本発明は、耐摩耗性の優れた被覆工具およびその製造方法に関するものである。その中でも、特に、鋼、鋳鉄などの鉄系材料の切削加工に用いられる被覆工具およびその製造方法に関する。 The present invention relates to a coated tool having excellent wear resistance and a method for producing the same. Among these, it is related with the coated tool used for cutting of iron-type materials, such as steel and cast iron, and its manufacturing method especially.
工具の耐摩耗性向上のため基体の表面に気相法で被覆層を形成することがよく行われている。代表的な気相法としては、CVD法やPVD法がある。PVD法として、具体的には、ホロカソード式イオンプレーティング法、スパッタリング法、アーク式イオンプレーティング法を挙げることができるが、このうちアーク式イオンプレーティング法は、密着性の優れた良質な被覆層を得られる反面、固体カソードからの直接放電のため被覆層内に直径1〜5μmの略球状のマクロ粒子が存在する。マクロ粒子が存在すると工具寿命低下を生じる。この点を改良した従来技術としては、被覆層内のマクロ粒子を機械的な方法により除去し、0.2〜2μmの深さのクレーターを有する硬質皮膜が表面に形成された耐摩耗性・耐溶着性硬質皮膜被覆工具がある(例えば、特許文献1参照。)。 In order to improve the wear resistance of a tool, a coating layer is often formed on the surface of a substrate by a vapor phase method. As typical gas phase methods, there are a CVD method and a PVD method. Specific examples of the PVD method include a holocathode type ion plating method, a sputtering method, and an arc type ion plating method. While a layer can be obtained, substantially spherical macro particles having a diameter of 1 to 5 μm are present in the coating layer due to direct discharge from the solid cathode. The presence of macro particles results in reduced tool life. As a conventional technique improved in this respect, the macro particles in the coating layer are removed by a mechanical method, and a hard film having a crater with a depth of 0.2 to 2 μm is formed on the surface. There is a weldable hard coating tool (for example, see Patent Document 1).
PVD法の場合、被覆工具の平均層厚は2〜5μmが好ましく、直径1〜5μmの略球状のマクロ粒子除去処理を行うと、局部的に基体が露出する。また、マクロ粒子除去処理を行わなくても切削中の被削材との摩擦によりマクロ粒子が脱落すると、局部的に被覆層が薄くなる。切削中において、被覆層の薄い部分は早期に摩耗し、局所的な基体の露出部を生じさせる。特に、マクロ粒子が超硬合金基体に接していた場合は、マクロ粒子除去処理あるいは脱落と同時に局所的な基体の露出部を生じる。このような局所的な基体の露出部は、被覆層と基体の硬さの差および被削材との化学的親和性の差から生じる極端な耐摩耗性の差から、優先的に摩耗するため、部分的な異常損傷を引き起こし工具寿命を低下させる。 In the case of the PVD method, the average layer thickness of the coated tool is preferably 2 to 5 μm, and when a substantially spherical macro particle removing process having a diameter of 1 to 5 μm is performed, the substrate is locally exposed. Even if the macro particle removal process is not performed, if the macro particles fall off due to friction with the work material being cut, the coating layer is locally thinned. During cutting, the thin portion of the coating layer wears prematurely, resulting in localized substrate exposure. In particular, when the macro particles are in contact with the cemented carbide substrate, a locally exposed portion of the substrate is generated simultaneously with the macro particle removing process or dropping. Such local exposed parts of the substrate wear preferentially due to extreme wear resistance differences resulting from the difference in hardness between the coating layer and the substrate and the chemical affinity between the work material. , Causing partial abnormal damage and reducing tool life.
一方、アーク式以外のイオンプレーティング法やスパッタリング法では、マクロ粒子を含まない平滑な被覆層が得られるため、局所的な基体の露出部を生じさせないが、被覆層の形成効率が非常に低いことと、被覆層の密着性がアーク式イオンプレーティング方と比較して低いことが実用上問題となる。 On the other hand, ion plating methods and sputtering methods other than the arc method can provide a smooth coating layer that does not contain macro particles, so that local exposed portions of the substrate are not generated, but the formation efficiency of the coating layer is very low. In addition, it is practically problematic that the adhesion of the coating layer is lower than that of the arc ion plating method.
