetic coupling device with reflective plate and methods for use therewith
US9948333B2 (en)2015-07-232018-04-17At&T Intellectual Property I, L.P.Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en)2014-11-202018-04-24At&T Intellectual Property I, L.P.Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en)2015-07-312018-05-08At&T Intellectual Property I, L.P.Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en)2017-02-272018-05-15At&T Intellectual Property I, L.P.Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en)2016-10-212018-06-05At&T Intellectual Property I, L.P.Launcher and coupling system for guided wave mode cancellation
KR20180062558A (en)*2016-11-302018-06-11주식회사 에스원Measuring Method of Intruder Position of Intruding Detect Radar based on Reflection Plate and Method of Noise Definition for the above Method
US9997819B2 (en)2015-06-092018-06-12At&T Intellectual Property I, L.P.Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9998870B1 (en)2016-12-082018-06-12At&T Intellectual Property I, L.P.Method and apparatus for proximity sensing
US9999038B2 (en)2013-05-312018-06-12At&T Intellectual Property I, L.P.Remote distributed antenna system
US10009065B2 (en)2012-12-052018-06-26At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US10009063B2 (en)2015-09-162018-06-26At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009901B2 (en)2015-09-162018-06-26At&T Intellectual Property I, L.P.Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009067B2 (en)2014-12-042018-06-26At&T Intellectual Property I, L.P.Method and apparatus for configuring a communication interface
US10020587B2 (en)2015-07-312018-07-10At&T Intellectual Property I, L.P.Radial antenna and methods for use therewith
US10020844B2 (en)2016-12-062018-07-10T&T Intellectual Property I, L.P.Method and apparatus for broadcast communication via guided waves
US10027397B2 (en)2016-12-072018-07-17At&T Intellectual Property I, L.P.Distributed antenna system and methods for use therewith
US10033107B2 (en)2015-07-142018-07-24At&T Intellectual Property I, L.P.Method and apparatus for coupling an antenna to a device
US10033108B2 (en)2015-07-142018-07-24At&T Intellectual Property I, L.P.Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en)2015-07-142018-08-07At&T Intellectual Property I, L.P.Transmission medium and methods for use therewith
US10051629B2 (en)2015-09-162018-08-14At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10051483B2 (en)2015-10-162018-08-14At&T Intellectual Property I, L.P.Method and apparatus for directing wireless signals
US10069535B2 (en)2016-12-082018-09-04At&T Intellectual Property I, L.P.Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10074890B2 (en)2015-10-022018-09-11At&T Intellectual Property I, L.P.Communication device and antenna with integrated light assembly
US10079661B2 (en)2015-09-162018-09-18At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en)2015-07-152018-10-02At&T Intellectual Property I, L.P.Antenna system with dielectric array and methods for use therewith
US10090594B2 (en)2016-11-232018-10-02At&T Intellectual Property I, L.P.Antenna system having structural configurations for assembly
US10103801B2 (en)2015-06-032018-10-16At&T Intellectual Property I, L.P.Host node device and methods for use therewith
US10103422B2 (en)2016-12-082018-10-16At&T Intellectual Property I, L.P.Method and apparatus for mounting network devices
US10135145B2 (en)2016-12-062018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135146B2 (en)2016-10-182018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via circuits
US10136434B2 (en)2015-09-162018-11-20At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135147B2 (en)2016-10-182018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via an antenna
US10139820B2 (en)2016-12-072018-11-27At&T Intellectual Property I, L.P.Method and apparatus for deploying equipment of a communication system
US10142086B2 (en)2015-06-112018-11-27At&T Intellectual Property I, L.P.Repeater and methods for use therewith
US10144036B2 (en)2015-01-302018-12-04At&T Intellectual Property I, L.P.Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en)2015-07-142018-12-04At&T Intellectual Property I, L.P.Apparatus and methods for communicating utilizing an antenna array
US10154493B2 (en)2015-06-032018-12-11At&T Intellectual Property I, L.P.Network termination and methods for use therewith
US10170840B2 (en)2015-07-142019-01-01At&T Intellectual Property I, L.P.Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en)2016-12-072019-01-01At&T Intellectual Property I, L.P.Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en)2016-11-232019-01-08At&T Intellectual Property I, L.P.Methods, devices, and systems for load balancing between a plurality of waveguides
KR20190004858A (en)*2017-07-042019-01-15주식회사 에스원Invader Detecting System of Specific Location by Radar based on Reflection Board and Method thereof
US10205655B2 (en)2015-07-142019-02-12At&T Intellectual Property I, L.P.Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en)2016-11-032019-03-05At&T Intellectual Property I, L.P.Method and apparatus for detecting a fault in a communication system
