



本発明は、型を用いた樹脂成形による光学素子の製造方法及び光学素子に関する。光学素子としては、ポリマ型の光導波路、レンズ、フィルター、回折格子、プリズム、光学記録媒体などがある。 The present invention relates to a method for manufacturing an optical element by resin molding using a mold and the optical element. Examples of the optical element include a polymer type optical waveguide, a lens, a filter, a diffraction grating, a prism, and an optical recording medium.
従来、この種の光学素子の製造においては、成形金型と成形樹脂との密着による離型性に問題があり、その原因は次の二つが考えられる。(1)金型金属と成形樹脂が分子間力により密着性を有すること。(2)金型表面に有機物や酸素が付着汚染することで、成形樹脂との密着層の働きをすること。 Conventionally, in the production of this type of optical element, there is a problem in the releasability due to the close contact between the molding die and the molding resin, and the following two causes are considered. (1) The mold metal and the molding resin have adhesion due to intermolecular force. (2) To act as an adhesion layer with the molding resin by organic substances and oxygen adhering to and contaminating the mold surface.
(1)の原因に対しては下記のような対策がとられている。
(1−1)シリコンやフッ素化合物からなる離型剤を金型表面へ塗布すること(汎用技術)、
(1−2)成形樹脂中へ微量の離型剤を含有させること(特許文献1参照)
(1−3)金型表面へ成形樹脂と密着性の弱いCo、Tiなどの金属又は合金、若しくは窒化物などを蒸着やスパッタリングや湿式メッキで被覆することThe following measures are taken for the cause of (1).
(1-1) Applying a mold release agent made of silicon or a fluorine compound to the mold surface (general-purpose technology),
(1-2) Inclusion of a small amount of release agent in the molding resin (see Patent Document 1)
(1-3) Coating the mold surface with a metal or alloy such as Co or Ti having weak adhesion to the molding resin or nitride, or nitride by vapor deposition, sputtering or wet plating.
(2)の原因に対しては下記のような対策が取られている。
(2−1)金型表面を窒素プラズマ処理する方法(特許文献2参照)
(2−2)金型表面に金の被覆膜を形成する方法(特許文献3参照)
(2−3)金型表面を酸素アッシング処理後、不活性ガスプラズマ照射する方法(特許文献4参照)The following measures are taken for the cause of (2).
(2-1) Method of Nitrogen Plasma Treatment of Mold Surface (see Patent Document 2)
(2-2) Method of forming a gold coating film on the mold surface (see Patent Document 3)
(2-3) Method of irradiating inert gas plasma after oxygen ashing on mold surface (see Patent Document 4)
しかしながら、上記対策だけでは次のような問題がある。
上記(1−1)の離型剤を用いる場合、光学素子の透過率や屈折率や光伝送損失などの性能を落とすだけでなく、例えば光学素子上に形成する層の密着性をも低下させる。
上記(1−2)(1−3)、及び(2−1)から(2−3)の対策では、高温の成形条件で繰り返し使用した場合に、成形樹脂成分により汚染されるため、密着による離型性の問題が生じる。このため、各処理を定期的に行う必要がある。しかし、この処理により型表面の粗さが大きくなり、光学素子の上記性能が劣化することが問題となる。このため、金型の寿命が短くなる。
When the release agent (1-1) is used, not only the performance of the optical element such as transmittance, refractive index, and optical transmission loss is deteriorated, but also, for example, the adhesion of a layer formed on the optical element is also reduced. .
In the measures (1-2), (1-3), and (2-1) to (2-3), when repeatedly used under high-temperature molding conditions, the resin is contaminated with molded resin components. A problem of releasability occurs. For this reason, it is necessary to perform each process regularly. However, this process increases the roughness of the mold surface and causes a problem that the performance of the optical element is deteriorated. For this reason, the lifetime of a metal mold | die becomes short.
本発明は、上記の問題を解決するためになされたものであり、光学素子の透過率や屈折率や光伝送損失などの性能を落とす離型剤を用いることなく、微細な凹凸を備えた光学素子を容易に離型することができ、また、型表面に傷や汚れが付着し難く、型寿命が向上する光学素子の製造方法と光学素子を提供することを目的とする。 The present invention has been made in order to solve the above problems, and an optical device having fine irregularities without using a release agent that degrades the transmittance, refractive index, optical transmission loss and the like of the optical element. An object of the present invention is to provide an optical element manufacturing method and an optical element in which the element can be easily released, scratches and dirt are difficult to adhere to the mold surface, and the mold life is improved.