本発明は、この様な事情に着目してなされたもので、その目的はマクロ粒子の除去および/または脱落に起因する部分的な異常損傷をなくすことで、工具寿命を向上させるとともに効率よく製造できる被覆工具およびその製造方法を提供しようとするものである。 The present invention has been made paying attention to such circumstances, and its purpose is to improve the tool life and efficiently manufacture by eliminating partial abnormal damage caused by removal and / or dropout of macro particles. It is an object of the present invention to provide a coated tool and a method for manufacturing the same.
本発明者は、機械的処理または冷却によって第1層に含まれるマクロ粒子を除去した後、第2層を被覆することにより、工具寿命を向上させることに成功した。具体的には、第1層を被覆した後、直径1〜5μmの略球状のマクロ粒子を除去し再度被覆することで、マクロ粒子の脱落による局部的な基体露出と層厚減少をなくし工具寿命の向上を実現した。 The inventor succeeded in improving the tool life by coating the second layer after removing the macro particles contained in the first layer by mechanical treatment or cooling. Specifically, after coating the first layer, the substantially spherical macroparticles having a diameter of 1 to 5 μm are removed and coated again, thereby eliminating local substrate exposure and layer thickness reduction due to dropping of the macroparticles, thereby reducing the tool life. Realized the improvement.
すなわち、本発明の被覆工具は、基体に被覆層を被覆してなる被覆工具であって、該被覆層が2層以上の多層からなり、該基体に接する被覆層の第1層が、該第1層被覆工程中に発生するマクロ粒子を除去された層であることを特徴とする。That is, the coated tool of the present invention is a coated tool formed by coating a substrate with a coating layer, the coating layer is composed of two or more layers, and the first layer of the coating layer in contact with the substrate is the first layer. It is a layer from which macro particles generated during the one-layer coating process are removed.
本発明の被覆工具の基体は、工具として一般的に用いられる硬質材料であればよく、具体的には、合金工具鋼、高速度鋼(ハイス)、超硬合金、サーメット、セラミックス、ダイヤモンド焼結体、cBN焼結体などを挙げることができる。その中でも超硬合金は、靱性と硬さに優れるため被覆工具の基体として特に好ましい。The substrate of the coated tool of the present invention may be a hard material generally used as a tool. Specifically, alloy tool steel, high-speed steel (high speed), cemented carbide, cermet, ceramics, diamond sintered Body, cBN sintered body, and the like. Among these, cemented carbide is particularly preferable as a base for a coated tool because of its excellent toughness and hardness.
本発明の被覆工具における被覆層の第1層は、基体上に被覆することで耐摩耗性向上が得られる硬質材料であればよい。そのような硬質材料としては、周期律表4a,5a,6a族元素、Al,Siの炭化物、窒化物、硼化物、酸化物およびこれらの固溶体の中の少なくとも1種が好ましい。具体的には、TiN、TiC、Ti(C,N)、(Ti,Al)N、(Ti,Al,Cr)N、(Ti,Si)N、(Cr,Si)N、TiB2、Ti(B,N)、Ti(B,N,O)などが挙げられる。被覆層の第2層以降の材料も、特に限定されるものではないが、第1層と同様に、耐摩耗性向上に効果がある硬質材料が好ましい。また、被覆層の第1層の材料と第2層以降の材料は、同一であっても異なっていてもよい。The 1st layer of the coating layer in the coating tool of this invention should just be a hard material with which abrasion resistance improvement is obtained by coat | covering on a base | substrate. As such a hard material, at least one of periodic table 4a, 5a, 6a group elements, Al, Si carbides, nitrides, borides, oxides, and solid solutions thereof is preferable. Specifically, TiN, TiC, Ti (C, N), (Ti, Al) N, (Ti, Al, Cr) N, (Ti, Si) N, (Cr, Si) N, TiB2 , Ti (B, N), Ti (B, N, O), etc. are mentioned. The material after the second layer of the coating layer is not particularly limited, but a hard material that is effective in improving the wear resistance is preferable as in the first layer. In addition, the material of the first layer of the coating layer and the material of the second and subsequent layers may be the same or different.
