Movatterモバイル変換


[0]ホーム

URL:


JP2005152187A - 3D ultrasonic phantom - Google Patents

3D ultrasonic phantom
Download PDF

Info

Publication number
JP2005152187A
JP2005152187AJP2003393461AJP2003393461AJP2005152187AJP 2005152187 AJP2005152187 AJP 2005152187AJP 2003393461 AJP2003393461 AJP 2003393461AJP 2003393461 AJP2003393461 AJP 2003393461AJP 2005152187 AJP2005152187 AJP 2005152187A
Authority
JP
Japan
Prior art keywords
ultrasonic
dimensional
phantom
targets
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393461A
Other languages
Japanese (ja)
Inventor
Akira Sawada
晃 澤田
Kiyoshi Yoda
潔 依田
Masaki Kokubo
雅樹 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Foundation for Biomedical Research and Innovation at Kobe
Original Assignee
Mitsubishi Electric Corp
Foundation for Biomedical Research and Innovation at Kobe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Foundation for Biomedical Research and Innovation at KobefiledCriticalMitsubishi Electric Corp
Priority to JP2003393461ApriorityCriticalpatent/JP2005152187A/en
Publication of JP2005152187ApublicationCriticalpatent/JP2005152187A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromJapanese

【課題】 従来の超音波キャリブレーション装置では、3次元データ取得が困難であった。この発明では、超音波画像における患部位置の測定精度を向上し、超音波画像データの座標系と位置センサ等の座標系を較正する超音波キャリブレーション装置を提供する。
【解決手段】 超音波画像を用いた位置・姿勢のキャリブレーションにおいて使用されるファントムであって、筐体と、この筐体内に固定された複数個のターゲット66と、上記筐体内に充填された組織等価剤64とを備えたことを特徴とするものである。
【選択図】 図1

PROBLEM TO BE SOLVED: To obtain three-dimensional data with a conventional ultrasonic calibration apparatus is difficult. The present invention provides an ultrasonic calibration device that improves the measurement accuracy of an affected part position in an ultrasonic image and calibrates a coordinate system of ultrasonic image data and a coordinate system such as a position sensor.
A phantom used in position / orientation calibration using an ultrasonic image, the casing, a plurality of targets 66 fixed in the casing, and the casing filled. The tissue equivalent agent 64 is provided.
[Selection] Figure 1

Description

Translated fromJapanese

この発明は、超音波画像における患部位置の測定精度向上に係る技術であり、超音波画像データの座標系と位置センサ等の座標系を較正する超音波キャリブレーション装置、特にこのキャリブレーションで使用される治具である3次元超音波ファントムに関するものである。  The present invention relates to a technique for improving the measurement accuracy of an affected part position in an ultrasonic image, and is used in an ultrasonic calibration device that calibrates a coordinate system of ultrasonic image data and a coordinate system such as a position sensor, particularly in this calibration. The present invention relates to a three-dimensional ultrasonic phantom that is a jig.

従来の超音波キャリブレーション装置では、超音波診断装置から3次元データが取得できないため、例えば非特許文献1のFig.2に示されるように、超音波ファントム内に2本のラインターゲットを張り、その交点(参照点)が2次元超音波画像内に映るように2次元超音波プローブを操作している。また、その時のプローブの位置・姿勢を記録する。交点を複数の方向から撮影し、上記データを取得することで、キャリブレーション計算を正確に行っている。従来、本発明で提案するような3次元超音波ファントムは存在しなかった。  In the conventional ultrasonic calibration apparatus, three-dimensional data cannot be acquired from the ultrasonic diagnostic apparatus. For example, FIG. As shown in FIG. 2, two line targets are set in the ultrasonic phantom, and the two-dimensional ultrasonic probe is operated so that the intersection (reference point) is reflected in the two-dimensional ultrasonic image. Also record the position and orientation of the probe at that time. The intersection point is photographed from a plurality of directions and the above data is acquired, so that the calibration calculation is accurately performed. Conventionally, there has been no three-dimensional ultrasonic phantom as proposed in the present invention.

