Movatterモバイル変換


[0]ホーム

URL:


JP2005102959A - Pulse wave detector and pulse wave detector using the same - Google Patents

Pulse wave detector and pulse wave detector using the same
Download PDF

Info

Publication number
JP2005102959A
JP2005102959AJP2003340319AJP2003340319AJP2005102959AJP 2005102959 AJP2005102959 AJP 2005102959AJP 2003340319 AJP2003340319 AJP 2003340319AJP 2003340319 AJP2003340319 AJP 2003340319AJP 2005102959 AJP2005102959 AJP 2005102959A
Authority
JP
Japan
Prior art keywords
signal
pulse wave
impulse
ultra
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003340319A
Other languages
Japanese (ja)
Inventor
Michio Kobayashi
道夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson CorpfiledCriticalSeiko Epson Corp
Priority to JP2003340319ApriorityCriticalpatent/JP2005102959A/en
Publication of JP2005102959ApublicationCriticalpatent/JP2005102959A/en
Withdrawnlegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromJapanese

【課題】 被測定対象物の装着部に強く押し付ける必要がないと共に、運動時の脈波を正確に検出する。
【解決手段】 脈波検出器6を超広帯域レーダ7と脈波算出部8とで構成し、超広帯域レーダ7はクロック発生器15、プログラマブル遅延回路16、インパルス信号発生器17及び送信アンテナ18を有するインパルス信号発信部11と、プログラマブル遅延回路31、レンジ調整回路32及びインパルス信号発生部33を有するインパルス遅延信号形成部12と、受信アンテナ41及び超広帯域検出器42を有する超広帯域検出部13とを備え、手首21の動脈22及び静脈23の脈波を検出する。これら動脈22及び静脈23の脈波を脈波算出部8で処理して正確な脈波を検出する。
【選択図】 図3
PROBLEM TO BE SOLVED: To accurately detect a pulse wave during exercise while it is not necessary to strongly press against a mounting portion of an object to be measured.
A pulse wave detector (6) includes an ultra-wideband radar (7) and a pulse wave calculation unit (8). The ultra-wideband radar (7) includes a clock generator (15), a programmable delay circuit (16), an impulse signal generator (17), and a transmission antenna (18). An impulse signal transmitter 11, an impulse delay signal generator 12 having a programmable delay circuit 31, a range adjustment circuit 32 and an impulse signal generator 33, an ultra wideband detector 13 having a receiving antenna 41 and an ultrawideband detector 42, The pulse wave of the artery 22 and the vein 23 of the wrist 21 is detected. These pulse waves of the artery 22 and the vein 23 are processed by the pulse wave calculation unit 8 to detect an accurate pulse wave.
[Selection] Figure 3

Description

Translated fromJapanese

本発明は、動脈流と静脈流とを検出して、体動成分を除く真の脈波成分を算出するようにした脈波検出器及びこれを使用した脈波検出装置に関する。  The present invention relates to a pulse wave detector that detects an arterial flow and a venous flow and calculates a true pulse wave component excluding a body motion component, and a pulse wave detection device using the pulse wave detector.

従来の脈波検出装置としては、例えば発光ダイオードとその検出装置とで構成した脈波センサを指先に装着し、脈波センサとこの脈波センサにより検出した脈波信号の信号処理装置との間を有線ケーブルで接続することにより、脈波を検出することが提案されている(例えば特許文献1又は特許文献2参照)。しかしながら、この従来例では、脈波センサを指先に常に装着していなければならないため、指先に違和感を与えたり、長時間装着していた場合に汗等により不快感を感じたりする場合がある。また、外部からの光が検出されないようにするため発光ダイオードと検出器とを比較的大きなカバーで覆う必要があり、装着時に違和感を与えるという未解決の課題がある。さらに、脈波検出のためには、発光ダイオードを常時発光させた状態に維持する必要があるので、電池駆動である場合の電池の消耗が激しいという未解決の課題がある。  As a conventional pulse wave detection device, for example, a pulse wave sensor composed of a light emitting diode and its detection device is attached to a fingertip, and between the pulse wave sensor and a signal processing device for a pulse wave signal detected by the pulse wave sensor. It has been proposed to detect a pulse wave by connecting them with a wired cable (see, for example,Patent Document 1 or Patent Document 2). However, in this conventional example, since the pulse wave sensor must always be worn on the fingertip, the fingertip may feel uncomfortable or may feel uncomfortable due to sweat or the like when worn for a long time. Further, it is necessary to cover the light emitting diode and the detector with a relatively large cover in order to prevent light from the outside from being detected, and there is an unsolved problem of giving an uncomfortable feeling when worn. Furthermore, since it is necessary to keep the light emitting diode in a constantly emitting state for pulse wave detection, there is an unsolved problem that battery consumption is severe in the case of battery driving.

この未解決の課題を解決するために、腕時計の裏蓋部分に反射型光学センサであって、脈拍数を検出する脈波センサユニットを取付けて、脈拍を測定するようにした生態情報計測装置が提案されている(例えば、特許文献3参照)。
特許第3301294号公報特公平6−14909号公報(第1頁、第1図)特開平11−235320号公報(第1頁、図3)
In order to solve this unsolved problem, there is a biological information measuring device which is a reflection type optical sensor on the back cover part of a wristwatch, and a pulse wave sensor unit for detecting the pulse rate is attached to measure the pulse. It has been proposed (see, for example, Patent Document 3).
Japanese Patent No. 3301294 Japanese Examined Patent Publication No. 6-14909 (first page, FIG. 1) Japanese Patent Laid-Open No. 11-235320 (first page, FIG. 3)

しかしながら、上記特許文献3に記載された従来例にあっては、腕時計の裏蓋部分の構造が複雑になり、製造が困難となると共に、裏蓋部に外部からの光が侵入しないようにするため、裏蓋部分を被測定者の装着部に強く押し付けている必要があり、長時間装着していると、装着部に痛みを覚える等の未解決の課題がある。また、運動時の脈波(体動による脈波)を測定する場合、体動による血液の流れも本来の脈波とともに同時に測定してしまうため、真の脈波の検出が困難であるという未解決の課題もある。  However, in the conventional example described in Patent Document 3, the structure of the back cover part of the wrist watch becomes complicated, making it difficult to manufacture, and preventing light from the outside from entering the back cover part. For this reason, it is necessary to strongly press the back cover portion against the mounting portion of the person to be measured. If the mounting portion is worn for a long time, there are unsolved problems such as pain in the wearing portion. In addition, when measuring a pulse wave during exercise (pulse wave due to body movement), blood flow due to body movement is also measured simultaneously with the original pulse wave, and it is difficult to detect the true pulse wave. There is also a problem to be solved.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、被測定対象物の装着部に強く押し付ける必要がないと共に、運動時の脈波を正確に検出することができる脈波検出器及びこれを使用した脈波検出装置を提供することを目的としている。  Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and does not need to be strongly pressed against the mounting portion of the object to be measured, and accurately detects a pulse wave during exercise. An object of the present invention is to provide a pulse wave detector capable of performing the above and a pulse wave detection device using the same.

上記目的を達成するための第1の技術手段は、動脈の脈動を超広帯域レーダの使用により検出する動脈流検出手段と、静脈の脈動を超広帯域レーダの使用により検出する静脈流検出手段と、前記動脈流検出手段で検出した動脈流信号と、前記静脈流検出手段で検出した静脈流信号とに基づいて体動成分を除く真の脈波成分を算出する脈波算出手段とを備えたことを特徴としている。  The first technical means for achieving the above object includes an arterial flow detecting means for detecting arterial pulsation by using an ultra-wideband radar, and a venous flow detecting means for detecting venous pulsation by using an ultra-wideband radar, Pulse wave calculation means for calculating a true pulse wave component excluding body motion components based on the arterial flow signal detected by the arterial flow detection means and the venous flow signal detected by the venous flow detection means It is characterized by.

この第1の技術手段では、動脈流検出手段で超広帯域レーダを使用して動脈の脈動を検出すると共に、静脈流検出手段で、同様に超広帯域レーダを使用して静脈の脈動を検出し、脈波算出手段で、検出した動脈流信号から静脈流信号を減算して体動成分を除去した真の脈流を検出する。この場合、動脈流及び静脈流を超広帯域レーダを使用して検出するので、人体等の検出対象に対して脈流検出器を強く押し付ける必要がなく、しかも静脈流信号から体動による信号成分を検出することができるので、体動成分を検出するための加速度センサ等のセンサを別途設ける必要がなく、全体の構成を簡易小型化することができる。  In this first technical means, the arterial flow detection means detects the pulsation of the artery using the ultra-wideband radar, and the venous flow detection means similarly detects the pulsation of the vein using the ultra-wideband radar, The pulse wave calculation means detects the true pulsating flow from which the body motion component is removed by subtracting the venous flow signal from the detected arterial flow signal. In this case, since the arterial flow and venous flow are detected using an ultra-wideband radar, it is not necessary to strongly press the pulsating flow detector against the detection target such as a human body, and the signal component due to body movement is detected from the venous flow signal. Since it can be detected, it is not necessary to separately provide a sensor such as an acceleration sensor for detecting a body motion component, and the entire configuration can be simply reduced in size.