本発明の被覆工具の被覆層を断面観察すると、第1層には直径1〜5μmの略半円状あるいは略半楕円状の凹部があり、第2層以降の被覆層が第1層の凹部を埋めるという形態が観察される。第1層の凹部は第1層を貫通して基体まで到達している場合と到達していない場合があるが、第2層以降の被覆層により、層厚がゼロの部分は実質的に皆無となる。第2層にマクロ粒子が含まれる場合は、その脱落が生じても基体の露出は生じず、また、極端に層厚が薄い部分も生じないため、第1層にマクロ粒子が含まれる場合のような致命的な悪影響を与えない。すなわち、本発明の被覆工具は、マクロ粒子の脱落および/または除去に起因する部分的な異常損傷を起こしにくく、そのため、本発明の被覆工具は工具寿命が向上する。When the cross section of the coating layer of the coated tool of the present invention is observed, the first layer has a substantially semicircular or substantially semi-elliptical concave portion having a diameter of 1 to 5 μm, and the second and subsequent coating layers are concave portions of the first layer. The form of filling is observed. The concave portion of the first layer may or may not reach the substrate through the first layer, but there is substantially no portion where the layer thickness is zero due to the coating layer after the second layer. It becomes. When macro particles are contained in the second layer, the substrate is not exposed even if the dropping occurs, and no extremely thin portion is formed. Therefore, when the macro particles are contained in the first layer Does not cause such a fatal adverse effect. That is, the coated tool of the present invention is unlikely to cause partial abnormal damage due to dropping and / or removal of macro particles, and therefore the coated tool of the present invention improves the tool life.
被覆層の最外層としては、最外層に含まれるマクロ粒子の直径が0.5μm未満であると好ましい。この場合、被覆工具の表面粗さを改善し工具寿命を向上させる効果がある。被覆層全体の平均層厚が2μm未満では耐摩耗性が低下し、5μmを超えると耐チッピング性が低下する傾向が見られるため、2〜5μmが好ましい。As the outermost layer of the coating layer, the diameter of the macro particles contained in the outermost layer is preferably less than 0.5 μm. In this case, the surface roughness of the coated tool is improved and the tool life is improved. When the average layer thickness of the entire coating layer is less than 2 μm, the wear resistance decreases, and when it exceeds 5 μm, the chipping resistance tends to decrease, so 2 to 5 μm is preferable.
本発明の被覆工具の用途としては、ドリル、エンドミル、リーマ、切削チップなどの切削工具、もしくは、金型などの耐摩耗工具を挙げることができる。Examples of the use of the coated tool of the present invention include cutting tools such as drills, end mills, reamers, and cutting tips, and wear resistant tools such as dies.
本発明の被覆工具の製造方法は、基体に被覆層を被覆してなる被覆工具の製造方法において、該基体に接する該被覆層の第1層をアーク式イオンプレーティング法により被覆する工程と、該第1層に含まれるマクロ粒子を除去する工程と、該被覆層の第2層以降をPVD法あるいはCVD法により被覆する工程と、を含むことを特徴とする。The method for producing a coated tool of the present invention is a method for producing a coated tool comprising a substrate coated with a coating layer, the step of coating the first layer of the coating layer in contact with the substrate by an arc ion plating method, The method includes a step of removing macro particles contained in the first layer, and a step of coating the second and subsequent layers of the coating layer by a PVD method or a CVD method.
