Movatterモバイル変換


[0]ホーム

URL:


JP2005052227A - Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface - Google Patents

Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface
Download PDF

Info

Publication number
JP2005052227A
JP2005052227AJP2003206481AJP2003206481AJP2005052227AJP 2005052227 AJP2005052227 AJP 2005052227AJP 2003206481 AJP2003206481 AJP 2003206481AJP 2003206481 AJP2003206481 AJP 2003206481AJP 2005052227 AJP2005052227 AJP 2005052227A
Authority
JP
Japan
Prior art keywords
skin
contact
skin surface
stratum corneum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206481A
Other languages
Japanese (ja)
Inventor
Naoyuki Minorikawa
直之 御法川
Ryuichi Minemura
隆一 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to JP2003206481ApriorityCriticalpatent/JP2005052227A/en
Publication of JP2005052227ApublicationCriticalpatent/JP2005052227A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument electrically, noninvasively, highly precisely and simultaneously measuring the water content of the stratum corneum non-affected by electrolyte components on the skin surface in contact with an electrode surface, an effective contact coefficient as an extent of a conductivity effect by the electrolyte on the skin surface components in contact with the electrode surface to be an index of the stratum corneum barrier function, and a distance from the skin surface to a high water content layer. <P>SOLUTION: This instrument is characterized in measuring the water content of the stratum corneum non-affected by the electrolyte components on the skin surface in contact with the electrode surface by making the electrode contact with the skin surface and measuring the conducting electricity characteristics by a plurality of AC signals; and calculating and measuring the effective contact coefficient as the extent of the conductivity effect by the electrolyte components on the skin surface in contact with the electrode surface; and the distance from the skin surface to the high water content area inside the skin based on differences in the conductivity electrical characteristics of the skin layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
この発明は、角質層水分量と角質層バリア機能の指標となる皮膚表面の電解質成分による有効接触係数と皮膚表面から皮膚内部の高水分域までの距離を測定する装置に関するもので、特に電気信号より測定する装置に関する。
【0002】
【従来の技術】
近年、皮膚の炎症、肌荒れが問題視されるようになり、層状に形成されている皮膚表皮組織の角質層水分量及び角質層バリア機能の研究や診断が必要とされている。
【0003】
従来の角質層水分量の測定方法には、皮膚表面に電極を接触させ、単一の交流信号による通電電気特性を測定して角質層水分量としていた。
【0004】
従来の角質層バリア機能の指標となる測定方法には、湿度センサおよび温度センサを使用し、皮膚表面から蒸散する水分損失量を測定し、角質層バリア機能の指標とする方法があった。
【0005】
従来の皮膚表面から皮膚内部の高水分域までの距離の測定方法には、皮膚表皮組織を切開し顕微鏡で観察し測定する方法と、レーザ共焦点顕微鏡等の光学計測により非侵襲的に測定する方法とがあった。
【0006】
【発明が解決しようとする課題】
しかしながら、以上の従来技術によれば、以下の問題点が指摘されていた。
【0007】
皮膚表面に電極を接触させ、単一の交流信号による通電電気特性を測定して角質層水分量とする測定方法に関しては、同一の角質層水分量の状況で、電極表面に接する皮膚表面の電解質成分の影響により、通電電気特性に差異が生じ、正確性を欠く。
【0008】
角質層バリア機能の指標としての皮膚表面の水分蒸散量を測定する方法においては、外気の影響を受け安定性が悪い。またプロ−ブを垂直に配置する必要があり被験者に負担が掛かるし、測定に時間を要するものであった。
【0009】
皮膚表面から皮膚内部の高水分域までの距離の測定方法に関しては、皮膚組織を切開して皮膚切片を顕微鏡で観察する方法においては、皮膚に対し侵襲的で同一部位を二度と測定する事ができない。また被験者の皮膚を切開するので被験者に対して負担が掛かるし、測定に時間を要するものであった。レーザ共焦点顕微鏡による測定方法では、測定プローブを皮膚に当てるだけでよいので切開は不要であるが、ある程度の測定時間が必要で各部位を順次速やかに測定することは出来なかった。また装置も大きく高価である割には、測定精度が良くなかった。
そこで、この発明は、電気的に測定することにより非浸襲的にかつ精度良く電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から高水分域層までの距離を同時に測定することを課題とする。
【0010】
【課題を解決するための手段】
以上の課題を解決するために、請求項1と請求項2と請求項3の発明は、皮膚表面に電極を接触させ、複数の通電電気特性を測定し、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から皮膚内部の高水分域層までの距離を、皮膚層の通電電気的特性の差異を基に演算して測定することを特徴とする装置である。
【0011】
【発明の実施の形態】
この発明の一実施形態の構成図を、図1に示す。信号発生器1より発生された電気信号を印加電極2により皮膚表面7に接触させ、皮膚を通過した前記信号を皮膚に接触させた検出電極3を介し検出器4にて検出しする。演算器5は、検出された信号値を皮膚層の電気的特性の差に基づき演算処理をおこない、角質層水分量と皮膚表面の電解質成分による有効接触係数と皮膚表面から皮膚内部の高水分域層までの距離を算出して表示器6に表示する装置である。
皮膚はその通電電気的特性から分類すると、電極表面に接する皮膚表面の電解質成分と容量性の性質を多く持つ角質層8と、それより内部に位置する低抵抗値特性を有する高水分域層9とに大別される。事前にこのような各皮膚層の電気的特性の違いを解析して演算処理方法を導きだして有るので、本装置は、速やかに電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から皮膚内部の高水分域層までの距離を測定することができる。
【0012】
演算器5の演算処理方法は、以下に示す原理に従う。皮膚層の通電電気的特性を解析調査すると、皮膚表面の抵抗は非常に大きく有意に絶縁状態に考えられることに対して、角質層8の内部と高水分域層9は皮膚表面に比べて有意に水分量が多く、明らかに異なった通電電気的特性を示すため、皮膚層の電導度は静電容量に依存する。また、皮膚層の電気的等価回路は電極表面と接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と角質層水分量に依存するコンデンサ素子と高水分域の低抵抗素子との構成になることも確認されている。さらに、同一の角質層水分量の部位において電導度は、皮膚表面の電解質成分の変動により、低い周波数の交流信号では電導度の変動率が大きくなるのに対して、高い周波数の交流信号では電導度の変動率は小さくなり、この特性が電極表面と接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数の特性となる。一方、同一の電極表面と接する皮膚表面の電解質成分の部位において、角質層水分量の変動による電導度の変動率は、低い周波数の交流信号での電導度の変動率と高い周波数の交流信号での電導度の変動率とは、ほぼ同一である。尚、電極間隔を離しても、いずれの周波数の電導度も変化しないため高水分域の低抵抗素子は定数と考えて無視できる。従って、電導度は有効接触係数と角質層水分量の2つの要素より成り立っているため、印加電極2に2種類の異なる周波数の交流電圧を印加することにより、請求項1と請求項2の角質層水分量と有効接触係数を求めることができる。
また、通常の皮膚は外気にさらされているため、皮膚表面は乾燥し、内部に行くに従い指数関数的に水分量が上昇し、高水分域に達すると飽和すると考えられる。さらに、電極間隔を変化させても電導度の変化が無いことより有効分極深度は皮膚表面から高水分域層までの距離となる。従って、皮膚表面の水分量の誘電率を定数とし、皮膚内部の水分量の誘電率に指数関数を適用して、皮膚表面から有効分極深度までの静電容量を数学的に求めると角質層水分量に相関するとともに、有効分極深度の逆数となることより、請求項3の皮膚表面から皮膚内部の高水分域層までの距離を求めることができる。
【0013】
信号発生器1は皮膚に印加する電気信号を発生させるものであるが、演算処理が容易になるような信号を発生させると無駄が少ない。また、演算器5は、信号発生器1の信号の波高値、波形、周波数等を制御可能とすることにより、演算に必要な測定値を速やかに得ることができ、演算処理の効率及び測定精度が向上する。 信号発生器1による電気信号は交流信号を用いたが、パルス信号や変調波信号でも良い。いくつかの特定の周波数の交流信号を用いる方法、周波数を順次変化させてスキャンする方法、複数の周波数を加算して印加する方法があるが、演算処理の処理内容によるので何れの方法でも良い。
皮膚層の通電電気的特性を測定する上で、信号の遅延時間あるいは位相差を測定すると、より詳しい皮膚層の通電電気的特性の測定が可能である。この場合に、信号発生器1の信号を演算器5で読み取るようにすると、測定精度が向上する。
【0014】
演算器5には、マイクロコンピュータを使用し演算処理等をプログラムにて行うものとしたが、アナログ回路にて構成することも可能である。しかし、測定精度や回路の簡素化等を考えるとマイクロコンピュータの方が実現が容易である。検出器4は信号検出に加え、過電流過電圧保護、ノイズ成分除去、演算器へのインターフェイスの機能を有するものである。
表示器6は、数値表示が主であるが、皮膚の状態を示すものとすれば皮膚の状態が容易に理解できるようになる。
印加電極2と検出電極3とは、皮膚表面に直接に接触させるものであっても、薄い絶縁体を解して電気的に非接触としても良い。後者の場合には、信号発生器1にて変調された交流信号を発生させると有効であることが判っている。
【0015】
本装置開発過程において皮膚表面に様々な周波数の交流信号を印加して通電電気特性を測定する実験を行った結果、低い周波数の交流信号と高い周波数の交流信号により通電電気量を測定すると、比較的簡単な演算にて精度良く電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から皮膚内部の高水分域層までの距離を測定可能であることが確認された。