Alexander Hartove et al,Error analysis for a free−hand three−dimensional ultrasound system for neuronavigation,Neurosurgical Focus,vol.6,No.3,article5,1999Alexander Hartove et al, Error analysis for a free-hand three-dimensional ultra-sound system for neuronaviation, Neurological Focus, vol. 6, no. 3, article 5,1999

上述のような従来の超音波キャリブレーション装置では、ラインターゲットの交点(参照点)が2次元超音波画像内に映るようにプローブを操作することは困難である。また、複数の参照点の3次元座標データを、上記の困難なプローブ操作をして2次元画像を取得し、プローブの位置・姿勢データと合成して求めることは、計算誤差を生むという問題点があった。  In the conventional ultrasonic calibration apparatus as described above, it is difficult to operate the probe so that the intersection (reference point) of the line target is reflected in the two-dimensional ultrasonic image. In addition, obtaining the two-dimensional image of the three-dimensional coordinate data of a plurality of reference points by performing the above difficult probe operation and combining it with the probe position / posture data causes a calculation error. was there.

この発明に係る超音波キャリブレーション装置では、3次元超音波ファントムを提案する。この3次元超音波ファントムには、球ターゲットを所定の位置に取り付けるようにしたため、3次元超音波診断装置から得られる3次元データには複数の球ターゲットを映り込ませることができ、キャリブレーション計算に必要な複数の参照点データを困難なプローブ操作をせずに取得することができる。また、3次元超音波ファントム内の複数の球ターゲットは異なる径にし、また、球ターゲット間の距離も異なるようにしたため、プローブの位置・姿勢による影響を受けずに、得られた3次元超音波画像から、各々の球ターゲットの同定を容易にした。  In the ultrasonic calibration apparatus according to the present invention, a three-dimensional ultrasonic phantom is proposed. In this 3D ultrasonic phantom, a spherical target is attached at a predetermined position, so that a plurality of spherical targets can be reflected in the 3D data obtained from the 3D ultrasonic diagnostic apparatus, and the calibration calculation is performed. The plurality of reference point data necessary for the acquisition can be acquired without performing a difficult probe operation. In addition, since the plurality of spherical targets in the three-dimensional ultrasonic phantom have different diameters and the distances between the spherical targets are also different, the obtained three-dimensional ultrasonic wave is not affected by the position and orientation of the probe. From the image, identification of each sphere target was facilitated.

この発明の請求項1に記載の発明である3次元超音波ファントムは、超音波画像を用いた位置・姿勢のキャリブレーションにおいて使用されるものであって、筐体と、この筐体内に固定された複数個のターゲットと、上記筐体内に充填された組織等価剤とを備えたことを特徴とするものである。  The three-dimensional ultrasonic phantom according to the first aspect of the present invention is used in position / orientation calibration using an ultrasonic image, and is fixed to the casing and the casing. And a plurality of targets, and a tissue equivalent agent filled in the casing.

この発明の請求項2に記載の発明である3次元超音波ファントムは、請求項1に記載のものであって、複数個のターゲットが、それぞれ径の異なる球形であり、かつ、ターゲット相互の距離が異なるように筐体内に固定されていることを特徴とするものである。  A three-dimensional ultrasonic phantom according to a second aspect of the present invention is the three-dimensional ultrasonic phantom according to the first aspect, wherein the plurality of targets are spherical with different diameters, and the distance between the targets. It is characterized in that it is fixed in the housing so as to be different.

この発明によれば、複数の球ターゲットを埋め込んだ3次元超音波ファントムと、3次元超音波診断装置を用いたことにより、キャリブレーション計算に必要な参照点データが一度に複数取得できるようにした。また、プローブ位置・姿勢の計測を一度しか行わないため、計測誤差を減らすことを可能にした。また、径の異なる球ターゲット、および、球ターゲット間距離を異なるようにしたため、3次元超音波画像における各球ターゲットの同定を容易にする。  According to the present invention, by using a 3D ultrasonic phantom in which a plurality of sphere targets are embedded and a 3D ultrasonic diagnostic apparatus, a plurality of reference point data necessary for calibration calculation can be acquired at a time. . In addition, since the probe position / orientation is measured only once, the measurement error can be reduced. In addition, since the spherical targets having different diameters and the distance between the spherical targets are made different, identification of each spherical target in the three-dimensional ultrasonic image is facilitated.

