Movatterモバイル変換


[0]ホーム

URL:


JP2005062832A - Microlens and microlens array - Google Patents

Microlens and microlens array
Download PDF

Info

Publication number
JP2005062832A
JP2005062832AJP2004185051AJP2004185051AJP2005062832AJP 2005062832 AJP2005062832 AJP 2005062832AJP 2004185051 AJP2004185051 AJP 2004185051AJP 2004185051 AJP2004185051 AJP 2004185051AJP 2005062832 AJP2005062832 AJP 2005062832A
Authority
JP
Japan
Prior art keywords
microlens
substrate
lens
crystallized glass
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004185051A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshihara
聡 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co LtdfiledCriticalNippon Electric Glass Co Ltd
Priority to JP2004185051ApriorityCriticalpatent/JP2005062832A/en
Publication of JP2005062832ApublicationCriticalpatent/JP2005062832A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microlens which is inexpensive, ensures little optical loss even when the environmental temperature changes, and is excellent in chemical durability, and to provide a method for manufacturing the microlens, a microlens array and a method for manufacturing the microlens array. <P>SOLUTION: The microlens comprises a lens part having a convex lens surface and a substrate part which surrounds the periphery of the lens part and comprises crystallized glass, wherein the lens part includes an amorphous part formed by converting a crystallized glass substrate constituting the substrate part to amorphous glass by laser irradiation, and a depreciation rate of acid resistance evaluation and a depreciation rate of water resistance evaluation according to Japan Optical Glass Industry Association Standards (JOGIS) are ≤0.10 mass% and ≤0.05 mass%, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

Translated fromJapanese

本発明は、マイクロレンズ及びマイクロレンズアレイ、特に光通信分野において使用されるマイクロレンズ及びマイクロレンズアレイに関するものである。  The present invention relates to a microlens and a microlens array, and more particularly to a microlens and a microlens array used in the field of optical communication.

マイクロレンズは、一般に直径2mm以下の微小なレンズ部を有するレンズの総称であり、光記録において微小スポットを形成する機能や半導体レーザからの出力光線を光ファイバに結合させる機能を有し、光ピックアップ、液晶プロジェクタ、光通信デバイス(例えば、光スイッチ、合波分波器等)等に使用されている。特に、光通信分野において使用するマイクロレンズは、レンズ部の直径が、約10μmの光ファイバのコア径に合わせて、できるだけ小さくすることが必要とされ、DWDM及び並列光通信においては、このような微細なマイクロレンズを二次元的に複数個配列したマイクロレンズアレイが使用される。  The microlens is a general term for lenses having a minute lens portion having a diameter of 2 mm or less in general, and has a function of forming a minute spot in optical recording and a function of coupling an output light beam from a semiconductor laser to an optical fiber. It is used in liquid crystal projectors, optical communication devices (for example, optical switches, multiplexers / demultiplexers, etc.). In particular, the microlens used in the field of optical communication is required to have a lens portion having a diameter as small as possible in accordance with the core diameter of an optical fiber of about 10 μm. In DWDM and parallel optical communication, A microlens array in which a plurality of fine microlenses are two-dimensionally arranged is used.

このようなマイクロレンズとして、露光された部分のみに結晶を析出するガラス(いわゆる感光性結晶化ガラス)を用いたマイクロレンズが提案されている(例えば、特許文献1参照。)。このマイクロレンズは、レンズ部に相当する大きさのCr膜を形成したシリカガラス基板からなるマスキング材によって、レンズ部に相当する領域をマスクし、紫外線で露光した後、熱処理することによって、露光した部分(レンズ部を包囲する部分)にのみ結晶を析出させた結果として、露光していない部分の上面及び下面を湾曲かつ隆起させて非晶質ガラスからなるレンズ部を形成したものである。  As such a microlens, there has been proposed a microlens using a glass (so-called photosensitive crystallized glass) in which crystals are deposited only on an exposed portion (see, for example, Patent Document 1). This microlens is exposed by masking a region corresponding to the lens portion with a masking material made of a silica glass substrate on which a Cr film having a size corresponding to the lens portion is formed, and exposing to ultraviolet rays, followed by heat treatment. As a result of crystal deposition only on the portion (the portion surrounding the lens portion), the lens portion made of amorphous glass is formed by curving and raising the upper surface and the lower surface of the unexposed portion.

また、他のマイクロレンズとしては、高密度化石英ガラスの表面の微小領域に炭酸ガスレーザを照射することによって、照射部を熱構造緩和させ、隆起構造を微小領域に形成させたマイクロレンズ(アレイ)が提案されている(例えば、非特許文献1参照。)。
特公平5−84481号公報北村直之,外2名,「レーザー光照射によって形成されたガラス表面の隆起構造」,第50回応用物理学関係連合講演会予稿集,2003年3月,p983,28p−M−1
As another microlens, a microlens (array) in which the irradiation area is relaxed by irradiating a carbon dioxide laser to a minute area on the surface of the densified quartz glass, and the raised structure is relaxed in the minute area. Has been proposed (see, for example, Non-Patent Document 1).
Japanese Patent Publication No. 5-84481 Naoyuki Kitamura and two others, “Bridge structure on the glass surface formed by laser irradiation”, Proceedings of the 50th Joint Conference on Applied Physics, March 2003, p983, 28p-M-1

しかしながら、特許文献1に記載のマイクロレンズは、レンズ部の直径やレンズ部の間隔が異なるマイクロレンズアレイを作製する場合には、その種類毎にマスキング材を用意する必要があるため、製造コストが高くなる。  However, the microlens described in Patent Document 1 has a manufacturing cost because it is necessary to prepare a masking material for each type when microlens arrays having different lens diameters or different distances are used. Get higher.

また、非特許文献1に記載のマイクロレンズ(アレイ)は、炭酸ガスレーザとして波長が10.6μmの赤外線レーザを照射してレンズ部を形成するが、石英ガラスはこの赤外線を透過しないため、赤外線レーザを全肉厚部分に亘って照射することができず、表面に近い部分しかレンズ部が形成されない。さらに、高価な製造設備が必要で、連続生産が困難なHIP処理によって高密度化した石英ガラスを使用するため、製造コストが高くなる。  Further, the microlens (array) described in Non-Patent Document 1 forms a lens portion by irradiating an infrared laser having a wavelength of 10.6 μm as a carbon dioxide gas laser, but since quartz glass does not transmit this infrared ray, an infrared laser is used. Cannot be irradiated over the entire thickness portion, and only the portion close to the surface is formed. Furthermore, since expensive manufacturing equipment is required and quartz glass densified by HIP processing, which is difficult to produce continuously, the manufacturing cost is increased.

本発明の目的は、上記事情に鑑みなされたものであり、安価で環境温度が変動しても光損失が少なく、化学的耐久性に優れたマイクロレンズ及びマイクロレンズアレイを提供することにある。  An object of the present invention is to provide a microlens and a microlens array that are inexpensive, have little optical loss even when the environmental temperature fluctuates, and are excellent in chemical durability.

上記目的を達成するため、本発明は、凸状のレンズ表面を有するレンズ部と、該レンズ部の周囲を包囲する結晶化ガラスからなる基質部とを備え、前記レンズ部は、前記基質部を構成する結晶化ガラス基質がレーザの照射によって非晶質ガラス化した非晶質部を含み、日本光学硝子工業会規格(JOGIS)における耐酸性評価の減量率が0.10質量%以下で耐水性評価の減量率が0.05質量%以下であるマイクロレンズ、及び、このマイクロレンズが二次元的に複数配列されたマイクロレンズアレイを提供する。  To achieve the above object, the present invention comprises a lens portion having a convex lens surface and a substrate portion made of crystallized glass surrounding the lens portion, and the lens portion includes the substrate portion. The crystallized glass substrate to be formed contains an amorphous part that has been converted into an amorphous glass by laser irradiation, and the weight loss rate of acid resistance evaluation in the Japan Optical Glass Industry Association Standard (JOGIS) is 0.10% by mass or less and is water resistant. A microlens having a weight loss rate of evaluation of 0.05% by mass or less and a microlens array in which a plurality of microlenses are two-dimensionally arranged.

結晶化ガラスからなる基材の所定領域にレーザを照射すると、レーザが照射された基材の所定領域は、該所定領域を構成する結晶化ガラス基質の一部又は全部がレーザの照射エネルギーによって溶融し、非晶質ガラス化して非晶質部となる。この非晶質ガラス化した非晶質部は、その周囲を包囲する結晶化ガラス基質の基質部に比べて密度が相対的に小さく、そのために非晶質部の体積は基質部に比べて相対的に増加する。その結果、非晶質部は周囲の基質部から圧迫力を受け、その表面が湾曲状に隆起して凸状のレンズ表面が形成される。したがって、レーザが照射された基材の所定領域は凸曲面状のレンズ表面を有するレンズ部となり、レーザが照射されなかった基材の他の領域はレンズ部の周囲を包囲する結晶化ガラスからなる基質部となる。  When a predetermined region of a substrate made of crystallized glass is irradiated with a laser, the predetermined region of the substrate irradiated with the laser melts part or all of the crystallized glass substrate constituting the predetermined region by the irradiation energy of the laser. Then, it becomes amorphous and becomes an amorphous part. This amorphous vitrified amorphous part has a relatively small density compared to the substrate part of the crystallized glass substrate that surrounds the amorphous part. Therefore, the volume of the amorphous part is relative to that of the substrate part. Increase. As a result, the amorphous portion receives a pressing force from the surrounding substrate portion, and the surface thereof is raised in a curved shape to form a convex lens surface. Accordingly, the predetermined region of the base material irradiated with the laser is a lens portion having a convexly curved lens surface, and the other region of the base material not irradiated with the laser is formed of crystallized glass surrounding the lens portion. It becomes the substrate part.

