Movatterモバイル変換


[0]ホーム

URL:


JP2004254085A - Bandpass filter, and transmission and reception device - Google Patents

Bandpass filter, and transmission and reception device
Download PDF

Info

Publication number
JP2004254085A
JP2004254085AJP2003042413AJP2003042413AJP2004254085AJP 2004254085 AJP2004254085 AJP 2004254085AJP 2003042413 AJP2003042413 AJP 2003042413AJP 2003042413 AJP2003042413 AJP 2003042413AJP 2004254085 AJP2004254085 AJP 2004254085A
Authority
JP
Japan
Prior art keywords
semi
resonator
inner conductor
coaxial resonator
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042413A
Other languages
Japanese (ja)
Inventor
Yuji Takahashi
雄治 高橋
Tomomi Suzuki
知視 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin CorpfiledCriticalNEC Tokin Corp
Priority to JP2003042413ApriorityCriticalpatent/JP2004254085A/en
Publication of JP2004254085ApublicationCriticalpatent/JP2004254085A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bandpass filter with suppressed deterioration in a filter damping characteristic and reflection characteristic caused by temperature change, and to provide a transmission and reception device with suppressed disturbance of input-output impedance as radio equipment. <P>SOLUTION: The five-stage bandpass filter has one multimode dielectric resonator 13 and half coaxial resonators arranged outside the dielectric resonator 13. A shielding metal body 101 that is common to the resonators is made of aluminum material, an internal conductor 14 in the half coaxial resonator on the input side is made of ferrous material, and an internal conductor 15 in a half coaxial resonator on the output side is made of invar alloy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は、無線通信基地局装置などに用いられる多重モード誘電体共振器と半同軸型共振器を使った帯域通過フィルタおよび送受信共用器に関する。
【0002】
【従来の技術】
無線通信基地局装置などに用いられる帯域通過フィルタや送受信共用器は、設置される環境条件や装置の運用条件が厳しい。従って、温度変化による中心周波数の変化や反射特性の低下を少なくする必要がある。
【0003】
高い選択性を持つ多重モード誘電体共振器と半同軸共振器を組み合わせた一般的な帯域通過フィルタの構成例を図1に示す。図1は、入力側1段目に半同軸共振器と、その次に多重モード誘電体共振器と、最終段(出力側)に半同軸共振器を用い、入出力整合用の結合棒を介して構成した5段の帯域通過フィルタの斜視図である。図1において、11は遮蔽金属ケース、12は遮蔽金属カバー、13は多重モード誘電体共振器、14および15は半同軸共振器の内部導体、16は入出力結合棒、そして17は入出力端子である。
【0004】
この場合、遮蔽金属ケース11は、加工性と重量の面からアルミニウム材が使用される。この時、多重モード誘電体共振器は、温度係数τが0〜3ppm/℃のものが用いられている。そして、半同軸共振器の内部導体14および15は、電気特性の面からインバー合金材が用いられる。
【0005】
図2は、入力側1段目に半同軸共振器とその次の段に多重モード誘電体共振器を対称に2個と、最終段(出力側)に半同軸共振器を用い、入出力整合用の結合棒を介して構成した8段の通過帯域フィルタを示す斜視図である。図2において、201は遮蔽金属体、21は遮蔽金属ケース、22は遮蔽金属カバー、23は多重モード誘電体共振器、24は半同軸共振器の内部導体、26は入出力結合棒、そして27は入出力端子である。
【0006】
この場合も半同軸共振器の内部導体24には、インバー合金材が用いられていた。
【0007】
以上のような従来例の帯域通過フィルタやこれを用いた送受信共用器では、温度変化に対して、多重モード誘電体共振器の周波数変化と半同軸共振器の周波数変化が追従しないため、図6に示すように、フィルタ減衰特性の低下が生じたり、反射特性の低下が生じて、無線装置全体としての入出力インピーダンスの乱れの原因となっていた。ここで、図6は伝送特性S21と反射特性S11を示し、図6(a)、図6(b)、および図6(c)は、それぞれ、25℃、70℃、および−30℃の場合を示す。
