【0001】
【発明の属する技術分野】
本発明は、相変化に伴う抵抗変化を用いた不揮発性メモリの製造方法に関するものである。
【0002】
【従来の技術】
従来のカルコゲナイト材料を用いた半導体記憶装置としては、例えば、特許文献1に記載されているものがある。図4は、特許文献1に記載された従来のカルコゲナイト材料を用いた半導体記憶装置の断面図を示すものである。
【0003】
図4において、シリコン基板102上に堆積した層間絶縁膜104をパターニングしコンタクトホール106を形成する。そして、ポリシリコンを熱CVD法によって堆積し、CMP法により、層間絶縁膜104上に堆積したポリシリコンを除去する。さらに、ポリシリコンをエッチングし、リセスを形成し、プラグ108を形成する。そして、その上にTiNを堆積し、CMP法により層間絶縁膜104上に堆積したTiNを選択的に除去する。さらに、コンタクトホール106の上部に埋め込まれたTiNの表面をエッチングし、リセスを形成することで抵抗加熱素子膜110を形成する。そして、SiNをCVD法により堆積した後、CMP法により層間絶縁膜104上に堆積したSiNを選択的にエッチングすることにより取り除き、層間絶縁膜112を形成する。その後、この層間絶縁膜112の中央に下部の抵抗加熱素子膜110まで達する微細な穴を形成する。そして、記憶材料として用いられるカルコゲナイト(GeSbTe)をスパッタ法により堆積する。そして、CMP法により、層間絶縁膜104上に堆積したGeSbTeを選択的にエッチングし、取り除き、記憶素子膜114を形成する。その後、バリアメタル116、配線118を形成する。
【0004】
このように特許文献1では層間絶縁膜112に記憶素子膜114を埋め込むことで、ロジックプロセスとの整合性を向上させている。
【0005】
【特許文献1】
USP6236059
【0006】
【発明が解決しようとする課題】
特許文献1では、プラグの内部のリセスに、(1)低抵抗材料のTiNを埋め込み平坦化する。(2)TiNをエッチングしてリセスを形成する。(3)SiNを埋め込み平坦化を行う。(4)埋め込んだSiNを微細パターニング(リソ、エッチ)して、プラグ上に開口部を形成する。そして、(5)記憶材料の堆積、埋め込み、を実施しており、非常に複雑なプロセスとなっており、記憶素子の集積化プロセスは複雑であり、かつ、素子の微細化を困難にしている。
【0007】
【課題を解決するための手段】
本発明は、抵抗加熱素子として働くTiAlNで記録材料を囲むことにより、プロセスを単純化し、製造工程数の削減、ロジック標準プロセスとの親和性をより高めることを可能とした。
【0008】
即ち、ただ一つのラフレベルのパターニング工程を追加することにより、記憶素子の混載を可能とした。さらに、コンタクトホールの中に形成するメモリ素子の構造を単純化することにより素子の微細化・集積化を可能としている。
【0009】
具体的には、本発明の半導体記憶装置は、基板上に形成された絶縁膜と、絶縁膜に形成されたビアホールと、ビアホール内に形成されたビアプラグと、ビアプラグ上に形成された抵抗加熱素子と、抵抗加熱素子上に形成された記憶素子と、記憶素子上に形成された配線とを備え、記憶素子は、底面と側壁を抵抗加熱素子で覆われているものである。
【0010】
また、ビアプラグ、抵抗加熱素子及び記憶素子は、ビアホール内に形成されているものである。
【0011】
また、記憶素子は、相変化材料からなるものである。
【0012】
本発明の半導体記憶装置の製造方法は、メモリ部とロジック部からなる基板上に記憶素子を形成するもので、基板上に絶縁膜を形成する工程と、絶縁膜にビアホールを形成する工程と、ビアホール内に金属を埋め込みビアプラグを形成する工程と、メモリ部のビアプラグをエッチングしてリセスを形成する工程と、リセス内の底面及び側壁に抵抗加熱素子を形成する工程と、抵抗加熱素子上に記憶素子を形成する工程と、記憶素子上に配線を形成する工程とを有するものである。
【0013】
また、記憶素子は、相変化材料からなるものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0015】