例えば、レーザを基板の片面側から所定領域に照射する場合において、レーザの照射エネルギーによって上記所定領域の表面に近い部分のみが溶融する場合は、該表面に近い部分のみが非晶質化して、基板の片面側にのみレンズ表面が形成される。レーザを基板の両面側からそれぞれ所定領域に照射する場合は、レーザの照射エネルギーによって溶融する範囲の如何にかかわらず、基板の両面側にそれぞれレンズ表面が形成される。特にレーザが紫外線レーザであると、紫外線のガラスに対する透過率が高いため、例えばレーザを基板の片面側から照射して、レーザの照射エネルギーによって上記所定領域の全肉厚部分を溶融することができ、これにより、上記所定領域の全肉厚部分を非晶質化して、基板の両面側にそれぞれレンズ表面を形成することができる。  For example, when irradiating a predetermined region from one side of the substrate with a laser, if only the portion close to the surface of the predetermined region is melted by the irradiation energy of the laser, only the portion close to the surface becomes amorphous, The lens surface is formed only on one side of the substrate. When the laser is irradiated onto the predetermined regions from both sides of the substrate, lens surfaces are formed on both sides of the substrate regardless of the melting range by the laser irradiation energy. In particular, when the laser is an ultraviolet laser, the transmittance of the ultraviolet light to the glass is high. For example, the laser can be irradiated from one side of the substrate, and the entire thickness portion of the predetermined region can be melted by the laser irradiation energy. This makes it possible to amorphize the entire thickness portion of the predetermined area and form lens surfaces on both sides of the substrate.

また、日本光学硝子工業会規格(JOGIS)における耐酸性評価の減量率が0.10質量%以下で耐水性評価の減量率が0.05質量%以下であるため、化学的耐久性が高く、酸性溶液で処理されても、あるいは高温高湿の環境に曝されてもレンズ部が曇りにくい。  Moreover, since the weight loss rate of the acid resistance evaluation in the Japan Optical Glass Industry Association Standard (JOGIS) is 0.10% by mass or less and the weight loss rate of the water resistance evaluation is 0.05% by mass or less, the chemical durability is high. Even if it is treated with an acidic solution or exposed to a high-temperature and high-humidity environment, the lens portion is hardly fogged.

また、レーザを基板の複数の所定領域に間隔をあけて照射すると、上記のようなマイクロレンズが二次元的に複数配列されたマイクロレンズアレイが形成される。  Further, when a plurality of predetermined regions of the substrate are irradiated with laser at intervals, a microlens array in which a plurality of microlenses as described above are two-dimensionally arranged is formed.

上記構成において、前記基質部(基材)を構成する結晶化ガラスが、結晶化前の原ガラスの密度(Da)と結晶化後の結晶化ガラスの密度(Db)との密度差(△D=(Db−Da)/Db)が1%以上である結晶化ガラスであると、レンズ効果を得るために必要な凸曲面が得られるため好ましい。△Dのより好ましい範囲は2〜6%である。  In the above configuration, the crystallized glass constituting the substrate part (base material) has a density difference (ΔD) between the density (Da) of the original glass before crystallization and the density (Db) of the crystallized glass after crystallization. = (Db−Da) / Db) is preferably 1% or more of crystallized glass because a convex curved surface necessary for obtaining a lens effect can be obtained. A more preferable range of ΔD is 2 to 6%.

また、レンズ部の非晶質部が−40〜80℃の温度範囲において60〜130×10-7/℃の熱膨張係数を有していると、温度に対する焦点距離変化率(df/dT)が小さくなり(例えば、絶対値で2nm/℃以内)、環境温度が変動しても光損失が少ないため好ましく、また基質部との熱膨張差が小さくなり、クラックが入りにくいため好ましい。Further, when the amorphous portion of the lens portion has a thermal expansion coefficient of 60 to 130 × 10−7 / ° C. in the temperature range of −40 to 80 ° C., the focal length change rate (df / dT) with respect to the temperature. Is smaller (for example, within 2 nm / ° C. in absolute value), and is preferable because the optical loss is small even when the environmental temperature fluctuates. Also, the difference in thermal expansion from the substrate portion is small, and cracks are unlikely to occur.

また、レンズ部の非晶質部が−1〜+8×10-6/℃(好ましくは0〜5×10-6/℃)の屈折率の温度依存性を有していると、温度に対する焦点距離変化率が小さくなるため好ましい。Further, when the amorphous part of the lens part has a temperature dependency of the refractive index of −1 to + 8 × 10−6 / ° C. (preferably 0 to 5 × 10−6 / ° C.), the focus on the temperature. This is preferable because the rate of change in distance is small.

基質部が二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスからなると、レーザを照射することによって形成されたレンズ部の非晶質部が−40〜80℃の温度範囲において60〜130×10-7/℃の熱膨張係数を有するようになり、また、日本光学硝子工業会規格(JOGIS)における耐酸性評価の減量率が0.10質量%以下で耐水性評価の減量率が0.05質量%以下となるため好ましい。When the substrate part is made of crystallized glass containing at least one kind of crystal selected from the group of lithium disilicate, α-quartz, nepheline and leucite as a main crystal, the lens part formed by irradiating a laser The amorphous part has a thermal expansion coefficient of 60 to 130 × 10−7 / ° C. in the temperature range of −40 to 80 ° C., and the weight loss of the acid resistance evaluation in the Japan Optical Glass Industry Association Standard (JOGIS) The rate is preferably 0.10% by mass or less, and the weight loss rate in the water resistance evaluation is 0.05% by mass or less.

また、基質部が、200〜400nmの波長の紫外線を吸収する元素を含有すると、紫外線レーザが照射された基材の所定領域に存在する上記の元素が紫外線を吸収し、そのエネルギーにより、該所定領域を構成する結晶化ガラス基質の一部又は全部の結晶が溶融し、短時間で効率よく非晶質ガラス化して非晶質部となる。紫外線を吸収する元素としては、Ti、Nb、Bi、Pb、Fe、Cr、V、Ce、Au、Ag及びCuからなる群から選択された1種以上の元素が使用できる。特に、Tiに加えて微量のFe(Fe23量で、50〜1000ppm)を含むと、より紫外線を吸収しやすくなる。また、紫外線を吸収する元素がTiであると可視光域の波長の光を透過しやすいため好ましい。Further, when the substrate portion contains an element that absorbs ultraviolet light having a wavelength of 200 to 400 nm, the above-described element existing in a predetermined region of the substrate irradiated with the ultraviolet laser absorbs ultraviolet light, and the energy is used to generate the predetermined element. A part or all of the crystallized glass substrate constituting the region is melted, and amorphous glass is efficiently converted into an amorphous part in a short time. As the element that absorbs ultraviolet rays, one or more elements selected from the group consisting of Ti, Nb, Bi, Pb, Fe, Cr, V, Ce, Au, Ag, and Cu can be used. In particular, when a small amount of Fe (Fe2 O3 content, 50 to 1000 ppm) is contained in addition to Ti, it becomes easier to absorb ultraviolet rays. In addition, it is preferable that the element that absorbs ultraviolet rays is Ti because it easily transmits light having a wavelength in the visible light range.

また、レンズ部及び基質部が、質量%で、SiO2 30〜75%、Al23 1〜35%、B23 0〜20%、P25 0〜40%、MgO+CaO+BaO+SrO+ZnO 3〜35%、SnO2 0〜4%、Li2O+Na2O+K2O 5〜33%、TiO2+ZrO2 1〜30%を含有してなると、−40〜80℃の温度範囲においてレンズ部の非晶質部が60〜130×10-7/℃の熱膨張係数を有しやすい。Moreover, a lens part and a substrate part are 30% by mass of SiO2 , Al2 O3 of 1 to 35%, B2 O3 of 0 to 20%, P2 O5 of 0 to 40%, MgO + CaO + BaO + SrO + ZnO 3 When it contains 35%, SnO2 0-4%, Li2 O + Na2 O + K2 O 5-33%, TiO2 + ZrO2 1-30%, the amorphous part of the lens part in the temperature range of −40-80 ° C. The mass part tends to have a thermal expansion coefficient of 60 to 130 × 10−7 / ° C.

また、基質部が−40〜80℃の温度範囲において50〜130×10-7/℃の熱膨張係数を有することを特徴とするガラスセラミックスからなると、−40〜80℃の温度範囲においてレンズ部の非晶質部が60〜130×10-7/℃の熱膨張係数を有しやすい。Further, when the substrate portion is made of glass ceramics having a thermal expansion coefficient of 50 to 130 × 10−7 / ° C. in the temperature range of −40 to 80 ° C., the lens portion in the temperature range of −40 to 80 ° C. Of the amorphous part tends to have a thermal expansion coefficient of 60 to 130 × 10−7 / ° C.

