Movatterモバイル変換


[0]ホーム

URL:


JP2004296736A - Light emitting device - Google Patents

Light emitting device
Download PDF

Info

Publication number
JP2004296736A
JP2004296736AJP2003086332AJP2003086332AJP2004296736AJP 2004296736 AJP2004296736 AJP 2004296736AJP 2003086332 AJP2003086332 AJP 2003086332AJP 2003086332 AJP2003086332 AJP 2003086332AJP 2004296736 AJP2004296736 AJP 2004296736A
Authority
JP
Japan
Prior art keywords
led
voltage
light emitting
temperature
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086332A
Other languages
Japanese (ja)
Inventor
Akira Mizuyoshi
明 水由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co LtdfiledCriticalFuji Photo Film Co Ltd
Priority to JP2003086332ApriorityCriticalpatent/JP2004296736A/en
Publication of JP2004296736ApublicationCriticalpatent/JP2004296736A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device at a low cost that can surely detect a change in temperature in an LED and make the LED emit a light efficiently. <P>SOLUTION: An LED driving circuit 12 is provided with a voltage measuring circuit 14 for measuring the drive voltage of an LED 11, a drive current control circuit 15 for controlling a drive current, a driving DC 16 as a power supply for driving the LED 11, and an computation control unit 17. The computation control unit 17 serially acquires voltage values measured by the voltage measuring circuit 14 and calculates a quantity of voltage change per unit time, and it controls the drive current control circuit 15 on the basis of the calculated values to regulate the drive current of the LED 11. Thus, the temperature of the LED 11 can be controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は、発光素子を効率良く発光させるために、温度制御を行う発光装置に関するものである。
【0002】
【従来の技術】
一般に、発光ダイオード等の発光素子は、その温度や周囲温度の変化により、発光出力や発光スペクトルが変動することが知られており、このような、発光出力や発光ペクトルの変動を制御するために、発光素子の温度制御を行っている。このような技術として、発光素子の温度を検出する温度検出手段と、発光素子を加熱する発熱手段と、温度検出手段の出力に基づいて発熱手段を制御する制御手段とを設けることにより、発光素子の時間経過に伴う温度変動を抑制して、発光素子の発光出力の変動を抑制する技術(例えば、特許文献1)が開示されている。
【0003】
また、発光素子の温度を検出する温度検出手段と、発光素子の駆動電力を制御する駆動電力制御手段と、温度検出手段により検出された温度情報、駆動電力手段の駆動電力情報に基づいて発光素子の波長を算出して、この算出値に基づいて駆動電力制御手段を制御する演算処理制御手段とを設けることにより、発光素子の発光波長を制御する技術(例えば、特許文献2)が開示されている。
【0004】
【特許文献1】
特開平6−45654号公報
【特許文献2】
特開平6−237013号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1および特許文献2に記載の技術では、発光素子の温度を検出する温度検出手段として、熱電対、サーミスタ等の温度センサが必要であり、コストが高くなるという問題があった。また、熱電対やサーミスタ等の温度センサを使用した場合には、温度検出に熱伝導による時間的な遅れが発生するために、制御に遅れが生じるという問題があった。
【0006】
本発明は、上記問題点を解決するためのもので、発光素子の温度制御を確実に行うことにより、発光素子を効率良く発光させる発光装置を低コストで提供することを目的とする。
【0007】
【課題を解決するための手段】
上記問題点を解決するために、本発明の発光装置は、発光素子と、発光素子の駆動電流を制御する駆動電流制御手段と、発光素子の電圧を測定する電圧測定手段と、発光素子を定電流で駆動する時に、電圧測定手段から電圧の測定値を順次取得して電圧の変化量を算出し、この変化量に基づいて駆動電流制御手段を制御する演算制御手段とを設けたことを特徴とするものであり、電圧の変化量に基づいて駆動電流を制御することにより、発光素子の温度制御を確実に行うことができる。
【0008】
【発明の実施の形態】
図1は、本発明の発光装置の電気的構成を示すブロック図である。発光装置10は、発光ダイオード(以下LEDと省略する)11と、LED駆動回路12と、ヒートシンク13とで構成されている。
【0009】
本実施形態においては、LED11として高輝度青色発光ダイオード(例えば、InGaN)を用いて説明を行うが、これに限るものではない。以下に、このLED11の特性について説明を行う。LED11を高電流駆動した時の時間経過に対する電圧変化を図2に示す。図2は、定電流(2A)で駆動した時のLED11の時間−電圧特性を示すグラフであり、横軸が経過時間(s)、縦軸が駆動電圧(V)である。このような高電流駆動時には、LED11の発熱により一般的な電圧低下が発生する。この電圧低下は、LED11の駆動開始(位置A)から約3秒後まで発生する。この時、グラフの変曲点(位置B)に達しており、それ以降は、逆に電圧増加が発生して、約8秒後に位置Cに到達している。
【0010】
図3は、LED11の電圧−光出力特性を示すグラフである。このグラフのデータは、図2の時間−電圧特性を示すグラフのデータと同じであり、LED11を2Aの定電流で駆動している。このグラフの横軸は駆動電圧(V)、縦軸は光出力(mW)を示している。LED11の駆動開始時は、右上端の位置Aであり、その後、時間経過とともに、駆動電圧及び光出力が低下し、約3秒後に変曲点(位置B)に到達する。その後、光出力は低下し続けるが、駆動電圧は、逆に増加を開始して、駆動開始から約8秒後に左下端の位置Cに到達する。
【0011】
このグラフより、駆動開始(位置A)から、時間の経過とともに、LED11の発熱により、徐々に発光効率が低下し、かつ駆動電圧が減少することが分かる(図中領域a)。さらに、LED11の発熱が進むと変曲点(位置B)を過ぎて、光出力は領域aの時と同じように低下するが、駆動電圧は逆に上昇に転じる(図中領域b)。これは、光出力の低下、つまり投入された駆動電力が光に変換される効率が、LED11の発熱により低下して、この低下の割合が、発熱による半導体の抵抗低下による駆動電圧の減少を上回ったためであると解釈できる。この領域bでは、急速に、光出力の低下→発熱→駆動電圧の上昇→発熱の増加→光出力の低下と帰還がかかり、LED11の破壊に至る。
【0012】
よって、LED11の破壊を防ぐためには、LED11の電圧測定を逐次行い、単位時間当たりの電圧の変化量、すなわち、電圧の時間微分(dV/dt)を算出することにより、LED11の温度が、領域aの範囲内であるか、変曲点(位置B)であるか、領域bの範囲内であるかを判断することが可能である。
【0013】
変曲点(位置B)においては、電圧の時間微分(dV/dt)=0となるので、これを閾値として変曲点(位置B)に至ってるかどうかを判断して、この閾値に到達した時は、LED11の温度上昇が大きいので、駆動電力(駆動電圧×駆動電流)を減らせば、温度上昇を抑制できる。これにより、LED11の破壊を防止でき、駆動電力に対して効率良く発光させることができる。