第1層の被覆方法としては、密着性の高いアーク式イオンプレーティング法が好ましい。しかしながら、アーク式イオンプレーティング法による被覆では、直径1〜5μmの略球状のマクロ粒子が大量に発生し、マクロ粒子を含む第1層が形成される。As a coating method for the first layer, an arc ion plating method with high adhesion is preferable. However, in the coating by the arc type ion plating method, a large amount of substantially spherical macro particles having a diameter of 1 to 5 μm are generated, and a first layer containing the macro particles is formed.
第1層に含まれるマクロ粒子を除去する具体的な方法としては、第1層被覆後に機械的な処理を行う方法、第1層被覆後に被覆工具の温度を下げる方法などを挙げることができる。機械的な処理として、具体的には、ガラスビーズによるブラスト処理、ブラシ処理、バレル研磨処理、ラッピング処理、バフ研磨処理などを挙げることができる。また、第1層を被覆した後、被覆工具温度を200℃以上冷却すると第1層に含まれるマクロ粒子を除去することができる。この現象は、第1層のマクロ粒子以外の部分とマクロ粒子の組成と熱収縮率がわずかに異なるために生じる。Specific methods for removing the macro particles contained in the first layer include a method of performing a mechanical treatment after the first layer coating, a method of lowering the temperature of the coated tool after the first layer coating, and the like. Specific examples of the mechanical treatment include blasting with glass beads, brushing, barrel polishing, lapping, buffing, and the like. Further, after the first layer is coated, the macro particles contained in the first layer can be removed by cooling the coated tool temperature to 200 ° C. or more. This phenomenon occurs because the composition and heat shrinkage rate of the macro particles other than the macro particles in the first layer are slightly different.
第2層以降の被覆方法は、特に限定されるものではないが、硬質な被覆層が得られるPVD法またはCVD法が好ましい。The coating method after the second layer is not particularly limited, but the PVD method or the CVD method from which a hard coating layer is obtained is preferable.
本発明の被覆工具の効果の一つとしては、部分的な異常損傷を生じないために被覆層は被覆層本来の性能を発揮し、被覆工具の工具寿命を向上させることができる。本発明の被覆工具の製造方法を用いることにより、本発明の被覆工具を得ることができる。 As one of the effects of the coated tool of the present invention, since the partial abnormal damage does not occur, the coated layer exhibits the original performance of the coated layer, and the tool life of the coated tool can be improved. By using the method for manufacturing a coated tool of the present invention, the coated tool of the present invention can be obtained.
基体として、市販のSNGN120408形状の超硬合金基体(P30)を用意した。基体を、通常の方法で洗浄した後、アーク式イオンプレーティング炉内に装入し、1×10-3Pa以下まで排気後、ヒーター温度500℃として基体の加熱処理を1時間行った。その後、ターゲット材料:TiAl合金(Ti/Al=50/50at%)、アーク電流値:100A、Arガス圧力:0.2Pa、基体電圧:−600Vで、メタルイオンボンバード処理を15分間行った。次いで、上記と同じTiAl合金ターゲットを用い、アーク電流値:100A、基体電圧:−50V、N2ガス圧力:2.66Paとする被覆条件で表1に示す層厚のTiAlN層を被覆した。その後、試料番号1〜3には、表2に示す条件でガラスビーズによるマクロ粒子除去処理を行った。A commercially available SNGN120408-shaped cemented carbide substrate (P30) was prepared as the substrate. The substrate was washed by a normal method, then charged into an arc ion plating furnace, evacuated to 1 × 10−3 Pa or less, and heated at a heater temperature of 500 ° C. for 1 hour. Thereafter, a target material: TiAl alloy (Ti / Al = 50/50 at%), an arc current value: 100 A, an Ar gas pressure: 0.2 Pa, a substrate voltage: −600 V, and metal ion bombardment treatment was performed for 15 minutes. Next, using the same TiAl alloy target as described above, a TiAlN layer having the layer thickness shown in Table 1 was coated under the coating conditions of arc current value: 100 A, substrate voltage: −50 V, N2 gas pressure: 2.66 Pa. Thereafter, the sample numbers 1 to 3 were subjected to macro particle removal treatment with glass beads under the conditions shown in Table 2.