また、第2の技術手段は、上記第1の技術手段において、前記超広帯域レーダは、インパルス信号を検出対象に向けて発信するインパルス信号発信部と、該インパルス信号発信部で発信したインパルス信号の反射信号を検出し、発信したインパルス信号の検出対象に対応する遅延信号をもとに検出対象物の反射信号を抽出する超広帯域検出部とで構成されていることを特徴としている。  Further, a second technical means is the above-mentioned first technical means, wherein the ultra-wideband radar is configured to transmit an impulse signal to an object to be detected and an impulse signal transmitted from the impulse signal transmitting unit. It is characterized by comprising an ultra-wideband detector that detects a reflected signal and extracts a reflected signal of a detection object based on a delayed signal corresponding to the detected object of the transmitted impulse signal.

この第2の技術では、超広帯域レーダが、インパルス発信部と、インパルス信号の検出対象物からの反射信号を抽出する超広帯域検出部とで構成されているので、動脈流又は静脈流を高精度で検出することができ、運動時の脈波を正確に検出することができる。
さらに、第3の技術は、上記第1の技術において、前記動脈流検出手段及び静脈流検出手段が、インパルス信号を検出対象に向けて発信するインパルス信号発信部と、該インパルス信号発信部で発信したインパルス信号に対して動脈での反射波及び静脈での反射波に対応する遅延時間分遅延させたインパルス遅延信号を形成するインパルス遅延信号形成部と、前記インパルス信号発信部で発信したインパルス信号の反射信号を検出し、検出した反射信号と前記インパルス遅延信号形成部で形成したインパルス遅延信号とに基づいて動脈反射信号及び静脈反射信号を選択的に抽出する超広帯域検出部とで構成される広帯域レーダと、広帯域レーダで検出した動脈反射信号及び静脈反射信号に基づいて動脈波及び静脈波を検出する脈波検出部とを備えていることを特徴としている。
In this second technique, the ultra-wideband radar is composed of an impulse transmitter and an ultra-wideband detector that extracts a reflected signal from the detection target of the impulse signal. The pulse wave during exercise can be accurately detected.
Furthermore, a third technique is the above-described first technique, wherein the arterial flow detection means and the venous flow detection means transmit an impulse signal to the detection target, and an impulse signal transmission section transmits the impulse signal. An impulse delay signal forming unit that forms an impulse delay signal that is delayed by a delay time corresponding to a reflected wave in an artery and a reflected wave in a vein with respect to the impulse signal, and an impulse signal transmitted by the impulse signal transmitting unit A wideband composed of an ultra-wideband detection unit that detects a reflection signal and selectively extracts an arterial reflection signal and a vein reflection signal based on the detected reflection signal and the impulse delay signal formed by the impulse delay signal formation unit A radar and a pulse wave detector for detecting an arterial wave and a venous wave based on an arterial reflection signal and a venous reflection signal detected by a broadband radar; It is characterized by that example.

この第3の技術手段では、インパルス信号発信部で発信したインパルス信号に対して動脈での反射波及び静脈での反射波に対応する遅延時間分遅延させたインパルス遅延信号を形成するインパルス遅延信号形成部を有するので、1つの超広帯域レーダで、インパルス遅延信号形成部で形成するインパルス遅延信号を選択することにより、動脈流及び静脈流を検出することができ、脈波検出器をより小型化することができる。  In this third technical means, an impulse delay signal formation is formed which forms an impulse delay signal delayed by a delay time corresponding to the reflected wave in the artery and the reflected wave in the vein with respect to the impulse signal transmitted by the impulse signal transmitting unit. Therefore, it is possible to detect the arterial flow and the venous flow by selecting the impulse delay signal formed by the impulse delay signal forming unit with one ultra wideband radar, and to further reduce the pulse wave detector. be able to.

さらにまた、第4の技術は、前記第1乃至第3の技術の何れか1つに記載の脈波検出器を腕時計に組込んだことを特徴とする脈波検出装置である。
この第4の技術では、腕時計に脈波検出装置を組込んだので、運動時の脈波を、腕時計を装着するだけで、装着した場合に不快感を生じることなく、正確に容易に人体の脈波を正確に検出することができる。
Furthermore, a fourth technique is a pulse wave detection device characterized in that the pulse wave detector according to any one of the first to third techniques is incorporated in a wristwatch.
In this fourth technique, since the pulse wave detection device is incorporated in the wristwatch, the pulse wave during exercise can be easily and accurately detected only by wearing the wristwatch without causing discomfort when worn. Pulse waves can be accurately detected.

なおさらに、第5の技術手段は、前記第1乃至第3の技術手段の何れか1つに記載の脈波検出器を動物の首輪に組込んだことを特徴としている。
この第5の技術手段では、動物の運動時の脈波を正確に検出することができ、例えば競走馬や馬術用馬等の調教時に脈波を正確に把握しながら調教を行うことができる。
Still further, a fifth technical means is characterized in that the pulse wave detector according to any one of the first to third technical means is incorporated in an animal collar.
In the fifth technical means, it is possible to accurately detect the pulse wave during the movement of the animal, and for example, it is possible to train while accurately grasping the pulse wave when training a racehorse or an equestrian horse.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明を腕時計に適用した場合の一実施形態を示す構成図であって、図中、1は脈波検出装置としての腕時計であって、表面に時刻及び脈波結果を表示する表示部2が設けられ、内部に各種の電気部品又は電子部分を内蔵したハウジング3と、このハウジング3に連結されて、脈波の検出対象となる人間の腕に巻回されるリストバンド4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment in which the present invention is applied to a wristwatch. In the figure,reference numeral 1 denotes a wristwatch as a pulse wave detector, which displays time and pulse wave results on the surface. A housing 3 provided with adisplay unit 2 and incorporating various electric parts or electronic parts therein, and awristband 4 connected to the housing 3 and wound around a human arm to be detected by a pulse wave; It has.

ハウジング3の手首の甲に接触する裏蓋5には、図2に示すように、動脈及び静脈の脈波を検出する脈波検出器6が配設されている。
この脈波検出器6は、図3に示すように、動脈流及び静脈流を検出する超広帯域(UWB:Ultra Wideband)レーダ7と、この超広帯域レーダ7で検出した動脈流及び静脈流に基づいて脈波を検出する脈波算出手段としての脈波算出部8とで構成されている。
As shown in FIG. 2, apulse wave detector 6 for detecting pulse waves of arteries and veins is disposed on theback cover 5 that contacts the back of the wrist of the housing 3.
As shown in FIG. 3, thepulse wave detector 6 is based on an ultra wideband (UWB) radar 7 that detects an arterial flow and a venous flow, and an arterial flow and a venous flow detected by the ultra wideband radar 7. And a pulse wave calculation unit 8 as pulse wave calculation means for detecting the pulse wave.

超広帯域レーダ7は、インパルス信号を発信するインパルス信号発信部11と、このインパルス信号発信部11から発信されたインパルス信号に対して動脈での反射波及び静脈での反射波に対応する遅延時間分遅延させたインパルス遅延信号を形成するインパルス遅延信号形成部12と、インパルス信号発信部11で発信したインパルス信号の反射信号を検出し、検出した反射インパルス信号とインパルス遅延信号形成部12で形成したインパルス遅延信号とに基づいて動脈反射信号及び静脈反射信号を選択的に抽出する超広帯域検出手段としての超広帯域検出部13とで構成されている。  The ultra-wideband radar 7 includes an impulse signal transmitter 11 that transmits an impulse signal, and a delay time corresponding to a reflected wave in an artery and a reflected wave in a vein with respect to the impulse signal transmitted from the impulse signal transmitter 11. Impulse delay signal forming unit 12 that forms a delayed impulse delay signal, and a reflection signal of the impulse signal transmitted by impulse signal transmission unit 11 is detected, and the impulse signal formed by the detected reflected impulse signal and impulse delay signal formation unit 12 An ultra-wideband detector 13 as an ultra-wideband detector that selectively extracts an arterial reflection signal and a vein reflection signal based on the delay signal.

ここで、インパルス信号発信部11は、レーダパルス繰り返しインターバルを形成するランダムなパターンのクロック信号を発生するクロック発生器15と、このクロック発生器15から出力されるクロック信号を所定遅延時間だけ遅延させた基準遅延信号を出力するプログラマブル遅延生成回路16と、このプログラマブル遅延生成回路16から出力される基準遅延信号がトリガ信号として入力されてインパルス信号を発生するインパルス信号発生器17と、このインパルス信号発生器17から出力されるインパルス信号を人間の手首の甲に放射するハウジング3の裏蓋5に配設された送信アンテナ18とを備えている。  Here, the impulse signal transmission unit 11 delays theclock signal 15 that generates a clock signal of a random pattern that forms a radar pulse repetition interval and the clock signal output from theclock generator 15 by a predetermined delay time. A programmabledelay generation circuit 16 for outputting the reference delay signal, animpulse signal generator 17 for generating an impulse signal when the reference delay signal output from the programmabledelay generation circuit 16 is input as a trigger signal, and the generation of the impulse signal. And a transmittingantenna 18 disposed on theback cover 5 of the housing 3 that radiates an impulse signal output from thedevice 17 to the back of a human wrist.