高い周波数と低い周波数の交流信号は、加算して測定すると非常に短時間で測定が出来るが、短い時間間隔にて周波数を切り替えても良い。加えて中程度の周波数の交流信号による測定も行うことで測定精度が向上することも確認されている。なお測定時間を長くすると皮膚に接触させた電極の影響にて電導度が増加するので、短時間での測定が望ましい。
また、交流信号の周波数を順次変化させてスキャンする方法を採ると、非常に測定精度が向上することも確認されている。
【0016】
【実施形態の効果】
この実施形態によれば、皮膚表面に電極を接触させるだけで簡単かつ短時間で、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量を測定することができた。また電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数により皮膚バリア機能の指標となった。さらに皮膚表面から皮膚内部の高水分域層までの距離を測定することができ、電気的に測定するので皮膚組織の切開も不要であり、また低価格で実現できた。
測定に用いられる電気信号は、微弱であるために、被験者に全く負担がかからない。
【0017】
【他の実施形態】
図1の実施形態では、印加電極2と検出電極3の二つの電極にて測定を行うが、前記二つの電極以外に第三の電極を設けても良い。第三の電極にノイズの影響を減少させる回路を接続すれば、ノイズによる測定誤差を非常に少なくできる。なお、前述回路は、信号発生器1や検出器4の一部とも言える。
【0018】
図1の実施形態では、2種類の周波数の交流信号を電極に印加して測定を行うが、1種類の周波数の交流信号である場合においては、電導度ベクトルを2種類以上のベクトルに分解すると、それぞれのベクトルの大きさが電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数により異なる特性を示す。一方、前記それぞれのベクトルの大きさは、角質層水分量により、ほぼ同様の特性を示す。従って、この特性により、請求項1と請求項2と請求項3の電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から皮膚内部の高水分域層までの距離を求めることもできる。
【0019】
図1の実施形態では、表示機6にて測定値を表示しているが、本装置に通信機能を加えて、他の機器に測定値を送信するもので有っても良い。このようにした場合に、パソコン等に測定値を受け渡すことが可能となり、測定値データの集計や分析に役立つ。
【0020】
図1の実施形態では、印加電極2を皮膚表面に接触させるものであるが、特に印加する信号が高い周波数の交流信号である場合には、電気的に非接触としても良い。加えて、非常に高い交流信号にて解析する場合には、生体から離れた位置にアンテナ等を設置して電磁波信号を照射する方法としても良い。また、印加信号によっては、生体の全く別な部位例えば手足等に握り棒状等の電極あるいは導電ジェリ−付きの電極を接触させる方法にて電気信号を印加するとしても良い。
印加電極2と検出電極3は、その両者または何れかを針状の形状として、皮膚に挿入する方法を採っても良い。この場合には、皮膚層の通電電気的特性を観測しながら針状の電極を皮膚に徐々に挿入し、挿入値も演算処理に含ませる方法としても良い。
【0021】
印加電極2と検出電極3は複数個配置しても、あるいは信号の種類に応じて複数個配置しても良い。
印加電極2と検出電極3は、その両者または何れかを電極距離間隔を変化させるようにしても、あるいは複数個配置して切り替えて測定しても良い。配置は一列でも平面状でも良く、後者の場合には、皮膚のある範囲の二次元平面の測定が可能であり、測定値の分布図が速やかに求まる。なお二次元平面と測定値の距離にて三次元図にすることは容易である。このとき、生体において皮膚は完全な平面部位は無いので、フレキシブルな電極材料を使用する必要がある。
【0022】
この発明は、装置の形状に関するものでは無いが、印加電極2と検出電極3とを一つにまとめてプローブとすると、測定作業が容易となる。あるいは全てを小型化しプローブ内に収める方法を採っても良い。
印加電極2と検出電極3とを一つにまとめてプローブとする方法に於いては、信号発生器1内の出力回路部分と検出器4の初段回路とを前記電極と共にプローブ内に設置すれば、ノイズ等の影響を受けにくいものとなる。
【0023】
【発明の効果】
以上説明したように、この発明によれば、皮膚表面に電極を接触させるだけで簡単かつ短時間で、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量を測定することができた。
また、請求項2の発明によれば、電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数により皮膚バリア機能の指標となった。
さらに、請求項3の発明によれば、皮膚表面から皮膚内部の高水分域層までの距離を測定することができ、電気的に測定するので皮膚組織の切開も不要であり、また低価格で実現できた。
また、皮膚と同等に、爪表面に電極を接触させるだけで簡単かつ短時間で、電極表面に接する爪表面の電解質成分に影響されない爪水分量と電極表面に接する爪表面の電解質成分による電導度の影響度合いとしての有効接触係数と爪表面から爪内部の高水分域層までの距離を測定することができた。
また、測定の全てを電気的な信号処理にて行うので、非常に低価格に実現できる。
【図面の簡単な説明】
【図1】この発明の一実施形態の構成図である。
【符号の説明】
1 信号発生器 2 印加電極
3 検出電極 4 検出器
5 演算器 6 表示器
7 皮膚表面 8 角質層
9 高水分域層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring an effective contact coefficient by an electrolyte component on the skin surface, which is an index of the stratum corneum moisture content and the stratum corneum barrier function, and a distance from the skin surface to a high moisture area inside the skin, and particularly an electric signal. It relates to an apparatus for measuring more.
[0002]
[Prior art]
In recent years, skin inflammation and rough skin have been regarded as problems, and research and diagnosis of the stratum corneum moisture content and stratum corneum barrier function of the layered skin epidermis tissue are required.
[0003]
In the conventional method for measuring the stratum corneum moisture content, an electrode is brought into contact with the skin surface, and the current-carrying electrical characteristics by a single AC signal are measured to obtain the stratum corneum moisture content.
[0004]
As a conventional measuring method that serves as an index of the stratum corneum barrier function, there has been a method of using a humidity sensor and a temperature sensor to measure the amount of water loss that evaporates from the skin surface and use it as an index of the stratum corneum barrier function.
[0005]
The conventional method for measuring the distance from the skin surface to the high moisture area inside the skin is a method of incising the skin epidermis tissue and observing with a microscope, and non-invasively measuring by optical measurement such as a laser confocal microscope. There was a way.
[0006]
[Problems to be solved by the invention]
However, according to the above prior art, the following problems have been pointed out.
[0007]
With regard to the measurement method for measuring the electrical properties of a single AC signal by bringing an electrode into contact with the skin surface and determining the stratum corneum moisture content, the electrolyte on the skin surface in contact with the electrode surface in the same stratum corneum moisture content situation Due to the influence of the components, the current-carrying electrical characteristics differ and lack accuracy.
[0008]
In the method of measuring the moisture transpiration on the skin surface as an index of the stratum corneum barrier function, the stability is poor due to the influence of outside air. Further, it is necessary to arrange the probe vertically, which puts a burden on the subject and takes time for measurement.
[0009]
Regarding the method of measuring the distance from the skin surface to the high moisture area inside the skin, the method of incising the skin tissue and observing the skin section with a microscope is invasive to the skin and cannot measure the same site again. . Further, since the skin of the subject is incised, a burden is placed on the subject and time is required for the measurement. In the measurement method using the laser confocal microscope, incision is unnecessary because it is only necessary to apply the measurement probe to the skin. However, a certain amount of measurement time is required, and each part cannot be measured promptly. Moreover, although the apparatus is large and expensive, the measurement accuracy is not good.