【0014】
次に、LED駆動回路12の説明を行う。LED駆動回路12は、LED11の駆動電圧を測定する電圧測定回路14と、駆動電流を制御する駆動電流制御回路15と、LED11を駆動するための電源である駆動用DC16と、演算制御部17とで構成されている。電圧測定回路14及び駆動用DC16は、LED11に対して並列に接続されており、駆動電流制御回路15は、LED11に対して直列に接続されている。また、演算制御部17は、電圧測定回路14及び駆動電流制御回路15に接続されている。
【0015】
演算制御部17は、電圧測定回路14が測定した電圧値を順次取得して、単位時間当たりの電圧変化量、すなわち、電圧の時間微分(dV/dt)を算出する。演算制御部17は、この算出値に基づいて、図3に示す位置Bの変曲点(dV/dt=0)に到達したか否かの判断を行い、変曲点Bに到達したと判断した場合には、駆動電流制御回路15を制御して、電圧の時間微分(dV/dt)が、0より小さい範囲内で駆動するように駆動電流を制限・制御する。また、閾値は変曲点(dV/dt=0)ではなく、dV/dt<0の領域、すなわち領域b内に設けても良い。この場合も、電圧の時間微分(dV/dt)が、閾値より小さい範囲内で駆動するように駆動電流を制限・制御すれば良い。
【0016】
ヒートシンク13は、LED11の内部で発生する熱を冷却するために設けられた部品である。ヒートシンクは、熱の消費体である半導体素子の内部で発生する熱を周囲の冷たい流動体(気体または液体)に移す機能を持っており、半導体を冷却するのに最も実用的で、且つ経済的な部品として知られている。
【0017】
次に、上記実施形態の作用について説明する。発光装置10は、LED駆動回路12により駆動されて発光する。窒化物系青色発光ダイオードであるLED11を定電流で駆動する場合は、一般的な駆動条件において、1℃上昇時の発光効率の低下は、−0.43%/℃、電圧の低下は、−0.006V/℃(駆動電圧が3.3Vとすると、0.18%/℃程度)である。
【0018】
また、高電流注入時には、LED11に投入電力が大きく、温度上昇に伴う発光効率低下による温度上昇が加わることにより、電圧の時間変化量、すなわち電圧の時間微分(dV/dt)は、マイナス(領域a)からプラス(領域b)に転じる。この電圧特性が変曲点(位置B)を越えた(dV/dt>0)の領域bでは、非常に短時間(数〜数十秒)程度しか駆動出来ず、このまま駆動すると破壊に至る。
【0019】
LED11がLED駆動回路12により駆動され発光している時、電圧測定回路14は、LED11の駆動電圧を測定する。LED11の駆動中は、この駆動電圧の測定値は、演算制御部17にて順次取得される。演算制御部17は、取得した測定値に基づいて、電圧の時間変化量、すなわち電圧の時間微分(dV/dt)を算出し、この算出値に基づいて、図3に示す位置Bの変曲点(dV/dt=0)に到達したか否かの判断を行い、変曲点Bに到達したと判断された場合には、駆動電流制御回路15を制御して、電圧の時間微分(dV/dt)が0より小さい範囲内で駆動するように、必要なLED動作時間に応じて駆動電流を制限・制御する。これにより、LED11の温度上昇を制御することが可能であり、LED11が温度上昇により破壊されることを防止できる。また、駆動電力に対して、LED11を効率良く発光させることができる。
【0020】
変曲点Bに到達していないと判断された場合には、演算制御部17は、駆動電流制御回路15により、LED11の定電流駆動を継続させる。
【0021】
また、閾値は変曲点(dV/dt=0)ではなく、dV/dt<0の領域、すなわち領域b内に設けても良い。この場合も、電圧の時間微分(dV/dt)が、閾値より小さい範囲内で駆動するように、必要なLED動作時間に応じて駆動電流を制限・制御すれば良い。
【0022】
さらに、LED11の各電圧時間微分(dV/dt)の値に対応するLED11の温度を演算制御部17のメモリに記憶させておくことにより、この時間微分の値に対応する温度を順次参照して駆動電流を制限・制御すれば、より細かい温度制御が可能である。
【0023】
また、LED11の発熱が小さい、定格以下の電流で駆動した時の電圧値と、一定電流で駆動開始後、一定時間経過後の電圧値との差を算出して、この差が小さくなった時には、LED11の温度が上昇していることが推測できる。これにより、同一電流における発光効率そのものの低下と、LEDの温度上昇による発光効率の低下という異なるモードごとのLEDチップの劣化率を割り出すことができる。
【0024】
なお、本実施形態においては、LEDを駆動するのに駆動用DC電源を用いたが、これに限るものではなく、例えば、パルス直流電源でも良い。この場合は、駆動電圧Vfの時間に対する微分値を算出することにより、LEDの温度上昇に関する情報を取得して、この情報に基づいて、駆動電圧やパルス幅を適宜制御することにより、LEDの発熱を一定値以下に制御することが可能であり、LEDを駆動電力に対して効率良く発光させることができる。
【0025】
また、本実施形態においては、1つのLEDを使用するように説明したが、複数のLEDで構成されるLEDアレイを使用しても良い。この場合は、LEDの駆動電圧の時間変化に基づいてLEDの温度を検知して、駆動電流を制御する制御手段を1個以上のLEDに設ければ良い。これにより、LEDアレイ内の温度分布を知ることができる。また、サーミスター等の温度計測用素子を用いて温度を測定するよりも、熱伝導による時間の遅れがない分、LEDの温度を迅速に検出することができる。このため、LEDのパルス駆動や、フラッシュのような駆動において温度上昇を検出する手段として有効である。
【0026】
さらに、本実施形態の発光装置に、発光量を測定する手段を設け、LEDに投入する電力の損失に対する発熱量が一定値以下で駆動するように、LEDに投入する電力を制御するようにしても良い。あるいは、LEDの冷却のために、例えばヒートシンクとファン等を設けた場合、このファンの風量により、ヒートシンクによるLEDの冷却量を制御するために、この電圧変動値を用いて制御することも可能である。
【0027】
また、本実施形態の発光装置に、LEDの温度を測定する温度測定手段を設け、この温度測定手段により測定された温度と、LEDを定電流駆動したときの電圧値から換算される温度との差を算出して、この差が一定値の範囲内で駆動するように、LEDに投入する電力を制御するようにしても良い。
【0028】
【発明の効果】
以上説明したように、本発明の発光装置は、発光素子の電圧の時間変化量に基づいて、発光素子の温度変化を制御するので、熱電対やサーミスタ等の温度センサを使用した場合の熱伝導による温度検出の遅れがないので、制御の遅れが発生せずに確実な温度制御が可能であるため、温度上昇による発光素子の破壊を防止することができる。また、発光素子を駆動電力に対して効率的に発光させることが可能である。
【0029】
また、熱電対やサーミスタ等の温度センサを必要としないため、温度センサを設けた場合と比べて低コストで製造可能である。
【図面の簡単な説明】
【図1】本発明の発光装置の電気的構成を示すブロック図である。
【図2】LEDの時間−電圧特性を示す図である。
【図3】LEDの電圧−光出力特性を示す図である。
【符号の説明】
10 発光装置
11 LED
12 LED駆動回路
13 ヒートシンク
14 電圧測定回路
15 駆動電流測定回路
16 駆動用DC
17 演算制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device that performs temperature control in order to cause a light emitting element to emit light efficiently.
[0002]
[Prior art]
In general, it is known that a light emitting element such as a light emitting diode fluctuates in light emission output and light emission spectrum due to changes in its temperature and ambient temperature. In order to control such fluctuations in light output and light emission spectrum. The temperature of the light emitting element is controlled. As such a technique, by providing temperature detecting means for detecting the temperature of the light emitting element, heat generating means for heating the light emitting element, and control means for controlling the heat generating means based on the output of the temperature detecting means, the light emitting element A technique (for example, Patent Document 1) that suppresses fluctuations in light emission output of a light emitting element by suppressing temperature fluctuations with the passage of time is disclosed.