なお、プログラマブル遅延回路16で生成される基準遅延信号の遅延時間は、一般的には後述するインパルス遅延信号形成部12で設定される最少遅延時間を考慮して設定されるが、インパルス信号発信部11の遅延時間を考慮して設定するようにしてもよい。
また、インパルス信号発生器17は、通常ガウス形状の電圧パルスを発生するが、他のマルチバンドパルスと称される形状の電圧パルスを発生させるようにしてもよく、この他チャープ波形の電圧パルスも適用することができる。
The delay time of the reference delay signal generated by theprogrammable delay circuit 16 is generally set in consideration of the minimum delay time set by the impulse delay signal forming unit 12 described later. 11 may be set in consideration of the delay time.
Theimpulse signal generator 17 normally generates a Gaussian voltage pulse, but may generate another voltage pulse called a multi-band pulse. Can be applied.

さらに、送信アンテナ18は、セラミックで形成されたチップアンテナやフラクタルアンテナを適用することができ、腕時計1を装着した検出対象となる手首21の甲に対してインパルス信号発生器17で発生されたインパルス信号を放射する。
インパルス遅延信号形成回路12は、インパルス信号発生部11のクロック発生器15で発生されたクロック信号が入力されるプログラマブル遅延回路31と、このプログラマブル遅延回路31の遅延時間を設定するレンジ調整回路32と、プログラマブル遅延回路31から出力される遅延信号をトリガとしてインパルス信号を発生させるインパルス信号発生器33とで構成されている。
Further, a chip antenna or a fractal antenna made of ceramic can be applied to the transmittingantenna 18, and an impulse generated by theimpulse signal generator 17 is applied to the back of thewrist 21 to be detected to which thewristwatch 1 is attached. Radiates a signal.
The impulse delay signal forming circuit 12 includes aprogrammable delay circuit 31 to which the clock signal generated by theclock generator 15 of the impulse signal generator 11 is input, and arange adjustment circuit 32 for setting a delay time of theprogrammable delay circuit 31. And animpulse signal generator 33 for generating an impulse signal using a delay signal output from theprogrammable delay circuit 31 as a trigger.

ここで、レンジ調整回路32は、インパルス信号発生器17で発生されて送信アンテナ18から手首21の甲に放射されるインパルス信号が測定対象となる動脈22及び静脈23で反射された反射信号を抽出するための2種類の遅延時間をクロック発生器15で発生されるクロック信号に同期して時分割で出力するように調整可能に構成されている。
超広帯域検出部13は、送信アンテナ17から手首21の甲に放射されたインパルス信号が動脈22及び静脈23で反射された反射インパルス信号を受信する受信アンテナ41と、この受信アンテナ41で受信した反射インパルス信号とインパルス遅延信号形成回路12から入力されるインパルス遅延信号との相関をとる例えばマッチトフィルタで構成される超広帯域検出器42とで構成されている。
Here, therange adjustment circuit 32 extracts the reflected signal reflected by theartery 22 and thevein 23 to be measured, the impulse signal generated by theimpulse signal generator 17 and radiated from the transmittingantenna 18 to the back of thewrist 21. The two types of delay times for this purpose can be adjusted in synchronism with the clock signal generated by theclock generator 15 so as to be output in a time division manner.
The ultra-wideband detecting unit 13 receives a reflected impulse signal in which an impulse signal radiated from the transmittingantenna 17 to the back of thewrist 21 is reflected by theartery 22 and thevein 23, and a reflection received by the receiving antenna 41. For example, an ultra-wideband detector 42 configured by a matched filter is used to correlate the impulse signal and the impulse delay signal input from the impulse delay signal forming circuit 12.

ここで、超広帯域検出器42は、受信アンテナ41で受信した反射インパルス信号と、インパルス遅延信号形成回路12から入力されるインパルス遅延信号との相関をとり、相関値の強度変化を表す反射波検出信号を出力する。
脈波算出部8は、超広帯域検出部13の超広帯域検出器42から出力される反射波検出信号を時間軸方向で積分及び微分等の処理を行うことにより、動脈22又は静脈23の脈動運動の時間変化を検出する脈波検出回路51と、この脈波検出回路51から出力される脈波信号のゲインを自動調整するAGC回路52と、このAGC回路52でゲインを自動調整された脈波信号をディジタル信号に変換するA/D変換器53と、このA/D変換器53から出力されるディジタル信号を高速フーリエ変換する高速フーリエ変換器54と、この高速フーリエ変換器54で高速フーリエ変換された周波数領域の変換データが入力される後処理回路55とを備えている。
Here, the ultra-wideband detector 42 correlates the reflected impulse signal received by the receiving antenna 41 with the impulse delay signal input from the impulse delay signal forming circuit 12, and detects the reflected wave representing the intensity change of the correlation value. Output a signal.
The pulse wave calculation unit 8 performs processing such as integration and differentiation on the reflected wave detection signal output from the ultra wide band detector 42 of the ultra wide band detection unit 13 in the time axis direction, thereby pulsating motion of theartery 22 or thevein 23. A pulsewave detection circuit 51 that detects a time change of the pulse wave, anAGC circuit 52 that automatically adjusts the gain of the pulse wave signal output from the pulsewave detection circuit 51, and a pulse wave whose gain is automatically adjusted by theAGC circuit 52 An A /D converter 53 that converts a signal into a digital signal, a fast Fouriertransformer 54 that fast Fourier transforms a digital signal output from the A /D converter 53, and a fast Fourier transform using the fast Fouriertransformer 54 And a post-processing circuit 55 to which the converted data in the frequency domain is input.

ここで、後処理回路55は、高速フーリエ変換器54から入力される動脈の周波数領域の変換データから静脈の周波数領域の変換データを減算することにより、動脈の周波数領域の変換データから静脈の周波数領域の変換データに含まれる体動成分を除去して、純粋な真の脈波成分を検出する後処理アルゴリズムを実行し、この後処理アルゴリズムで検出された真の脈波成分が表示部2に供給されて、この表示部2で真の脈波成分を表示する。  Here, the post-processing circuit 55 subtracts the conversion data of the vein frequency domain from the conversion data of the artery frequency domain input from the fast Fouriertransformer 54 to thereby obtain the vein frequency from the conversion data of the artery frequency domain. A post-processing algorithm for detecting a pure true pulse wave component is executed by removing the body motion component included in the region conversion data, and the true pulse wave component detected by the post-processing algorithm is displayed on thedisplay unit 2. The true pulse wave component is displayed on thedisplay unit 2.

次に、上記実施形態の動作を説明する。
先ず、上記構成を有する腕時計1を、検出対象者の手首21に、その甲側に裏蓋5が接触するように装着する。この腕時計1を装着した状態で、脈波検出器6を作動させることにより、インパルス信号発信部11の送信アンテナ18からインパルス信号を手首21の甲側に放射し、超広帯域検出部13の受信アンテナ41で動脈22によって反射された動脈反射インパルス信号及び静脈23で反射された静脈反射インパルス信号を受信する。
Next, the operation of the above embodiment will be described.
First, thewristwatch 1 having the above configuration is attached to thewrist 21 of the person to be detected so that theback cover 5 is in contact with the back side. By operating thepulse wave detector 6 with thewristwatch 1 attached, an impulse signal is radiated from the transmittingantenna 18 of the impulse signal transmitting unit 11 to the back side of thewrist 21 and the receiving antenna of the ultra-wideband detecting unit 13 is received. At 41, the arterial reflection impulse signal reflected by theartery 22 and the venous reflection impulse signal reflected by thevein 23 are received.

このとき、腕時計1を左手首21に装着するものとすると、左手首21は、図3に示すように、皮膚24に覆われた内部に橈骨25及び尺骨26と、これらの手の平側に位置する橈骨動脈22a及び尺骨動脈22bと、橈骨25及び尺骨26の手の甲側で皮膚の近くに位置する橈側皮静脈23a及び尺側皮静脈23bとを有し、橈骨動脈22a及び尺骨動脈22bと橈側皮静脈23a及び尺側皮静脈23bとの間には手の甲側から手の平側を見た場合に1cm程度の距離差を有する。  At this time, if thewristwatch 1 is to be attached to theleft wrist 21, theleft wrist 21 is located on the palm side of therib 25 and theulna 26 inside the skin 24 as shown in FIG. The radial artery 22a and theulnar artery 22b, the radial artery 22a and theulnar artery 22b, and the radial artery 22a and the ulnar artery 23b are located near the skin on the back side of the hand of theradius 25 and theulna 26. When the palm side is seen from the back side of the hand, there is a distance difference of about 1 cm between 23a and the shaku side cutaneous vein 23b.

したがって、インパルス遅延信号形成回路12のレンジ調整回路32で例えば手の甲側から送信アンテナ18によってインパルス信号を放射したときに尺骨動脈22bからの反射信号を受信アンテナ41で受信し、超広帯域検出器42に入力されるまでの時間にプログラマブル遅延回路16での遅延時間を加算したインパルス遅延時間を設定する遅延時間設定信号を出力するように設定すれば、プログラマブル遅延回路31でクロック発生器1えで発生されたクロック信号がインパルス遅延時間だけ遅延されてインパルス信号発生器33にトリガ信号として入力される。  Therefore, when the impulse signal is radiated from the back side of the hand, for example, by the transmittingantenna 18 in therange adjustment circuit 32 of the impulse delay signal forming circuit 12, the reflected signal from theulnar artery 22 b is received by the receiving antenna 41 and sent to the ultra-wideband detector 42. If the delay time setting signal for setting the impulse delay time obtained by adding the delay time in theprogrammable delay circuit 16 to the input time is set to be output, it is generated by theclock generator 1 in theprogrammable delay circuit 31. The clock signal delayed by the impulse delay time is input to theimpulse signal generator 33 as a trigger signal.