上記目的を達成するために請求項1の発明は、微細凹凸を持つ型表面に、型材質に対して成形温度下で拡散しない金属膜を形成する金属膜形成工程と、前記微細凹凸を持つ型を少なくとも一面に持つキャビティ内に樹脂を充填・硬化させて、微細構造体を形成する光学素子成形工程と、前記型表面より前記金属膜を剥離させ、該金属膜が微細構造体表面に付着した状態で型開きを行う光学素子離型工程と、前記樹脂を溶解せず金属膜層のみを溶解可能な溶剤に前記微細構造体を浸すことで、微細構造体表面より金属膜を除去する金属膜除去工程と、を備えた光学素子の製造方法である。 In order to achieve the above object, the invention of
請求項2の発明は、請求項1記載の光学素子の製造方法において、金属膜形成工程において、金属膜として銅、ニッケル、クロム、コバルト又はそれらの化合物を形成し、金属膜除去工程において、溶剤として過酸化水素、過マンガン酸塩、重クロム酸塩を用いるものである。 According to a second aspect of the present invention, in the optical element manufacturing method according to the first aspect, in the metal film forming step, copper, nickel, chromium, cobalt or a compound thereof is formed as the metal film, and in the metal film removing step, the solvent Hydrogen peroxide, permanganate and dichromate are used as
請求項3の発明は、請求項1記載の光学素子の製造方法において、金属膜形成工程において、金属膜として型材よりも線膨張率の小さい金属を用い、光学素子成形工程と光学素子離型工程の間に、型の温度を成形温度から低下させる型冷却工程を備えたものである。 According to a third aspect of the present invention, in the optical element manufacturing method according to the first aspect, in the metal film forming step, a metal having a smaller linear expansion coefficient than the mold material is used as the metal film, and the optical element molding step and the optical element release step In the meantime, a mold cooling step for lowering the mold temperature from the molding temperature is provided.
請求項4の発明は、請求項1乃至請求項3のいずれかに記載の製造方法を用いて製造された光学素子である。 A fourth aspect of the present invention is an optical element manufactured by using the manufacturing method according to any one of the first to third aspects.
請求項1の発明によれば、金属膜を微細構造体表面に付着した状態で型開きを行うので、屈折率等に影響を及ぼす離型材を用いることなく、微細な凹凸を備えた光学素子を容易に離型可能となる。また、離型材を用いて行う成形方法に較べて、型と金属膜間できれいに剥がれるので、型表面に傷・汚れが付着し難くなり、型寿命が向上する。 According to the invention of
請求項2の発明によれば、金属膜及び溶剤を用いることにより、処理薬品濃度、温度、時間により容易にピール強度を制御できるため、金属層の除去が容易に可能である。 According to the invention of
請求項3の発明によれば、光学素子の離型工程時に型材と金属膜との間の熱膨張の差により剥離し易くなっているので、光学素子の離型工程時の欠けが防止できる。 According to the invention of
請求項4の発明によれば、離型時の傷・欠けが少ない凹凸形状を形成できるので、性能劣化を防止できる。 According to the fourth aspect of the present invention, it is possible to form a concavo-convex shape with few scratches / chips at the time of mold release, thereby preventing performance deterioration.
本発明の実施形態について図面を参照して説明する。図1は、本発明方法により製造される光学素子の一例を示す。この光学素子1は、基材である光透過性の成形樹脂(熱可塑性樹脂)2に微細な凹凸が転写されることで形成される光導波路基板(クラッド)であって、ここでは光導波路3は光分岐のスプリッタ構造を持つ。光導波路3をなす凹部の幅寸法は、約10μm前後又はそれ以下とされ、この凹部に屈折率がクラッドよりも高いコア材(図示なし)が装入され、基板上はカバークラッドで覆われる。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an optical element manufactured by the method of the present invention. The
(実施例1)
図2は、光学素子、詳細には、その基材である光導波路基板の製造方法の工程を概念的に示しており、以下、時系列の番号順に説明する。(Example 1)
FIG. 2 conceptually shows the steps of the manufacturing method of the optical element, specifically, the optical waveguide substrate that is the base material, and will be described below in the order of time-series numbers.