In view of this, the present invention makes contact with the electrode surface that is an indicator of the stratum corneum moisture amount and the stratum corneum barrier function that is not affected by the electrolyte component of the skin surface that touches the electrode surface non-invasively and accurately by electrical measurement. It is an object to simultaneously measure the effective contact coefficient as the degree of influence of conductivity by the electrolyte component on the skin surface and the distance from the skin surface to the high moisture region layer.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventions of claim 1, claim 2 and claim 3 make the electrode in contact with the skin surface, measure a plurality of energized electrical characteristics, and provide an electrolyte component on the skin surface in contact with the electrode surface. Stratum corneum moisture amount unaffected by stratum corneum and effective contact coefficient as the degree of influence of conductivity due to the electrolyte component on the skin surface in contact with the electrode surface, which is an index of the stratum corneum barrier function, and the distance from the skin surface to the high moisture region layer in the skin Is calculated and measured on the basis of the difference in the electrical characteristics of the skin layer.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A block diagram of an embodiment of the present invention is shown in FIG. The electrical signal generated from the signal generator 1 is brought into contact with theskin surface 7 by the application electrode 2, and the signal passing through the skin is detected by the detector 4 through the detection electrode 3 brought into contact with the skin. The computing unit 5 performs arithmetic processing on the detected signal value based on the difference in the electrical characteristics of the skin layer, and the effective contact coefficient due to the stratum corneum moisture content and the electrolyte component on the skin surface, and the high moisture region in the skin from the skin surface. It is a device that calculates the distance to the layer and displays it on the display 6.
When the skin is classified based on the electrical current characteristics, the stratum corneum layer 8 having a lot of capacitive properties and the electrolyte component on the skin surface in contact with the electrode surface, and the high moisture region layer 9 having a low resistance value characteristic located inside thereof. It is roughly divided into Since the calculation processing method has been derived by analyzing the difference in electrical characteristics of each skin layer in advance, this device can quickly react with the moisture content of the stratum corneum that is not affected by the electrolyte component on the skin surface that is in contact with the electrode surface. It is possible to measure the effective contact coefficient as the degree of influence of conductivity by the electrolyte component on the skin surface in contact with the electrode surface, which is an index of the stratum corneum barrier function, and the distance from the skin surface to the high moisture region layer in the skin.
[0012]
The calculation processing method of the calculator 5 follows the principle shown below. Analyzing and investigating the electrical properties of the skin layer reveals that the resistance of the skin surface is very large and is considered to be significantly insulative. Therefore, the electrical conductivity of the skin layer depends on the capacitance. Also, the electrical equivalent circuit of the skin layer consists of a capacitor element that depends on the effective contact coefficient and the amount of stratum corneum moisture as a degree of influence of the conductivity of the skin surface in contact with the electrode surface, and a low resistance element in the high moisture region. It has also been confirmed that it becomes a configuration. In addition, the conductivity at the same stratum corneum moisture content varies with the low frequency AC signal due to fluctuations in the electrolyte component on the skin surface, whereas the conductivity varies with the high frequency AC signal. The variation rate of the degree becomes small, and this characteristic becomes a characteristic of an effective contact coefficient as an influence degree of the conductivity by the electrolyte component on the skin surface in contact with the electrode surface. On the other hand, at the site of the electrolyte component on the skin surface that is in contact with the same electrode surface, the variation rate of conductivity due to variation in the stratum corneum moisture content is the variation rate of conductivity with a low frequency AC signal and a high frequency AC signal. The rate of change in electrical conductivity is almost the same. Note that even if the electrode spacing is increased, the conductivity at any frequency does not change, so the low resistance element in the high moisture region can be ignored as a constant. Therefore, since the electrical conductivity is composed of two elements, that is, the effective contact coefficient and the stratum corneum moisture content, the stratum corneum according to claim 1 and claim 2 can be obtained by applying alternating voltages of two different frequencies to the application electrode 2. Layer moisture content and effective contact coefficient can be determined.