(実施の形態)
図1(a)〜図1(f)を参照しながら、本発明の実施の形態について説明する。
【0016】
図1は、本発明の実施の形態における半導体記憶装置の製造工程を示す断面図である。
【0017】
(1)ここでは、標準ロジックプロセスに基づいて、ロジック部、メモリアレイ部のTi/TiN/Wプラグを形成する。
【0018】
図1(a)において、シリコン基板10上にリンドープした酸化膜からなる第1絶縁膜12を熱CVD法により0.8μm形成する。その後、下地の凹凸を反映して生じる段差を平坦化するために、反転マスクを用いてエッチバックを行った後、さらに、CMPにより平坦化を行い、第1絶縁膜12の膜厚を0.5μmに形成する。
【0019】
次に、リソ・ドライエッチにより第1絶縁膜12に下地シリコン基板10に接続するように直径0.1μm〜0.13μmのコンタクトホール18をメモリ部14及びロジック部16に形成する。そして、コンタクトホール18内にTiNからなる密着層20を形成し、その後、WF6とSiH4を用いた熱CVD法でコンタクトホール18内をタングステンで埋め込み、CMPでタングステンプラグ22を形成する。
【0020】
(2)ここでは、ロジック部のタングステンプラグを保護するために、保護膜としてSiN膜などを堆積し、ラフレベルのパターニングを行い、メモリアレイ部分のタングステンプラグのみ露出させる。そして、メモリアレイ部分のタングステンプラグをエッチングすることによりリセスを形成する。
【0021】
図1(b)において、ロジック部16のタングステンプラグ22上にSiNからなる保護膜24を形成する。このとき、このSiNは、基板温度400℃の下、プラズマCVD法により、SiH4とNH3を用いて20nm形成される。ここで、成膜温度は、下層にあるタングステンプラグ22、トランジスタ(図示無し)の特性などを劣化させないために低温であることが望ましい。そして、このSiNは、レジストマスクを用いて、CHF3−Ar−O2系ガスを用いた反応性プラズマエッチングによりメモリ部のみ除去される。このとき、タングステンプラグの突き出しを最小限にとどめるために、プロセス圧力50mTorr、RFパワー200Wとして行った。次に、メモリ部のタングステンプラグ22にリセス26を設けるために、平行平板反応性ドライエッチング装置を用いてタングステンプラグ22のエッチングを行った。このときのプロセス条件は、反応ガス(SF6)、ガス流量(100sccm)、RFパワー(500W)、基板温度(10℃)、プロセス圧力(50mTorr)である。この条件では、酸化膜との選択比は約10である。ここで、リセス26の深さは、タングステンプラグ22のプラグ直径の1/2より浅い500nm〜650nmである。リセス26がこれよりも深い場合は、記憶素子として機能するGeSbTe膜部にボイドが発生し、良好な記憶素子の形成が出来なくなる。
【0022】
(3)ここでは、抵抗加熱素子として働くTiAINと、記憶材料を堆積させる。
【0023】
図1(c)において、TiAlNからなる抵抗加熱素子膜28を反応性スパッタリング法により形成する。プロセス条件として、堆積温度(100℃)、圧力(0.2Pa)、ガス流量(Ar=21sccm、N2=42sccm)である。ここで、TiAlN膜厚と組成は、目的とする抵抗値を得るために調整する。TiAlNのAl組成と抵抗値(シート抵抗)の関係は図2に示すとおりである。図2は、横軸は、Al/(Ti+Al)の100分率を、縦軸は抵抗値を示す。プラグの直径0.1μmに対して適当なTiAlNの膜厚は10nm〜20nmである。次に、記憶素子膜30をスパッタリング法にて形成を行う。プロセス条件として、堆積温度(100℃)、圧力(0.1Pa)、ガス流量(Ar=10sccm)である。
【0024】
(4)ここでは、CMPにて平坦化研磨を行う。
【0025】