実施の形態
図1は本発明の実施の形態による超音波キャリブレーション装置の構成図である。超音波キャリブレーション装置は、3次元超音波診断装置2と、超音波プローブ4と、3次元超音波ファントム6と、計算機8と、位置センサ10とを備えることを特徴とする。3次元超音波ファントム6上に配置した超音波プローブ4が3次元スキャンし、3次元超音波診断装置2から3次元超音波ファントム6の3次元超音波画像を取得する。同時に、位置センサ10からプローブ4の位置・姿勢データを取得する。計算機8は、3次元超音波画像、プローブ4の位置・姿勢データおよび3次元超音波ファントム6の設計データからキャリブレーション計算を行う。超音波プローブ4は、3次元スキャンを行うものである。位置センサ10は、対象物の3次元位置・姿勢データを取得するものであれば、機械式や光学式等の方式にはとらわれない。
Embodiment FIG. 1 is a configuration diagram of an ultrasonic calibration apparatus according to an embodiment of the present invention. The ultrasonic calibration apparatus includes a three-dimensional ultrasonicdiagnostic apparatus 2, an ultrasonic probe 4, a three-dimensional ultrasonic phantom 6, acalculator 8, and aposition sensor 10. The ultrasonic probe 4 arranged on the three-dimensional ultrasonic phantom 6 performs a three-dimensional scan, and acquires a three-dimensional ultrasonic image of the three-dimensional ultrasonic phantom 6 from the three-dimensional ultrasonicdiagnostic apparatus 2. At the same time, the position / posture data of the probe 4 is acquired from theposition sensor 10. Thecalculator 8 performs calibration calculation from the three-dimensional ultrasonic image, the position / posture data of the probe 4 and the design data of the three-dimensional ultrasonic phantom 6. The ultrasonic probe 4 performs a three-dimensional scan. As long as theposition sensor 10 acquires the three-dimensional position / posture data of the object, theposition sensor 10 is not limited to a mechanical type or an optical type.

図2は本発明の実施の形態による3次元超音波ファントム6の構成図である。ファントムケース62内部に、複数の球ターゲット66を固定取り付けし、水等の組織等価剤64でファントムケース62を充填する。超音波プローブ4をファントムケース62に固定し、超音波スキャンにより超音波画像を取得する。ファントムケース62内部に複数の球ターゲット66を固定したため、1つの3次元超音波画像に複数の球ターゲット66の信号を含めることが可能となる。その結果、複数の球ターゲット66の位置データ(参照点データ)を得るために困難な超音波プローブ4の操作を不要としながら、1つの3次元超音波画像から複数の参照点データが得られる効果がある。  FIG. 2 is a configuration diagram of the three-dimensional ultrasonic phantom 6 according to the embodiment of the present invention. A plurality ofspherical targets 66 are fixedly attached inside thephantom case 62, and thephantom case 62 is filled with a tissueequivalent agent 64 such as water. The ultrasonic probe 4 is fixed to thephantom case 62, and an ultrasonic image is acquired by ultrasonic scanning. Since the plurality ofsphere targets 66 are fixed inside thephantom case 62, signals of the plurality ofsphere targets 66 can be included in one three-dimensional ultrasound image. As a result, it is possible to obtain a plurality of reference point data from one three-dimensional ultrasound image without requiring the operation of the ultrasonic probe 4 which is difficult to obtain the position data (reference point data) of the plurality ofsphere targets 66. There is.

また、ターゲットの形状を球にすると、任意方向のプローブから取得した3次元超音波画像の任意断面は必ず円或は楕円形となり、半径或いは長径、短径が最大値となる断面での円或は楕円の中心が、3次元超音波画像での球ターゲットの中心位置となる。これにより、3次元超音波画像での球ターゲット位置の特定を容易化できる。  If the target shape is a sphere, the arbitrary cross section of the three-dimensional ultrasonic image acquired from the probe in an arbitrary direction is always a circle or an ellipse, and the circle or the cross section where the radius, the major axis, and the minor axis are maximum. The center of the ellipse is the center position of the sphere target in the three-dimensional ultrasonic image. Thereby, specification of the sphere target position in the three-dimensional ultrasonic image can be facilitated.