In addition, since the normal skin is exposed to the outside air, the skin surface is dried, and the amount of water increases exponentially as it goes inside, and is saturated when it reaches a high moisture range. Furthermore, since there is no change in conductivity even when the electrode interval is changed, the effective polarization depth is the distance from the skin surface to the high moisture region layer. Therefore, when the dielectric constant of the moisture content on the skin surface is taken as a constant and an exponential function is applied to the dielectric constant of the moisture content inside the skin, the capacitance from the skin surface to the effective polarization depth is mathematically determined, and the stratum corneum moisture The distance from the skin surface of claim 3 to the high moisture region layer in the skin can be obtained by correlating with the amount and reciprocal of the effective polarization depth.
[0013]
The signal generator 1 generates an electric signal to be applied to the skin. However, if a signal that facilitates arithmetic processing is generated, there is little waste. In addition, the computing unit 5 can quickly obtain measurement values necessary for computation by making it possible to control the peak value, waveform, frequency, etc. of the signal of the signal generator 1, and the computation processing efficiency and measurement accuracy Will improve. The electrical signal from the signal generator 1 is an AC signal, but it may be a pulse signal or a modulated wave signal. There are a method using an AC signal of several specific frequencies, a method of scanning by sequentially changing the frequency, and a method of adding and applying a plurality of frequencies, but any method may be used because it depends on the processing contents of the arithmetic processing.
When measuring the electrical current characteristics of the skin layer, measuring the delay time or phase difference of the signal enables more detailed measurement of the electrical characteristics of the skin layer. In this case, if the signal from the signal generator 1 is read by the computing unit 5, the measurement accuracy is improved.
[0014]
Although the arithmetic unit 5 uses a microcomputer to perform arithmetic processing and the like by a program, it can also be configured by an analog circuit. However, the microcomputer is easier to implement in view of measurement accuracy and circuit simplification. The detector 4 has functions of overcurrent overvoltage protection, noise component removal, and an interface to a computing unit in addition to signal detection.
The display unit 6 mainly displays numerical values, but if the display 6 indicates the skin state, the skin state can be easily understood.
The application electrode 2 and the detection electrode 3 may be brought into direct contact with the skin surface or may be electrically non-contact through a thin insulator. In the latter case, it has been found that it is effective to generate an AC signal modulated by the signal generator 1.
[0015]
In this device development process, we conducted an experiment to measure the electrical current characteristics by applying AC signals of various frequencies to the skin surface. As a measure of the influence of the conductivity due to the stratum corneum moisture content and the stratum corneum barrier function as an index of the stratum corneum barrier function, which is not affected by the electrolyte component of the skin surface that touches the electrode surface with high accuracy by simple calculation It was confirmed that the effective contact coefficient and the distance from the skin surface to the high moisture region layer inside the skin can be measured.
High-frequency and low-frequency AC signals can be measured in a very short time when added and measured, but the frequency may be switched at short time intervals. In addition, it has been confirmed that measurement accuracy is improved by performing measurement using an AC signal having a medium frequency. In addition, if the measurement time is lengthened, the conductivity increases due to the influence of the electrode brought into contact with the skin, so measurement in a short time is desirable.
It has also been confirmed that the measurement accuracy is greatly improved when a method of scanning by sequentially changing the frequency of the AC signal is adopted.
[0016]
[Effect of the embodiment]
According to this embodiment, the stratum corneum moisture content that is not affected by the electrolyte component on the skin surface in contact with the electrode surface can be measured simply and in a short time simply by bringing the electrode into contact with the skin surface. In addition, the effective contact coefficient as the degree of influence of conductivity by the electrolyte component on the skin surface in contact with the electrode surface was an index of the skin barrier function. Furthermore, the distance from the skin surface to the high moisture region layer inside the skin can be measured, and since electrical measurement is performed, incision of the skin tissue is unnecessary, and it can be realized at a low price.
Since the electrical signal used for the measurement is weak, no burden is placed on the subject.
[0017]
[Other Embodiments]
In the embodiment of FIG. 1, the measurement is performed with the application electrode 2 and the detection electrode 3, but a third electrode may be provided in addition to the two electrodes. If a circuit for reducing the influence of noise is connected to the third electrode, the measurement error due to noise can be greatly reduced. The above-described circuit can be said to be part of the signal generator 1 and the detector 4.
[0018]