US10224634B2 (en)2016-11-032019-03-05At&T Intellectual Property I, L.P.Methods and apparatus for adjusting an operational characteristic of an antenna
KR20190028237A (en)*2017-09-082019-03-18주식회사 에스원Ladar sensor system and sensing method thereof
US10243784B2 (en)2014-11-202019-03-26At&T Intellectual Property I, L.P.System for generating topology information and methods thereof
US10243270B2 (en)2016-12-072019-03-26At&T Intellectual Property I, L.P.Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en)2016-12-092019-04-16At&T Mobility Ii LlcCloud-based packet controller and methods for use therewith
US10291311B2 (en)2016-09-092019-05-14At&T Intellectual Property I, L.P.Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en)2016-11-032019-05-14At&T Intellectual Property I, L.P.System for detecting a fault in a communication system
US10298293B2 (en)2017-03-132019-05-21At&T Intellectual Property I, L.P.Apparatus of communication utilizing wireless network devices
US10305190B2 (en)2016-12-012019-05-28At&T Intellectual Property I, L.P.Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en)2016-10-262019-06-04At&T Intellectual Property I, L.P.Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en)2015-07-142019-06-11At&T Intellectual Property I, L.P.Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en)2016-12-082019-06-18At&T Intellectual Property I, L.P.Method and system for providing alternative communication paths
US10326494B2 (en)2016-12-062019-06-18At&T Intellectual Property I, L.P.Apparatus for measurement de-embedding and methods for use therewith
US10340983B2 (en)2016-12-092019-07-02At&T Intellectual Property I, L.P.Method and apparatus for surveying remote sites via guided wave communications
US10340600B2 (en)2016-10-182019-07-02At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via plural waveguide systems
US10340573B2 (en)2016-10-262019-07-02At&T Intellectual Property I, L.P.Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en)2016-11-232019-07-02At&T Intellectual Property I, L.P.Multi-antenna system and methods for use therewith
US10340603B2 (en)2016-11-232019-07-02At&T Intellectual Property I, L.P.Antenna system having shielded structural configurations for assembly
US10341142B2 (en)2015-07-142019-07-02At&T Intellectual Property I, L.P.Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10348391B2 (en)2015-06-032019-07-09At&T Intellectual Property I, L.P.Client node device with frequency conversion and methods for use therewith
US10355367B2 (en)2015-10-162019-07-16At&T Intellectual Property I, L.P.Antenna structure for exchanging wireless signals
US10359749B2 (en)2016-12-072019-07-23At&T Intellectual Property I, L.P.Method and apparatus for utilities management via guided wave communication
US10361489B2 (en)2016-12-012019-07-23At&T Intellectual Property I, L.P.Dielectric dish antenna system and methods for use therewith
US10374316B2 (en)2016-10-212019-08-06At&T Intellectual Property I, L.P.System and dielectric antenna with non-uniform dielectric
US10382976B2 (en)2016-12-062019-08-13At&T Intellectual Property I, L.P.Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en)2016-12-072019-08-20At&T Intellectual Property I, L.P.Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en)2016-12-082019-08-20At&T Intellectual Property I, L.P.Apparatus and methods for selecting sections of an antenna array and use therewith
US10396887B2 (en)2015-06-032019-08-27At&T Intellectual Property I, L.P.Client node device and methods for use therewith
US10411356B2 (en)2016-12-082019-09-10At&T Intellectual Property I, L.P.Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en)2016-12-062019-10-08At&T Intellectual Property I, L.P.Method and apparatus for repeating guided wave communication signals
US10446936B2 (en)2016-12-072019-10-15At&T Intellectual Property I, L.P.Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en)2016-11-032019-12-03At&T Intellectual Property I, L.P.Apparatus for configuring a surface of an antenna
US10530505B2 (en)2016-12-082020-01-07At&T Intellectual Property I, L.P.Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en)2016-11-232020-01-14At&T Intellectual Property I, L.P.Antenna system and methods for use therewith
US10547348B2 (en)2016-12-072020-01-28At&T Intellectual Property I, L.P.Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en)2016-12-082020-03-24At&T Intellectual Property I, L.P.Dual-band communication device and method for use therewith
US10637149B2 (en)2016-12-062020-04-28At&T Intellectual Property I, L.P.Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en)2015-05-152020-05-12At&T Intellectual Property I, L.P.Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en)2015-10-162020-05-26At&T Intellectual Property I, L.P.Method and apparatus for adjusting wireless communications
US10679767B2 (en)2015-05-152020-06-09At&T Intellectual Property I, L.P.Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en)2016-12-062020-06-23At&T Intellectual Property I, L.P.Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en)2016-12-062020-07-28At&T Intellectual Property I, L.P.Launcher with slot antenna and methods for use therewith