[0003]
Further, a temperature detecting means for detecting the temperature of the light emitting element, a driving power control means for controlling the driving power of the light emitting element, temperature information detected by the temperature detecting means, and a light emitting element based on the driving power information of the driving power means A technique (for example, Patent Document 2) for controlling the light emission wavelength of the light emitting element by providing a calculation processing control means for calculating the wavelength of the light source and providing a calculation processing control means for controlling the drive power control means based on the calculated value is disclosed. Yes.
[0004]
[Patent Document 1]
JP-A-6-45654 [Patent Document 2]
Japanese Patent Laid-Open No. 6-237013
[Problems to be solved by the invention]
However, the techniques described in Patent Document 1 andPatent Document 2 require a temperature sensor such as a thermocouple or a thermistor as temperature detecting means for detecting the temperature of the light emitting element, which increases the cost. . Further, when a temperature sensor such as a thermocouple or a thermistor is used, there is a problem that a delay occurs in control because a time delay due to heat conduction occurs in temperature detection.
[0006]
SUMMARY An advantage of some aspects of the invention is to provide a light emitting device that efficiently emits light from a light emitting element at low cost by reliably controlling the temperature of the light emitting element.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a light emitting device of the present invention includes a light emitting element, a driving current control unit that controls a driving current of the light emitting element, a voltage measuring unit that measures a voltage of the light emitting element, and a light emitting element. When driving with current, a voltage measurement value is sequentially obtained from the voltage measurement means, a change amount of the voltage is calculated, and an arithmetic control means for controlling the drive current control means based on the change amount is provided. By controlling the drive current based on the amount of change in voltage, the temperature control of the light emitting element can be reliably performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an electrical configuration of the light emitting device of the present invention. Thelight emitting device 10 includes a light emitting diode (hereinafter abbreviated as LED) 11, an LED drive circuit 12, and aheat sink 13.
[0009]
In the present embodiment, a description is given using a high-intensity blue light-emitting diode (for example, InGaN) as theLED 11, but the present invention is not limited to this. Below, the characteristic of this LED11 is demonstrated. FIG. 2 shows a voltage change with time when theLED 11 is driven with a high current. FIG. 2 is a graph showing the time-voltage characteristics of theLED 11 when driven at a constant current (2A), where the horizontal axis represents elapsed time (s) and the vertical axis represents drive voltage (V). During such high current driving, a general voltage drop occurs due to the heat generated by theLED 11. This voltage drop occurs until about 3 seconds after the start of driving the LED 11 (position A). At this time, the inflection point (position B) of the graph has been reached, and thereafter, the voltage increases conversely and reaches position C after about 8 seconds.
[0010]