In the embodiment of FIG. 1, measurement is performed by applying an AC signal of two types of frequencies to the electrode. However, in the case of an AC signal of one type of frequency, the conductivity vector is decomposed into two or more types of vectors. The magnitude of each vector shows different characteristics depending on the effective contact coefficient as the degree of influence of conductivity by the electrolyte component on the skin surface in contact with the electrode surface. On the other hand, the magnitudes of the respective vectors show substantially similar characteristics depending on the stratum corneum moisture content. Therefore, due to this characteristic, the amount of stratum corneum moisture not affected by the electrolyte component on the skin surface in contact with the electrode surface of claim 1, claim 2 and claim 3 and the skin surface in contact with the electrode surface serving as an index of the stratum corneum barrier function It is also possible to determine the effective contact coefficient as the degree of influence of conductivity by the electrolyte component and the distance from the skin surface to the high moisture region layer inside the skin.
[0019]
In the embodiment of FIG. 1, the measurement value is displayed on the display device 6, but the communication value may be added to the apparatus to transmit the measurement value to another device. In such a case, it is possible to pass measurement values to a personal computer or the like, which is useful for aggregation and analysis of measurement value data.
[0020]
In the embodiment of FIG. 1, the application electrode 2 is brought into contact with the skin surface. However, particularly when the applied signal is an AC signal having a high frequency, it may be electrically non-contact. In addition, when analyzing with a very high alternating current signal, it is good also as a method of irradiating an electromagnetic wave signal by installing an antenna etc. in the position away from the living body. Further, depending on the applied signal, the electrical signal may be applied by a method in which an electrode such as a grip bar or an electrode with a conductive gel is brought into contact with a completely different part of the living body such as a limb.
The application electrode 2 and the detection electrode 3 may be either needle-shaped or both inserted into the skin. In this case, a method may be adopted in which needle-like electrodes are gradually inserted into the skin while observing energization electrical characteristics of the skin layer, and the insertion value is included in the calculation process.
[0021]
A plurality of application electrodes 2 and detection electrodes 3 may be arranged, or a plurality may be arranged according to the type of signal.
The application electrode 2 and the detection electrode 3 may be measured by changing the electrode distance interval or switching between a plurality of the application electrodes 2 and the detection electrodes 3. The arrangement may be a single row or a planar shape. In the latter case, it is possible to measure a two-dimensional plane in a certain area of the skin, and a distribution map of measured values can be obtained quickly. Note that it is easy to make a three-dimensional diagram with the distance between the two-dimensional plane and the measured value. At this time, since the skin does not have a perfect plane part in the living body, it is necessary to use a flexible electrode material.
[0022]
The present invention is not related to the shape of the apparatus, but if the application electrode 2 and the detection electrode 3 are combined into a probe, the measurement operation becomes easy. Alternatively, a method may be adopted in which everything is reduced in size and stored in the probe.
In the method in which the application electrode 2 and the detection electrode 3 are combined into a probe, the output circuit portion in the signal generator 1 and the first stage circuit of the detector 4 are installed in the probe together with the electrodes. , It will be less susceptible to noise and the like.
[0023]
【The invention's effect】
As described above, according to the present invention, the stratum corneum moisture content that is not affected by the electrolyte component on the skin surface in contact with the electrode surface can be measured simply and in a short time simply by bringing the electrode into contact with the skin surface. .
Further, according to the invention of claim 2, the skin barrier function is an index based on the effective contact coefficient as the degree of influence of conductivity by the electrolyte component on the skin surface in contact with the electrode surface.
Furthermore, according to the invention of claim 3, the distance from the skin surface to the high moisture region layer inside the skin can be measured, and since electrical measurement is performed, incision of the skin tissue is unnecessary, and the cost is low. Realized.
In addition, as with the skin, simply touching the electrode with the nail surface is simple and quick, and the conductivity of the nail moisture is not affected by the electrolyte component on the nail surface in contact with the electrode surface, and the conductivity by the electrolyte component on the nail surface in contact with the electrode surface. The effective contact coefficient and the distance from the nail surface to the high moisture region layer inside the nail could be measured.
Moreover, since all measurements are performed by electrical signal processing, it can be realized at a very low price.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Signal generator 2 Application electrode 3 Detection electrode 4 Detector 5 Calculator 6Display device 7 Skin surface 8 A stratum corneum 9 High moisture region layer