図1(d)において、CMPにより研磨を行いリセス26内に抵抗加熱素子膜28と記憶素子膜30を形成する。まず、記憶素子材料のカルコゲナイト(GeSbTe)を、酸性シリカ系スラリにより研磨しリセス中以外のGeSbTeを除去する。酸性シリカを用いることにより、下層膜であるTiAlN酸化が生じ、生成した非常に硬いAl酸化物がエッチストップ層として働く。次に、このAl酸化物を薄HF溶液で取り除いたあと、中性シリカ系スラリにより抵抗素子材料であるTiAlNとロジック部のSiNからなる保護膜24の研磨を行う。プロセス条件として、圧力(3PSI)、ヘッド回転速度(85rpm)、テーブル回転速度(90rpm)、スラリ流量(200ml/min)で行った。CMP工程では、一般に段差の高い部分の研磨速度が大きく、したがって、SiNからなる保護膜24の上に一様に堆積されたGeSbTeとTiAlNが先に研磨され取り除かれるため、保護膜24の膜厚は、20nmと薄膜化することができる。
【0026】
(5)ここでは、SiNもしくはSiCのエッチストップ層、Low−k材料を堆積し、Cu配線を作る。
【0027】
図1(e)において、Cu配線38の第1バリア膜32としてSiCまたはSiNをプラズマCVD法により50nm堆積する。次に、第2絶縁膜34のSiO2または、SiOC膜をプラズマCVD法により200nm堆積する。
【0028】
次に、図1(f)において、Cu配線38のためのトレンチを形成するために、まず、第2絶縁膜34をエッチングし、次に第1バリア膜32をエッチングする。ここに示したように絶縁膜のエッチングを2工程に分割することにより、ドライエッチ工程における記憶素子材料のGeSbTeに対するエッチングダメージを最小限にとどめることができる。トレンチ形成後、第2バリア膜36であるTaNをTaをターゲットにした反応性スパッタ法により10nm堆積する。更にスパッタ法によりCuシード層を堆積したのち、電界メッキ法によりCuをウエハ全面に堆積する。そして、トレンチ内部のCuのみを残し、余分なCuをCMPにより取り除きCu配線38を形成する。
【0029】
なお、本発明の半導体記憶装置は、0.13μm以下の世代における標準プロセスをもって形成される。
【0030】
また、図3に示すように、図1(f)の構造におけるCu配線38及び第2バリア膜36からなる配線の幅をコンタクトホールの幅よりも小さくすることにより、抵抗加熱素子膜28を介した電流成分を完全に遮断することができる。
【0031】
これにより、高抵抗のTiAlNからなる抵抗加熱素子膜28への電流パスよりも記憶素子膜30への電流パスが増える。
【0032】
なお、図1では、抵抗加熱素子膜28及び記憶素子膜30をコンタクトホール18内に形成したが、Cu配線38が形成されている第2絶縁膜34に形成することもできる。
【0033】
なお、本実施の形態において抵抗加熱素子膜28としてTiAlNを用いたが、TiSiN、TaAlN、TaSiNのような伝導性の金属窒化物と絶縁物の窒化物からなる材料であれば抵抗加熱素子膜として用いることができる。
【0034】
【発明の効果】
本発明により、同じシリコン基板上に、最小限のプロセスステップの追加でメモリ部と標準CMOSのロジック部を同時に形成することが可能となる。さらに、コンタクトホール中に形成するメモリ素子の構造を単純化することにより、微細化を容易にすることができる。
【図面の簡単な説明】
【図1】本発明の実施形態における工程断面図
【図2】TiAlN組成とその抵抗の関係図
【図3】本発明のメモリ素子の断面図
【図4】従来のメモリ素子の断面図
【符号の説明】
10 シリコン基板
12 第1絶縁膜
14 メモリ部
16 ロジック部
18 コンタクトホール
20 密着層
22 タングステンプラグ
24 保護膜
26 リセス
28 抵抗加熱素子膜
30 記憶素子膜
32 第1バリア膜
34 第2絶縁膜
36 第2バリア膜
38 Cu配線
102 シリコン基板
104 層間絶縁膜
106 コンタクトホール
108 プラグ
110 抵抗加熱素子膜
112 層間絶縁膜
114 記憶素子膜
116 バリアメタル
118 配線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a nonvolatile memory using a resistance change accompanying a phase change.