FIG. 3 is a graph showing the voltage-light output characteristics of theLED 11. The data of this graph is the same as the data of the graph showing the time-voltage characteristics of FIG. 2, and theLED 11 is driven with a constant current of 2A. In this graph, the horizontal axis represents drive voltage (V), and the vertical axis represents light output (mW). When theLED 11 starts to drive, it is at the position A at the upper right end, and thereafter, as time elapses, the drive voltage and the light output decrease and reach the inflection point (position B) after about 3 seconds. Thereafter, the light output continues to decrease, but the drive voltage starts to increase, and reaches the position C at the lower left end about 8 seconds after the start of the drive.
[0011]
From this graph, it can be seen that the light emission efficiency gradually decreases and the drive voltage decreases due to heat generation of theLED 11 with the passage of time from the start of driving (position A) (region a in the figure). Further, as the heat generation of theLED 11 proceeds, the inflection point (position B) is passed, and the light output decreases in the same manner as in the region a, but the drive voltage starts to increase (region b in the figure). This is because the light output, that is, the efficiency at which the input driving power is converted into light is reduced by the heat generation of theLED 11, and the rate of this reduction exceeds the drive voltage reduction due to the semiconductor resistance reduction due to the heat generation. This can be interpreted as In this region b, the light output decreases rapidly → heat generation → drive voltage increases → heat generation increase → light output decreases and feedback is applied, leading to destruction of theLED 11.
[0012]
Therefore, in order to prevent the destruction of theLED 11, the voltage of theLED 11 is sequentially measured, and the voltage change amount per unit time, that is, the time derivative (dV / dt) of the voltage is calculated, so that the temperature of theLED 11 is It is possible to determine whether it is within the range of a, the inflection point (position B), or the region b.
[0013]
At the inflection point (position B), the time derivative of voltage (dV / dt) = 0, so that it is determined whether or not the inflection point (position B) has been reached by using this as a threshold value. In this case, since the temperature rise of theLED 11 is large, the temperature rise can be suppressed by reducing the drive power (drive voltage × drive current). Thereby, destruction of LED11 can be prevented and it can be made to light-emit efficiently with respect to drive electric power.
[0014]
Next, the LED drive circuit 12 will be described. The LED drive circuit 12 includes avoltage measurement circuit 14 that measures the drive voltage of theLED 11, a drivecurrent control circuit 15 that controls the drive current, adrive DC 16 that is a power source for driving theLED 11, and anarithmetic control unit 17. It consists of Thevoltage measurement circuit 14 and thedrive DC 16 are connected in parallel to theLED 11, and the drivecurrent control circuit 15 is connected in series to theLED 11. Thearithmetic control unit 17 is connected to thevoltage measurement circuit 14 and the drivecurrent control circuit 15.
[0015]
Thearithmetic control unit 17 sequentially acquires the voltage values measured by thevoltage measurement circuit 14 and calculates the voltage change amount per unit time, that is, the time differentiation (dV / dt) of the voltage. Thecalculation control unit 17 determines whether or not the inflection point (dV / dt = 0) at the position B shown in FIG. 3 has been reached based on the calculated value, and determines that the inflection point B has been reached. In this case, the drivecurrent control circuit 15 is controlled to limit and control the drive current so that the voltage is differentiated within a range where the time differentiation (dV / dt) is smaller than zero. The threshold value may be provided not in the inflection point (dV / dt = 0) but in the region where dV / dt <0, that is, the region b. In this case as well, the drive current may be limited and controlled so that the voltage is time-differentiated (dV / dt) within a range smaller than the threshold value.