このため、インパルス信号発生器33で、インパルス信号発信部11のインパルス信号発生器17でインパルス信号を発信したタイミングから送信アンテナ18から手首21内に放射されたインパルス信号が尺骨動脈22bで反射した反射インパルス信号を受信アンテナ41で受信して超広帯域検出器42に入力されるタイミングでインパルス遅延信号を超広帯域検出器42に入力する。  Therefore, the impulse signal radiated from the transmittingantenna 18 into thewrist 21 from the timing at which theimpulse signal generator 17 of the impulse signal transmission unit 11 transmits the impulse signal in theimpulse signal generator 33 is reflected by theulnar artery 22b. The impulse delay signal is input to the ultra-wideband detector 42 at a timing when the impulse signal is received by the receiving antenna 41 and input to the ultra-wideband detector 42.

この結果、超広帯域検出器42では、受信アンテナ41から入力される反射インパルス信号とインパルス信号発生器33から入力されるインパルス遅延信号との相関をとることにより、尺骨動脈22bで反射された反射インパルス信号が入力されたときに、高い相関値が得られる。
同様に、レンジ調整回路32で、インパルス信号発信部11のインパルス信号発生器17からインパルス信号が発生されて送信アンテナか18から手首21内に放射され、これが尺側皮静脈23bで反射された反射インパルス信号を受信アンテナ41で受信して超広帯域検出器42に入力されるタイミングに同期してインパルス遅延信号形成部12のインパルス信号発生器33でインパルス遅延信号を発生するように遅延時間を調整することにより、超広帯域検出器42で尺側皮静脈23bからの反射インパルス信号が入力されたタイミングで高い相関値が得られる。
As a result, the ultra-wideband detector 42 correlates the reflected impulse signal input from the receiving antenna 41 and the impulse delay signal input from theimpulse signal generator 33, thereby reflecting the reflected impulse reflected by theulnar artery 22b. A high correlation value is obtained when a signal is input.
Similarly, in therange adjustment circuit 32, an impulse signal is generated from theimpulse signal generator 17 of the impulse signal transmission unit 11 and is radiated from the transmittingantenna 18 into thewrist 21, which is reflected by the shaku side cutaneous vein 23b. The delay time is adjusted so that the impulse signal is generated by theimpulse signal generator 33 of the impulse delay signal forming unit 12 in synchronization with the timing at which the impulse signal is received by the reception antenna 41 and input to the ultra-wideband detector 42. Thus, a high correlation value is obtained at the timing when the reflected impulse signal from the ulnar cutaneous vein 23b is input by the ultra-wideband detector 42.

このため、クロック発生器15からクロック信号が発生される毎に、レンジ調整回路32で動脈用遅延信号及び静脈用遅延信号を交互に出力させることにより、超広帯域検出器42で尺骨動脈22b及び尺側皮静脈23bで反射される反射インパルス信号を時分割で検出することができ、これら反射インパルス信号を脈波検出回路51に順次入力することにより、この脈波検出回路51でレンジ調整回路32から入力される遅延信号に基づいて順次入力される反射インパルス信号を動脈用及び静脈用に分離し、分離された動脈用反射インパルス信号及び静脈用反射インパルス信号に対して積分及び微分等の処理を行うことにより、動脈用脈波信号及び静脈用脈波信号を検出する。  For this reason, every time a clock signal is generated from theclock generator 15, therange adjustment circuit 32 alternately outputs the arterial delay signal and the venous delay signal, so that the ultra-wideband detector 42 allows theulnar artery 22b and the ulcer. The reflected impulse signals reflected by the lateral cutaneous vein 23b can be detected in a time-sharing manner. By sequentially inputting these reflected impulse signals to the pulsewave detecting circuit 51, the pulsewave detecting circuit 51 can detect the reflected impulse signals from therange adjusting circuit 32. Based on the input delay signal, the sequentially input reflected impulse signals are separated for arteries and veins, and processing such as integration and differentiation is performed on the separated arterial reflected impulse signals and venous reflected impulse signals. Thus, the arterial pulse wave signal and the venous pulse wave signal are detected.

このとき、超広帯域レーダ7では、インパルス信号発信部11のインパルス信号発生器17で発生されるインパルス信号は時間軸上で表すと、図4(a)に示すように送信パルス幅Tpの搬送波を必要としないモノパルス信号であり、この送信パルス幅Tpをナノ(10-9)秒、ピコ(10-12)秒、フェムト(10-16)秒と細くすることにつれ周波数帯は図4(b)に示すようにGHzオーダで広くとることができ、送信電波強度を低下させることが可能となり、低消費電力化(数μW程度)を図ることができる。また、送信パルス間隔を狭くすることにより通信速度を高速とすることができ、レーダとした場合に分解能を向上させることができる。しかも、超広帯域レーダ7では実現する電子回路が単純化され、最大送信電力が小さくなるのでLSI化しやすくなる。At this time, in the ultra-wideband radar 7, when the impulse signal generated by theimpulse signal generator 17 of the impulse signal transmission unit 11 is represented on the time axis, a carrier wave having a transmission pulse width Tp is represented as shown in FIG. This is a monopulse signal that is not required, and as the transmission pulse width Tp is narrowed to nano (10-9 ) seconds, pico (10-12 ) seconds, and femto (10-16 ) seconds, the frequency band is shown in FIG. As shown in FIG. 5, the power can be widely set in the order of GHz, the transmission radio wave intensity can be reduced, and the power consumption can be reduced (about several μW). In addition, the communication speed can be increased by narrowing the transmission pulse interval, and the resolution can be improved when the radar is used. Moreover, the electronic circuit to be realized in the ultra-wideband radar 7 is simplified and the maximum transmission power is reduced, so that it is easy to make an LSI.

因に、通常の搬送波を使用するBPSK等の位相変調方式では、搬送波を信号で変調して電波を送信し、受信側では受信信号を復調して信号成分を取り出すようにしているので、送信波形は図5(a)に示すように所定周期Tsのパルス波形の極性で信号を表すことになり、周波数帯は図5(b)に示すように短くなり、大きな送信電波強度を必要とすると共に、送信回路及び受信回路の構成が複雑大型化し、消費電力も大きくなる。  Incidentally, in a phase modulation method such as BPSK using a normal carrier wave, the carrier wave is modulated with a signal to transmit a radio wave, and the reception side demodulates the received signal to extract a signal component. As shown in FIG. 5A, the signal is represented by the polarity of the pulse waveform of the predetermined period Ts, and the frequency band is shortened as shown in FIG. Further, the configuration of the transmission circuit and the reception circuit becomes complicated and large, and the power consumption increases.

そして、脈波検出回路51で検出した動脈用脈波信号及び静脈用脈波信号を個別にAGC回路52に出力して、ゲインを自動的に調整してからA/D変換器53でディジタル値に変換し、変換されたディジタル値を高速フーリエ変換器54に供給して周波数領域の動脈信号及び静脈信号に変換し、これらを後処理回路55に供給して後処理アルゴリズムを実行することにより、周波数領域の動脈信号から周波数領域の静脈信号を減算することにより、静脈信号には体動成分のみが含まれていることにより、動脈信号に重畳されている体動成分を正確に除去することができ、動脈のみの正確な脈波を検出することができ、この脈波が表示器2に表示される。  Then, the arterial pulse wave signal and the venous pulse wave signal detected by the pulsewave detection circuit 51 are individually output to theAGC circuit 52, and the gain is automatically adjusted, and then the digital value is output by the A /D converter 53. And converting the converted digital value to afast Fourier transformer 54 to convert it into an arterial signal and a vein signal in the frequency domain, and supplying them to a post-processing circuit 55 to execute a post-processing algorithm, By subtracting the frequency domain venous signal from the frequency domain arterial signal, it is possible to accurately remove the body motion component superimposed on the arterial signal because the venous signal contains only the body motion component. The accurate pulse wave of only the artery can be detected, and this pulse wave is displayed on thedisplay 2.