US10755542B2 (en)2016-12-062020-08-25At&T Intellectual Property I, L.P.Method and apparatus for surveillance via guided wave communication
US10777873B2 (en)2016-12-082020-09-15At&T Intellectual Property I, L.P.Method and apparatus for mounting network devices
US10784670B2 (en)2015-07-232020-09-22At&T Intellectual Property I, L.P.Antenna support for aligning an antenna
US10811767B2 (en)2016-10-212020-10-20At&T Intellectual Property I, L.P.System and dielectric antenna with convex dielectric radome
US10819035B2 (en)2016-12-062020-10-27At&T Intellectual Property I, L.P.Launcher with helical antenna and methods for use therewith
US10916969B2 (en)2016-12-082021-02-09At&T Intellectual Property I, L.P.Method and apparatus for providing power using an inductive coupling
US10938108B2 (en)2016-12-082021-03-02At&T Intellectual Property I, L.P.Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en)2016-09-152021-06-08At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
CN113916991A (en)*2020-07-082022-01-11原子能和替代能源委员会Ultrasonic target for non-destructive inspection
US12027028B2 (en)2020-06-032024-07-02Essence Smartcare Ltd.Controlling frame rate of active reflected wave detector
US12087144B2 (en)2020-05-212024-09-10Essence Smartcare Ltd.Device and method for determining a status of a person

Cited By (226)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP2738875A4 (en)*2011-07-262015-04-29Kuang Chi Innovative Tech Ltd CASSEGRAIN MICROWAVE ANTENNA
EP2738877A4 (en)*2011-07-262015-05-06Kuang Chi Innovative Tech Ltd OFFSET PRIMARY SOURCE SATELLITE TELEVISION ANTENNA AND ITS SATELLITE TELEVISION RECEPTION SYSTEM
JP2013131010A (en)*2011-12-212013-07-04Chino CorpMonitoring device
JP5868504B2 (en)*2012-06-252016-02-24三菱電機株式会社 Wind measurement coherent rider device
US10009065B2 (en)2012-12-052018-06-26At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US9788326B2 (en)2012-12-052017-10-10At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US10194437B2 (en)2012-12-052019-01-29At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US9699785B2 (en)2012-12-052017-07-04At&T Intellectual Property I, L.P.Backhaul link for distributed antenna system
US9999038B2 (en)2013-05-312018-06-12At&T Intellectual Property I, L.P.Remote distributed antenna system
US10091787B2 (en)2013-05-312018-10-02At&T Intellectual Property I, L.P.Remote distributed antenna system
US10051630B2 (en)2013-05-312018-08-14At&T Intellectual Property I, L.P.Remote distributed antenna system
US9930668B2 (en)2013-05-312018-03-27At&T Intellectual Property I, L.P.Remote distributed antenna system
US9525524B2 (en)2013-05-312016-12-20At&T Intellectual Property I, L.P.Remote distributed antenna system
US9661505B2 (en)2013-11-062017-05-23At&T Intellectual Property I, L.P.Surface-wave communications and methods thereof
US9674711B2 (en)2013-11-062017-06-06At&T Intellectual Property I, L.P.Surface-wave communications and methods thereof
US9467870B2 (en)2013-11-062016-10-11At&T Intellectual Property I, L.P.Surface-wave communications and methods thereof
US9876584B2 (en)2013-12-102018-01-23At&T Intellectual Property I, L.P.Quasi-optical coupler
US9794003B2 (en)2013-12-102017-10-17At&T Intellectual Property I, L.P.Quasi-optical coupler
US9479266B2 (en)2013-12-102016-10-25At&T Intellectual Property I, L.P.Quasi-optical coupler
US9692101B2 (en)2014-08-262017-06-27At&T Intellectual Property I, L.P.Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10096881B2 (en)2014-08-262018-10-09At&T Intellectual Property I, L.P.Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9755697B2 (en)2014-09-152017-09-05At&T Intellectual Property I, L.P.Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9768833B2 (en)2014-09-152017-09-19At&T Intellectual Property I, L.P.Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en)2014-09-172018-08-28At&T Intellectual Property I, L.P.Monitoring and mitigating conditions in a communication network
US9906269B2 (en)2014-09-172018-02-27At&T Intellectual Property I, L.P.Monitoring and mitigating conditions in a communication network
US9628854B2 (en)2014-09-292017-04-18At&T Intellectual Property I, L.P.Method and apparatus for distributing content in a communication network
US9998932B2 (en)2014-10-022018-06-12At&T Intellectual Property I, L.P.Method and apparatus that provides fault tolerance in a communication network
US9615269B2 (en)2014-10-022017-04-04At&T Intellectual Property I, L.P.Method and apparatus that provides fault tolerance in a communication network
US9973416B2 (en)2014-10-022018-05-15At&T Intellectual Property I, L.P.Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en)2014-10-032017-06-20At&T Intellectual Property I, L.P.Circuit panel network and methods thereof
US9866276B2 (en)2014-10-102018-01-09At&T Intellectual Property I, L.P.Method and apparatus for arranging communication sessions in a communication system
US9503189B2 (en)2014-10-102016-11-22At&T Intellectual Property I, L.P.Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en)2014-10-142017-09-12At&T Intellectual Property I, L.P.Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en)2014-10-142018-05-15At&T Intellectual Property I, L.P.Method and apparatus for adjusting a mode of communication in a communication network