さらに、試料番号1、2は、ガラスビーズ処理の後に通常の洗浄を行い、アーク式イオンプレーティング炉内に装入し、第1層の被覆工程と同様に、排気、加熱工程、メタルイオンボンバード工程を経て、第1層の被覆工程と同一の被覆条件で、表1に示す層厚のTiAlN層を被覆した。こうして得られた試料を用いて下記のフライス切削試験を実施した。その際、平均逃げ面摩耗量が0.3mmになるまでの時間、または、最大逃げ面摩耗量が0.35mmになるまでの時間を工具寿命とし、その結果を表1に示した。Sample Nos. 1 and 2 were subjected to normal cleaning after glass bead processing, charged in an arc ion plating furnace, and evacuation, heating process, metal ion bombardment as in the first layer coating process. Through the steps, a TiAlN layer having the layer thickness shown in Table 1 was coated under the same coating conditions as the first layer coating step. The following milling cutting test was implemented using the sample obtained in this way. At that time, the time until the average flank wear amount became 0.3 mm or the time until the maximum flank wear amount became 0.35 mm was defined as the tool life, and the results are shown in Table 1.
フライス切削試験条件
被削材:SCM440、切削速度Vc=200m/min、切り込みd=2.0mm、一刃当たりの送りf=0.2mm/tooth、一枚刃中心切削、水溶性切削油使用。Milling cutting test conditions Work material: SCM440, cutting speed Vc = 200 m / min, cutting d = 2.0 mm, feed per blade f = 0.2 mm / tooth, single-blade center cutting, use of water-soluble cutting oil.
損傷形態を観察すると、比較品である試料番号3、4は、切削初期から基体の露出が生じ、それが拡大して工具寿命(最大逃げ面摩耗量が0.35mmになる)に至ったのに対し、発明品である試料番号1、2は、部分的な異常損傷は生じず、均一な逃げ面摩耗により工具寿命(平均逃げ面摩耗量が0.3mmになる)に至った。 When observing the form of damage, sample Nos. 3 and 4, which are comparative products, were exposed to the substrate from the beginning of cutting, which expanded and reached the tool life (maximum flank wear amount was 0.35 mm). On the other hand, Sample Nos. 1 and 2 which are invention products did not cause partial abnormal damage, and reached a tool life (average flank wear amount was 0.3 mm) due to uniform flank wear.
基体として、市販のSNGN120408形状の超硬合金基体(P30)を用意した。基体を、通常の方法で洗浄した後、アーク式イオンプレーティング炉内に装入し、1×10-3Pa以下まで排気後、ヒーター温度500℃として基体の加熱処理を1時間行った。その後、ターゲット材料:TiAl合金(Ti/Al=50/50at%)、アーク電流値:100A、Arガス圧力:0.2Pa、基体電圧:−600Vで、メタルイオンボンバード処理を15分間行った。次いで、上記と同じTiAl合金ターゲットを用い、アーク電流値:100A、基体電圧:−50V、N2ガス圧力:2.66Paとする被覆条件で表3に示す層厚のTiAlN層を被覆した。その後、試料番号5〜7には、実施例1の表2と同一条件でガラスビーズによるマクロ粒子除去処理を行った。A commercially available SNGN120408-shaped cemented carbide substrate (P30) was prepared as the substrate. The substrate was washed by a normal method, then charged into an arc ion plating furnace, evacuated to 1 × 10−3 Pa or less, and heated at a heater temperature of 500 ° C. for 1 hour. Thereafter, a target material: TiAl alloy (Ti / Al = 50/50 at%), an arc current value: 100 A, an Ar gas pressure: 0.2 Pa, a substrate voltage: −600 V, and metal ion bombardment treatment was performed for 15 minutes. Then, using the same TiAl alloy target as described above, a TiAlN layer having a layer thickness shown in Table 3 was coated under coating conditions of arc current value: 100 A, substrate voltage: −50 V, N2 gas pressure: 2.66 Pa. Thereafter, the sample numbers 5 to 7 were subjected to macro particle removal treatment with glass beads under the same conditions as in Table 2 of Example 1.