[0002]
[Prior art]
As a semiconductor memory device using a conventional chalcogenite material, for example, there is one described in Patent Document 1. FIG. 4 shows a cross-sectional view of a semiconductor memory device using a conventional chalcogenite material described in Patent Document 1. In FIG.
[0003]
In FIG. 4, the interlayerinsulating film 104 deposited on thesilicon substrate 102 is patterned to form contact holes 106. Then, polysilicon is deposited by a thermal CVD method, and the polysilicon deposited on theinterlayer insulating film 104 is removed by a CMP method. Further, the polysilicon is etched, a recess is formed, and aplug 108 is formed. Then, TiN is deposited thereon, and TiN deposited on theinterlayer insulating film 104 is selectively removed by CMP. Further, the resistanceheating element film 110 is formed by etching the surface of TiN embedded in the upper part of the contact hole 106 to form a recess. Then, after depositing SiN by the CVD method, SiN deposited on theinterlayer insulating film 104 by the CMP method is removed by selective etching to form aninterlayer insulating film 112. Thereafter, a fine hole reaching the lower resistanceheating element film 110 is formed in the center of theinterlayer insulating film 112. Then, chalcogenite (GeSbTe) used as a memory material is deposited by sputtering. Then, GeSbTe deposited on theinterlayer insulating film 104 is selectively etched and removed by CMP to form thememory element film 114. Thereafter,barrier metal 116 andwiring 118 are formed.
[0004]
As described above, in Patent Document 1, thememory element film 114 is embedded in theinterlayer insulating film 112 to improve the consistency with the logic process.
[0005]
[Patent Document 1]
USP 6236059
[0006]
[Problems to be solved by the invention]
In Patent Document 1, (1) TiN, which is a low-resistance material, is embedded and planarized in a recess inside a plug. (2) Etching TiN to form a recess. (3) SiN is buried and flattened. (4) The embedded SiN is finely patterned (litho, etched) to form an opening on the plug. (5) The storage material is deposited and embedded, which is a very complicated process. The integration process of the storage element is complicated and it is difficult to miniaturize the element. .
[0007]
[Means for Solving the Problems]
In the present invention, the recording material is surrounded by TiAlN that works as a resistance heating element, thereby simplifying the process, reducing the number of manufacturing steps, and increasing the compatibility with the logic standard process.
[0008]
That is, by adding only one rough level patterning process, it is possible to mount memory elements. Furthermore, by minimizing the structure of the memory element formed in the contact hole, the element can be miniaturized and integrated.
[0009]
Specifically, the semiconductor memory device of the present invention includes an insulating film formed on a substrate, a via hole formed in the insulating film, a via plug formed in the via hole, and a resistance heating element formed on the via plug. And a memory element formed on the resistance heating element and a wiring formed on the memory element. The memory element has a bottom surface and a side wall covered with the resistance heating element.
[0010]
Also, the via plug, the resistance heating element, and the memory element are formed in the via hole.
[0011]
The memory element is made of a phase change material.
[0012]
A method for manufacturing a semiconductor memory device according to the present invention includes forming a memory element on a substrate including a memory portion and a logic portion, a step of forming an insulating film on the substrate, a step of forming a via hole in the insulating film, A step of forming a via plug by embedding metal in the via hole, a step of forming a recess by etching the via plug of the memory portion, a step of forming a resistance heating element on the bottom and side walls in the recess, and storing on the resistance heating element The method includes a step of forming an element and a step of forming a wiring over the memory element.