US9847850B2 (en)2014-10-142017-12-19At&T Intellectual Property I, L.P.Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en)2014-10-212016-04-12At&T Intellectual Property I, LpTransmission device with impairment compensation and methods for use therewith
US9912033B2 (en)2014-10-212018-03-06At&T Intellectual Property I, LpGuided wave coupler, coupling module and methods for use therewith
US9627768B2 (en)2014-10-212017-04-18At&T Intellectual Property I, L.P.Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9705610B2 (en)2014-10-212017-07-11At&T Intellectual Property I, L.P.Transmission device with impairment compensation and methods for use therewith
US9876587B2 (en)2014-10-212018-01-23At&T Intellectual Property I, L.P.Transmission device with impairment compensation and methods for use therewith
US9596001B2 (en)2014-10-212017-03-14At&T Intellectual Property I, L.P.Apparatus for providing communication services and methods thereof
US9577307B2 (en)2014-10-212017-02-21At&T Intellectual Property I, L.P.Guided-wave transmission device and methods for use therewith
US9653770B2 (en)2014-10-212017-05-16At&T Intellectual Property I, L.P.Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en)2014-10-212017-10-03At&T Intellectual Property I, L.P.Method and apparatus for transmitting electromagnetic waves
US9871558B2 (en)2014-10-212018-01-16At&T Intellectual Property I, L.P.Guided-wave transmission device and methods for use therewith
US9577306B2 (en)2014-10-212017-02-21At&T Intellectual Property I, L.P.Guided-wave transmission device and methods for use therewith
US9520945B2 (en)2014-10-212016-12-13At&T Intellectual Property I, L.P.Apparatus for providing communication services and methods thereof
US9948355B2 (en)2014-10-212018-04-17At&T Intellectual Property I, L.P.Apparatus for providing communication services and methods thereof
US9960808B2 (en)2014-10-212018-05-01At&T Intellectual Property I, L.P.Guided-wave transmission device and methods for use therewith
US9571209B2 (en)2014-10-212017-02-14At&T Intellectual Property I, L.P.Transmission device with impairment compensation and methods for use therewith
US9564947B2 (en)2014-10-212017-02-07At&T Intellectual Property I, L.P.Guided-wave transmission device with diversity and methods for use therewith
US9525210B2 (en)2014-10-212016-12-20At&T Intellectual Property I, L.P.Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en)2014-10-212017-09-19At&T Intellectual Property I, L.P.Method and apparatus for responding to events affecting communications in a communication network
US9954286B2 (en)2014-10-212018-04-24At&T Intellectual Property I, L.P.Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9544006B2 (en)2014-11-202017-01-10At&T Intellectual Property I, L.P.Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en)2014-11-202018-04-24At&T Intellectual Property I, L.P.Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9531427B2 (en)2014-11-202016-12-27At&T Intellectual Property I, L.P.Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en)2014-11-202017-06-13At&T Intellectual Property I, L.P.Transmission device with channel equalization and control and methods for use therewith
US9654173B2 (en)2014-11-202017-05-16At&T Intellectual Property I, L.P.Apparatus for powering a communication device and methods thereof
US9749083B2 (en)2014-11-202017-08-29At&T Intellectual Property I, L.P.Transmission device with mode division multiplexing and methods for use therewith
US9712350B2 (en)2014-11-202017-07-18At&T Intellectual Property I, L.P.Transmission device with channel equalization and control and methods for use therewith
US9800327B2 (en)2014-11-202017-10-24At&T Intellectual Property I, L.P.Apparatus for controlling operations of a communication device and methods thereof
US9742521B2 (en)2014-11-202017-08-22At&T Intellectual Property I, L.P.Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en)2014-11-202019-03-26At&T Intellectual Property I, L.P.System for generating topology information and methods thereof
US9742462B2 (en)2014-12-042017-08-22At&T Intellectual Property I, L.P.Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en)2014-12-042018-06-26At&T Intellectual Property I, L.P.Method and apparatus for configuring a communication interface
US10144036B2 (en)2015-01-302018-12-04At&T Intellectual Property I, L.P.Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en)2015-02-202018-01-23At&T Intellectual Property I, LpGuided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en)2015-02-202018-01-23At&T Intellectual Property I, LpGuided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en)2015-03-172017-08-29At&T Intellectual Property I, L.P.Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en)2015-04-242017-10-17At&T Intellectual Property I, LpPassive electrical coupling device and methods for use therewith
US9705561B2 (en)2015-04-242017-07-11At&T Intellectual Property I, L.P.Directional coupling device and methods for use therewith
US10224981B2 (en)2015-04-242019-03-05At&T Intellectual Property I, LpPassive electrical coupling device and methods for use therewith