レーザは、波長が400nm以下、好ましくは266〜355nmの紫外線レーザ、具体的にはYAGレーザであると、レーザ出力を高くでき、照射スポット径を小さく、またスポットの真円度を高くできるため、短時間で寸法精度が高い小径のレンズ部を形成できる。また、紫外線レーザの出力が0.5〜5Wであると、結晶化ガラスからなる基材の一部が短時間で溶融して、容易に非晶質部を形成できる。特に結晶化ガラスからなる基材が、400nm以下の波長を有する光の吸収が大きいと、レーザによる基材の溶融が容易になるため好ましい。  When the laser is an ultraviolet laser having a wavelength of 400 nm or less, preferably 266 to 355 nm, specifically a YAG laser, the laser output can be increased, the irradiation spot diameter can be reduced, and the roundness of the spot can be increased. A small-diameter lens portion with high dimensional accuracy can be formed in a short time. Further, when the output of the ultraviolet laser is 0.5 to 5 W, a part of the base material made of crystallized glass melts in a short time, and an amorphous part can be easily formed. In particular, it is preferable that the base material made of crystallized glass has a large absorption of light having a wavelength of 400 nm or less because the base material can be easily melted by a laser.

また本発明のマイクロレンズ及びマイクロレンズアレイの製造方法において、、基材として二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスからなる基材を用いると、レーザを照射することによって形成されたレンズ部の非晶質部が−40〜80℃の温度範囲において60〜130×10-7/℃の熱膨張係数を有するようになり、マイクロレンズの温度に対する焦点距離変化率(df/dT)が小さく(具体的には、絶対値で2nm/℃以内)なり、環境温度が変動しても光損失が少なくなる。また基質部が二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の化学的耐久性の高い結晶を主結晶として含有する結晶化ガラスとなり、日本光学硝子工業会規格(JOGIS)における耐酸性評価の減量率が0.10質量%以下で耐水性評価の減量率が0.05質量%以下となる化学的耐久性の高いマイクロレンズ及びマイクロレンズアレイを作製することができるため好ましい。In the microlens and microlens array manufacturing method of the present invention, a crystallization containing, as a main crystal, at least one kind of crystal selected from the group of lithium disilicate, α-quartz, nepheline, and leucite as a substrate. When a substrate made of glass is used, the amorphous part of the lens part formed by irradiating with a laser has a thermal expansion coefficient of 60 to 130 × 10−7 / ° C. in the temperature range of −40 to 80 ° C. Thus, the focal length change rate (df / dT) with respect to the temperature of the microlens is small (specifically, within 2 nm / ° C. in absolute value), and light loss is reduced even when the environmental temperature varies. In addition, the substrate part becomes a crystallized glass containing at least one kind of chemically durable crystal selected from the group consisting of lithium disilicate, α-quartz, nepheline and leucite as a main crystal. It is possible to produce a microlens and a microlens array with high chemical durability in which the weight loss rate in acid resistance evaluation in (JOGIS) is 0.10% by mass or less and the weight loss rate in water resistance evaluation is 0.05% by mass or less. This is preferable because it is possible.

また、基材が、質量%で、SiO2 30〜75%、Al23 1〜35%、B23 0〜20%、P25 0〜40%、MgO+CaO+BaO+SrO+ZnO 3〜35%、SnO2 0〜4%、Li2O+Na2O+K2O 5〜33%、TiO2+ZrO2 1〜30%を含有すると、二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスになりやすいため好ましい。The base material is, inmass%, SiO 2 30~75%, Al 2 O 3 1~35%, B 2 O 3 0~20%, P 2 O 5 0~40%, MgO + CaO + BaO + SrO + ZnO 3~35%, Containing at least SnO2 0-4%, Li2 O + Na2 O + K2 O 5-33%, TiO2 + ZrO2 1-30%, at least selected from the group of lithium disilicate, alpha quartz, nepheline and leucite Since it becomes easy to become a crystallized glass containing one kind of crystal as a main crystal, it is preferable.

本発明のマイクロレンズ及びマイクロレンズアレイは、高価な製造設備が必要で連続生産が困難なHIP処理によって基材を高密度化する必要がなく、またマスキング材を作製する必要がない。したがって、本発明によれば、安価なマイクロレンズ及びマイクロレンズアレイを提供することができる。  The microlens and the microlens array of the present invention do not require high-density substrate by HIP processing, which requires expensive manufacturing equipment and is difficult to continuously produce, and does not require masking material. Therefore, according to the present invention, an inexpensive microlens and microlens array can be provided.

図1は、実施の形態に係るマイクロレンズアレイを概念的に示す断面図である。図2は、他の実施の形態に係るマイクロレンズアレイを概念的に示す断面図である。  FIG. 1 is a cross-sectional view conceptually showing a microlens array according to an embodiment. FIG. 2 is a cross-sectional view conceptually showing a microlens array according to another embodiment.

図1に示すマイクロレンズアレイ10は、レンズ部1と基質部2とを備えたマイクロレンズ3が二次元的に複数配列されて構成され、全体として平板状の外観を呈している。レンズ部1は、それぞれ、所定径の円柱状形態をなし、マイクロレンズアレイ10の一方の表面側に位置する非晶質ガラスからなる非晶質部1aと、他方の表面側に位置する結晶化ガラスからなる結晶質部1bとで構成される。非晶質部1aの表面は、基質部2の表面の位置よりも湾曲状に隆起して、凸曲面状、例えば1つの曲率半径を有する凸球面状のレンズ表面1a1を形成している。基質部2は、レンズ部1の結晶質部1bと同じ結晶化ガラスからなり、レンズ部1の周囲を包囲している。尚、図1では、基質部2とレンズ部1の結晶質部1bとを概念的に区分して示しているが、実際には、両者の間に組織構造上の違いは存在しない。  A microlens array 10 shown in FIG. 1 is configured by two-dimensionally arranging a plurality of microlenses 3 including a lens portion 1 and a substrate portion 2, and has a flat plate-like appearance as a whole. Each of the lens portions 1 has a cylindrical shape with a predetermined diameter, and an amorphous portion 1a made of amorphous glass located on one surface side of the microlens array 10 and a crystallization located on the other surface side. It is comprised with the crystalline part 1b which consists of glass. The surface of the amorphous portion 1a is raised in a curved shape from the position of the surface of the substrate portion 2 to form a convex curved surface, for example, a convex spherical lens surface 1a1 having one curvature radius. The substrate part 2 is made of the same crystallized glass as the crystalline part 1 b of the lens part 1, and surrounds the periphery of the lens part 1. In FIG. 1, the substrate portion 2 and the crystalline portion 1 b of the lens portion 1 are conceptually divided and shown, but actually there is no difference in the structure between the two.

マイクロレンズアレイ10は、例えば、結晶化ガラスからなる基材の複数の所定領域に一方の表面側からレーザを照射することによって製造することができる。すなわち、レーザが照射された基材の所定領域は、レーザの照射エネルギーによって、一方の表面に近い部分が溶融し、非晶質ガラス化して非晶質部1aとなる。この非晶質ガラス化した非晶質部1aは、その周囲を包囲する結晶化ガラス基質の基質部2に比べて密度が相対的に小さく、そのために非晶質部1aの体積は基質部2に比べて相対的に増加する。その結果、非晶質部1aは周囲の基質部2から圧迫力を受け、その表面が湾曲状に隆起して凸曲面状のレンズ表面1a1が形成される。したがって、レーザが照射された基材の所定領域は凸曲面状のレンズ表面1a1を有するレンズ部1となり、レーザが照射されなかった基材の他の領域はレンズ部1の周囲を包囲する結晶化ガラスからなる基質部2となる。レンズ部1の直径は、照射するレーザビームのスポット径と略等しくなり、レーザビームのスポット径を調整することによって、所望の直径を有するレンズ部1を精度良く形成することができる。  The microlens array 10 can be manufactured by, for example, irradiating a plurality of predetermined regions of a base material made of crystallized glass with a laser from one surface side. That is, in a predetermined region of the substrate irradiated with the laser, a portion close to one surface is melted by the irradiation energy of the laser, and becomes amorphous vitrified to become an amorphous portion 1a. The amorphous vitrified amorphous portion 1a has a relatively smaller density than the substrate portion 2 of the crystallized glass substrate that surrounds the amorphous portion 1a. Compared to the relative increase. As a result, the amorphous portion 1a receives a pressing force from the surrounding substrate portion 2, and the surface thereof is raised in a curved shape to form a convex curved lens surface 1a1. Accordingly, the predetermined region of the base material irradiated with the laser becomes the lens portion 1 having the convex curved lens surface 1a1, and the other region of the base material not irradiated with the laser crystallizes surrounding the lens portion 1. The substrate portion 2 is made of glass. The diameter of the lens unit 1 is substantially equal to the spot diameter of the laser beam to be irradiated, and the lens unit 1 having a desired diameter can be formed with high accuracy by adjusting the spot diameter of the laser beam.