また、超音波プローブ4の位置・姿勢データは、上記3次元超音波画像の取得(スキャン)時に一度だけ記録すればよい。その結果、キャリブレーション計算量を減らすことが可能となり、更に、プローブ4の位置・姿勢データは一度しか計測しないため、計測誤差を抑えることが可能となる。また、複数の球ターゲット66の径を異なるようにすることで、3次元超音波画像内における各球ターゲット66の同定を容易にすることが可能となる。また、複数の球ターゲット66の配置において、球ターゲット66間の距離を異なるようにすることで、3次元超音波画像内における各球ターゲット66の同定を容易になる。  Further, the position / orientation data of the ultrasonic probe 4 may be recorded only once when the three-dimensional ultrasonic image is acquired (scanned). As a result, it is possible to reduce the amount of calibration calculation, and furthermore, since the position / posture data of the probe 4 is measured only once, measurement errors can be suppressed. In addition, by making the diameters of the plurality of sphere targets 66 different, it becomes possible to easily identify eachsphere target 66 in the three-dimensional ultrasonic image. Further, in the arrangement of the plurality of sphere targets 66, the distance between thesphere targets 66 is made different so that each sphere target 66 in the three-dimensional ultrasonic image can be easily identified.

キャリブレーション計算では、最小2乗法等の最適化計算を行う。より安定した解を得るためには多くのデータ量が必要となるケースがある。その場合には、ターゲット数を増やすことで十分な参照点データを取得しても良い。或いは、超音波プローブ4の位置あるいは姿勢を変化させ、その時の超音波プローブ4の位置・姿勢を記録するのと同時に、スキャンした3次元超音波画像を取得し、上記超音波プローブ4の位置・姿勢データと合成して参照点データを増やしても同様の効果がある。特にターゲットが球ターゲット場合には、球ターゲット66の径を異なるサイズにする、あるいは、球ターゲット66間の距離を異なるようにしておけば同定が容易になる。  In the calibration calculation, optimization calculation such as the least square method is performed. There are cases where a large amount of data is required to obtain a more stable solution. In that case, sufficient reference point data may be acquired by increasing the number of targets. Alternatively, the position or posture of the ultrasonic probe 4 is changed, and the position and posture of the ultrasonic probe 4 at that time are recorded. At the same time, a scanned three-dimensional ultrasonic image is acquired, and the position and posture of the ultrasonic probe 4 are acquired. The same effect can be obtained by increasing the reference point data by combining with the posture data. In particular, when the target is a sphere target, identification can be facilitated by setting the diameter of thesphere target 66 to a different size or by making the distance between the sphere targets 66 different.

この発明の3次元超音波ファントムは、超音波診断装置を用い患部位置を測定する際の測定治具に用いることができる。  The three-dimensional ultrasonic phantom of the present invention can be used as a measurement jig when measuring the position of an affected area using an ultrasonic diagnostic apparatus.

この発明の実施の形態に係る超音波キャリブレーション装置の構成図である。1 is a configuration diagram of an ultrasonic calibration apparatus according to an embodiment of the present invention.この発明の実施の形態に係る3次元超音波ファントムの構成図である。It is a block diagram of the three-dimensional ultrasonic phantom which concerns on embodiment of this invention.

符号の説明Explanation of symbols

2 3次元超音波診断装置、 4 超音波プローブ、 6 3次元超音波ファントム、 8 制御用計算機、 10 位置センサ、 62 ファントムケース、 64 水或いは水等価樹脂等の組織等価剤、 66 球ターゲット。

2 3D ultrasonic diagnostic device, 4 ultrasonic probe, 6 3D ultrasonic phantom, 8 control computer, 10 position sensor, 62 phantom case, 64 tissue equivalent agent such as water or water equivalent resin, 66 ball target.

Claims (2)

Translated fromJapanese
超音波診断において使用されるファントムであって、筐体と、この筐体内に固定された複数個のターゲットと、上記筐体内に充填された組織等価剤とを備えたことを特徴とする3次元超音波ファントム。A phantom used in ultrasonic diagnosis, comprising a housing, a plurality of targets fixed in the housing, and a tissue equivalent agent filled in the housing Ultrasonic phantom.上記複数個のターゲットは、それぞれ径の異なる球形であり、かつ、ターゲット相互の距離が異なるように上記筐体内に固定されていることを特徴とする請求項1に記載の3次元超音波ファントム。

2. The three-dimensional ultrasonic phantom according to claim 1, wherein the plurality of targets have spherical shapes with different diameters and are fixed in the housing so that the distances between the targets are different.