(1)先ず、上述した光導波路基板に光導波路用の微細な凹凸を成形するための凹凸部5a(微細凹凸)を持つ型5を加工する(型加工工程)。ここに、型5は、材質SUS304の金属へ切削加工方法により光学素子となる形状を形成する。(1) First, the
(2)型5の表面に、型5の材質に対して成形温度下で拡散しない金属膜6を厚さ0.05〜1.0μmで形成する(金属膜形成工程)。ここに、金属膜6は、厚さ0.05〜1.0μmであればよく、本例では、厚さ0.2μmの銅金属膜を電気メッキ法により形成した。電気銅メッキは、液組成が、硫酸銅五水和:80g/L、硫酸:180g/L、塩素イオン:60mL/L、光沢剤:微量とし、液温度:23℃、電流密度:1A/dm2、メッキ時間:60秒とした。
なお、切削加工した材質SUS304の表面には、大気中で不活性被膜が形成されているため、同材質と金属膜6とは密着していない。このため、金属膜6上にセロハンテープを貼り付け剥離するテープテスト(ピール強度試験)を行ったところ、金属膜6と型5の界面で容易に剥離できた。金属膜6の形成方法としては、上記電気メッキ法の他に、無電解メッキ法、スパッタリング法、蒸着法がある。そして、生産性の点で電気メッキ法が最も優れている。(2) On the surface of the
In addition, since the inert film is formed in the air | atmosphere on the surface of the cut material SUS304, the same material and the
(3)金属膜6を被覆した型5と図示していない型とにより区画したキャビティ内に温度230℃の成形樹脂2を充填し、その後、70℃まで冷却して硬化させて、微細構造体を形成する(光学素子成形工程)。成形樹脂2としては、例えば、熱可塑性アクリル樹脂を用いる。(3) A
(4)上記による硬化後、型開きを行うことで、前記金属膜6を型5の表面より剥離させ、成形樹脂2の表面に金属膜6が付着した状態の微細構造体7を離型する(光学素子離型工程)。ここに、金属膜6は型5との界面で容易に剥離でき、金属膜6は光学素子となる樹脂側に密着する。型開き温度:70℃、型開き速度:5mm/秒とした。
量産を行う場合、型5は、上記(2)の金属膜形成から(4)の型開きの工程を繰り返す。この場合、型を二台または複数用いて連続して成形することもできる。また、(2)の金属膜形成、(3)の成形、及び(4)の型開きを、後述する図3に示すように、同一装置内で処理することも可能である。型開きの時の温度と開き速度は特に限定しないが、温度が高い場合には、成形樹脂2が柔らかいために、光学素子の形状が崩れやすく、また、型開き速度が速い場合には、金属膜6が型5側に付着し、成形樹脂2の表面層が破壊される。(4) After the curing as described above, the
In the case of mass production, the
(5)前記成形樹脂2を溶解せず金属膜6のみを溶解可能な溶剤に浸漬することで、金属膜6を微細構造体7の表面より溶解除去する(金属膜除去工程)。金属膜6を除去した成形樹脂2からなる微細構造体7’は光学素子のもとになる光導波路基板となる。ここに、溶剤は、20%過硫酸ナトリウム水溶液を用いた。目視で観察される除去時間は20秒であったが、微量の残渣物を除去するために、40秒間浸漬させた。本実施例では、1000ショット成形した後も、型に傷や汚れの付着もなく容易に離型が可能であった。また、成形した光学素子も形状の崩れや光学特性の劣化が認められなかった。(5) The
本実施例によれば、離型材を用いることなく、微細な凹凸を備えた光学素子を容易に離型可能であるので、光学素子の屈折率等に影響を及ぼすことがなくなり、また、型と金属膜間できれいに剥がれるので、型表面に傷・汚れが付着し難く、型寿命が向上する。 According to the present embodiment, an optical element having fine irregularities can be easily released without using a release material, so that the refractive index of the optical element is not affected. Since it peels cleanly between metal films, it is difficult for scratches and dirt to adhere to the mold surface and the mold life is improved.