Claims (3)

Translated fromJapanese
皮膚表面に電極を接触させ、複数の交流信号による通電電気特性を測定し、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量を皮膚層の通電電気的特性の差を基に演算して測定することを特徴とする装置。The electrode is brought into contact with the skin surface, and the electrical current characteristics measured by multiple AC signals are measured. A device characterized by performing measurement.皮膚表面に電極を接触させ、複数の交流信号による通電電気特性を測定し、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数を皮膚層の通電電気的特性の差を基に演算して測定する請求項1記載の装置。The skin is in contact with the electrode surface, which is an indicator of the stratum corneum moisture content and the stratum corneum barrier function, which is not affected by the electrolyte component of the skin surface in contact with the electrode surface. The apparatus according to claim 1, wherein an effective contact coefficient as an influence degree of conductivity by an electrolyte component on a surface is calculated and measured based on a difference in current-carrying electrical characteristics of the skin layer.皮膚表面に電極を接触させ、複数の交流信号による通電電気特性を測定し、電極表面に接する皮膚表面の電解質成分に影響されない角質層水分量と角質層バリア機能の指標となる電極表面に接する皮膚表面の電解質成分による電導度の影響度合いとしての有効接触係数と皮膚表面から皮膚内部の高水分域までの距離を皮膚層の通電電気的特性の差を基に演算して測定する請求項1記載の装置。The skin is in contact with the electrode surface, which is an indicator of the stratum corneum moisture content and the stratum corneum barrier function, which is not affected by the electrolyte component of the skin surface in contact with the electrode surface. The effective contact coefficient as the degree of influence of the conductivity by the electrolyte component on the surface and the distance from the skin surface to the high moisture area in the skin are calculated and measured based on the difference in the electrical characteristics of the skin layer. Equipment.
JP2003206481A2003-08-072003-08-07Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surfacePendingJP2005052227A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2003206481AJP2005052227A (en)2003-08-072003-08-07Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2003206481AJP2005052227A (en)2003-08-072003-08-07Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface

Publications (1)

Publication NumberPublication Date
JP2005052227Atrue JP2005052227A (en)2005-03-03

Family

ID=34363328

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003206481APendingJP2005052227A (en)2003-08-072003-08-07Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface

Country Status (1)

CountryLink
JP (1)JP2005052227A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008129446A (en)*2006-11-222008-06-05Nidec Copal CorpCellular phone and surface state evaluation system including same
KR100862287B1 (en)2006-08-182008-10-13삼성전자주식회사 Skin hydration measuring device and method
WO2009004001A1 (en)2007-07-022009-01-08Biogauge - Nordic Bioimpedance Research AsMethod and kit for sweat activity measurement
JP2009508543A (en)*2005-09-022009-03-05ザ プロクター アンド ギャンブル カンパニー How to measure moisture as a predictor of scalp health
JP2009250773A (en)*2008-04-042009-10-29Fancl CorpMethod for measuring moisture content and amount of cholesterol in epidermal stratum corneum
US7753846B2 (en)2006-08-222010-07-13Samsung Electronics Co., Ltd.Apparatus for measuring skin moisture content and it's operation method
US8388534B2 (en)2006-10-112013-03-05Samsung Electronics Co., Ltd.Apparatus for providing skin care information by measuring skin moisture content and method and medium for the same
JP2013528428A (en)*2010-05-082013-07-11ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア SEM scanner detection apparatus, system and method for early detection of ulcers
JP2015038425A (en)*2013-05-242015-02-26直之 御法川Device for measuring abnormality degree of epithelial cell
US9763596B2 (en)2015-04-242017-09-19Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
JP2018047223A (en)*2016-09-152018-03-29アルケア株式会社Arithmetic processing unit for evaluating moisture content of horny cell layer, program, electronic device including arithmetic processing unit, and method for evaluating horny cell layer
US10898129B2 (en)2017-11-162021-01-26Bruin Biometrics, LlcStrategic treatment of pressure ulcer using sub-epidermal moisture values
US10950960B2 (en)2018-10-112021-03-16Bruin Biometrics, LlcDevice with disposable element
US10959664B2 (en)2017-02-032021-03-30Bbi Medical Innovations, LlcMeasurement of susceptibility to diabetic foot ulcers
US11304652B2 (en)2017-02-032022-04-19Bbi Medical Innovations, LlcMeasurement of tissue viability
US11337651B2 (en)2017-02-032022-05-24Bruin Biometrics, LlcMeasurement of edema
US11471094B2 (en)2018-02-092022-10-18Bruin Biometrics, LlcDetection of tissue damage
JP2022191843A (en)*2021-06-162022-12-28アルケア株式会社Measuring device, electronic device, arithmetic processing method, and program
US11642075B2 (en)2021-02-032023-05-09Bruin Biometrics, LlcMethods of treating deep and early-stage pressure induced tissue damage