JP2003393461A2003-11-252003-11-25 3D ultrasonic phantomPendingJP2005152187A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2003393461AJP2005152187A (en)2003-11-252003-11-25 3D ultrasonic phantom

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2003393461AJP2005152187A (en)2003-11-252003-11-25 3D ultrasonic phantom

Publications (1)

Publication NumberPublication Date
JP2005152187Atrue JP2005152187A (en)2005-06-16

Family

ID=34719815

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003393461APendingJP2005152187A (en)2003-11-252003-11-25 3D ultrasonic phantom

Country Status (1)

CountryLink
JP (1)JP2005152187A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2007117747A (en)*2005-10-282007-05-17Biosense Webster Inc Target and method for calibration of ultrasound catheters
JP2011209691A (en)*2010-03-092011-10-20Canon IncPhotoacoustic matching material and human tissue simulation material
JP2014228719A (en)*2013-05-232014-12-08キヤノン株式会社Phantom
KR20150043403A (en)*2012-08-102015-04-22마우이 이미징, 인코포레이티드Calibration of Multiple Aperture Ultrasound Probes
US9339256B2 (en)2007-10-012016-05-17Maui Imaging, Inc.Determining material stiffness using multiple aperture ultrasound
US9420994B2 (en)2006-10-252016-08-23Maui Imaging, Inc.Method and apparatus to produce ultrasonic images using multiple apertures
US9510806B2 (en)2013-03-132016-12-06Maui Imaging, Inc.Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9526475B2 (en)2006-09-142016-12-27Maui Imaging, Inc.Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9582876B2 (en)2006-02-062017-02-28Maui Imaging, Inc.Method and apparatus to visualize the coronary arteries using ultrasound
WO2017036044A1 (en)*2015-09-012017-03-09中国科学院深圳先进技术研究院Ultrasound probe calibration phantom, ultrasound probe calibration system and calibration method thereof
US9668714B2 (en)2010-04-142017-06-06Maui Imaging, Inc.Systems and methods for improving ultrasound image quality by applying weighting factors
US9788813B2 (en)2010-10-132017-10-17Maui Imaging, Inc.Multiple aperture probe internal apparatus and cable assemblies
US9883848B2 (en)2013-09-132018-02-06Maui Imaging, Inc.Ultrasound imaging using apparent point-source transmit transducer
US9986969B2 (en)2012-09-062018-06-05Maui Imaging, Inc.Ultrasound imaging system memory architecture
US10206662B2 (en)2009-04-142019-02-19Maui Imaging, Inc.Calibration of ultrasound probes
US10226234B2 (en)2011-12-012019-03-12Maui Imaging, Inc.Motion detection using ping-based and multiple aperture doppler ultrasound
CN109480902A (en)*2018-12-112019-03-19中国科学院声学研究所A kind of imitated NDVI and its method measuring B ultrasound instrument pitching resolving power
CN109674489A (en)*2018-12-112019-04-26中国科学院声学研究所A kind of imitated NDVI detecting medical supersonic instrument three-dimensional imaging performance
US10401493B2 (en)2014-08-182019-09-03Maui Imaging, Inc.Network-based ultrasound imaging system
US10617384B2 (en)2011-12-292020-04-14Maui Imaging, Inc.M-mode ultrasound imaging of arbitrary paths
US10835208B2 (en)2010-04-142020-11-17Maui Imaging, Inc.Concave ultrasound transducers and 3D arrays
US10856846B2 (en)2016-01-272020-12-08Maui Imaging, Inc.Ultrasound imaging with sparse array probes
KR20230062312A (en)*2021-10-292023-05-09경북대학교 산학협력단Device and method for aligning the reference position of the shape restoration device
US12167209B2 (en)2012-09-062024-12-10Maui Imaging, Inc.Ultrasound imaging system memory architecture
US12190627B2 (en)2015-03-302025-01-07Maui Imaging, Inc.Ultrasound imaging systems and methods for detecting object motion