図3は、上記の金属膜形成(2)、成形(3)、及び型開き(4)を一つの装置内で処理することが可能な成形装置の構成例を示す。この装置は、回転ドラム成形装置8であり、軸回りに回転駆動されるドラムを備え、ドラムには型5が固定され、ドラムの周囲に各処理を行うステーションが設けられている。金属膜形成(2)のステーションでは、電気メッキ槽10内のメッキ液11に型5を浸漬し、金属膜6を形成する。金属膜6のメッキは、電源13より電気メッキ槽10内の電極12から型5に電流を流すことで成される。次に、金属膜6をスプレー水洗/熱風乾燥するステーションがあり、次に、型5と型15とにより形成したキャビティに真空/樹脂充填を行う成形(3)のステーションがあり、さらに、冷却/離型により、型開き(4)を行うステーションがある。こうして得られた微細構造体7は、金属膜除去(5)へ移される。 FIG. 3 shows a configuration example of a molding apparatus capable of processing the metal film formation (2), molding (3), and mold opening (4) in one apparatus. This apparatus is a rotary drum forming apparatus 8 and includes a drum that is driven to rotate about an axis. A
(実施例2)
本実施例2は、上述図2に示した実施例1において金属膜形成の前処理として、型表面を酸化処理する工程を付加したものである。型として、材質が銅の金属へ切削加工方法により光学素子となる形状を形成後、酸化処理を行なう。ここに、酸化処理は、5%重クロム酸カリウム水溶液へ浸漬することにより行い、液温:23℃、処理時間:30秒とした。酸化処理後は、ニッケルメッキにより0.2μmの金属膜を形成した。ここに、ニッケルメッキ液組成は、スルファミン酸ニッケル:300g/L、ホウ酸:40g/L、塩酸:5mL/Lとした。(Example 2)
In the second embodiment, a step of oxidizing the mold surface is added as a pretreatment for forming the metal film in the first embodiment shown in FIG. As a mold, a shape that becomes an optical element is formed on a copper metal material by a cutting method, and then an oxidation treatment is performed. Here, the oxidation treatment was performed by immersing in a 5% potassium dichromate aqueous solution, and the liquid temperature was 23 ° C. and the treatment time was 30 seconds. After the oxidation treatment, a 0.2 μm metal film was formed by nickel plating. Here, the nickel plating solution composition was nickel sulfamate: 300 g / L, boric acid: 40 g / L, and hydrochloric acid: 5 mL / L.
上記ニッケルメッキは、析出応力が15kg/mm3と大きい被膜であったが、被膜の割れや剥がれが観られなかった。また、ニッケル金属膜上にセロハンテープを貼り付け剥離するテープテストでは、ニッケル金属膜と型の界面で容易に剥離できた。次に、実施例1と同様、成形後に型開きを行うと、上記ニッケル金属膜は型との界面で容易に剥離でき、ニッケル金属膜は光学素子となる樹脂側に密着していた。その後、ニッケル金属膜は、塩化銅と過酸化水素を混合したエッチング液にてエッチング除去した。The nickel plating was a film having a large precipitation stress of 15 kg / mm3 , but no cracking or peeling of the film was observed. Further, in the tape test in which the cellophane tape was applied to the nickel metal film and peeled off, it was easily peeled off at the interface between the nickel metal film and the mold. Next, as in Example 1, when the mold was opened after molding, the nickel metal film was easily peeled off at the interface with the mold, and the nickel metal film was in close contact with the resin side serving as an optical element. Thereafter, the nickel metal film was removed by etching with an etching solution in which copper chloride and hydrogen peroxide were mixed.
酸化処理する薬品としては、上記重クロム酸カリウムの他、過酸化水素水、過マンガン酸カリウムなどが挙げられ、これらの濃度、温度が高く処理時間が長いほど酸化被膜は厚くなり、容易な離型ができる。しかし、その一方、ニッケルやクロム金属膜は内部応力が大きいため、成膜途中や成形前の外形加工などにより、金属膜の割れや剥離が生じる。上記酸化処理を最適化することで、成形工程まで金属膜の割れや剥離が生じることなく、かつ容易な離型が可能となる。 Examples of chemicals to be oxidized include potassium dichromate, hydrogen peroxide, potassium permanganate and the like. The higher the concentration and temperature and the longer the treatment time, the thicker the oxide film becomes and the easier it is to release it. I can mold. However, since nickel and chromium metal films have a large internal stress, the metal film is cracked or peeled off during film formation or external processing before forming. By optimizing the oxidation treatment, the metal film can be easily released without cracking or peeling off until the forming step.