すなわち、人体が安静状態であるときには、体動成分がないことにより、静脈信号が脈動することはなく、動脈信号も心臓の脈動による脈波のみで構成されているので、動脈信号を検出するだけで、正確な脈波を検出することができる。
しかしながら、人体が運動している場合には、動脈信号が心臓の脈動による脈波に運動量に比例して大きくなる体動成分が重畳されることにより、動脈信号のみを検出した場合には正確な脈波を検出することはできないが、本実施形態のように、静脈信号を検出し、この静脈信号には体動成分のみで構成されていることにより、動脈信号から静脈信号を減算することにより、体動成分を除去した脈波を正確に検出することができる。このため、手首に腕時計1を装着するだけで、運動時の脈波検出やリハビリ時の脈波検出を人体に負荷を与えることなく容易且つ正確に行うことができ、脈波測定時に違和感を与えることを確実に防止することができる。
That is, when the human body is in a resting state, there is no body motion component, so the venous signal does not pulsate, and the arterial signal is composed only of pulse waves due to the pulsation of the heart, so only the arterial signal is detected. Thus, an accurate pulse wave can be detected.
However, when the human body is exercising, a body motion component that increases in proportion to the amount of motion is superimposed on the pulse wave due to the pulsation of the heart, so that it is accurate when only the arterial signal is detected. Although the pulse wave cannot be detected, the vein signal is detected as in this embodiment, and the vein signal is composed only of the body motion component, so that the vein signal is subtracted from the arterial signal. The pulse wave from which the body motion component is removed can be accurately detected. For this reason, simply by wearing thewristwatch 1 on the wrist, the pulse wave detection during exercise and the pulse wave detection during rehabilitation can be easily and accurately performed without applying a load to the human body. This can be surely prevented.

しかも、体動成分を検出ために、外部の加速度センサ等の体動検出器を設ける必要がないと共に、動脈と同位置の静脈を検出することにより、外部の体動検出器を設けた場合のように測定位置を同一にすることができないことによる誤差を生じることがなく、正確な脈波を検出することができると共に、全体の構成を小型化することができる。
また、動脈信号及び静脈信号の検出を超広帯域レーダ7によって行うので、従来の発光ダイオードを使用する場合の消費電力(数十mW)に比較して格段に少ない消費電力(数μW)とすることができると共に、測定周期を短期間とすることができるので、全体の消費電力も少なくなり、電池駆動する場合の電池の寿命を長くすることができる。さらに、腕時計1と手首21との間に隙間がある場合でも、レンジ調整回路32で隙間に応じて延時間を調整することにより、正確な脈波を検出することができる。さらにまた、超広帯域レーダ7を使用するので、腕時計1の裏蓋5を合成樹脂製とし、その内側に送信アンテナ18及び受信アンテナ41を配設することができ、腕時計1のハウジング3を合成樹脂で一体成型することができ、脈波検出器付き腕時計を低コストで製造することが可能となる。
In addition, it is not necessary to provide a body motion detector such as an external acceleration sensor in order to detect a body motion component, and when an external body motion detector is provided by detecting a vein at the same position as the artery. Thus, an error due to the fact that the measurement positions cannot be made identical can be prevented, an accurate pulse wave can be detected, and the entire configuration can be downsized.
Further, since the arterial signal and the vein signal are detected by the ultra-wideband radar 7, the power consumption (several μW) is much smaller than the power consumption (several tens of mW) when the conventional light emitting diode is used. In addition, since the measurement cycle can be shortened, the overall power consumption is reduced, and the life of the battery when driven by the battery can be extended. Furthermore, even when there is a gap between thewristwatch 1 and thewrist 21, an accurate pulse wave can be detected by adjusting the extension time according to the gap by therange adjustment circuit 32. Furthermore, since the ultra-wideband radar 7 is used, theback cover 5 of thewristwatch 1 can be made of synthetic resin, and the transmittingantenna 18 and the receiving antenna 41 can be disposed inside thereof. The housing 3 of thewristwatch 1 is made of synthetic resin. The wristwatch with a pulse wave detector can be manufactured at a low cost.

なお、上記実施形態においては、尺骨動脈22b及び尺側皮静脈23bの脈波を検出する場合について説明したが、これに限定されるものではなく、橈骨動脈22a及び橈側皮静脈の脈波を検出するようにしてもよく、さらには橈骨動脈22a(又は尺骨動脈22b)と尺側皮静脈23b(又は橈側皮静脈23a)との脈波を検出するようにしてもよい。
また、上記実施形態においては、インパルス信号発生部11に、プログラマブル遅延回路16を設けた場合について説明したが、これを省略するようにしてもよい。
In the above-described embodiment, the case where the pulse waves of theulnar artery 22b and the ulnar cutaneous vein 23b are detected has been described. However, the present invention is not limited to this. Further, the pulse wave between the radial artery 22a (orulnar artery 22b) and the ulnar cutaneous vein 23b (orradial side vein 23a) may be detected.
Moreover, in the said embodiment, although the case where theprogrammable delay circuit 16 was provided in the impulse signal generation part 11 was demonstrated, you may make it abbreviate | omit this.

さらに、上記実施形態においては、クロック発生器15で発生されるクロック信号に同期して動脈波及び静脈波を時分割に検出する場合について説明したが、これに限定されるものではなく、インパルス遅延信号形成部12にプログラマブル遅延回路31と並列に同様の構成のプログラマブル遅延回路を設け、一方のプログラマブル遅延回路で動脈検出用遅延時間を発生させ、他方のプログラマブル遅延回路で静脈検出用遅延時間を発生させて、一回のインパルス信号の放射で動脈及び静脈での反射インパルス信号を同時に測定するようにしてもよい。  Further, in the above-described embodiment, the case where the arterial wave and the venous wave are detected in time division in synchronization with the clock signal generated by theclock generator 15 has been described. The signal forming unit 12 is provided with a programmable delay circuit having the same configuration in parallel with theprogrammable delay circuit 31. One programmable delay circuit generates an arterial detection delay time, and the other programmable delay circuit generates a vein detection delay time. Then, the reflected impulse signal in the artery and vein may be measured simultaneously by emitting the impulse signal once.

さらにまた、上記実施形態においては、本発明を脈波検出器6を腕時計1に設けた場合について説明したが、これに限定されるものではなく、腕時計に代えて腕輪等を適用することができる。また、手首の動脈及び静脈を検出する場合に限らず、足や首等の動脈及び静脈であっても容易に脈波を検出することができる。
なおさらに、上記実施形態においては、人間の脈波を検出する場合について説明したが、これに限定されるものではなく、図6に示すように、腕時計1に代えて首輪61の内側に脈波検出器6を取付け、この首輪61を競走馬、競技馬、競争犬等の首に付けることにより、競走馬等の調教時の脈波を正確に検出することができる。
In the above embodiment, the present invention has been described with respect to the case where thepulse wave detector 6 is provided in thewristwatch 1. However, the present invention is not limited to this, and a bracelet or the like can be applied instead of the wristwatch. . Further, the present invention is not limited to detecting wrist arteries and veins, and pulse waves can be easily detected even for arteries and veins such as feet and necks.
Furthermore, in the above-described embodiment, the case of detecting a human pulse wave has been described. However, the present invention is not limited to this, and as shown in FIG. By attaching thedetector 6 and attaching thecollar 61 to the neck of a racehorse, racehorse, race dog, etc., it is possible to accurately detect the pulse wave during training of the racehorse.

また、上記実施形態においては、脈波検出器6に脈波算出部8を一体に設ける場合について説明したが、これに限定されるものではなく、脈波算出部8の脈波検出回路51を除く他の部を切り離し、脈波検出回路51及びAGC回路52との間を無線LAN等の近距離無線通信機器を使用して無線通信可能に接続することにより、長時間の脈波記録を行うことが可能となる。  Further, in the above embodiment, the case where the pulse wave calculation unit 8 is provided integrally with thepulse wave detector 6 has been described. However, the present invention is not limited to this, and the pulsewave detection circuit 51 of the pulse wave calculation unit 8 is provided. Long-term pulse wave recording is performed by separating the other parts and connecting the pulsewave detection circuit 51 and theAGC circuit 52 so as to enable wireless communication using a short-range wireless communication device such as a wireless LAN. It becomes possible.

本発明を腕時計に適用した場合の一実施形態を示す斜視図である。It is a perspective view showing one embodiment at the time of applying the present invention to a wristwatch.図1の腕時計の裏側を示す斜視図である。It is a perspective view which shows the back side of the wristwatch of FIG.脈波検出器を示すブロック図である。It is a block diagram which shows a pulse wave detector.超広帯域レーダの送信パルスにおける時間軸上の信号波形と周波数軸上の信号強度を示す図である。It is a figure which shows the signal waveform on the time-axis in the transmission pulse of an ultra-wideband radar, and the signal strength on a frequency axis.位相変調方式を使用した場合の送信パルスにおける時間軸上の信号波形と周波数軸上の信号強度を示す図である。It is a figure which shows the signal waveform on the time-axis and the signal strength on a frequency axis in the transmission pulse at the time of using a phase modulation system.本発明を首輪に適用した場合の実施形態を示す図である。It is a figure which shows embodiment at the time of applying this invention to a collar.