図2に示すマイクロレンズアレイ20は、レンズ部11と基質部12とを備えたマイクロレンズ13が二次元的に複数配列されて構成され、全体として平板状の外観を呈している。レンズ部11は、それぞれ、所定径の円柱状形態をなし、非晶質ガラスからなる非晶質部11aで構成される。非晶質部11aの両表面は、それぞれ、基質部12の表面の位置よりも湾曲状に隆起して、凸曲面状、例えば1つの曲率半径を有する凸球面状のレンズ表面11a1を形成している。基質部12は、結晶化ガラスからなり、レンズ部11の周囲を包囲している。  A microlens array 20 shown in FIG. 2 is configured by two-dimensionally arranging a plurality of microlenses 13 including a lens portion 11 and a substrate portion 12, and has a flat plate-like appearance as a whole. Each of the lens portions 11 has a cylindrical shape with a predetermined diameter, and is composed of an amorphous portion 11a made of amorphous glass. Both surfaces of the amorphous part 11a are raised from the surface of the substrate part 12 in a curved shape to form a convex curved surface, for example, a convex spherical lens surface 11a1 having one radius of curvature. Yes. The substrate portion 12 is made of crystallized glass and surrounds the periphery of the lens portion 11.

このマイクロレンズアレイ20も、図1に示すマイクロレンズアレイ10と同様に、結晶化ガラスからなる基材の複数の所定領域に一方の表面側からレーザを照射することによって製造することができるが、レーザの照射によってレンズ部11の全肉厚部分が溶融して非晶質化され、基板の両面側にそれぞれレンズ表面11a1が形成される点が異なる。  Similarly to the microlens array 10 shown in FIG. 1, the microlens array 20 can be manufactured by irradiating a plurality of predetermined regions of a base material made of crystallized glass with a laser from one surface side. The difference is that the entire thickness portion of the lens portion 11 is melted and amorphized by laser irradiation, and lens surfaces 11a1 are formed on both sides of the substrate.

表1は実施例1〜5を、表2は比較例1、2を示す。実施例1、2、4、5のマイクロレンズアレイは図1に示す構成に対応し、実施例3のマイクロレンズアレイは図2に示す構成に対応する。  Table 1 shows Examples 1 to 5, and Table 2 shows Comparative Examples 1 and 2. The microlens arrays of Examples 1, 2, 4, and 5 correspond to the configuration shown in FIG. 1, and the microlens array of Example 3 corresponds to the configuration shown in FIG.

まず、表1に示す組成となるように調合した原料を白金坩堝中に入れ、1550℃で10時間溶融したガラスをカーボン型枠内に流し出し、室温まで徐冷して原ガラス板を作製した。その後、核形成を行うため500〜650℃で1〜3時間熱処理し、700〜950℃で1〜3時間結晶化させ、表1に示す結晶を有する結晶化ガラスからなる原板を得た。尚、実施例1〜5は、不純物としてFe23で50〜400ppm含有していた。First, raw materials prepared so as to have the composition shown in Table 1 were placed in a platinum crucible, and glass melted at 1550 ° C. for 10 hours was poured into a carbon mold and slowly cooled to room temperature to produce an original glass plate. . Then, in order to perform nucleation, it heat-processed at 500-650 degreeC for 1-3 hours, it was made to crystallize at 700-950 degreeC for 1-3 hours, and the original plate which consists of crystallized glass which has a crystal shown in Table 1 was obtained. Incidentally, Examples 1 to 5, were 50~400ppm contained in Fe2 O3 as an impurity.

次に、この原板を3×4×0.5tmmの大きさに切断加工して、両面を鏡面研磨することによって基材を作製し、0.2mm間隔で8箇所の基材表面近傍に、パルス幅10ns、周波数1kHzで波長355nmのYAGレーザを出力0.5〜2.5Wで1箇所あたり2秒間照射することによって、図1に示すように、レンズ部1(紫外線レーザが照射された領域)と基質部2(紫外線レーザが照射されなかった領域)とを備えた8個のマイクロレンズ3が二次元的に配列されたマイクロレンズアレイ10を作製した(実施例1、2、4、5)。  Next, the base plate is cut into a size of 3 × 4 × 0.5 tmm, and both sides are mirror-polished to prepare a base material. By irradiating a YAG laser with a width of 10 ns, a frequency of 1 kHz, and a wavelength of 355 nm at an output of 0.5 to 2.5 W for 2 seconds per location, as shown in FIG. 1, the lens unit 1 (region irradiated with the ultraviolet laser) And a microlens array 10 in which eight microlenses 3 having a substrate portion 2 (region not irradiated with an ultraviolet laser) were two-dimensionally arranged were prepared (Examples 1, 2, 4, and 5). .

また、原板を3×4×0.2tmmの大きさに切断加工して、両面を鏡面研磨することによって基材を作製し、0.2mm間隔で8箇所において、基材の全厚み方向にわたって、パルス幅10ns、周波数1kHzで波長355nmのYAGレーザを出力0.5〜2.5Wで1箇所あたり2秒間照射することによって、図2に示すように、レンズ部11(紫外線レーザが照射された領域)と基質部12(紫外線レーザが照射されなかった領域)とを備えた8個のマイクロレンズ13が二次元的に配列されたマイクロレンズアレイ20を作製した(実施例3)。尚、レンズ部1、11のうち、紫外線レーザが照射され基材が溶融した部分は、非晶質ガラス部1a、11aとなっていた。また実施例1、2、4、5においてレンズ部1のうち、基材が溶融しなかった部分は基材のままの結晶が析出した結晶質部1bであった。また、この結晶質部1bは、結晶を析出しているものの、析出結晶サイズが0.05μm以下であるため、1000〜1650nmの波長域における赤外線の透過率が60%以上であり、光通信用途に十分使用できるものであった。  In addition, the base plate is cut into a size of 3 × 4 × 0.2 tmm, and both sides are mirror-polished to prepare a base material, and at eight locations at intervals of 0.2 mm, over the entire thickness direction of the base material, By irradiating a YAG laser with a pulse width of 10 ns, a frequency of 1 kHz and a wavelength of 355 nm at an output of 0.5 to 2.5 W for 2 seconds per location, as shown in FIG. 2, the lens unit 11 (region irradiated with the ultraviolet laser) And a microlens array 20 in which eight microlenses 13 having a substrate portion 12 (region not irradiated with an ultraviolet laser) are two-dimensionally arranged (Example 3). Of the lens portions 1 and 11, the portions where the substrate was melted by irradiation with the ultraviolet laser were amorphous glass portions 1a and 11a. In Examples 1, 2, 4, and 5, the portion of the lens portion 1 where the base material did not melt was the crystalline portion 1b where crystals as the base material were deposited. Moreover, although this crystalline part 1b has precipitated crystals, since the size of the precipitated crystals is 0.05 μm or less, the infrared transmittance in the wavelength range of 1000 to 1650 nm is 60% or more. Can be used sufficiently.

比較例1では、原板として、1GPa、1200℃でHIP処理して密度を4%上昇させた高密度化シリカガラスを用い、波長10.6μmの炭酸ガスレーザを出力0.5Wで120秒間照射した点以外は、実施例1と同様にしてマイクロレンズアレイを作製した。  In Comparative Example 1, a densified silica glass having a density increased by 4% by HIP treatment at 1 GPa and 1200 ° C. was used as an original plate, and a carbon dioxide laser with a wavelength of 10.6 μm was irradiated at an output of 0.5 W for 120 seconds. A microlens array was produced in the same manner as in Example 1 except for the above.

比較例2では、表2の組成になるように調合した原料を白金坩堝中に入れ、1450℃で4時間溶融したガラスをカーボン型枠内に流し出し、室温まで徐冷して、原板を作製した。次に、この原板を3×4×0.5tmmの大きさに切断加工して、両面を鏡面研磨することによって基材を作製し、レンズ部に相当する大きさのCr膜を形成したシリカガラス基板によって、レンズ部に相当する基材の表面をマスクし、1000Wの水銀−キセノンランプを用いて紫外線を100秒間照射した。その後、基材を540℃で1時間、580℃で1時間熱処理し、基材の紫外線を照射した部分にLi2O・SiO2結晶を析出させて、基材の両面側に凸曲面状のレンズ表面を有する8個のマイクロレンズを備えたマイクロレンズアレイを作製した。In Comparative Example 2, the raw materials prepared so as to have the composition shown in Table 2 were placed in a platinum crucible, and glass melted at 1450 ° C. for 4 hours was poured into a carbon mold and slowly cooled to room temperature to produce an original plate. did. Next, this original plate is cut into a size of 3 × 4 × 0.5 tmm, and both sides are mirror-polished to produce a base material, and a silica glass having a size corresponding to the lens portion is formed on the silica glass The surface of the base material corresponding to the lens portion was masked by the substrate, and ultraviolet rays were irradiated for 100 seconds using a 1000 W mercury-xenon lamp. Thereafter, the substrate was heat-treated at 540 ° C. for 1 hour and at 580 ° C. for 1 hour, Li2 O · SiO2 crystals were deposited on the irradiated portion of the substrate, and convex curved surfaces were formed on both sides of the substrate. A microlens array having 8 microlenses having lens surfaces was produced.