【0008】
このような温度による特性変化を補償するために、次の特許文献1には外部導体の内壁面に設けた金属ループを、電気的制御により、開ループ状態または閉ループ状態に制御することにより、フィルタ減衰特性および反射特性の温度変化を抑制する技術が開示されている。
【0009】
【特許文献1】
特開平11−88012号公報
【0010】
【発明が解決しようとする課題】
従来の多重モード誘電体共振器と半同軸共振器を組み合わせ用いた帯域通過フィルタでは、多重モード誘電体共振器と半同軸共振器の温度変化による共振周波数の変化量が異なり、常温に比べてフィルタ減衰特性と反射特性が低下していた。従って、帯域通過フィルタと無線装置の間にアイソレータを挿入することや、接続後の再調整が必要であった。また、特許文献1に示されたような、特性のフィードバックによる電気的制御手段が必要であった。
【0011】
そこで、本発明の課題は、簡略にして環境温度変化や運用温度変化によるフィルタ減衰特性と反射特性の低下を抑制し、無線装置としての入出力インピーダンスの乱れを抑制した帯域通過フィルタおよび送受信共用器を提供することにある。
【0012】
【課題を解決するための手段】
本発明の第1の構成の帯域通過フィルタは、1個の多重モード誘電体共振器とその外側に半同軸共振器を配置した5段以上の帯域通過フィルタであって、前記共振器に共通する遮蔽金属体がアルミニウム材であり、入力側における少なくとも1つの前記半同軸共振器は、鉄材の内部導体と、この内部導体とは同軸上に配設された調整ねじ棒とを備え、出力側における少なくとも1つの前記半同軸共振器はインバー合金材の内部導体と、この内部導体に垂直に配設された調整ねじ棒とを備えることを特徴とする。
【0013】
また、本発明の第2の構成の帯域通過フィルタは、2個の多重モード誘電体共振器を対称に配置し、その外側に半同軸共振器を配置した8段以上の帯域通過フィルタであって、前記共振器に共通する遮蔽金属体がアルミニウム材であり、入力側および出力側のそれぞれの少なくとも1つの前記半同軸共振器は、鉄材の内部導体と、この内部導体とは同軸上に配設された調整ねじ棒とを備えることを特徴とする。
【0014】
本発明の送受信共用器は、前記第1または第2の構成の帯域通過フィルタを用いてなることを特徴とする。
【0015】
次に本発明の作用を説明する。従来は、多重モード誘電体共振器の温度係数τが0〜3ppm/℃であるので、半同軸共振器の内部導体も線膨張係数の小さい材料を用いれば良いと考えられていた。しかし、半同軸共振器においては、図4および図5のように、内部導体開放端で空気ギャップによる静電容量を作り、同調周波数を調整している。内部導体の長さによる周波数変化を小さくしても、温度変化によってギャップ長が変化するため、半同軸共振器の同調周波数の変化量は、誘電体共振器の周波数変化量と同じにはならない。
【0016】
本発明では、遮蔽金属ケースがアルミニウム材である場合に、半同軸共振器と誘電体共振器の温度による同調周波数の変化量をほぼ同じにするのに最適な半同軸共振器の内部導体の材質が用いられている。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0018】
(実施の形態1)本実施の形態1における5段の帯域通過フィルタの構造は図1に示すとおりである。
【0019】
ここで用いる半同軸共振器の同調容量Cを求める計算式は、次式(1)のようになる。
【0020】
C=1/{ω・Z・tan(ω・L/V)} ……(1)
ただし、ω=2πfであり、f:同調周波数(Hz)、Z:共振器の特性インピーダンス(Ω)、L:半同軸共振器の内部導体の長さ(m)、V:光速(m/s)である。
【0021】
また、ギャップ長による静電容量Cの近似式は、次式(2)のようになる。
【0022】
=8.854×10−12×(S/G) ……(2)
ただし、S:対向面積、G:ギャップ長である。
【0023】
上式(1)、(2)を基に、図1または図2のA−A線における半同軸共振器の断面図である図4を参照して、半同軸共振器の温度特性を説明する。図4に示すように、調整ねじ棒31は内部導体14または24の同軸上に配設されている。温度が上昇した場合、遮蔽金属ケースがLだけ伸びる。それによりギャップGは広がる。この時、調整ねじ棒31もLだけ伸びるが、L≫Lであるので無視できる。また、遮蔽金属ケースの伸びLによって特性インピーダンスZが変化するが、これも無視できる。従って、ギャップGの変化により同調容量CG1は小さくなり、同調周波数は高くなる。
【0024】
しかしながら、半同軸共振器の内部導体も温度上昇によりLだけ伸びるため、同調容量CG1の変化量は、その分だけ少なく、同調周波数の変化量もその分だけ少なくなる。
【0025】
次に、温度が下降した場合、上昇する場合と反対の考えでギャップ長の変化により同調周波数は低くなるが、半同軸共振器の内部導体が縮むことにより同調周波数の変化量はその分だけ少なくなる。
【0026】
このように、それぞれの金属材料の線膨張係数に対して、半同軸共振器の内部導体と調整ねじ棒の間のギャップ長の変化による同調周波数の変化量が、内部導体の長さが変化することによる同調周波数の変化量とほぼ一致するような材料を選択すると、同調周波数の温度変化を抑制することができる。
【0027】
他方、図1のB−B線における半同軸共振器の断面図である図5のように、半同軸共振器の内部導体の遮蔽金属ケースに取り付けた向きが90°異なり、調整ねじ棒と内部導体が垂直に配設された場合には、ギャップ長GとGが変化する。このため、温度が変化したときに対処して半同軸共振器の内部導体には図4の場合よりも、線膨張係数の小さい材料を用いなければならない。
【0028】
従って、図1に示す構造の5段の帯域通過フィルタでは、遮蔽金属ケース11と遮蔽金属カバー12からなる遮蔽金属体101がアルミニウム材のとき、同調容量を0.15pF程度、誘導しなければならない半同軸共振器の内部導体の材料には、入力側(図4のタイプ)が鉄材、出力側(図5のタイプ)が線膨張係数の小さいインバー合金材を用いる。