[0016]
Theheat sink 13 is a component provided to cool the heat generated inside theLED 11. The heat sink has the function of transferring the heat generated inside the semiconductor element that is a heat consuming body to the surrounding cold fluid (gas or liquid), and is the most practical and economical for cooling the semiconductor. Known as a unique component.
[0017]
Next, the operation of the above embodiment will be described. Thelight emitting device 10 is driven by the LED driving circuit 12 to emit light. When theLED 11 which is a nitride-based blue light emitting diode is driven at a constant current, a decrease in light emission efficiency when the temperature rises by 1 ° C. is −0.43% / ° C., and a voltage decrease is − 0.006 V / ° C. (about 0.18% / ° C. when the driving voltage is 3.3 V).
[0018]
In addition, when high current is injected, the input electric power is large in theLED 11 and the temperature rise due to the decrease in the light emission efficiency accompanying the temperature rise, so that the time variation of the voltage, that is, the time derivative of the voltage (dV / dt) is minus (region). From a) to plus (region b). In the region b where the voltage characteristic exceeds the inflection point (position B) (dV / dt> 0), it can be driven only for a very short time (several to several tens of seconds).
[0019]
When theLED 11 is driven by the LED drive circuit 12 to emit light, thevoltage measurement circuit 14 measures the drive voltage of theLED 11. During the driving of theLED 11, the measured value of the driving voltage is sequentially acquired by thearithmetic control unit 17. Thearithmetic control unit 17 calculates the time change amount of the voltage, that is, the time derivative (dV / dt) of the voltage based on the acquired measurement value, and based on the calculated value, the inflection of the position B shown in FIG. It is determined whether or not the point (dV / dt = 0) has been reached, and if it is determined that the inflection point B has been reached, the drivecurrent control circuit 15 is controlled to time-differentiate the voltage (dV The drive current is limited and controlled according to the necessary LED operation time so that the drive is performed within a range where / dt) is smaller than 0. Thereby, the temperature rise of LED11 can be controlled and it can prevent that LED11 is destroyed by the temperature rise. Moreover, LED11 can be light-emitted efficiently with respect to drive electric power.
[0020]
When it is determined that the inflection point B has not been reached, thecalculation control unit 17 causes the drivecurrent control circuit 15 to continue the constant current drive of theLED 11.
[0021]
The threshold value may be provided not in the inflection point (dV / dt = 0) but in the region where dV / dt <0, that is, the region b. In this case as well, the drive current may be limited and controlled according to the required LED operation time so that the voltage is time-differentiated (dV / dt) within a range smaller than the threshold value.
[0022]
Furthermore, by storing the temperature of theLED 11 corresponding to each voltage time derivative (dV / dt) value of theLED 11 in the memory of thearithmetic control unit 17, the temperature corresponding to this time derivative value is sequentially referred to. If the drive current is limited and controlled, finer temperature control is possible.
[0023]
In addition, the difference between the voltage value when theLED 11 generates a small amount of heat and is driven with a current less than the rated current and the voltage value after a certain time has elapsed after the start of driving with a constant current is calculated. It can be estimated that the temperature of theLED 11 is rising. Thereby, it is possible to determine the deterioration rate of the LED chip for each different mode, that is, a decrease in the light emission efficiency itself at the same current and a decrease in the light emission efficiency due to the LED temperature increase.