尚、実施例1〜5及び比較例1、2のレンズ部の直径はレンズ部の曲率半径に略等しく、50〜300μmであった。また表1、表2の「レンズ形状」の欄において、「凸平」の表示は図1に示すような片面側にのみレンズ表面を有するレンズ形状であることを表し、「両凸」は図2に示すような両面側にレンズ表面を有するレンズ形状であることを表している。  In addition, the diameter of the lens part of Examples 1-5 and Comparative Examples 1 and 2 was substantially equal to the curvature radius of the lens part, and was 50-300 micrometers. Further, in the “lens shape” column of Tables 1 and 2, “convex flat” indicates that the lens has a lens surface only on one side as shown in FIG. 2 represents a lens shape having lens surfaces on both sides.

析出結晶相は、X線回折装置を用いて同定した。  The precipitated crystal phase was identified using an X-ray diffractometer.

非晶質部の熱膨張係数と密度は、実施例1〜5では原ガラス板の熱膨張係数と密度で、比較例1、2では原板の熱膨張係数と密度で評価した。また、基質部の密度は、実施例1〜5と比較例1では原板の密度で、比較例2では原板の熱処理後の密度で評価した。これらの熱膨張係数は、ディラトメータ(マックサイエンス社製TD−5000S)を用いて、−40〜80℃の温度範囲で測定した。またこれらの密度は、アルキメデス法を用いて評価した。  The thermal expansion coefficient and density of the amorphous part were evaluated by the thermal expansion coefficient and density of the original glass plate in Examples 1 to 5 and by the thermal expansion coefficient and density of the original plate in Comparative Examples 1 and 2. Further, the density of the substrate portion was evaluated by the density of the original plate in Examples 1 to 5 and Comparative Example 1, and by the density after heat treatment of the original plate in Comparative Example 2. These thermal expansion coefficients were measured in a temperature range of −40 to 80 ° C. using a dilatometer (TD-5000S manufactured by Mac Science). These densities were evaluated using the Archimedes method.

レンズ部の曲率半径は、レーザ顕微鏡を用いて測定した。  The radius of curvature of the lens part was measured using a laser microscope.

レンズ部の屈折率及び屈折率の温度依存性(dn/dT)は、−40〜80℃の温度範囲において、オプティプローブ法により屈折率を測定することによって求めた。  The refractive index of the lens part and the temperature dependence of the refractive index (dn / dT) were determined by measuring the refractive index by the optical probe method in the temperature range of −40 to 80 ° C.

温度に対する焦点距離変化率(df/dT)は以下のようにして算出した。  The focal length change rate (df / dT) with respect to temperature was calculated as follows.

焦点距離fは数式1にて表され、数式1を温度Tで微分することより数式2に示す温度に対する焦点距離変化率(df/dT)が導出される。  The focal length f is expressed by Equation 1, and the focal length change rate (df / dT) with respect to the temperature shown in Equation 2 is derived by differentiating Equation 1 with temperature T.

ここで、r1、r2はレンズ部表面の曲率半径(μm)、αは熱膨張係数(×10-7/℃)、nは波長1550nmにおける室温での屈折率、dn/dTは温度に対する屈折率変化率(×10-6/℃)である。尚、レンズ形状が凸平の場合は、r2が∞となる。Here, r1 and r2 are the radius of curvature (μm) of the lens surface, α is the thermal expansion coefficient (× 10−7 / ° C.), n is the refractive index at room temperature at a wavelength of 1550 nm, and dn / dT is the temperature. The refractive index change rate (× 10−6 / ° C.). When the lens shape is convex, r2 is ∞.

マイクロレンズの化学的耐久性は、耐酸性及び耐水性で評価し、その耐酸性及び耐水性は、日本光学硝子工業会規格(JOGIS)の光学ガラスの化学的耐久性の評価方法に基づいて、それぞれ酸性溶液中での減量率及び水中での減量率を求めて評価した。  The chemical durability of the microlens is evaluated by acid resistance and water resistance, and the acid resistance and water resistance are based on the evaluation method of chemical durability of optical glass of Japan Optical Glass Industry Association Standard (JOGIS). The weight loss rate in acidic solution and the weight loss rate in water were determined and evaluated, respectively.

実施例1〜5は、HIP処理や、マスキング材を使用することなくマイクロレンズアレイを作製でき、さらに温度に対する焦点距離変化率(df/dT)及び化学的耐久性が高かった。  In Examples 1 to 5, a microlens array could be produced without using an HIP process or a masking material, and the focal length change rate (df / dT) with respect to temperature and chemical durability were high.

一方、比較例1は、原板を作製するためにHIP処理しなければならず、また化学的耐久性は高かったものの、温度に対する焦点距離変化率(df/dT)が大きかった。また、比較例2は、マスキング材を用意しなければならず、また温度に対する焦点距離変化率(df/dT)は小さいものの、化学的耐久性が低かった。  On the other hand, Comparative Example 1 had to be subjected to HIP treatment in order to produce an original plate, and although the chemical durability was high, the focal length change rate (df / dT) with respect to temperature was large. In Comparative Example 2, a masking material had to be prepared, and although the rate of change in focal length with respect to temperature (df / dT) was small, the chemical durability was low.

以上説明したように、本発明のマイクロレンズ及びマイクロレンズアレイは、高価な製造設備が必要で連続生産が困難なHIP処理によって基材を高密度化する必要がなく、またマスキング材を作製する必要がない。したがって、安価なマイクロレンズ及びマイクロレンズアレイを提供することができる。また化学的耐久性が高く、酸性溶液で処理されても、あるいは高温高湿の環境に曝されてもレンズ部が曇りにくい。  As described above, the microlens and microlens array of the present invention do not require high-density base materials by HIP processing, which requires expensive manufacturing equipment and is difficult to produce continuously, and requires the production of a masking material. There is no. Therefore, an inexpensive microlens and microlens array can be provided. In addition, the lens portion has high chemical durability, and even when treated with an acidic solution or exposed to a high-temperature and high-humidity environment, the lens portion is hardly fogged.

このようなマイクロレンズ及びマイクロレンズアレイは、光スイッチ、合波分波器等等の光通信デバイスに好適であり、特に厳密な焦点距離の精度や高い化学的耐久性が要求されるDWDM及び並列光通信に好適である。  Such microlenses and microlens arrays are suitable for optical communication devices such as optical switches and multiplexers / demultiplexers, and are particularly suitable for DWDM and parallel, which require strict focal length accuracy and high chemical durability. Suitable for optical communication.

実施の形態に係るマイクロレンズアレイを概念的に示す断面図である。It is sectional drawing which shows notionally the microlens array which concerns on embodiment.他の実施の形態に係るマイクロレンズアレイを概念的に示す断面図である。It is sectional drawing which shows notionally the microlens array which concerns on other embodiment.

符号の説明Explanation of symbols

1、11 レンズ部
1a、11a 非晶質部
1a1、11a1 レンズ表面
2、12 基質部
3、13 マイクロレンズ
10、20 マイクロレンズアレイ
DESCRIPTION OF SYMBOLS 1, 11 Lens part 1a, 11a Amorphous part 1a1, 11a1 Lens surface 2, 12 Substrate part 3, 13 Micro lens 10, 20 Micro lens array

Claims (24)