US9831912B2 (en)2015-04-242017-11-28At&T Intellectual Property I, LpDirectional coupling device and methods for use therewith
US9948354B2 (en)2015-04-282018-04-17At&T Intellectual Property I, L.P.Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en)2015-04-282017-10-17At&T Intellectual Property I, L.P.Magnetic coupling device and methods for use therewith
US9887447B2 (en)2015-05-142018-02-06At&T Intellectual Property I, L.P.Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en)2015-05-142017-08-29At&T Intellectual Property I, L.P.Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en)2015-05-142018-01-16At&T Intellectual Property I, L.P.At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en)2015-05-142016-11-08At&T Intellectual Property I, L.P.Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en)2015-05-152020-05-12At&T Intellectual Property I, L.P.Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en)2015-05-152020-06-09At&T Intellectual Property I, L.P.Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en)2015-05-272018-03-13At&T Intellectual Property I, L.P.Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10797781B2 (en)2015-06-032020-10-06At&T Intellectual Property I, L.P.Client node device and methods for use therewith
US9912382B2 (en)2015-06-032018-03-06At&T Intellectual Property I, LpNetwork termination and methods for use therewith
US9935703B2 (en)2015-06-032018-04-03At&T Intellectual Property I, L.P.Host node device and methods for use therewith
US10103801B2 (en)2015-06-032018-10-16At&T Intellectual Property I, L.P.Host node device and methods for use therewith
US10812174B2 (en)2015-06-032020-10-20At&T Intellectual Property I, L.P.Client node device and methods for use therewith
US10050697B2 (en)2015-06-032018-08-14At&T Intellectual Property I, L.P.Host node device and methods for use therewith
US9967002B2 (en)2015-06-032018-05-08At&T Intellectual I, LpNetwork termination and methods for use therewith
US9912381B2 (en)2015-06-032018-03-06At&T Intellectual Property I, LpNetwork termination and methods for use therewith
US10154493B2 (en)2015-06-032018-12-11At&T Intellectual Property I, L.P.Network termination and methods for use therewith
US10348391B2 (en)2015-06-032019-07-09At&T Intellectual Property I, L.P.Client node device with frequency conversion and methods for use therewith
US10396887B2 (en)2015-06-032019-08-27At&T Intellectual Property I, L.P.Client node device and methods for use therewith
US9913139B2 (en)2015-06-092018-03-06At&T Intellectual Property I, L.P.Signal fingerprinting for authentication of communicating devices
US9997819B2 (en)2015-06-092018-06-12At&T Intellectual Property I, L.P.Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10142010B2 (en)2015-06-112018-11-27At&T Intellectual Property I, L.P.Repeater and methods for use therewith
US10142086B2 (en)2015-06-112018-11-27At&T Intellectual Property I, L.P.Repeater and methods for use therewith
US9608692B2 (en)2015-06-112017-03-28At&T Intellectual Property I, L.P.Repeater and methods for use therewith
US10027398B2 (en)2015-06-112018-07-17At&T Intellectual Property I, LpRepeater and methods for use therewith
US9820146B2 (en)2015-06-122017-11-14At&T Intellectual Property I, L.P.Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en)2015-06-152017-05-30At&T Intellectual Property I, L.P.Method and apparatus for providing security using network traffic adjustments
US10069185B2 (en)2015-06-252018-09-04At&T Intellectual Property I, L.P.Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090601B2 (en)2015-06-252018-10-02At&T Intellectual Property I, L.P.Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
US9882657B2 (en)2015-06-252018-01-30At&T Intellectual Property I, L.P.Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en)2015-06-252018-01-09At&T Intellectual Property I, L.P.Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en)2015-06-252017-10-10At&T Intellectual Property I, L.P.Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en)2015-06-252017-05-02At&T Intellectual Property I, L.P.Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en)2015-06-252016-11-29At&T Intellectual Property I, L.P.Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10033107B2 (en)2015-07-142018-07-24At&T Intellectual Property I, L.P.Method and apparatus for coupling an antenna to a device
US9628116B2 (en)2015-07-142017-04-18At&T Intellectual Property I, L.P.Apparatus and methods for transmitting wireless signals
US9929755B2 (en)2015-07-142018-03-27At&T Intellectual Property I, L.P.Method and apparatus for coupling an antenna to a device
US9947982B2 (en)2015-07-142018-04-17At&T Intellectual Property I, LpDielectric transmission medium connector and methods for use therewith
US10033108B2 (en)2015-07-142018-07-24At&T Intellectual Property I, L.P.Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en)2015-07-142019-01-01At&T Intellectual Property I, L.P.Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en)2015-07-142017-12-19At&T Intellectual Property I, L.P.Method and apparatus for adjusting a field of a signal to mitigate interference