Cited By (47)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2007117747A (en)*2005-10-282007-05-17Biosense Webster Inc Target and method for calibration of ultrasound catheters
US9582876B2 (en)2006-02-062017-02-28Maui Imaging, Inc.Method and apparatus to visualize the coronary arteries using ultrasound
US9986975B2 (en)2006-09-142018-06-05Maui Imaging, Inc.Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9526475B2 (en)2006-09-142016-12-27Maui Imaging, Inc.Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US9420994B2 (en)2006-10-252016-08-23Maui Imaging, Inc.Method and apparatus to produce ultrasonic images using multiple apertures
US10130333B2 (en)2006-10-252018-11-20Maui Imaging, Inc.Method and apparatus to produce ultrasonic images using multiple apertures
US9339256B2 (en)2007-10-012016-05-17Maui Imaging, Inc.Determining material stiffness using multiple aperture ultrasound
US10675000B2 (en)2007-10-012020-06-09Maui Imaging, Inc.Determining material stiffness using multiple aperture ultrasound
US10206662B2 (en)2009-04-142019-02-19Maui Imaging, Inc.Calibration of ultrasound probes
US11051791B2 (en)*2009-04-142021-07-06Maui Imaging, Inc.Calibration of ultrasound probes
US11998395B2 (en)2010-02-182024-06-04Maui Imaging, Inc.Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
JP2011209691A (en)*2010-03-092011-10-20Canon IncPhotoacoustic matching material and human tissue simulation material
US9668714B2 (en)2010-04-142017-06-06Maui Imaging, Inc.Systems and methods for improving ultrasound image quality by applying weighting factors
US10835208B2 (en)2010-04-142020-11-17Maui Imaging, Inc.Concave ultrasound transducers and 3D arrays
US11172911B2 (en)2010-04-142021-11-16Maui Imaging, Inc.Systems and methods for improving ultrasound image quality by applying weighting factors
US9788813B2 (en)2010-10-132017-10-17Maui Imaging, Inc.Multiple aperture probe internal apparatus and cable assemblies
US12350101B2 (en)2010-10-132025-07-08Maui Imaging, Inc.Concave ultrasound transducers and 3D arrays
US10226234B2 (en)2011-12-012019-03-12Maui Imaging, Inc.Motion detection using ping-based and multiple aperture doppler ultrasound
US10617384B2 (en)2011-12-292020-04-14Maui Imaging, Inc.M-mode ultrasound imaging of arbitrary paths
US12343210B2 (en)2012-02-212025-07-01Maui Imaging, Inc.Determining material stiffness using multiple aperture ultrasound
US12186133B2 (en)2012-03-262025-01-07Maui Imaging, Inc.Systems and methods for improving ultrasound image quality by applying weighting factors
US12171621B2 (en)2012-08-102024-12-24Maui Imaging, Inc.Calibration of multiple aperture ultrasound probes
US10064605B2 (en)2012-08-102018-09-04Maui Imaging, Inc.Calibration of multiple aperture ultrasound probes
US11253233B2 (en)2012-08-102022-02-22Maui Imaging, Inc.Calibration of multiple aperture ultrasound probes
US9572549B2 (en)2012-08-102017-02-21Maui Imaging, Inc.Calibration of multiple aperture ultrasound probes
EP2883079A4 (en)*2012-08-102016-04-13Maui Imaging Inc CALIBRATION OF ULTRASONIC PROBES WITH MULTIPLE OPENINGS
KR20150043403A (en)*2012-08-102015-04-22마우이 이미징, 인코포레이티드Calibration of Multiple Aperture Ultrasound Probes
KR102176193B1 (en)*2012-08-102020-11-09마우이 이미징, 인코포레이티드Calibration of Multiple Aperture Ultrasound Probes
US12167209B2 (en)2012-09-062024-12-10Maui Imaging, Inc.Ultrasound imaging system memory architecture
US9986969B2 (en)2012-09-062018-06-05Maui Imaging, Inc.Ultrasound imaging system memory architecture
US10267913B2 (en)2013-03-132019-04-23Maui Imaging, Inc.Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9510806B2 (en)2013-03-132016-12-06Maui Imaging, Inc.Alignment of ultrasound transducer arrays and multiple aperture probe assembly
JP2014228719A (en)*2013-05-232014-12-08キヤノン株式会社Phantom
US10653392B2 (en)2013-09-132020-05-19Maui Imaging, Inc.Ultrasound imaging using apparent point-source transmit transducer
US12426855B2 (en)2013-09-132025-09-30Maui Imaging, Inc.Ultrasound imaging using apparent point-source transmit transducer
US9883848B2 (en)2013-09-132018-02-06Maui Imaging, Inc.Ultrasound imaging using apparent point-source transmit transducer
US12204023B2 (en)2014-08-182025-01-21Maui Imaging, Inc.Network-based ultrasound imaging system
US10401493B2 (en)2014-08-182019-09-03Maui Imaging, Inc.Network-based ultrasound imaging system
US12190627B2 (en)2015-03-302025-01-07Maui Imaging, Inc.Ultrasound imaging systems and methods for detecting object motion
US10555724B2 (en)2015-09-012020-02-11Shenzhen Institutes Of Advanced Technology Chinese Academy Of SciencesUltrasound probe calibration phantom, ultrasound probe calibration system and calibration method thereof
WO2017036044A1 (en)*2015-09-012017-03-09中国科学院深圳先进技术研究院Ultrasound probe calibration phantom, ultrasound probe calibration system and calibration method thereof
US12048587B2 (en)2016-01-272024-07-30Maui Imaging, Inc.Ultrasound imaging with sparse array probes
US10856846B2 (en)2016-01-272020-12-08Maui Imaging, Inc.Ultrasound imaging with sparse array probes
CN109480902A (en)*2018-12-112019-03-19中国科学院声学研究所A kind of imitated NDVI and its method measuring B ultrasound instrument pitching resolving power
CN109674489A (en)*2018-12-112019-04-26中国科学院声学研究所A kind of imitated NDVI detecting medical supersonic instrument three-dimensional imaging performance
KR102737170B1 (en)*2021-10-292024-12-03경북대학교 산학협력단Device and method for aligning the reference position of the shape restoration device
KR20230062312A (en)*2021-10-292023-05-09경북대학교 산학협력단Device and method for aligning the reference position of the shape restoration device