Translated fromJapanese
凸状のレンズ表面を有するレンズ部と、該レンズ部の周囲を包囲する結晶化ガラスからなる基質部とを備え、前記レンズ部は、前記基質部を構成する結晶化ガラス基質がレーザの照射によって非晶質ガラス化した非晶質部を含み、日本光学硝子工業会規格(JOGIS)における耐酸性評価の減量率が0.10質量%以下で耐水性評価の減量率が0.05質量%以下であるマイクロレンズ。A lens unit having a convex lens surface; and a substrate unit made of crystallized glass surrounding the periphery of the lens unit, wherein the crystallized glass substrate constituting the substrate unit is irradiated by laser irradiation. It contains an amorphous part that has become amorphous vitrified, and the weight loss rate for acid resistance evaluation in the Japan Optical Glass Industry Association Standard (JOGIS) is 0.10% by mass or less and the weight loss rate for water resistance evaluation is 0.05% by mass or less. Is a micro lens.前記基質部を構成する結晶化ガラスは、結晶化前の原ガラスの密度(Da)と結晶化後の結晶化ガラスの密度(Db)との密度差(△D=(Db−Da)/Db)が1%以上である結晶化ガラスである請求項1に記載のマイクロレンズ。The crystallized glass constituting the substrate portion has a density difference (ΔD = (Db−Da) / Db) between the density (Da) of the original glass before crystallization and the density (Db) of the crystallized glass after crystallization. The microlens according to claim 1, which is a crystallized glass having a content of 1% or more.前記レンズ部の非晶質部が、−40〜80℃の温度範囲において60〜130×10-7/℃の熱膨張係数を有する請求項1に記載のマイクロレンズ。2. The microlens according to claim 1, wherein the amorphous portion of the lens portion has a thermal expansion coefficient of 60 to 130 × 10−7 / ° C. in a temperature range of −40 to 80 ° C. 3.前記基質部が二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスからなる請求項1又は2に記載のマイクロレンズ。The microlens according to claim 1 or 2, wherein the substrate portion is made of crystallized glass containing at least one kind of crystal selected from the group of lithium disilicate, α-quartz, nepheline, and leucite as a main crystal.前記基質部が、200〜400nmの波長の紫外線を吸収する元素を含有する請求項4に記載のマイクロレンズ。The microlens according to claim 4, wherein the substrate portion contains an element that absorbs ultraviolet rays having a wavelength of 200 to 400 nm.前記基質部が、Ti、Nb、Bi、Pb、Fe、Cr、V、Ce、Au、Ag及びCuからなる群から選択された1種以上の元素を含有してなる請求項4又は5に記載のマイクロレンズ。The said substrate part contains one or more elements selected from the group consisting of Ti, Nb, Bi, Pb, Fe, Cr, V, Ce, Au, Ag, and Cu. Micro lens.前記レンズ部及び前記基質部が、質量%で、SiO2 30〜75%、Al23 1〜35%、B23 0〜20%、P25 0〜40%、MgO+CaO+BaO+SrO+ZnO 3〜35%、SnO2 0〜4%、Li2O+Na2O+K2O 5〜33%、TiO2+ZrO2 1〜30%を含有してなる請求項1〜6のいずれかに記載のマイクロレンズ。It said lens unit and said substrate section, inmass%, SiO 2 30~75%, Al 2 O 3 1~35%, B 2 O 3 0~20%, P 2 O 5 0~40%, MgO + CaO + BaO + SrO + ZnO 3~ The microlens according to claim 1, comprising 35%, SnO2 0 to 4%, Li2 O + Na2 O + K2 O 5 to 33%, TiO2 + ZrO2 1 to 30%.前記レーザが紫外線レーザからなる請求項1〜7のいずれかに記載のマイクロレンズ。The microlens according to claim 1, wherein the laser is an ultraviolet laser.レーザの出力が0.5〜5Wである請求項1〜8のいずれかに記載のマイクロレンズ。The microlens according to claim 1, wherein the laser output is 0.5 to 5 W.凸状のレンズ表面を有するレンズ部と、該レンズ部の周囲を包囲する結晶化ガラスからなる基質部とを備えたマイクロレンズを製造する方法であって、二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスからなる基材の所定領域にレーザを照射し、該レーザの照射により前記基材の所定領域の結晶化ガラス基質を非晶質ガラス化して非晶質部を生成させて、該非晶質部を含む前記レンズ部を形成するマイクロレンズの製造方法。A method of manufacturing a microlens comprising a lens part having a convex lens surface and a substrate part made of crystallized glass surrounding the lens part, comprising lithium disilicate, α-quartz, nepheline and -Irradiating a predetermined region of a base material made of crystallized glass containing at least one kind of crystals selected from a group of sites as a main crystal, and crystallizing glass in the predetermined region of the base material by the laser irradiation A method of manufacturing a microlens, wherein an amorphous portion is generated by vitrifying a substrate to form the lens portion including the amorphous portion.前記基材が、結晶化前の原ガラスの密度(Da)と結晶化後の結晶化ガラスの密度(Db)との密度差(△D=(Db−Da)/Db)が1%以上である結晶化ガラスからなる請求項10に記載のマイクロレンズの製造方法。The substrate has a density difference (ΔD = (Db−Da) / Db) of 1% or more between the density (Da) of the original glass before crystallization and the density (Db) of the crystallized glass after crystallization. The manufacturing method of the micro lens of Claim 10 which consists of a certain crystallized glass.前記基質部が、200〜400nmの波長の紫外線を吸収する元素を含有する請求項10又は11に記載のマイクロレンズの製造方法。The method for producing a microlens according to claim 10 or 11, wherein the substrate portion contains an element that absorbs ultraviolet rays having a wavelength of 200 to 400 nm.前記基質部が、Ti、Nb、Bi、Pb、Fe、Cr、V、Ce、Au、Ag及びCuからなる群から選択された1種以上の元素を含有してなる請求項10〜12のいずれかに記載のマイクロレンズの製造方法。The said substrate part contains one or more elements selected from the group consisting of Ti, Nb, Bi, Pb, Fe, Cr, V, Ce, Au, Ag, and Cu. A method for producing the microlens according to claim 1.前記基材が、質量%で、SiO2 30〜75%、Al23 1〜35%、B23 0〜20%、P25 0〜40%、MgO+CaO+BaO+SrO+ZnO 3〜35%、SnO2 0〜4%、Li2O+Na2O+K2O 5〜33%、TiO2+ZrO2 1〜30%を含有する結晶化ガラスからなる請求項10〜13のいずれかに記載のマイクロレンズの製造方法。The base material is 30% by weight of SiO2 , Al2 O3 of 1 to 35%, B2 O3 of 0 to 20%, P2 O5 of 0 to 40%, MgO + CaO + BaO + SrO + ZnO of 3 to 35%, SnO.The method for producing a microlens according to claim 10, comprising crystallized glass containing20 to 4%, Li2 O + Na2 O + K2 O 5 to 33%, and TiO2 + ZrO2 1 to 30%. .前記レーザが紫外線レーザからなる請求項10〜14のいずれかに記載のマイクロレンズの製造方法。The method for manufacturing a microlens according to claim 10, wherein the laser is an ultraviolet laser.レーザの出力が0.5〜5Wである請求項10〜15のいずれかに記載のマイクロレンズの製造方法。The method for producing a microlens according to claim 10, wherein the laser output is 0.5 to 5 W.請求項1〜9のいずれかに記載のマイクロレンズが二次元的に複数個配列してなるマイクロレンズアレイ。A microlens array formed by two-dimensionally arranging a plurality of the microlenses according to claim 1.凸状のレンズ表面を有するレンズ部と、該レンズ部の周囲を包囲する結晶化ガラスからなる基質部とを備えたマイクロレンズが二次元的に複数配列されたマイクロレンズアレイを製造する方法であって、二珪酸リチウム、α石英、ネフェリン及びリュ−サイトの群から選択された少なくとも一種類の結晶を主結晶として含有する結晶化ガラスからなる基材の複数の所定領域にレーザを照射し、該レーザの照射により前記基材の各所定領域の結晶化ガラス基質を非晶質ガラス化して非晶質部を生成させて、該非晶質部を含む前記レンズ部を形成するマイクロレンズアレイの製造方法。This is a method for manufacturing a microlens array in which a plurality of microlenses having a lens portion having a convex lens surface and a substrate portion made of crystallized glass surrounding the lens portion are two-dimensionally arranged. Irradiating a plurality of predetermined regions of a base material made of crystallized glass containing at least one kind of crystal selected from the group of lithium disilicate, α-quartz, nepheline and leucite as a main crystal, A method of manufacturing a microlens array in which a crystallized glass substrate in each predetermined region of the base material is amorphous vitrified by laser irradiation to generate an amorphous part, and the lens part including the amorphous part is formed. .前記基材が、結晶化前の原ガラスの密度(Da)と結晶化後の結晶化ガラスの密度(Db)との密度差(△D=(Db−Da)/Db)が1%以上である結晶化ガラスからなる請求項18に記載のマイクロレンズアレイの製造方法。The substrate has a density difference (ΔD = (Db−Da) / Db) of 1% or more between the density (Da) of the original glass before crystallization and the density (Db) of the crystallized glass after crystallization. The method for producing a microlens array according to claim 18, comprising a crystallized glass.前記基材が、200〜400nmの波長の紫外線を吸収する元素を含有してなる請求項18又は19に記載のマイクロレンズアレイの製造方法。The method for producing a microlens array according to claim 18 or 19, wherein the substrate contains an element that absorbs ultraviolet rays having a wavelength of 200 to 400 nm.前記基材が、Ti、Nb、Bi、Pb、Fe、Cr、V、Ce、Au、Ag及びCuからなる群から選択された1種以上の元素を含有してなる請求項18〜20のいずれかに記載のマイクロレンズアレイの製造方法。The said base material contains one or more types of elements selected from the group which consists of Ti, Nb, Bi, Pb, Fe, Cr, V, Ce, Au, Ag, and Cu, A method for producing the microlens array according to claim 1.前記基材が、質量%で、SiO2 30〜75%、Al23 1〜35%、B23 0〜20%、P25 0〜40%、MgO+CaO+BaO+SrO+ZnO 3〜35%、SnO2 0〜4%、Li2O+Na2O+K2O 5〜33%、TiO2+ZrO2 1〜30%を含有してなる請求項18〜21のいずれかに記載のマイクロレンズアレイの製造方法。The base material is 30% by weight of SiO2 , Al2 O3 of 1 to 35%, B2 O3 of 0 to 20%, P2 O5 of 0 to 40%, MgO + CaO + BaO + SrO + ZnO of 3 to 35%, SnO.2 0~4%, Li 2 O + Na 2 O + K 2 O 5~33%, producing a microlens array according to any one of claims 18 to 21 comprising the TiO2 + ZrO2 1~30%.前記レーザが紫外線レーザからなる請求項18〜22のいずれかに記載のマイクロレンズアレイの製造方法。The method of manufacturing a microlens array according to any one of claims 18 to 22, wherein the laser is an ultraviolet laser.レーザの出力が0.5〜5Wである請求項18〜23のいずれかに記載のマイクロレンズアレイの製造方法。The method of manufacturing a microlens array according to any one of claims 18 to 23, wherein an output of the laser is 0.5 to 5W.
JP2004185051A2003-07-282004-06-23Microlens and microlens arrayPendingJP2005062832A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2004185051AJP2005062832A (en)2003-07-282004-06-23Microlens and microlens array