[0013]
The memory element is made of a phase change material.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(Embodiment)
An embodiment of the present invention will be described with reference to FIGS. 1 (a) to 1 (f).
[0016]
FIG. 1 is a cross-sectional view showing a manufacturing process of a semiconductor memory device in an embodiment of the present invention.
[0017]
(1) Here, Ti / TiN / W plugs of the logic part and the memory array part are formed based on the standard logic process.
[0018]
In FIG. 1A, a firstinsulating film 12 made of a phosphorus-doped oxide film is formed on asilicon substrate 10 by 0.8 μm by a thermal CVD method. Thereafter, in order to flatten the level difference that reflects the unevenness of the base, etch back is performed using an inversion mask, and then flattening is performed by CMP, so that the film thickness of the firstinsulating film 12 becomes 0. Formed to 5 μm.
[0019]
Next, contact holes 18 having a diameter of 0.1 μm to 0.13 μm are formed in thememory unit 14 and the logic unit 16 so as to be connected to thebase silicon substrate 10 in the first insulatingfilm 12 by litho-dry etching. Then, anadhesion layer 20 made of TiN is formed in thecontact hole 18, and then thecontact hole 18 is filled with tungsten by a thermal CVD method using WF6 and SiH4 and atungsten plug 22 is formed by CMP.
[0020]
(2) Here, in order to protect the tungsten plug in the logic portion, a SiN film or the like is deposited as a protective film, and rough level patterning is performed to expose only the tungsten plug in the memory array portion. Then, the recess is formed by etching the tungsten plug in the memory array portion.
[0021]
In FIG. 1B, a protective film 24 made of SiN is formed on thetungsten plug 22 of the logic section 16. At this time, this SiN is formed to 20 nm using SiH4 and NH3 by a plasma CVD method at a substrate temperature of 400 ° C. Here, the film formation temperature is preferably low in order not to deteriorate the characteristics of thetungsten plug 22 and the transistor (not shown) in the lower layer. Then, this SiN is removed only by the reactive plasma etching using a CHF3 —Ar—O2 gas using a resist mask. At this time, in order to minimize the protrusion of the tungsten plug, the process pressure was 50 mTorr and the RF power was 200 W. Next, in order to provide the recess 26 in thetungsten plug 22 of the memory part, thetungsten plug 22 was etched using a parallel plate reactive dry etching apparatus. The process conditions at this time are a reaction gas (SF6 ), a gas flow rate (100 sccm), an RF power (500 W), a substrate temperature (10 ° C.), and a process pressure (50 mTorr). Under this condition, the selectivity with respect to the oxide film is about 10. Here, the depth of the recess 26 is 500 nm to 650 nm which is shallower than ½ of the plug diameter of thetungsten plug 22. When the recess 26 is deeper than this, a void is generated in the GeSbTe film portion functioning as a memory element, and a favorable memory element cannot be formed.
[0022]
(3) Here, TiAIN acting as a resistance heating element and a memory material are deposited.
[0023]
In FIG. 1C, a resistanceheating element film 28 made of TiAlN is formed by a reactive sputtering method. Process conditions are deposition temperature (100 ° C.), pressure (0.2 Pa), gas flow rate (Ar = 21 sccm, N2 = 42 sccm). Here, the TiAlN film thickness and composition are adjusted in order to obtain a target resistance value. The relationship between the Al composition of TiAlN and the resistance value (sheet resistance) is as shown in FIG. In FIG. 2, the horizontal axis represents the Al / (Ti + Al) 100-percentage, and the vertical axis represents the resistance value. A suitable film thickness of TiAlN is 10 nm to 20 nm for a plug diameter of 0.1 μm. Next, thememory element film 30 is formed by a sputtering method. Process conditions are deposition temperature (100 ° C.), pressure (0.1 Pa), and gas flow rate (Ar = 10 sccm).
[0024]
(4) Here, planarization polishing is performed by CMP.