US10341142B2 (en)2015-07-142019-07-02At&T Intellectual Property I, L.P.Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10320586B2 (en)2015-07-142019-06-11At&T Intellectual Property I, L.P.Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9836957B2 (en)2015-07-142017-12-05At&T Intellectual Property I, L.P.Method and apparatus for communicating with premises equipment
US9722318B2 (en)2015-07-142017-08-01At&T Intellectual Property I, L.P.Method and apparatus for coupling an antenna to a device
US9853342B2 (en)2015-07-142017-12-26At&T Intellectual Property I, L.P.Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en)2015-07-142019-02-12At&T Intellectual Property I, L.P.Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en)2015-07-142018-12-04At&T Intellectual Property I, L.P.Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en)2015-07-142018-01-30At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en)2015-07-142018-08-07At&T Intellectual Property I, L.P.Transmission medium and methods for use therewith
US9793951B2 (en)2015-07-152017-10-17At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en)2015-07-152017-03-28At&T Intellectual Property I, L.P.Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en)2015-07-152018-10-02At&T Intellectual Property I, L.P.Antenna system with dielectric array and methods for use therewith
US9912027B2 (en)2015-07-232018-03-06At&T Intellectual Property I, L.P.Method and apparatus for exchanging communication signals
US9871283B2 (en)2015-07-232018-01-16At&T Intellectual Property I, LpTransmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9806818B2 (en)2015-07-232017-10-31At&T Intellectual Property I, LpNode device, repeater and methods for use therewith
US9948333B2 (en)2015-07-232018-04-17At&T Intellectual Property I, L.P.Method and apparatus for wireless communications to mitigate interference
US10074886B2 (en)2015-07-232018-09-11At&T Intellectual Property I, L.P.Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9749053B2 (en)2015-07-232017-08-29At&T Intellectual Property I, L.P.Node device, repeater and methods for use therewith
US10784670B2 (en)2015-07-232020-09-22At&T Intellectual Property I, L.P.Antenna support for aligning an antenna
US9735833B2 (en)2015-07-312017-08-15At&T Intellectual Property I, L.P.Method and apparatus for communications management in a neighborhood network
US10020587B2 (en)2015-07-312018-07-10At&T Intellectual Property I, L.P.Radial antenna and methods for use therewith
US9461706B1 (en)2015-07-312016-10-04At&T Intellectual Property I, LpMethod and apparatus for exchanging communication signals
US9838078B2 (en)2015-07-312017-12-05At&T Intellectual Property I, L.P.Method and apparatus for exchanging communication signals
US9967173B2 (en)2015-07-312018-05-08At&T Intellectual Property I, L.P.Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en)2015-09-142018-02-27At&T Intellectual Property I, L.P.Method and apparatus for distributing software
US10136434B2 (en)2015-09-162018-11-20At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en)2015-09-162018-09-18At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en)2015-09-162018-06-26At&T Intellectual Property I, L.P.Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en)2015-09-162018-08-14At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10225842B2 (en)2015-09-162019-03-05At&T Intellectual Property I, L.P.Method, device and storage medium for communications using a modulated signal and a reference signal
US10349418B2 (en)2015-09-162019-07-09At&T Intellectual Property I, L.P.Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
US10009063B2 (en)2015-09-162018-06-26At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en)2015-09-282017-09-19At&T Intellectual Property I, L.P.Method and apparatus for encryption of communications over a network
US9729197B2 (en)2015-10-012017-08-08At&T Intellectual Property I, L.P.Method and apparatus for communicating network management traffic over a network
US9876264B2 (en)2015-10-022018-01-23At&T Intellectual Property I, LpCommunication system, guided wave switch and methods for use therewith
US10074890B2 (en)2015-10-022018-09-11At&T Intellectual Property I, L.P.Communication device and antenna with integrated light assembly
US9882277B2 (en)2015-10-022018-01-30At&T Intellectual Property I, LpCommunication device and antenna assembly with actuated gimbal mount
US10355367B2 (en)2015-10-162019-07-16At&T Intellectual Property I, L.P.Antenna structure for exchanging wireless signals
US10051483B2 (en)2015-10-162018-08-14At&T Intellectual Property I, L.P.Method and apparatus for directing wireless signals
US10665942B2 (en)2015-10-162020-05-26At&T Intellectual Property I, L.P.Method and apparatus for adjusting wireless communications
US9912419B1 (en)2016-08-242018-03-06At&T Intellectual Property I, L.P.Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en)2016-08-262018-01-02At&T Intellectual Property I, L.P.Method and communication node for broadband distribution
US10291311B2 (en)2016-09-092019-05-14At&T Intellectual Property I, L.P.Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en)2016-09-152021-06-08At&T Intellectual Property I, L.P.Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en)2016-10-182018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via circuits