[0024]
In the present embodiment, the driving DC power source is used to drive the LED. However, the present invention is not limited to this, and for example, a pulse direct current power source may be used. In this case, by calculating a differential value with respect to time of the drive voltage Vf, information on the temperature rise of the LED is obtained, and based on this information, the drive voltage and the pulse width are appropriately controlled, thereby generating heat of the LED. Can be controlled to a certain value or less, and the LED can emit light efficiently with respect to driving power.
[0025]
Further, in the present embodiment, it has been described that one LED is used, but an LED array including a plurality of LEDs may be used. In this case, one or more LEDs may be provided with a control means for detecting the temperature of the LED based on the change in the LED driving voltage with time and controlling the driving current. Thereby, the temperature distribution in the LED array can be known. In addition, the temperature of the LED can be detected more quickly because there is no time delay due to heat conduction than when the temperature is measured using a temperature measuring element such as a thermistor. For this reason, it is effective as a means for detecting a temperature rise in LED pulse driving or flash driving.
[0026]
Furthermore, the light emitting device of the present embodiment is provided with means for measuring the amount of light emission, and the power input to the LED is controlled so that the heat generation amount for the loss of power input to the LED is driven below a certain value. Also good. Alternatively, for example, when a heat sink and a fan are provided for cooling the LED, it is possible to control using the voltage fluctuation value in order to control the cooling amount of the LED by the heat sink by the air volume of the fan. is there.
[0027]
Further, the light emitting device of the present embodiment is provided with temperature measuring means for measuring the temperature of the LED, and the temperature measured by the temperature measuring means and the temperature converted from the voltage value when the LED is driven at a constant current. The difference may be calculated, and the power supplied to the LED may be controlled so that the difference is driven within a certain range.
[0028]
【The invention's effect】
As described above, since the light-emitting device of the present invention controls the temperature change of the light-emitting element based on the amount of time change of the voltage of the light-emitting element, the heat conduction when a temperature sensor such as a thermocouple or thermistor is used. Since there is no delay in temperature detection due to the above, it is possible to perform reliable temperature control without causing a delay in control, and thus it is possible to prevent the light emitting element from being destroyed due to a temperature rise. In addition, the light emitting element can emit light efficiently with respect to driving power.
[0029]
In addition, since a temperature sensor such as a thermocouple or a thermistor is not required, it can be manufactured at a lower cost than the case where a temperature sensor is provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an electrical configuration of a light emitting device of the present invention.
FIG. 2 is a diagram showing time-voltage characteristics of an LED.
FIG. 3 is a diagram showing voltage-light output characteristics of an LED.
[Explanation of symbols]
10Light emitting device 11 LED
12LED drive circuit 13Heat sink 14Voltage measurement circuit 15 Drivecurrent measurement circuit 16 DC for driving
17 Calculation control unit