Cited By (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009508543A (en)*2005-09-022009-03-05ザ プロクター アンド ギャンブル カンパニー How to measure moisture as a predictor of scalp health
KR100862287B1 (en)2006-08-182008-10-13삼성전자주식회사 Skin hydration measuring device and method
US8273021B2 (en)2006-08-182012-09-25Samsung Electronics Co., Ltd.Apparatus, method and medium measuring skin moisture content
US7753846B2 (en)2006-08-222010-07-13Samsung Electronics Co., Ltd.Apparatus for measuring skin moisture content and it's operation method
US8388534B2 (en)2006-10-112013-03-05Samsung Electronics Co., Ltd.Apparatus for providing skin care information by measuring skin moisture content and method and medium for the same
JP2008129446A (en)*2006-11-222008-06-05Nidec Copal CorpCellular phone and surface state evaluation system including same
US8565850B2 (en)2007-07-022013-10-22Universitetet I OsloMethod and kit for sweat activity measurement
WO2009004001A1 (en)2007-07-022009-01-08Biogauge - Nordic Bioimpedance Research AsMethod and kit for sweat activity measurement
JP2009250773A (en)*2008-04-042009-10-29Fancl CorpMethod for measuring moisture content and amount of cholesterol in epidermal stratum corneum
JP2013528428A (en)*2010-05-082013-07-11ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア SEM scanner detection apparatus, system and method for early detection of ulcers
JP2015211852A (en)*2010-05-082015-11-26ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California SEM scanner detection apparatus, system and method for early detection of ulcers
JP2016198547A (en)*2010-05-082016-12-01ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of CaliforniaSem scanner sensing apparatus, system and methodology for early detection of ulcers
US11779265B2 (en)2010-05-082023-10-10Bruin Biometrics, LlcSEM scanner sensing apparatus, system and methodology for early detection of ulcers
US11253192B2 (en)2010-05-082022-02-22Bruain Biometrics, LLCSEM scanner sensing apparatus, system and methodology for early detection of ulcers
US9980673B2 (en)2010-05-082018-05-29The Regents Of The University Of CaliforniaSEM scanner sensing apparatus, system and methodology for early detection of ulcers
JP2018196749A (en)*2010-05-082018-12-13ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of CaliforniaSem scanner detection device, system, and method for early detection of ulcer
US10188340B2 (en)2010-05-082019-01-29Bruin Biometrics, LlcSEM scanner sensing apparatus, system and methodology for early detection of ulcers
JP2015038425A (en)*2013-05-242015-02-26直之 御法川Device for measuring abnormality degree of epithelial cell
US10182740B2 (en)2015-04-242019-01-22Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US11284810B2 (en)2015-04-242022-03-29Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US10485447B2 (en)2015-04-242019-11-26Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US9763596B2 (en)2015-04-242017-09-19Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US10178961B2 (en)2015-04-242019-01-15Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
US11534077B2 (en)2015-04-242022-12-27Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub epidermal moisture measurements
US11832929B2 (en)2015-04-242023-12-05Bruin Biometrics, LlcApparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
JP2018047223A (en)*2016-09-152018-03-29アルケア株式会社Arithmetic processing unit for evaluating moisture content of horny cell layer, program, electronic device including arithmetic processing unit, and method for evaluating horny cell layer
US11304652B2 (en)2017-02-032022-04-19Bbi Medical Innovations, LlcMeasurement of tissue viability
US11337651B2 (en)2017-02-032022-05-24Bruin Biometrics, LlcMeasurement of edema
US10959664B2 (en)2017-02-032021-03-30Bbi Medical Innovations, LlcMeasurement of susceptibility to diabetic foot ulcers
US12290377B2 (en)2017-02-032025-05-06Bbi Medical Innovations, LlcMeasurement of tissue viability
US11627910B2 (en)2017-02-032023-04-18Bbi Medical Innovations, LlcMeasurement of susceptibility to diabetic foot ulcers
US11191477B2 (en)2017-11-162021-12-07Bruin Biometrics, LlcStrategic treatment of pressure ulcer using sub-epidermal moisture values
US11426118B2 (en)2017-11-162022-08-30Bruin Biometrics, LlcStrategic treatment of pressure ulcer using sub-epidermal moisture values
US12336837B2 (en)2017-11-162025-06-24Bruin Biometrics, LlcProviding a continuity of care across multiple care settings
US10898129B2 (en)2017-11-162021-01-26Bruin Biometrics, LlcStrategic treatment of pressure ulcer using sub-epidermal moisture values
US12350064B2 (en)2018-02-092025-07-08Bruin Biometrics, LlcDetection of tissue damage
US11471094B2 (en)2018-02-092022-10-18Bruin Biometrics, LlcDetection of tissue damage
US11980475B2 (en)2018-02-092024-05-14Bruin Biometrics, LlcDetection of tissue damage
US10950960B2 (en)2018-10-112021-03-16Bruin Biometrics, LlcDevice with disposable element
US11824291B2 (en)2018-10-112023-11-21Bruin Biometrics, LlcDevice with disposable element
US12132271B2 (en)2018-10-112024-10-29Bruin Biometrics, LlcDevice with disposable element
US11600939B2 (en)2018-10-112023-03-07Bruin Biometrics, LlcDevice with disposable element
US11342696B2 (en)2018-10-112022-05-24Bruin Biometrics, LlcDevice with disposable element
US11642075B2 (en)2021-02-032023-05-09Bruin Biometrics, LlcMethods of treating deep and early-stage pressure induced tissue damage
US12097041B2 (en)2021-02-032024-09-24Bruin Biometrics, LlcMethods of treating deep and early-stage pressure induced tissue damage
JP2022191843A (en)*2021-06-162022-12-28アルケア株式会社Measuring device, electronic device, arithmetic processing method, and program

Similar Documents

PublicationPublication DateTitle
JP2005052227A (en)Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface
EP3409190A1 (en)Measuring wound healing
JP4499787B2 (en) Method and apparatus for determining parameters of biological tissue
EP1503668B1 (en)Volume specific characterization of human skin by electrical immitance
US9173586B2 (en)System and method for assessing coupling between an electrode and tissue
JP2005525163A5 (en)
RU2748434C1 (en)Determination of manifestations of focal and / or rotary arhythmogenic activity in areas of cardiac tissue
JP2006508732A5 (en)
JP2015512658A5 (en) A system for determining the relative spatial variation of subsurface resistivity to frequency within tissue.
CA2557245A1 (en)Position sensing and detection of skin impedance
JP2010172543A (en)Method of estimating percutaneous water transpiration quantity and skin barrier function evaluating device
CN103271739B (en)Method and device for skin moisture measurement
JP2022540590A (en) Estimation of contact angles between catheters and tissue, and related devices, systems, and methods
JP2019502931A5 (en)
JP6941258B2 (en) An arithmetic processing device and a program for evaluating the water content of the stratum corneum, an electronic device equipped with the arithmetic processing apparatus, and a method for evaluating the water content of the stratum corneum.
Schaefer et al.Comparison of electrodermal constant voltage and constant current recording techniques using the phase angle between alternating voltage and current
KR20190024298A (en)diagnosis apparatus and system of skin disease
JP2003310567A (en)Apparatus for measuring barrier function of skin horny layer
JP2003245264A (en)Device for measuring distance from skin surface to high moisture stage layer within skin
JP2003310568A (en)Apparatus for measuring epidermal flexibility
JP4390459B2 (en) Position detection device for lesions in biological tissue
JP7025641B2 (en) An arithmetic processing device for evaluating skin moisture content, a program, an electronic device equipped with the arithmetic processing apparatus, and a method for evaluating skin moisture content.
Bertemes-Filho et al.Stand-off electrode (SoE): a new method for improving the sensitivity distribution of a tetrapolar probe
JP3183845U (en) Skin barrier function evaluation device
WO2024228397A1 (en)Skin interior measurement device

[8]ページ先頭

©2009-2025 Movatter.jp