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
JP20032023372003-07-28
JP2004185051AJP2005062832A (en)2003-07-282004-06-23Microlens and microlens array

Publications (1)

Publication NumberPublication Date
JP2005062832Atrue JP2005062832A (en)2005-03-10

Family

ID=34379836

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2004185051APendingJP2005062832A (en)2003-07-282004-06-23Microlens and microlens array

Country Status (1)

CountryLink
JP (1)JP2005062832A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005263605A (en)*2004-03-222005-09-29Ulvac Japan LtdMethod for etching silicate glass and microlens array
JP2007008754A (en)*2005-06-302007-01-18National Institute Of Advanced Industrial & Technology Optical glass substrate and manufacturing method thereof
JP2009097901A (en)*2007-10-152009-05-07Fuji Electric Holdings Co Ltd Refraction lens unit for X-rays and method for manufacturing a refraction lens for X-rays
US20110180815A1 (en)*2010-01-262011-07-28Fujitsu LimitedOptical device, optical transmission device, and method of manufacturing optical device
JP2011225441A (en)*2010-04-162011-11-10Ivoclar Vivadent AgLITHIUM SILICATE GLASS CERAMIC, AND GLASS CONTAINING ZrO2 CONTENT
JP2012036074A (en)*2010-07-122012-02-23Nippon Electric Glass Co LtdGlass plate
JP2012508685A (en)*2008-11-132012-04-12コーニング インコーポレイテッド Method for producing cordierite glass body by irradiation and glass body obtained thereby
US8592330B2 (en)2007-03-062013-11-26Ivoclar Vivadent AgVeneer ceramic for dental restorations and method for veneering dental restorations
JP2013543831A (en)*2010-11-022013-12-09フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Lithium silicate glass or glass-ceramic, its production method and its use
US8940651B2 (en)2005-02-082015-01-27Ivoclar Vivadent AgLithium silicate materials
JP2015505786A (en)*2011-10-142015-02-26イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Lithium silicate glass ceramic and glass containing monovalent metal oxide
JP2015505788A (en)*2011-10-142015-02-26イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Lithium silicate glass ceramic and glass containing pentavalent metal oxide
JP2015129061A (en)*2014-01-072015-07-16日本電気硝子株式会社Production method of glass material and production apparatus of glass material
US9220576B2 (en)2003-08-072015-12-29Ivoclar Vivadent AgMachining of ceramic materials
US9232989B2 (en)2011-10-142016-01-12Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a divalent metal oxide
US9248078B2 (en)2003-08-072016-02-02Ivoclar Vivadent AgLithium silicate materials
US9326835B2 (en)2010-04-162016-05-03Ivoclar Vivadent AgProcess for the preparation of dental restorations
US9371249B2 (en)2012-05-042016-06-21Ivoclar Vivadent AgLithium disilicate-apatite glass-ceramic
US9403714B2 (en)2011-10-142016-08-02Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide
US9402699B2 (en)2011-10-142016-08-02Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a trivalent metal oxide
JP2016529201A (en)*2013-09-062016-09-23コーニング インコーポレイテッド High strength glass ceramic with lithium disilicate and .BETA.-spodumene structure
US9604873B2 (en)2009-12-232017-03-28Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Lithium disilicate glass-ceramic, method for production thereof and use thereof
US9695082B2 (en)2011-10-142017-07-04Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide
US9757217B2 (en)2012-05-112017-09-12Ivoclar Vivadent AgPre-sintered blank for dental purposes
US10064708B2 (en)2013-02-122018-09-04Ivoclar Vivadent AgBlank for dental purposes
US10131569B2 (en)2014-05-132018-11-20Ivoclar Vivadent AgMethod for the preparation of lithium silicate glasses and lithium silicate glass ceramics
US10376343B2 (en)2013-04-152019-08-13Ivoclar Vivadent AgLithium silicate glass ceramic and glass with rubidium oxide content
US10457589B2 (en)2015-01-302019-10-29Ivoclar Vivadent AgLithium silicate diopside glass ceramics
US10470854B2 (en)2012-05-112019-11-12Ivoclar Vivadent AgPre-sintered blank for dental purposes
CN110482866A (en)*2019-08-212019-11-22成都光明光电股份有限公司Crystallized glass article, devitrified glass and its manufacturing method
CN110510879A (en)*2019-08-212019-11-29成都光明光电股份有限公司 Glass-ceramic product, glass-ceramic and manufacturing method thereof
CN110510880A (en)*2014-10-082019-11-29康宁股份有限公司High-strength glass-ceramics with petalite and lithium metasilicate structure
CN112679095A (en)*2020-12-252021-04-20醴陵旗滨电子玻璃有限公司Microcrystalline glass, preparation method thereof, intelligent terminal and display
WO2022025011A1 (en)*2020-07-312022-02-03Agc株式会社Chemically strengthened crystallized glass and method for manufacturing same
WO2022161118A1 (en)2021-01-282022-08-04成都光明光电股份有限公司Microcrystalline glass, and microcrystalline glass product and manufacturing method therefor
WO2025013649A1 (en)*2023-07-102025-01-16Agc株式会社Glass plate, production method for same, and devitrification removal method for glass plate
US12391604B2 (en)2015-03-242025-08-19Corning IncorporatedHigh strength, scratch resistant and transparent glass-based materials