上記酸化処理を付加することにより、処理薬品の濃度、温度、時間を変えることで、金属膜の型に対する密着強度を容易に制御できるため、離型工程まで型に金属膜を密着保持させ、かつ離型を容易にできる。 By adding the oxidation treatment, by changing the concentration, temperature, and time of the treatment chemical, the adhesion strength of the metal film to the mold can be easily controlled, so that the metal film is held in close contact with the mold until the mold release step, and Release is easy.
(実施例3)
上記実施例2におけるニッケルメッキ液へ硫黄を1ppm以上添加し、複合メッキにより金属膜へ含有させた。成形樹脂には、ポリカーボネイトを用いて成形し、その後、この金属膜を20%過硫酸ナトリウム水溶液に5分浸漬させて溶解除去した。上記金属膜及び溶剤を用いることにより、金属層の除去が容易となり、また、この方法で製造された光学素子は、外観及び屈折率、透過率の光学特性に劣化が見られなかった。(Example 3)
1 ppm or more of sulfur was added to the nickel plating solution in Example 2 described above and contained in the metal film by composite plating. The molding resin was molded using polycarbonate, and then this metal film was immersed in a 20% aqueous solution of sodium persulfate for 5 minutes for dissolution and removal. By using the metal film and the solvent, it is easy to remove the metal layer, and the optical element manufactured by this method has no deterioration in appearance, refractive index, and optical characteristics of transmittance.
ここで、比較例として、ニッケルメッキ液に硫黄を含有しないメッキ液を用いて金属膜を形成し、同様に成形後に20%過硫酸ナトリウム水溶液に10分浸漬したが、ニッケル金属膜は溶解しなかった。そこで、50%硝酸水溶液に1分浸漬し、ニッケル金属膜を溶解除去した。この結果、ポリカーボネイトは硝酸により薄黄色に変色し、光透過率が低下した。 Here, as a comparative example, a metal film was formed by using a plating solution that does not contain sulfur as a nickel plating solution, and similarly immersed in a 20% aqueous solution of sodium persulfate for 10 minutes after molding, but the nickel metal film did not dissolve. It was. Therefore, the nickel metal film was dissolved and removed by immersing in a 50% nitric acid aqueous solution for 1 minute. As a result, the polycarbonate was turned pale yellow by nitric acid and the light transmittance was lowered.
(実施例4)
本実施例4は、上述実施例1の金属膜形成工程において、金属膜として型材よりも線膨張率の小さい金属を用い、光学素子成形工程と光学素子離型工程の間に、型の温度を成形温度から低下させる型冷却工程を備えたものである。型材と金属膜との間の熱膨張の差により、剥離し易くなり、離型工程時に光学素子の欠けが防止できる。Example 4
In Example 4, the metal film forming process of Example 1 described above uses a metal having a smaller linear expansion coefficient than the mold material as the metal film, and the mold temperature is changed between the optical element molding process and the optical element release process. A mold cooling step for lowering the molding temperature is provided. Due to the difference in thermal expansion between the mold material and the metal film, it becomes easy to peel off, and chipping of the optical element can be prevented during the mold release process.