符号の説明Explanation of symbols

1…腕時計、2…表示器、3…ハウジング、4…リストバンド、5…裏蓋、6…脈波検出器、7…超広帯域レーダ、8…脈波算出部、11…インパルス信号発信部、12…インパルス遅延信号形成部、13…超広帯域検出部、15…クロック発生器、16…プログラマブル遅延回路、17…インパルス信号発生器、18…送信アンテナ、21…手首、22動脈、22a…橈骨動脈、22b…尺骨動脈、23a…橈側皮静脈、23b…尺側皮静脈、31…プログラマブル遅延回路、32…レンジ調整回路、33…インパルス信号発生器、41……受信アンテナ、42…超広帯域検出器、51…脈波検出回路、52…AGC回路、53…A/D変換器、54…高速フーリエ変換器、55…後処理回路、61…首輪
DESCRIPTION OFSYMBOLS 1 ... Wristwatch, 2 ... Display, 3 ... Housing, 4 ... Wristband, 5 ... Back cover, 6 ... Pulse wave detector, 7 ... Ultra wideband radar, 8 ... Pulse wave calculation part, 11 ... Impulse signal transmission part, DESCRIPTION OF SYMBOLS 12 ... Impulse delay signal formation part, 13 ... Ultra wideband detection part, 15 ... Clock generator, 16 ... Programmable delay circuit, 17 ... Impulse signal generator, 18 ... Transmitting antenna, 21 ... Wrist, 22 artery, 22a ...Radial artery 22b ... ulnar artery, 23a ... radial side vein, 23b ... ulnar skin vein, 31 ... programmable delay circuit, 32 ... range adjustment circuit, 33 ... impulse signal generator, 41 ... receiving antenna, 42 ...ultra-wideband detector 51 ... Pulse wave detection circuit, 52 ... AGC circuit, 53 ... A / D converter, 54 ... Fast Fourier transform, 55 ... Post-processing circuit, 61 ... Collar

Claims (5)

Translated fromJapanese
動脈の脈動を超広帯域レーダの使用により検出する動脈流検出手段と、静脈の脈動を超広帯域レーダの使用により検出する静脈流検出手段と、前記動脈流検出手段で検出した動脈流信号と、前記静脈流検出手段で検出した静脈流信号とに基づいて体動成分を除く真の脈波成分を算出する脈波算出手段とを備えたことを特徴とする脈波検出器。  Arterial flow detection means for detecting arterial pulsation by using an ultra-wideband radar, venous flow detection means for detecting venous pulsation by using an ultra-wideband radar, an arterial flow signal detected by the arterial flow detection means, A pulse wave detector comprising pulse wave calculation means for calculating a true pulse wave component excluding a body motion component based on a venous flow signal detected by a venous flow detection means. 前記超広帯域レーダは、インパルス信号を検出対象に向けて発信するインパルス信号発信部と、該インパルス信号発信部で発信したインパルス信号の反射信号を検出し、発信したインパルス信号の検出対象に対応する遅延信号をもとに検出対象物の反射信号を抽出する超広帯域検出部とで構成されていることを特徴とする請求項1に記載の脈波検出器。  The ultra-wideband radar detects an impulse signal transmission unit that transmits an impulse signal toward a detection target, a reflection signal of the impulse signal transmitted by the impulse signal transmission unit, and a delay corresponding to the detection target of the transmitted impulse signal The pulse wave detector according to claim 1, wherein the pulse wave detector is configured with an ultra-wideband detector that extracts a reflected signal of a detection target based on the signal. 前記動脈流検出手段及び静脈流検出手段は、インパルス信号を検出対象に向けて発信するインパルス信号発信部と、該インパルス信号発信部で発信したインパルス信号に対して動脈での反射波及び静脈での反射波に対応する遅延時間分遅延させたインパルス遅延信号を形成するインパルス遅延信号形成部と、前記インパルス信号発信部で発信したインパルス信号の反射信号を検出し、検出した反射信号と前記インパルス遅延信号形成部で形成したインパルス遅延信号とに基づいて動脈反射信号及び静脈反射信号を選択的に抽出する超広帯域検出部とで構成される広帯域レーダと、広帯域レーダで検出した動脈反射信号及び静脈反射信号に基づいて動脈波及び静脈波を検出する脈波検出手段とを備えていることを特徴とする請求項1に記載の脈波検出器。  The arterial flow detection means and the venous flow detection means include an impulse signal transmission unit that transmits an impulse signal toward a detection target, and a reflected wave in an artery and a vein in response to the impulse signal transmitted by the impulse signal transmission unit. An impulse delay signal forming unit for forming an impulse delay signal delayed by a delay time corresponding to the reflected wave; and detecting a reflection signal of the impulse signal transmitted by the impulse signal transmission unit; and detecting the reflected signal and the impulse delay signal A broadband radar composed of an ultra-wideband detector that selectively extracts an arterial reflection signal and a vein reflection signal based on the impulse delay signal formed by the forming unit, and an arterial reflection signal and a vein reflection signal detected by the broadband radar The pulse according to claim 1, further comprising pulse wave detection means for detecting an arterial wave and a venous wave based on Detector. 前記請求項1乃至3の何れか1つに記載の脈波検出器を腕時計に組込んだことを特徴とする脈波検出装置。  4. A pulse wave detection apparatus, wherein the pulse wave detector according to claim 1 is incorporated in a wristwatch. 前記請求項1乃至3の何れか1つに記載の脈波検出器を動物の首輪に組込んだことを特徴とする脈波検出装置。  A pulse wave detection device comprising the pulse wave detector according to any one of claims 1 to 3 incorporated in an animal collar.
JP2003340319A2003-09-302003-09-30 Pulse wave detector and pulse wave detector using the sameWithdrawnJP2005102959A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2003340319AJP2005102959A (en)2003-09-302003-09-30 Pulse wave detector and pulse wave detector using the same

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2003340319AJP2005102959A (en)2003-09-302003-09-30 Pulse wave detector and pulse wave detector using the same

Publications (1)

Publication NumberPublication Date
JP2005102959Atrue JP2005102959A (en)2005-04-21

Family

ID=34535245

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003340319AWithdrawnJP2005102959A (en)2003-09-302003-09-30 Pulse wave detector and pulse wave detector using the same

Country Status (1)