US10340600B2 (en)2016-10-182019-07-02At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en)2016-10-182018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en)2016-10-212019-08-06At&T Intellectual Property I, L.P.System and dielectric antenna with non-uniform dielectric
US9876605B1 (en)2016-10-212018-01-23At&T Intellectual Property I, L.P.Launcher and coupling system to support desired guided wave mode
US10811767B2 (en)2016-10-212020-10-20At&T Intellectual Property I, L.P.System and dielectric antenna with convex dielectric radome
US9991580B2 (en)2016-10-212018-06-05At&T Intellectual Property I, L.P.Launcher and coupling system for guided wave mode cancellation
US10340573B2 (en)2016-10-262019-07-02At&T Intellectual Property I, L.P.Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en)2016-10-262019-06-04At&T Intellectual Property I, L.P.Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en)2016-11-032019-03-05At&T Intellectual Property I, L.P.Method and apparatus for detecting a fault in a communication system
US10498044B2 (en)2016-11-032019-12-03At&T Intellectual Property I, L.P.Apparatus for configuring a surface of an antenna
US10224634B2 (en)2016-11-032019-03-05At&T Intellectual Property I, L.P.Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en)2016-11-032019-05-14At&T Intellectual Property I, L.P.System for detecting a fault in a communication system
US10340601B2 (en)2016-11-232019-07-02At&T Intellectual Property I, L.P.Multi-antenna system and methods for use therewith
US10178445B2 (en)2016-11-232019-01-08At&T Intellectual Property I, L.P.Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en)2016-11-232020-01-14At&T Intellectual Property I, L.P.Antenna system and methods for use therewith
US10090594B2 (en)2016-11-232018-10-02At&T Intellectual Property I, L.P.Antenna system having structural configurations for assembly
US10340603B2 (en)2016-11-232019-07-02At&T Intellectual Property I, L.P.Antenna system having shielded structural configurations for assembly
KR20180062558A (en)*2016-11-302018-06-11주식회사 에스원Measuring Method of Intruder Position of Intruding Detect Radar based on Reflection Plate and Method of Noise Definition for the above Method
KR101919059B1 (en)*2016-11-302018-11-16주식회사 에스원Measuring Method of Intruder Position of Intruding Detect Radar based on Reflection Plate and Method of Noise Definition for the above Method
US10305190B2 (en)2016-12-012019-05-28At&T Intellectual Property I, L.P.Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en)2016-12-012019-07-23At&T Intellectual Property I, L.P.Dielectric dish antenna system and methods for use therewith
US10755542B2 (en)2016-12-062020-08-25At&T Intellectual Property I, L.P.Method and apparatus for surveillance via guided wave communication
US9927517B1 (en)2016-12-062018-03-27At&T Intellectual Property I, L.P.Apparatus and methods for sensing rainfall
US10439675B2 (en)2016-12-062019-10-08At&T Intellectual Property I, L.P.Method and apparatus for repeating guided wave communication signals
US10819035B2 (en)2016-12-062020-10-27At&T Intellectual Property I, L.P.Launcher with helical antenna and methods for use therewith
US10637149B2 (en)2016-12-062020-04-28At&T Intellectual Property I, L.P.Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en)2016-12-062018-11-20At&T Intellectual Property I, L.P.Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10326494B2 (en)2016-12-062019-06-18At&T Intellectual Property I, L.P.Apparatus for measurement de-embedding and methods for use therewith
US10020844B2 (en)2016-12-062018-07-10T&T Intellectual Property I, L.P.Method and apparatus for broadcast communication via guided waves
US10694379B2 (en)2016-12-062020-06-23At&T Intellectual Property I, L.P.Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en)2016-12-062019-08-13At&T Intellectual Property I, L.P.Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en)2016-12-062020-07-28At&T Intellectual Property I, L.P.Launcher with slot antenna and methods for use therewith
US10027397B2 (en)2016-12-072018-07-17At&T Intellectual Property I, L.P.Distributed antenna system and methods for use therewith
US10359749B2 (en)2016-12-072019-07-23At&T Intellectual Property I, L.P.Method and apparatus for utilities management via guided wave communication
US10389029B2 (en)2016-12-072019-08-20At&T Intellectual Property I, L.P.Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en)2016-12-072018-02-13At&T Intellectual Property I, LpMethod and repeater for broadband distribution
US10139820B2 (en)2016-12-072018-11-27At&T Intellectual Property I, L.P.Method and apparatus for deploying equipment of a communication system
US10547348B2 (en)2016-12-072020-01-28At&T Intellectual Property I, L.P.Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en)2016-12-072019-03-26At&T Intellectual Property I, L.P.Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en)2016-12-072019-01-01At&T Intellectual Property I, L.P.Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en)2016-12-072019-10-15At&T Intellectual Property I, L.P.Multi-feed dielectric antenna system and methods for use therewith