さらに、試料番号5、6は、ガラスビーズ処理の後に通常の洗浄を行い、表4に示す方法で、第2層を被覆した。こうして得られた試料を用いて実施例1と同一の切削条件でフライス切削試験を実施した。その際、平均逃げ面摩耗量が0.3mmになるまでの時間、または、最大逃げ面摩耗量が0.35mmになるまで時間を工具寿命とし、その結果を表3に示した。Further, Sample Nos. 5 and 6 were subjected to normal cleaning after the glass bead treatment, and the second layer was coated by the method shown in Table 4. Using the sample thus obtained, a milling cutting test was performed under the same cutting conditions as in Example 1. At that time, the time until the average flank wear amount became 0.3 mm or the time until the maximum flank wear amount became 0.35 mm was defined as the tool life. The results are shown in Table 3.
損傷形態を観察すると、実施例1と同様に、比較品である試料番号7、8は、切削初期から基体の露出が生じ、それが拡大して工具寿命(最大逃げ面摩耗量が0.35mmになる)に至ったのに対し、発明品である試料番号5、6は、部分的な異常損傷は生じず、均一な逃げ面摩耗により工具寿命(平均逃げ面摩耗量が0.30mmになる)に至った。 When observing the form of damage, as in the case of Example 1, Sample Nos. 7 and 8, which are comparative products, were exposed to the substrate from the beginning of cutting, which expanded and the tool life (maximum flank wear amount was 0.35 mm). In contrast, Sample Nos. 5 and 6 that are invention products do not cause partial abnormal damage, and the tool life (average flank wear amount becomes 0.30 mm) due to uniform flank wear. ).
上記実施例1、2から明らかなように比較品は、マクロ粒子またはマクロ粒子を除去した凹部が原因となり部分的な異常損傷が発生するため、平均逃げ面摩耗量で寿命になる前に最大逃げ面摩耗量で寿命となってしまう。異常損傷の生じない場合と比較すると工具寿命は短くなる。一方、発明品は異常損傷が生じず、逃げ面摩耗が進行して寿命となるため、被覆層本来の性能が発揮でき、工具寿命が向上した。また、発明品は部分的な異常損傷が無くなったため比較品より工具寿命が安定した。 As apparent from Examples 1 and 2 above, the comparative product causes partial abnormal damage due to the macro particles or the recesses from which the macro particles have been removed. Life is reached by the amount of surface wear. Tool life is shortened compared to the case where no abnormal damage occurs. On the other hand, the inventive product did not cause abnormal damage and the flank wear progressed to the end of its life, so that the original performance of the coating layer could be demonstrated and the tool life was improved. In addition, the inventive product has a more stable tool life than the comparative product because there is no partial abnormal damage.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003272729AJP2005028544A (en) | 2003-07-10 | 2003-07-10 | Coated tool and method of manufacturing the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003272729AJP2005028544A (en) | 2003-07-10 | 2003-07-10 | Coated tool and method of manufacturing the same |
| Publication Number | Publication Date |
|---|---|
| JP2005028544Atrue JP2005028544A (en) | 2005-02-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003272729AWithdrawnJP2005028544A (en) | 2003-07-10 | 2003-07-10 | Coated tool and method of manufacturing the same |
| Country | Link |
|---|---|
| JP (1) | JP2005028544A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2463439B (en)* | 2007-06-26 | 2012-08-08 | Nanofilm Technologies Internat Pte Ltd | Cutting tools having plasma deposited carbon coatings |
| WO2012144318A1 (en) | 2011-04-18 | 2012-10-26 | 日本高周波鋼業株式会社 | Press forming die, and method of manufacturing press forming die protection film |
| CN103397295A (en)* | 2013-07-24 | 2013-11-20 | 华南理工大学 | TiN double-layer plated layer on surface of tool/mold material and preparation method thereof |
| JP2018168397A (en)* | 2017-03-29 | 2018-11-01 | アイシン精機株式会社 | Method of manufacturing amorphous carbon coating, amorphous carbon coating, and cutting tool |