Cited By (90)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9220576B2 (en)2003-08-072015-12-29Ivoclar Vivadent AgMachining of ceramic materials
US10136973B2 (en)2003-08-072018-11-27Ivoclar Vivadent AgLithium silicate materials
US9918806B2 (en)2003-08-072018-03-20Ivoclar Vivadent AgMachining of ceramic materials
US9248078B2 (en)2003-08-072016-02-02Ivoclar Vivadent AgLithium silicate materials
US11109949B2 (en)2003-08-072021-09-07Ivoclar Vivadent AgLithium silicate materials
US11369460B2 (en)2003-08-072022-06-28Ivoclar Vivadent AgLithium silicate materials
US11744685B2 (en)2003-08-072023-09-05Ivoclar Vivadent AgLithium silicate materials
JP2005263605A (en)*2004-03-222005-09-29Ulvac Japan LtdMethod for etching silicate glass and microlens array
US10214443B2 (en)2005-02-082019-02-26Ivoclar Vivadent AgLithium silicate materials
US10981823B2 (en)2005-02-082021-04-20Ivoclar Vivadent AgLithium silicate materials
US12006247B2 (en)2005-02-082024-06-11Ivoclar Vivadent AgLithium silicate materials
US8940651B2 (en)2005-02-082015-01-27Ivoclar Vivadent AgLithium silicate materials
JP2007008754A (en)*2005-06-302007-01-18National Institute Of Advanced Industrial & Technology Optical glass substrate and manufacturing method thereof
US9359245B2 (en)2007-03-062016-06-07Ivoclar Vivadent AgVeneer ceramic for dental restorations and method for veneering dental restorations
US8987153B2 (en)2007-03-062015-03-24Ivoclar Vivadent AgVeneer ceramic for dental restorations and method for veneering dental restorations
US8592330B2 (en)2007-03-062013-11-26Ivoclar Vivadent AgVeneer ceramic for dental restorations and method for veneering dental restorations
JP2009097901A (en)*2007-10-152009-05-07Fuji Electric Holdings Co Ltd Refraction lens unit for X-rays and method for manufacturing a refraction lens for X-rays
JP2012508685A (en)*2008-11-132012-04-12コーニング インコーポレイテッド Method for producing cordierite glass body by irradiation and glass body obtained thereby
US9133050B2 (en)2008-11-132015-09-15Corning IncorporatedGlass bodies and methods of making
US9604873B2 (en)2009-12-232017-03-28Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Lithium disilicate glass-ceramic, method for production thereof and use thereof
US10357343B2 (en)2009-12-232019-07-23Vita Zahnfabrik H. Rauter Gmbh & Co. KgLithium disilicate glass-ceramic, method for production thereof and use thereof
US20110180815A1 (en)*2010-01-262011-07-28Fujitsu LimitedOptical device, optical transmission device, and method of manufacturing optical device
US8536078B2 (en)2010-04-162013-09-17Ivoclar Vivadent AgLithium silicate glass ceramic and glass with ZrO2 content
US9326835B2 (en)2010-04-162016-05-03Ivoclar Vivadent AgProcess for the preparation of dental restorations
US8778075B2 (en)2010-04-162014-07-15Ivoclar Vivadent AgLithium silicate glass ceramic and glass with ZrO2 content
US9249048B2 (en)2010-04-162016-02-02Ivoclar Vivadent AgLithium silicate glass ceramic and glass with ZrO2 content
JP2011225441A (en)*2010-04-162011-11-10Ivoclar Vivadent AgLITHIUM SILICATE GLASS CERAMIC, AND GLASS CONTAINING ZrO2 CONTENT
US8557150B2 (en)2010-04-162013-10-15Ivoclar Vivadent AgLithium silicate glass ceramic and glass with ZrO2 content
US9956146B2 (en)2010-04-162018-05-01Ivoclar Vivadent AgProcess for the preparation of dental restorations
JP2012036074A (en)*2010-07-122012-02-23Nippon Electric Glass Co LtdGlass plate
US10442725B2 (en)2010-11-022019-10-15Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Lithium silicate glasses or glass ceramics, method for production thereof and use thereof
US9125812B2 (en)2010-11-022015-09-08Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Lithium silicate glass ceramic, method for production thereof and use thereof
JP2013543831A (en)*2010-11-022013-12-09フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Lithium silicate glass or glass-ceramic, its production method and its use
US10227255B2 (en)2011-10-142019-03-12Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a pentavalent metal oxide
JP2015505786A (en)*2011-10-142015-02-26イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Lithium silicate glass ceramic and glass containing monovalent metal oxide
US9776912B2 (en)2011-10-142017-10-03Ivoclar Vivadent AgLithium silicate glass ceramic and glass with divalent metal oxide
US10358380B2 (en)2011-10-142019-07-23Ivoclar Vivadent AgLithium silicate glass ceramic and glass with divalent metal oxide
US9878939B2 (en)2011-10-142018-01-30Ivoclar Vivadent AgLithium silicate glass ceramic and glass with monovalent metal oxide
US10098716B2 (en)2011-10-142018-10-16Ivoclar Vivadent AgLithium silicate glass ceramic and glass with hexavalent metal oxide
US9232989B2 (en)2011-10-142016-01-12Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a divalent metal oxide
US10321980B2 (en)2011-10-142019-06-18Ivoclar Vivadent AgLithium silicate glass ceramic and glass with trivalent metal oxide
US10160687B2 (en)2011-10-142018-12-25Ivoclar Vivadent AgLithium silicate glass ceramic and glass with tetravalent metal oxide
JP2015505788A (en)*2011-10-142015-02-26イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Lithium silicate glass ceramic and glass containing pentavalent metal oxide
US9402699B2 (en)2011-10-142016-08-02Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a trivalent metal oxide
US9695082B2 (en)2011-10-142017-07-04Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide
US9403714B2 (en)2011-10-142016-08-02Ivoclar Vivadent AgLithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide
US9371249B2 (en)2012-05-042016-06-21Ivoclar Vivadent AgLithium disilicate-apatite glass-ceramic
US9764982B2 (en)2012-05-042017-09-19Ivoclar Vivadent AgLithium disilicate apatite glass-ceramic
US9757217B2 (en)2012-05-112017-09-12Ivoclar Vivadent AgPre-sintered blank for dental purposes
US10206761B2 (en)2012-05-112019-02-19Ivoclar Vivadent AgPre-sintered blank for dental purposes
US10470854B2 (en)2012-05-112019-11-12Ivoclar Vivadent AgPre-sintered blank for dental purposes
US10064708B2 (en)2013-02-122018-09-04Ivoclar Vivadent AgBlank for dental purposes
US10376343B2 (en)2013-04-152019-08-13Ivoclar Vivadent AgLithium silicate glass ceramic and glass with rubidium oxide content
JP2016529201A (en)*2013-09-062016-09-23コーニング インコーポレイテッド High strength glass ceramic with lithium disilicate and .BETA.-spodumene structure
US10196301B2 (en)2013-09-062019-02-05Corning IncorporatedHigh strength glass-ceramics having lithium disilicate and beta-spodumene structures
JP2015129061A (en)*2014-01-072015-07-16日本電気硝子株式会社Production method of glass material and production apparatus of glass material
US10131569B2 (en)2014-05-132018-11-20Ivoclar Vivadent AgMethod for the preparation of lithium silicate glasses and lithium silicate glass ceramics
US10737972B2 (en)2014-05-132020-08-11Ivoclar Vivadent AgMethod for the preparation of lithium silicate glasses and lithium silicate glass ceramics
JP2021095334A (en)*2014-10-082021-06-24コーニング インコーポレイテッドHigh strength glass-ceramics having petalite and lithium silicate structures
JP7083932B2 (en)2014-10-082022-06-13コーニング インコーポレイテッド High-strength glass-ceramic with petalite and lithium silicate structures
US11034610B2 (en)2014-10-082021-06-15Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
JP2021095333A (en)*2014-10-082021-06-24コーニング インコーポレイテッドHigh strength glass-ceramics having petalite and lithium silicate structures
JP2020090437A (en)*2014-10-082020-06-11コーニング インコーポレイテッド High strength glass ceramics with petalite and lithium silicate structures
JP2021100909A (en)*2014-10-082021-07-08コーニング インコーポレイテッドHigh strength glass-ceramics having petalite and lithium silicate structures
CN110510880A (en)*2014-10-082019-11-29康宁股份有限公司High-strength glass-ceramics with petalite and lithium metasilicate structure
US11148968B2 (en)2014-10-082021-10-19Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US11168021B2 (en)2014-10-082021-11-09Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US11174194B2 (en)2014-10-082021-11-16Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US12371367B2 (en)2014-10-082025-07-29Corning IncorporatedHigh strength glass-ceramics
US12098090B1 (en)2014-10-082024-09-24Corning IncorporatedHigh strength glass-ceramics
JP7027594B2 (en)2014-10-082022-03-01コーニング インコーポレイテッド High-strength glass-ceramic with petalite and lithium silicate structures
JP2022059028A (en)*2014-10-082022-04-12コーニング インコーポレイテッド High-strength glass-ceramic with petalite and lithium silicate structures
US11319244B2 (en)2014-10-082022-05-03Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US12049423B1 (en)2014-10-082024-07-30Corning IncorporatedHigh strength glass-ceramics
US12049424B1 (en)2014-10-082024-07-30Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US11384010B2 (en)2014-10-082022-07-12Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
US11952306B2 (en)2014-10-082024-04-09Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
JP7325561B2 (en)2014-10-082023-08-14コーニング インコーポレイテッド High-strength glass-ceramics with petalite and lithium silicate structures
US11634357B2 (en)2014-10-082023-04-25Corning IncorporatedHigh strength glass-ceramics having petalite and lithium silicate structures
JP7282120B2 (en)2014-10-082023-05-26コーニング インコーポレイテッド High-strength glass-ceramics with petalite and lithium silicate structures
US10457589B2 (en)2015-01-302019-10-29Ivoclar Vivadent AgLithium silicate diopside glass ceramics
US12391604B2 (en)2015-03-242025-08-19Corning IncorporatedHigh strength, scratch resistant and transparent glass-based materials
CN110482866A (en)*2019-08-212019-11-22成都光明光电股份有限公司Crystallized glass article, devitrified glass and its manufacturing method
CN110482866B (en)*2019-08-212022-08-02成都光明光电股份有限公司Glass ceramic product, glass ceramic and manufacturing method thereof
CN110510879A (en)*2019-08-212019-11-29成都光明光电股份有限公司 Glass-ceramic product, glass-ceramic and manufacturing method thereof
JPWO2022025011A1 (en)*2020-07-312022-02-03
WO2022025011A1 (en)*2020-07-312022-02-03Agc株式会社Chemically strengthened crystallized glass and method for manufacturing same
CN112679095A (en)*2020-12-252021-04-20醴陵旗滨电子玻璃有限公司Microcrystalline glass, preparation method thereof, intelligent terminal and display
WO2022161118A1 (en)2021-01-282022-08-04成都光明光电股份有限公司Microcrystalline glass, and microcrystalline glass product and manufacturing method therefor
WO2025013649A1 (en)*2023-07-102025-01-16Agc株式会社Glass plate, production method for same, and devitrification removal method for glass plate

Similar Documents

PublicationPublication DateTitle
JP2005062832A (en)Microlens and microlens array
US11161773B2 (en)Methods of fabricating photosensitive substrates suitable for optical coupler
US7220690B2 (en)Glass ceramic having a low thermal expansion
US7262144B2 (en)Photostructurable body and process for treating a glass and/or a glass-ceramic
JP5629912B2 (en) Structure and manufacturing method thereof
CA1254420A (en)Small anamorphic lenses and method
US20230079562A1 (en)Glass substrate, semiconductor device, and display device
KR20160140598A (en)Methods of fabricating photoactive substrates for micro-lenses and arrays
US7241559B2 (en)Lens array and method for fabricating the lens array
JP2006330010A (en) Microlens and microlens array
TW200405947A (en)Fiber array and methods for fabricating the fiber array
CN108929040A (en)Precise part
JP2019502646A (en) Photosensitive glass and glass-ceramic and composite glass material made therefrom
US7288495B2 (en)Photorefractive glass and optical elements made therefrom
JP2010150117A (en)Crystallized glass and process for producing same
JP2011116636A (en)Method of manufacturing crystallized glass and crystallized glass
US7359605B2 (en)Photonic crystals
JPH071351B2 (en) Optical device and manufacturing method thereof
TWI227335B (en)Lens array and method for fabricating the lens array
RU2781465C1 (en)Method for laser recording of integral waveguides
JP2005289790A (en)Crystallized glass and device for optical communications using the same
JP4280825B2 (en) Method for producing glass material having refractive index distribution region
JPH08188445A (en)Infrared radiation transmitting glass
JP2002303897A (en)SiO2-BASE AMORPHOUS MATERIAL HAVING SECOND ORDER NONLINEARITY AND METHOD OF MANUFACTURING FOR THE SAME
JP2004182565A (en) Multi-component glass and optical fiber for UV resistant optical fiber

[8]ページ先頭

©2009-2025 Movatter.jp