Claims (1)

Translated fromJapanese
発光素子と、前記発光素子の駆動電流を制御する駆動電流制御手段と、前記発光素子の電圧を測定する電圧測定手段と、前記発光素子を定電流で駆動する時に、前記電圧測定手段から電圧の測定値を順次取得して電圧の変化量を算出し、この変化量に基づいて前記駆動電流制御手段を制御する演算制御手段とを設けたことを特徴とする発光装置。A light emitting element; a driving current control means for controlling a driving current of the light emitting element; a voltage measuring means for measuring a voltage of the light emitting element; and when the light emitting element is driven with a constant current, the voltage measuring means A light emitting apparatus comprising: an arithmetic control unit that sequentially acquires measurement values to calculate a change amount of a voltage, and controls the drive current control unit based on the change amount.
JP2003086332A2003-03-262003-03-26Light emitting devicePendingJP2004296736A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2003086332AJP2004296736A (en)2003-03-262003-03-26Light emitting device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2003086332AJP2004296736A (en)2003-03-262003-03-26Light emitting device

Publications (1)

Publication NumberPublication Date
JP2004296736Atrue JP2004296736A (en)2004-10-21

Family

ID=33401019

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003086332APendingJP2004296736A (en)2003-03-262003-03-26Light emitting device

Country Status (1)

CountryLink
JP (1)JP2004296736A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009011676A (en)*2007-07-062009-01-22Olympus CorpEndoscope system
US8050728B2 (en)2005-03-012011-11-01Masimo Laboratories, Inc.Multiple wavelength sensor drivers
US8801613B2 (en)2009-12-042014-08-12Masimo CorporationCalibration for multi-stage physiological monitors
US8965471B2 (en)2007-04-212015-02-24Cercacor Laboratories, Inc.Tissue profile wellness monitor
US9839381B1 (en)2009-11-242017-12-12Cercacor Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
US12029586B2 (en)2006-10-122024-07-09Masimo CorporationOximeter probe off indicator defining probe off space