Similar Documents

PublicationPublication DateTitle
JP2005152187A (en) 3D ultrasonic phantom
CA2565520C (en)Targets and methods for ultrasound catheter calibration
US6311540B1 (en)Calibration method and apparatus for calibrating position sensors on scanning transducers
US9517049B2 (en)Ultrasonic probe, position display apparatus and ultrasonic diagnostic apparatus
CN108430334B (en) Ultrasound imaging apparatus and ultrasound imaging method for examining volume of object
CN104937409B (en) Method and system for hand-guided ultrasound examination of an object
CN109490830A (en)Operating robot Locating System Accuracy detection method and detection device
JP6718520B2 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
CN110167447A (en)System and method for the calibration of rapidly and automatically ultrasonic probe
KR20170115446A (en)Stand-alone type ultrasonic scanner
JPWO2018051578A1 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
US12048592B2 (en)Three-dimensional ultrasound imaging support apparatus, three-dimensional ultrasound imaging support method, and three-dimensional ultrasound imaging support program
CN100459941C (en) Ultrasonic Image Diagnosis Device
JP6865695B2 (en) Ultrasound imaging device
US8652047B2 (en)Apparatus and method for automatically measuring the volume of urine in a bladder using ultrasound signals
CN106456107B (en)System and method for using ultrasound to be imaged
JP6382031B2 (en) Ultrasonic diagnostic apparatus and control program therefor
KR102615722B1 (en)Ultrasound scanner and method of guiding aim
KR100875620B1 (en) Ultrasound Imaging Systems and Methods
WO2018051577A1 (en)Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP4099196B2 (en) Ultrasonic diagnostic equipment
KR102512104B1 (en)Apparatus and method for generating 3d ultrasound image
JP2002330966A (en)Ultrasonic diagnostic instrument
TWI852356B (en) Ultrasound imaging system
JP4709611B2 (en) Ultrasonic diagnostic equipment

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20060116

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20081001

A131Notification of reasons for refusal

Effective date:20081007

Free format text:JAPANESE INTERMEDIATE CODE: A131

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20081208

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20090113

A02Decision of refusal

Effective date:20090609

Free format text:JAPANESE INTERMEDIATE CODE: A02


[8]ページ先頭

©2009-2025 Movatter.jp