[0025]
In FIG. 1D, polishing by CMP is performed to form a resistanceheating element film 28 and amemory element film 30 in the recess 26. First, chalcogenite (GeSbTe) as a memory element material is polished with an acidic silica-based slurry to remove GeSbTe other than that in the recess. By using acidic silica, TiAlN oxidation, which is a lower layer film, is generated, and the generated very hard Al oxide serves as an etch stop layer. Next, after removing the Al oxide with a thin HF solution, the protective film 24 made of TiAlN which is a resistance element material and SiN of the logic portion is polished with a neutral silica-based slurry. The process conditions were pressure (3PSI), head rotation speed (85 rpm), table rotation speed (90 rpm), and slurry flow rate (200 ml / min). In the CMP process, the polishing rate is generally high in a portion with a high step, and therefore GeSbTe and TiAlN uniformly deposited on the protective film 24 made of SiN are polished and removed first, so that the thickness of the protective film 24 is increased. Can be as thin as 20 nm.
[0026]
(5) Here, an SiN or SiC etch stop layer and a low-k material are deposited to form a Cu wiring.
[0027]
In FIG. 1E, SiC or SiN is deposited as afirst barrier film 32 of theCu wiring 38 by 50 nm by plasma CVD. Next, a 200 nm thick SiO2 or SiOC film of the second insulatingfilm 34 is deposited by plasma CVD.
[0028]
Next, in FIG. 1F, in order to form a trench for theCu wiring 38, the second insulatingfilm 34 is first etched, and then thefirst barrier film 32 is etched. As shown here, by dividing the etching of the insulating film into two steps, the etching damage to the GeSbTe of the memory element material in the dry etching step can be minimized. After the trench formation, TaN as thesecond barrier film 36 is deposited by 10 nm by reactive sputtering using Ta as a target. Further, after depositing a Cu seed layer by sputtering, Cu is deposited on the entire surface of the wafer by electroplating. Then, only Cu inside the trench is left, and excess Cu is removed by CMP to form aCu wiring 38.
[0029]
The semiconductor memory device of the present invention is formed by a standard process in a generation of 0.13 μm or less.
[0030]
Further, as shown in FIG. 3, the width of the wiring composed of theCu wiring 38 and thesecond barrier film 36 in the structure of FIG. 1 (f) is made smaller than the width of the contact hole, so that the resistanceheating element film 28 is interposed. It is possible to completely block the current component.
[0031]
As a result, the current path to thememory element film 30 increases more than the current path to the resistanceheating element film 28 made of high resistance TiAlN.
[0032]
In FIG. 1, the resistanceheating element film 28 and thememory element film 30 are formed in thecontact hole 18, but may be formed in the second insulatingfilm 34 in which theCu wiring 38 is formed.
[0033]
In this embodiment, TiAlN is used as the resistanceheating element film 28. However, any material made of a conductive metal nitride and an insulating nitride such as TiSiN, TaAlN, and TaSiN can be used as the resistance heating element film. Can be used.
[0034]
【The invention's effect】
According to the present invention, a memory portion and a standard CMOS logic portion can be simultaneously formed on the same silicon substrate with a minimum number of process steps. Furthermore, miniaturization can be facilitated by simplifying the structure of the memory element formed in the contact hole.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a process according to an embodiment of the present invention. FIG. 2 is a relational diagram between a TiAlN composition and its resistance. FIG. 3 is a cross-sectional view of a memory element of the present invention. Explanation of]
DESCRIPTION OFSYMBOLS 10Silicon substrate 121st insulating film 14 Memory part 16Logic part 18Contact hole 20Adhesion layer 22 Tungsten plug 24 Protective film 26Recess 28 Resistanceheating element film 30Memory element film 321st barrier film 34 2nd insulatingfilm 362nd Barrier film 38 Cu wiring 102Silicon substrate 104 Interlayer insulating film 106Contact hole 108Plug 110 Resistanceheating element film 112Interlayer insulating film 114Memory element film 116Barrier metal 118 Wiring