| CN110088351A (en)* | 2016-12-19 | 2019-08-02 | 罗伯特·博世有限公司 | For method, metal component and the fuel injection system to metal component coating wear-resistant layer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2463439B (en)* | 2007-06-26 | 2012-08-08 | Nanofilm Technologies Internat Pte Ltd | Cutting tools having plasma deposited carbon coatings |
| WO2012144318A1 (en) | 2011-04-18 | 2012-10-26 | 日本高周波鋼業株式会社 | Press forming die, and method of manufacturing press forming die protection film |
| JP2012232344A (en)* | 2011-04-18 | 2012-11-29 | Nippon Koshuha Steel Co Ltd | Press forming die, and method for manufacturing press forming die protection film |
| CN103476963A (en)* | 2011-04-18 | 2013-12-25 | 日本高周波钢业株式会社 | Press forming die, and method of manufacturing press forming die protection film |
| US9902093B2 (en) | 2011-04-18 | 2018-02-27 | Nippon Koshuha Steel Co., Ltd. | Press-forming mold and method for manufacturing protective film for press-forming mold |
| KR101875593B1 (en)* | 2011-04-18 | 2018-07-06 | 니혼 고슈하 고교 가부시끼가이샤 | Press forming die, and method of manufacturing press forming die protection film |
| CN103397295A (en)* | 2013-07-24 | 2013-11-20 | 华南理工大学 | TiN double-layer plated layer on surface of tool/mold material and preparation method thereof |
| CN110088351A (en)* | 2016-12-19 | 2019-08-02 | 罗伯特·博世有限公司 | For method, metal component and the fuel injection system to metal component coating wear-resistant layer |
| JP2018168397A (en)* | 2017-03-29 | 2018-11-01 | アイシン精機株式会社 | Method of manufacturing amorphous carbon coating, amorphous carbon coating, and cutting tool |
| Publication | Publication Date | Title |
|---|---|---|
| JP5008984B2 (en) | Surface-coated cutting tool and method for manufacturing surface-coated cutting tool | |
| JP5363445B2 (en) | Cutting tools | |
| JP4018480B2 (en) | Coated hard tool | |
| JP2018521862A (en) | Tool with multilayer arc PVD coating | |
| JP2007001007A (en) | Composite coating film for finishing hardened steel | |
| JP2012213852A (en) | Method of manufacturing coated cutting tool | |
| JP5286626B2 (en) | Surface-coated cutting tool and manufacturing method thereof | |
| JP5286625B2 (en) | Surface-coated cutting tool and manufacturing method thereof | |
| JPH07157862A (en) | Wear resistant and welding resistant hard film-coated tool and production thereof | |
| JP3394021B2 (en) | Coated cutting tool | |
| JP2005028544A (en) | Coated tool and method of manufacturing the same | |
| JP2020020030A (en) | Hard coating member and hard coating tool | |
| JP2007224374A (en) | Coated member | |
| JP2005022064A (en) | Coating drilling tool | |
| JP6528936B2 (en) | Method of manufacturing coated tool | |
| JP3404003B2 (en) | Coated cutting tool | |
| JP4936703B2 (en) | Surface coated cutting tool | |
| JP5240665B2 (en) | Surface-coated cutting tool with excellent chip evacuation | |
| JP4456905B2 (en) | Surface coated cutting tool | |
| JP2008030158A (en) | Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy | |
| JP2005335040A (en) | Surface coating cutting tool | |
| JP2012210672A (en) | End mill exhibiting excellent wear resistance | |
| JP2005271155A (en) | Coated cutting tool | |
| JP2009090398A (en) | Diamond-coated cutting tool having excellent lubricity and machining accuracy | |
| JP2005028520A (en) | Hard film coated tool |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20061003 |