CountryLink
JP (1)JP2005102959A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009060989A (en)*2007-09-052009-03-26Kitakyushu Foundation For The Advancement Of Industry Science & Technology Respiration monitoring method and apparatus
JP2009536041A (en)*2006-01-232009-10-08カード・ガード・サイエンティフィック・サヴァイヴァル・リミテッド Health monitor and health monitoring method
JP2011507583A (en)*2007-12-192011-03-10コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, method, and computer program for measuring object characteristics
WO2013118121A1 (en)*2012-02-112013-08-15Ilan Saul BarakA microwave contactless heart rate sensor
KR101323709B1 (en)*2011-02-252013-11-04김태권Hand-held type medical apparatus and method for providing of medical information using the same
JP2015077395A (en)*2013-10-172015-04-23財團法人工業技術研究院Industrial Technology Research Institute Detection system and method for physiological measurements
WO2015076866A1 (en)*2012-11-212015-05-28i4c Innovations Inc.Animal health and wellness monitoring using uwb radar
EP2898297A4 (en)*2012-09-212016-05-25Proteus Digital Health IncWireless wearable apparatus, system, and method
US9415010B2 (en)2008-08-132016-08-16Proteus Digital Health, Inc.Ingestible circuitry
CN105939653A (en)*2013-12-312016-09-14i4c创新公司Ultra-wideband radar and algorithms for use in dog collar
US9572647B2 (en)2013-12-312017-02-21i4c Innovations Inc.Paired thermometer temperature determination
US9597010B2 (en)2005-04-282017-03-21Proteus Digital Health, Inc.Communication system using an implantable device
US9597487B2 (en)2010-04-072017-03-21Proteus Digital Health, Inc.Miniature ingestible device
JP2017070739A (en)*2015-10-062017-04-13三星電子株式会社Samsung Electronics Co.,Ltd. Biological information measuring apparatus and method, and wearable device
US9649066B2 (en)2005-04-282017-05-16Proteus Digital Health, Inc.Communication system with partial power source
US9659423B2 (en)2008-12-152017-05-23Proteus Digital Health, Inc.Personal authentication apparatus system and method
JP2017108819A (en)*2015-12-152017-06-22学校法人 関西大学 Data analysis apparatus, venous wave monitoring apparatus, method and program
KR101767316B1 (en)*2015-09-172017-08-10김영일Method and apparatus for warning drosiness
US9756874B2 (en)2011-07-112017-09-12Proteus Digital Health, Inc.Masticable ingestible product and communication system therefor
US9787511B2 (en)2013-09-202017-10-10Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9796576B2 (en)2013-08-302017-10-24Proteus Digital Health, Inc.Container with electronically controlled interlock
KR101801269B1 (en)2015-03-302017-11-28주식회사 호서텔넷A intelligent electronic anklet using ultra wide band(uwb) radar and electronic anklet system including same
US9877659B2 (en)2012-11-302018-01-30Industrial Technology Research InstituteSensing system and method for physiology measurements
US9962107B2 (en)2005-04-282018-05-08Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
JP2018522493A (en)*2015-07-272018-08-09フラクタル・アンテナ・システムズ・インコーポレイテッドFractal Antenna Systems, Inc. Antenna for accessory-mounted small communication devices
US10084880B2 (en)2013-11-042018-09-25Proteus Digital Health, Inc.Social media networking based on physiologic information
US10149617B2 (en)2013-03-152018-12-11i4c Innovations Inc.Multiple sensors for monitoring health and wellness of an animal
US10175376B2 (en)2013-03-152019-01-08Proteus Digital Health, Inc.Metal detector apparatus, system, and method
US10187121B2 (en)2016-07-222019-01-22Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
WO2019017155A1 (en)*2017-07-212019-01-24オムロン株式会社Biometric antenna device, pulse wave measurement device, blood pressure measurement device, apparatus, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
WO2019053999A1 (en)*2017-09-122019-03-21オムロン株式会社Pulse wave measurement device, blood pressure measurement device, equipment, method for measuring pulse wave, and method for measuring blood pressure
WO2019073764A1 (en)*2017-10-122019-04-18オムロン株式会社Vital sign measurement device, blood pressure measurement device, apparatus, vital sign measurement method, and blood pressure measurement method
US10376218B2 (en)2010-02-012019-08-13Proteus Digital Health, Inc.Data gathering system
US10398161B2 (en)2014-01-212019-09-03Proteus Digital Heal Th, Inc.Masticable ingestible product and communication system therefor
JP2019154861A (en)*2018-03-142019-09-19オムロン株式会社Biological information measurement device
US10588544B2 (en)2009-04-282020-03-17Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
WO2021010117A1 (en)*2019-07-172021-01-21オムロン株式会社Pulse wave measurement device, measurement method, and blood pressure measurement device
US10986817B2 (en)2014-09-052021-04-27Intervet Inc.Method and system for tracking health in animal populations
US10986816B2 (en)2014-03-262021-04-27Scr Engineers Ltd.Livestock location system
US11051543B2 (en)2015-07-212021-07-06Otsuka Pharmaceutical Co. Ltd.Alginate on adhesive bilayer laminate film
US11071279B2 (en)2014-09-052021-07-27Intervet Inc.Method and system for tracking health in animal populations
US11149123B2 (en)2013-01-292021-10-19Otsuka Pharmaceutical Co., Ltd.Highly-swellable polymeric films and compositions comprising the same
US11158149B2 (en)2013-03-152021-10-26Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US11504511B2 (en)2010-11-222022-11-22Otsuka Pharmaceutical Co., Ltd.Ingestible device with pharmaceutical product
US11529071B2 (en)2016-10-262022-12-20Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
USD990062S1 (en)2020-06-182023-06-20S.C.R. (Engineers) LimitedAnimal ear tag
USD990063S1 (en)2020-06-182023-06-20S.C.R. (Engineers) LimitedAnimal ear tag
US11832587B2 (en)2020-06-182023-12-05S.C.R. (Engineers) LimitedAnimal tag
US11832584B2 (en)2018-04-222023-12-05Vence, Corp.Livestock management system and method
US11864529B2 (en)2018-10-102024-01-09S.C.R. (Engineers) LimitedLivestock dry off method and device
US11960957B2 (en)2020-11-252024-04-16Identigen LimitedSystem and method for tracing members of an animal population
US12099893B2 (en)2020-07-012024-09-24S.C.R. (Engineers) LimitedDevice assignment system and method
US12144320B2 (en)2019-02-082024-11-19Allflex Australia Pty LtdElectronic animal identification tag reader synchronisation
US12193413B2 (en)2019-02-082025-01-14Allflex Australia Pty LtdElectronic animal tag reader
CN119344693A (en)*2024-10-282025-01-24江苏亿连通信技术有限公司 A pulse wave calibration method based on millimeter wave radar
US12213449B2 (en)2021-01-242025-02-04S.C.R. (Engineers) LimitedAnimal marking control system and method
US12239098B2 (en)2019-02-082025-03-04Allflex Australia Pty LtdDetermining the location of an animal
USD1067554S1 (en)2021-04-082025-03-18Allflex Australia Pty LimitedTag applicator for animals
USD1067544S1 (en)2021-04-082025-03-18Allflex Australia Pty LimitedTag applicator for animals
US12402599B2 (en)2018-10-032025-09-02Allflex Europe SasGripper for manipulating a device for identifying an animal and/or removing tissue from an animal comprising holding means with remote actuation
US12402596B2 (en)2022-05-032025-09-02S.C.R. (Engineers) LimitedMilk channel and feed inlet coupled thereto, and system and method for conserving wash fluid in a washing process for cleaning a milkmeter system
US12409474B2 (en)2019-08-282025-09-09S.C.R. (Engineers) LimitedDevices for analysis of a fluid