Cited By (40)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10123726B2 (en)2005-03-012018-11-13Cercacor Laboratories, Inc.Configurable physiological measurement system
US9241662B2 (en)2005-03-012016-01-26Cercacor Laboratories, Inc.Configurable physiological measurement system
JP4879913B2 (en)*2005-03-012012-02-22マシモ・ラボラトリーズ・インコーポレーテッド Multi-wavelength sensor board
US8483787B2 (en)2005-03-012013-07-09Cercacor Laboratories, Inc.Multiple wavelength sensor drivers
US8626255B2 (en)2005-03-012014-01-07Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US8634889B2 (en)2005-03-012014-01-21Cercacor Laboratories, Inc.Configurable physiological measurement system
US8718735B2 (en)2005-03-012014-05-06Cercacor Laboratories, Inc.Physiological parameter confidence measure
US12283374B2 (en)2005-03-012025-04-22Willow Laboratories, Inc.Noninvasive multi-parameter patient monitor
US8849365B2 (en)2005-03-012014-09-30Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US8912909B2 (en)2005-03-012014-12-16Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US8929964B2 (en)2005-03-012015-01-06Cercacor Laboratories, Inc.Multiple wavelength sensor drivers
US12230393B2 (en)2005-03-012025-02-18Willow Laboratories, Inc.Multiple wavelength sensor emitters
US9131882B2 (en)2005-03-012015-09-15Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US9167995B2 (en)2005-03-012015-10-27Cercacor Laboratories, Inc.Physiological parameter confidence measure
US11545263B2 (en)2005-03-012023-01-03Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US9351675B2 (en)2005-03-012016-05-31Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US9549696B2 (en)2005-03-012017-01-24Cercacor Laboratories, Inc.Physiological parameter confidence measure
US9750443B2 (en)2005-03-012017-09-05Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US8050728B2 (en)2005-03-012011-11-01Masimo Laboratories, Inc.Multiple wavelength sensor drivers
US11430572B2 (en)2005-03-012022-08-30Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US10984911B2 (en)2005-03-012021-04-20Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US10251585B2 (en)2005-03-012019-04-09Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US10856788B2 (en)2005-03-012020-12-08Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US10327683B2 (en)2005-03-012019-06-25Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US12029586B2 (en)2006-10-122024-07-09Masimo CorporationOximeter probe off indicator defining probe off space
US9848807B2 (en)2007-04-212017-12-26Masimo CorporationTissue profile wellness monitor
US10251586B2 (en)2007-04-212019-04-09Masimo CorporationTissue profile wellness monitor
US10980457B2 (en)2007-04-212021-04-20Masimo CorporationTissue profile wellness monitor
US11647923B2 (en)2007-04-212023-05-16Masimo CorporationTissue profile wellness monitor
US8965471B2 (en)2007-04-212015-02-24Cercacor Laboratories, Inc.Tissue profile wellness monitor
US12156733B2 (en)2007-04-212024-12-03Masimo CorporationTissue profile wellness monitor
JP2009011676A (en)*2007-07-062009-01-22Olympus CorpEndoscope system
US10750983B2 (en)2009-11-242020-08-25Cercacor Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
US12127833B2 (en)2009-11-242024-10-29Willow Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
US11534087B2 (en)2009-11-242022-12-27Cercacor Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
US9839381B1 (en)2009-11-242017-12-12Cercacor Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
US11571152B2 (en)2009-12-042023-02-07Masimo CorporationCalibration for multi-stage physiological monitors
US10729402B2 (en)2009-12-042020-08-04Masimo CorporationCalibration for multi-stage physiological monitors
US12186079B2 (en)2009-12-042025-01-07Masimo CorporationCalibration for multi-stage physiological monitors
US8801613B2 (en)2009-12-042014-08-12Masimo CorporationCalibration for multi-stage physiological monitors

Similar Documents

PublicationPublication DateTitle
CN101926224B (en)LED driver circuit and method, and system and method for estimating junction temperature of light emitting diode
US9392668B2 (en)Lighting device and lighting fixture
JP4753885B2 (en) Lighting control apparatus and related control method
EP1521503A1 (en)Method and drive circuit for controlling leds
EP2768281B1 (en)Lighting device and lighting fixture
EP2768280B1 (en)Lighting device and lighting fixture
CN101487586A (en)LED illumination apparatus and its cooling method
US9372122B2 (en)Electronic circuit to monitor a temperature of a light emitting diode
JP6378901B2 (en) LIGHT SOURCE DEVICE, ENDOSCOPE DEVICE, AND LIGHT SOURCE CONTROL METHOD
JP2002005989A (en)Deterioration determining method for electric power semiconductor element
CN102695326B (en)Controller with protection function and light emitting diode driving circuit
JP2007109747A (en) LED lighting control device
US20240237801A1 (en)Modulation techniques for prolonging battery life in a battery-powered hair dryer
JP2004296736A (en)Light emitting device
EP1701589A1 (en)Electric circuit and method for monitoring a temperature of a light emitting diode
US9326349B2 (en)LED, testing method and article
TWI566443B (en)Method for heat dissipation of led and lighting device
KR20190051047A (en) Lamp systems including gas discharge lamps and operating methods adapted thereto
JP6564594B2 (en) Light source device
US20240266800A1 (en)Control of laser sources
JP5545082B2 (en) Lamp drive device
JP2010056219A (en)Method of controlling junction temperature of semiconductor light-emitting element
JP2006013171A (en)Light irradiation device
WO2010049882A2 (en)Lighting unit with temperature protection
KR20110005550A (en) LED Driver and Lighting

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20050318

A711Notification of change in applicant

Free format text:JAPANESE INTERMEDIATE CODE: A712

Effective date:20061219

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20080201

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20080227

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20080702


[8]ページ先頭

©2009-2025 Movatter.jp