型材料として、熱膨張率17.3×10−6のSUS304、金属膜として熱膨張率10.2×10−6ニッケルクロム合金を用いた。成形を260℃にて行い、50℃まで冷却後に離型を行なった。上記合金金属膜は、型との界面で容易に剥離でき、合金金属膜は光学素子となる樹脂側に密着していた。型材及び金属膜に用いる材料としては、熱膨張率が、型材>金属膜材料となればよく、下表の各材料の熱膨張率より、材料組合せを適宜選ぶことができる。
本発明方法により製造される光学素子の表面形状の例を図4(a)(b)(c)に示す。光学素子としては、微細かつ高精度表面形状を必要とする光導波路2a、光学レンズ2b、フィルター、回折格子2c、プリズム及び光学記録媒体などが挙げられる。成形材料としては、光透過するメタクリル樹脂、ポリカーボネイト樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、透明ポリイミド、含フッ素透明ポリマ等が挙げられる。本発明方法によれば、離型時の傷・欠けが少ない凹凸形状を形成できるので、性能劣化を防止できる。なお、本発明は、上記実施例構成に限られるものではなく、発明の趣旨を変更しない範囲で種々の変形が可能である。 Examples of the surface shape of the optical element manufactured by the method of the present invention are shown in FIGS. 4 (a), 4 (b) and 4 (c). Examples of the optical element include an
1 光学素子
2 成形樹脂
5 型
5a 凹凸部(微細凹凸)
6 金属膜
7’ 微細構造体(光学素子)DESCRIPTION OF
6 Metal film 7 'Fine structure (optical element)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004017388AJP4259332B2 (en) | 2004-01-26 | 2004-01-26 | Optical element manufacturing method and optical element |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004017388AJP4259332B2 (en) | 2004-01-26 | 2004-01-26 | Optical element manufacturing method and optical element |
| Publication Number | Publication Date |
|---|---|
| JP2005208512Atrue JP2005208512A (en) | 2005-08-04 |
| JP4259332B2 JP4259332B2 (en) | 2009-04-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004017388AExpired - Fee RelatedJP4259332B2 (en) | 2004-01-26 | 2004-01-26 | Optical element manufacturing method and optical element |
| Country | Link |
|---|---|
| JP (1) | JP4259332B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009516225A (en)* | 2005-11-18 | 2009-04-16 | ナノコンプ オイ リミテッド | Manufacturing method of diffraction grating |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009516225A (en)* | 2005-11-18 | 2009-04-16 | ナノコンプ オイ リミテッド | Manufacturing method of diffraction grating |
| US8092723B2 (en) | 2005-11-18 | 2012-01-10 | Nanocomp Oy Ltd | Method of producing a diffraction grating element |
| Publication number | Publication date |
|---|---|
| JP4259332B2 (en) | 2009-04-30 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102770254B (en) | Die, die production method, and production of antireflection film | |
| CN1185645C (en) | Method for manufacturing first generation disk of optical disk | |
| JP4259332B2 (en) | Optical element manufacturing method and optical element | |
| JP2011131595A (en) | Embossing apparatus, method for manufacturing the same, and method for embossing light guide plate | |
| JPH02149691A (en) | Making of metallic matrix | |
| US5755947A (en) | Adhesion enhancement for underplating problem | |
| US8070476B2 (en) | Thermal insulation stamper and production method of same | |
| JP3709831B2 (en) | Manufacturing method of fine mold | |
| KR20140011520A (en) | Surface treatment solution of aluminum die casting substrate and surface treatment method using the same | |
| JPWO2016136537A1 (en) | Member, method for manufacturing the member, and electronic component including the member | |
| JP4221954B2 (en) | Electroforming method and electrodeposit | |
| JP2002202543A (en) | Variable aperture mechanism and optical equipment | |
| JP3815429B2 (en) | Manufacturing method of tape carrier for semiconductor device | |
| KR101331460B1 (en) | Reflection mirror for a portable searchlight and a manufacturing method thereof | |
| JP2001318257A (en) | Method for producing polymeric optical waveguide | |
| CN110996514A (en) | Method for manufacturing cavity structure | |
| TW201325884A (en) | Pressing roller for producing optical film and manufacturing method of the press roller | |
| JP2009095872A (en) | Casting method | |
| JP4327706B2 (en) | Optical information recording medium master manufacturing method, optical information recording medium stamper manufacturing method, optical information recording medium master, stamper, and optical information recording medium | |
| JP2003001637A (en) | Silicon film removing method and removing liquid | |
| KR20050060010A (en) | Method of manufacturing master of optical information recording medium, method of manufacturing stamper of optical information recording medium, master and stamper of an optical information recording medium, and optical information recording medium | |
| US20070125653A1 (en) | Multilayer electroform, methods of making multilayer electroforms, and products made therefrom | |
| JP2001283471A (en) | Manufacturing method of stamper for optical disk | |
| Burns et al. | Adhesion Enhancement for Underplating Problem. | |
| JP2024171786A (en) | Method for producing the composite |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20061213 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20081021 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20081104 | |
| A521 | Written amendment | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20081217 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20090120 | |
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20090202 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120220 Year of fee payment:3 | |
| R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| LAPS | Cancellation because of no payment of annual fees |