US10530505B2 (en)2016-12-082020-01-07At&T Intellectual Property I, L.P.Apparatus and methods for launching electromagnetic waves along a transmission medium
US10103422B2 (en)2016-12-082018-10-16At&T Intellectual Property I, L.P.Method and apparatus for mounting network devices
US10938108B2 (en)2016-12-082021-03-02At&T Intellectual Property I, L.P.Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en)2016-12-082019-09-10At&T Intellectual Property I, L.P.Apparatus and methods for selectively targeting communication devices with an antenna array
US10601494B2 (en)2016-12-082020-03-24At&T Intellectual Property I, L.P.Dual-band communication device and method for use therewith
US10069535B2 (en)2016-12-082018-09-04At&T Intellectual Property I, L.P.Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en)2016-12-082019-08-20At&T Intellectual Property I, L.P.Apparatus and methods for selecting sections of an antenna array and use therewith
US9998870B1 (en)2016-12-082018-06-12At&T Intellectual Property I, L.P.Method and apparatus for proximity sensing
US10916969B2 (en)2016-12-082021-02-09At&T Intellectual Property I, L.P.Method and apparatus for providing power using an inductive coupling
US9911020B1 (en)2016-12-082018-03-06At&T Intellectual Property I, L.P.Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en)2016-12-082019-06-18At&T Intellectual Property I, L.P.Method and system for providing alternative communication paths
US10777873B2 (en)2016-12-082020-09-15At&T Intellectual Property I, L.P.Method and apparatus for mounting network devices
US10264586B2 (en)2016-12-092019-04-16At&T Mobility Ii LlcCloud-based packet controller and methods for use therewith
US10340983B2 (en)2016-12-092019-07-02At&T Intellectual Property I, L.P.Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en)2016-12-092017-12-05At&T Intellectual Property I, L.P.Method and apparatus for assessing network coverage
US9973940B1 (en)2017-02-272018-05-15At&T Intellectual Property I, L.P.Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en)2017-03-132019-05-21At&T Intellectual Property I, L.P.Apparatus of communication utilizing wireless network devices
KR101966722B1 (en)2017-07-042019-08-14주식회사 에스원Invader Detecting System of Specific Location by Radar based on Reflection Board and Method thereof
KR20190004858A (en)*2017-07-042019-01-15주식회사 에스원Invader Detecting System of Specific Location by Radar based on Reflection Board and Method thereof
KR20190028237A (en)*2017-09-082019-03-18주식회사 에스원Ladar sensor system and sensing method thereof
KR102026262B1 (en)*2017-09-082019-09-27주식회사 에스원Ladar sensor system and sensing method thereof
US12087144B2 (en)2020-05-212024-09-10Essence Smartcare Ltd.Device and method for determining a status of a person
US12027028B2 (en)2020-06-032024-07-02Essence Smartcare Ltd.Controlling frame rate of active reflected wave detector
CN113916991A (en)*2020-07-082022-01-11原子能和替代能源委员会Ultrasonic target for non-destructive inspection

Similar Documents

PublicationPublication DateTitle
JP2006153878A (en)Intruder detecting device and radiowave reflector
US7843375B1 (en)Method and apparatus for monitoring the RF environment to prevent airborne radar false alarms that initiate evasive maneuvers, reactionary displays or actions
CA2242843C (en)Passive infra-red intrusion sensor
JP3778056B2 (en) Intruder detection device
US7760088B2 (en)Intrusion detection sensor
US6466157B1 (en)Electronic fence using high-resolution millimeter-wave radar in conjunction with multiple passive reflectors
US8441394B2 (en)System and method for detecting obstructions and misalignment of ground vehicle radar systems
US20060267764A1 (en)Object detection sensor
US6950021B2 (en)Electronic wall using high-resolution millimeter-wave radar in conjunction with multiple plane reflectors and retroreflectors
JP6498931B2 (en) Radar device and cover member
US4684929A (en)Microwave/seismic security system
KR20110040877A (en) Front and Side Radial Radar Sensors
US8169356B2 (en)Anti-mask motion sensor
WO2007015515A1 (en)Intrusion sensor
JP2013196018A (en)Fmcw opposite-type sensor system with interference countermeasure using multi-reflector
CN112867940B (en)Radar sensor and robot using the same
JP4773759B2 (en) Obstacle detection radar system
US8618999B2 (en)Microwave motion sensor with a reflector
KR101719487B1 (en)Virtual guard system using electromagnetic wave reflector
US9316726B2 (en)Quantum harmonic radar
RU2455692C1 (en)Method of detecting intruder in controlled zone
US20240072429A1 (en)Radome Design
GB2312992A (en)Doppler microwave event detection device
WO2023228693A1 (en)Power transmission system and power transmission method
KR101979330B1 (en)Virtual guard system using electromagnetic wave reflector

Legal Events

DateCodeTitleDescription
A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20060808

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20061004

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20070410

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20070807


[8]ページ先頭

©2009-2025 Movatter.jp