Cited By (101)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10517507B2 (en)2005-04-282019-12-31Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US9681842B2 (en)2005-04-282017-06-20Proteus Digital Health, Inc.Pharma-informatics system
US9962107B2 (en)2005-04-282018-05-08Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US10610128B2 (en)2005-04-282020-04-07Proteus Digital Health, Inc.Pharma-informatics system
US9649066B2 (en)2005-04-282017-05-16Proteus Digital Health, Inc.Communication system with partial power source
US9597010B2 (en)2005-04-282017-03-21Proteus Digital Health, Inc.Communication system using an implantable device
US11476952B2 (en)2005-04-282022-10-18Otsuka Pharmaceutical Co., Ltd.Pharma-informatics system
US10542909B2 (en)2005-04-282020-01-28Proteus Digital Health, Inc.Communication system with partial power source
JP2009536041A (en)*2006-01-232009-10-08カード・ガード・サイエンティフィック・サヴァイヴァル・リミテッド Health monitor and health monitoring method
JP2009060989A (en)*2007-09-052009-03-26Kitakyushu Foundation For The Advancement Of Industry Science & Technology Respiration monitoring method and apparatus
JP2011507583A (en)*2007-12-192011-03-10コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, method, and computer program for measuring object characteristics
US9415010B2 (en)2008-08-132016-08-16Proteus Digital Health, Inc.Ingestible circuitry
US9659423B2 (en)2008-12-152017-05-23Proteus Digital Health, Inc.Personal authentication apparatus system and method
US10588544B2 (en)2009-04-282020-03-17Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US10376218B2 (en)2010-02-012019-08-13Proteus Digital Health, Inc.Data gathering system
US11173290B2 (en)2010-04-072021-11-16Otsuka Pharmaceutical Co., Ltd.Miniature ingestible device
US10207093B2 (en)2010-04-072019-02-19Proteus Digital Health, Inc.Miniature ingestible device
US9597487B2 (en)2010-04-072017-03-21Proteus Digital Health, Inc.Miniature ingestible device
US11504511B2 (en)2010-11-222022-11-22Otsuka Pharmaceutical Co., Ltd.Ingestible device with pharmaceutical product
KR101323709B1 (en)*2011-02-252013-11-04김태권Hand-held type medical apparatus and method for providing of medical information using the same
US11229378B2 (en)2011-07-112022-01-25Otsuka Pharmaceutical Co., Ltd.Communication system with enhanced partial power source and method of manufacturing same
US9756874B2 (en)2011-07-112017-09-12Proteus Digital Health, Inc.Masticable ingestible product and communication system therefor
US9713434B2 (en)2012-02-112017-07-25Sensifree Ltd.Microwave contactless heart rate sensor
EP2811908A4 (en)*2012-02-112015-10-28Sensifree LtdA microwave contactless heart rate sensor
WO2013118121A1 (en)*2012-02-112013-08-15Ilan Saul BarakA microwave contactless heart rate sensor
EP2898297A4 (en)*2012-09-212016-05-25Proteus Digital Health IncWireless wearable apparatus, system, and method
JP2017500845A (en)*2012-11-212017-01-12アイフォーシー イノベーションズ インコーポレイテッド Animal health and wellness monitoring using UWB radar
US10070627B2 (en)2012-11-212018-09-11i4c Innovations Inc.Animal health and wellness monitoring using UWB radar
US9526437B2 (en)2012-11-212016-12-27i4c Innovations Inc.Animal health and wellness monitoring using UWB radar
CN105764332A (en)*2012-11-212016-07-13i4c创新公司Animal health and wellness monitoring using UWB radar
US11317608B2 (en)2012-11-212022-05-03i4c Innovations Inc.Animal health and wellness monitoring using UWB radar
WO2015076866A1 (en)*2012-11-212015-05-28i4c Innovations Inc.Animal health and wellness monitoring using uwb radar
US9877659B2 (en)2012-11-302018-01-30Industrial Technology Research InstituteSensing system and method for physiology measurements
US11149123B2 (en)2013-01-292021-10-19Otsuka Pharmaceutical Co., Ltd.Highly-swellable polymeric films and compositions comprising the same
US11741771B2 (en)2013-03-152023-08-29Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US10149617B2 (en)2013-03-152018-12-11i4c Innovations Inc.Multiple sensors for monitoring health and wellness of an animal
US10175376B2 (en)2013-03-152019-01-08Proteus Digital Health, Inc.Metal detector apparatus, system, and method
US11158149B2 (en)2013-03-152021-10-26Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US10421658B2 (en)2013-08-302019-09-24Proteus Digital Health, Inc.Container with electronically controlled interlock
US9796576B2 (en)2013-08-302017-10-24Proteus Digital Health, Inc.Container with electronically controlled interlock
US10097388B2 (en)2013-09-202018-10-09Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US11102038B2 (en)2013-09-202021-08-24Otsuka Pharmaceutical Co., Ltd.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10498572B2 (en)2013-09-202019-12-03Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9787511B2 (en)2013-09-202017-10-10Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
JP2015077395A (en)*2013-10-172015-04-23財團法人工業技術研究院Industrial Technology Research Institute Detection system and method for physiological measurements
US10084880B2 (en)2013-11-042018-09-25Proteus Digital Health, Inc.Social media networking based on physiologic information
CN105939653A (en)*2013-12-312016-09-14i4c创新公司Ultra-wideband radar and algorithms for use in dog collar
JP2017506876A (en)*2013-12-312017-03-16アイフォーシー イノベーションズ インコーポレイテッド Ultra-wideband radar and algorithm for use in dog collars
US9572647B2 (en)2013-12-312017-02-21i4c Innovations Inc.Paired thermometer temperature determination
EP3089654A1 (en)*2013-12-312016-11-09I4c Innovations Inc.Ultra-wideband radar and algorithms for use in dog collar
US10398161B2 (en)2014-01-212019-09-03Proteus Digital Heal Th, Inc.Masticable ingestible product and communication system therefor
US11950615B2 (en)2014-01-212024-04-09Otsuka Pharmaceutical Co., Ltd.Masticable ingestible product and communication system therefor
US12213455B2 (en)2014-03-262025-02-04S.C.R. (Engineers) LimitedLivestock location system
US11963515B2 (en)2014-03-262024-04-23S.C.R. (Engineers) LimitedLivestock location system
US10986816B2 (en)2014-03-262021-04-27Scr Engineers Ltd.Livestock location system
US11071279B2 (en)2014-09-052021-07-27Intervet Inc.Method and system for tracking health in animal populations
US10986817B2 (en)2014-09-052021-04-27Intervet Inc.Method and system for tracking health in animal populations
KR101801269B1 (en)2015-03-302017-11-28주식회사 호서텔넷A intelligent electronic anklet using ultra wide band(uwb) radar and electronic anklet system including same
US11051543B2 (en)2015-07-212021-07-06Otsuka Pharmaceutical Co. Ltd.Alginate on adhesive bilayer laminate film
JP2018522493A (en)*2015-07-272018-08-09フラクタル・アンテナ・システムズ・インコーポレイテッドFractal Antenna Systems, Inc. Antenna for accessory-mounted small communication devices
US10615491B2 (en)2015-07-272020-04-07Fractal Antenna Systems, Inc.Antenna for appendage-worn miniature communications device
KR101767316B1 (en)*2015-09-172017-08-10김영일Method and apparatus for warning drosiness
US10448848B2 (en)2015-10-062019-10-22Samsung Electronics Co., Ltd.Apparatus and method for measuring bioinformation
JP2017070739A (en)*2015-10-062017-04-13三星電子株式会社Samsung Electronics Co.,Ltd. Biological information measuring apparatus and method, and wearable device
US11517211B2 (en)2015-10-062022-12-06Samsung Electronics Co., Ltd.Apparatus and method for measuring bioinformation
JP2017108819A (en)*2015-12-152017-06-22学校法人 関西大学 Data analysis apparatus, venous wave monitoring apparatus, method and program
US10797758B2 (en)2016-07-222020-10-06Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
US10187121B2 (en)2016-07-222019-01-22Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
US11793419B2 (en)2016-10-262023-10-24Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
US11529071B2 (en)2016-10-262022-12-20Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
JP2019022542A (en)*2017-07-212019-02-14オムロン株式会社Biometry antenna device, pulse wave measurement device, blood pressure measurement device, equipment, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
WO2019017155A1 (en)*2017-07-212019-01-24オムロン株式会社Biometric antenna device, pulse wave measurement device, blood pressure measurement device, apparatus, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
WO2019053999A1 (en)*2017-09-122019-03-21オムロン株式会社Pulse wave measurement device, blood pressure measurement device, equipment, method for measuring pulse wave, and method for measuring blood pressure
JP2019050848A (en)*2017-09-122019-04-04オムロン株式会社Pulse wave measurement device, blood pressure measurement device, apparatus, pulse wave measurement method and blood pressure measurement method
WO2019073764A1 (en)*2017-10-122019-04-18オムロン株式会社Vital sign measurement device, blood pressure measurement device, apparatus, vital sign measurement method, and blood pressure measurement method
JP2019071961A (en)*2017-10-122019-05-16オムロン株式会社Biological information measuring device, blood pressure measuring device, instrument, biological information measuring method, and blood pressure measuring method
US11484214B2 (en)2018-03-142022-11-01Omron CorporationBiological information measuring device
JP7023751B2 (en)2018-03-142022-02-22オムロン株式会社 Biometric information measuring device
JP2019154861A (en)*2018-03-142019-09-19オムロン株式会社Biological information measurement device
WO2019176529A1 (en)*2018-03-142019-09-19オムロン株式会社Biological-information measuring device
US11832584B2 (en)2018-04-222023-12-05Vence, Corp.Livestock management system and method
US12402599B2 (en)2018-10-032025-09-02Allflex Europe SasGripper for manipulating a device for identifying an animal and/or removing tissue from an animal comprising holding means with remote actuation
US11864529B2 (en)2018-10-102024-01-09S.C.R. (Engineers) LimitedLivestock dry off method and device
US12133507B2 (en)2018-10-102024-11-05S.C.R. (Engineers) LimitedLivestock dry off method and device
US12239098B2 (en)2019-02-082025-03-04Allflex Australia Pty LtdDetermining the location of an animal
US12144320B2 (en)2019-02-082024-11-19Allflex Australia Pty LtdElectronic animal identification tag reader synchronisation
US12193413B2 (en)2019-02-082025-01-14Allflex Australia Pty LtdElectronic animal tag reader
WO2021010117A1 (en)*2019-07-172021-01-21オムロン株式会社Pulse wave measurement device, measurement method, and blood pressure measurement device
US12409474B2 (en)2019-08-282025-09-09S.C.R. (Engineers) LimitedDevices for analysis of a fluid
US11832587B2 (en)2020-06-182023-12-05S.C.R. (Engineers) LimitedAnimal tag
USD990063S1 (en)2020-06-182023-06-20S.C.R. (Engineers) LimitedAnimal ear tag
USD990062S1 (en)2020-06-182023-06-20S.C.R. (Engineers) LimitedAnimal ear tag
US12342790B2 (en)2020-06-182025-07-01S.C.R. (Engineers) LimitedAnimal tag
US12099893B2 (en)2020-07-012024-09-24S.C.R. (Engineers) LimitedDevice assignment system and method
US12321808B2 (en)2020-11-252025-06-03Identigen LimitedSystem and method for tracing members of an animal population
US11960957B2 (en)2020-11-252024-04-16Identigen LimitedSystem and method for tracing members of an animal population
US12213449B2 (en)2021-01-242025-02-04S.C.R. (Engineers) LimitedAnimal marking control system and method
USD1067554S1 (en)2021-04-082025-03-18Allflex Australia Pty LimitedTag applicator for animals
USD1067544S1 (en)2021-04-082025-03-18Allflex Australia Pty LimitedTag applicator for animals
US12402596B2 (en)2022-05-032025-09-02S.C.R. (Engineers) LimitedMilk channel and feed inlet coupled thereto, and system and method for conserving wash fluid in a washing process for cleaning a milkmeter system
CN119344693A (en)*2024-10-282025-01-24江苏亿连通信技术有限公司 A pulse wave calibration method based on millimeter wave radar

Similar Documents

PublicationPublication DateTitle
JP2005102959A (en) Pulse wave detector and pulse wave detector using the same
US12133722B2 (en)Biological information measurement apparatus, method, and program
US9877659B2 (en)Sensing system and method for physiology measurements
US9713434B2 (en)Microwave contactless heart rate sensor
EP0956812B1 (en)Pulse wave detection method, artery position detection method and pulse wave detection apparatus
CN110547778B (en)Non-contact pulse transmission time measuring system and physiological sign sensing device thereof
US20170065184A1 (en)Systems and methods for contactless arterial pressure estimator
Ambrosanio et al.A multi-channel ultrasound system for non-contact heart rate monitoring
DK2862508T3 (en)Detection system and method for physiological measurements by means of a measurement signal with overshoot- and undershoot pulses.
US20180333103A1 (en)Algorithmic Approach for Estimation of Respiration and Heart Rates
Cardillo et al.Head motion and eyes blinking detection: A mm-wave radar for assisting people with neurodegenerative disorders
US20220296111A1 (en)Method for operating a wearable device that includes an optical sensor system and an rf sensor system
Wang et al.Chest-worn health monitor based on a bistatic self-injection-locked radar
US20220287649A1 (en)Method for generating training data for use in monitoring a health parameter of a person
JP2015217143A (en) Heart rate measurement device
KR101337387B1 (en)Pulse transit time measuring apparatus and measuring method of the same
KR100905102B1 (en) Non-contact Biosignal Measuring Device
Antide et al.Comparative study of radar architectures for human vital signs measurement
US10058273B2 (en)Detection device and measuring apparatus
US20210007614A1 (en)Biological information measurement apparatus, method, and program
CN105105739A (en)Short-distance wireless heart rate and heart rate variability detection method
KR20150054368A (en)Method and apparatus for detecting biosignal
US20230355113A1 (en)Systems for monitoring blood pressure of a person that utilizes velocity and pulse wave signal information
US20230355112A1 (en)Methods for monitoring blood pressure of a person that utilizes velocity and pulse wave signal information
Yamamoto et al.Spectrogram-based simultaneous heartbeat and blink detection using doppler sensor

Legal Events

DateCodeTitleDescription
A300Withdrawal of application because of no request for examination

Free format text:JAPANESE INTERMEDIATE CODE: A300

Effective date:20061205


[8]ページ先頭

©2009-2025 Movatter.jp