【0029】
このようにして得られた帯域通過フィルタの伝送特性S21および反射特性S11を図3に示す。ここで、図3(a)、図3(b)、および図3(c)は、それぞれ、25℃、70℃、および−30℃の場合を示す。従来例の図6の特性例に比べると、反射特性の低下が抑えられている。
【0030】
ところで、入出力側に半同軸共振器を加えた6段以上の帯域通過フィルタにおいても、図4の構造の半同軸共振器については、半同軸共振器の内部導体に鉄材を用いるとよく、図5の構造の半同軸共振器については、半同軸共振器の内部導体にインバー材を用いるとよい。
【0031】
(実施の形態2)他方、図2に示した8段の帯域通過フィルタでは、半同軸共振器は入出力側ともに図4に示す構造をとる。従って、この場合の半同軸共振器の内部導体の材料は鉄材が最適である。
【0032】
さらに、入出力側に半同軸共振器を追加して得られる9段以上の帯域通過フィルタにおける半同軸共振器の内部導体についても、図4の構造の半同軸共振器については、内部導体に鉄材を用いるとよい。
【0033】
また、本発明による帯域通過フィルタを、送信用の帯域通過フィルタおよび受信用の帯域通過フィルタとして用い、アンテナ側で結合すると、基地局用の無線通信装置の送信側と受信側でアンテナを共用するための送受信共用器が得られる。このようにして、入出力インピーダンスの温度変動が抑制された本発明の送受信共用器が得られる。
【0034】
【発明の効果】
以上に説明したとおり、本発明の多重モード誘電体共振器と半同軸共振器を用いた帯域通過フィルタおよび送受信共用器は、環境温度変化や運用温度変化に対してフィルタ減衰特性および反射特性の低下が少ないので、装置全体での特性低下が抑えられる。従って、特性再調整やアイソレータの使用をなくして、安価なものができる。
【図面の簡単な説明】
【図1】5段の帯域通過フィルタを示す斜視図。
【図2】8段の帯域通過フィルタを示す斜視図。
【図3】本発明による5段の帯域通過フィルタの特性図。図3(a)は25℃の場合、図3(b)は70℃の場合、図3(c)は−30℃の場合を示す。
【図4】図1または図2のA−A線における半同軸共振器の断面図。
【図5】図1のB−B線における半同軸共振器の断面図。
【図6】従来の5段の帯域通過フィルタにおける特性図。図6(a)は25℃の場合、図6(b)は70℃の場合、図6(c)は−30℃の場合を示す。
【符号の説明】
11,21 遮蔽金属ケース
12,22 遮蔽金属カバー
13,23 多重モード誘電体共振器
14,15,24 内部導体
16,26 入出力結合棒
17,27 入出力端子
31 調整ねじ棒
101,201 遮蔽金属体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bandpass filter using a multi-mode dielectric resonator and a semi-coaxial resonator used in a wireless communication base station device and the like, and a duplexer.
[0002]
[Prior art]
A band-pass filter and a duplexer used in a wireless communication base station device or the like have severe environmental conditions and operating conditions for the device. Therefore, it is necessary to reduce a change in center frequency and a decrease in reflection characteristics due to a change in temperature.
[0003]
FIG. 1 shows a configuration example of a general band-pass filter combining a multi-mode dielectric resonator with high selectivity and a semi-coaxial resonator. In FIG. 1, a semi-coaxial resonator is used in the first stage on the input side, a multi-mode dielectric resonator is used next, and a semi-coaxial resonator is used in the final stage (output side). FIG. 5 is a perspective view of a five-stage bandpass filter configured as described above. In FIG. 1, 11 is a shielding metal case, 12 is a shielding metal cover, 13 is a multi-mode dielectric resonator, 14 and 15 are inner conductors of a semi-coaxial resonator, 16 is an input / output coupling rod, and 17 is an input / output terminal. It is.
[0004]
In this case, theshielding metal case 11 is made of an aluminum material in terms of workability and weight. At this time, a multimode dielectric resonator having a temperature coefficient τf of 0 to 3 ppm / ° C. is used. Theinner conductors 14 and 15 of the semi-coaxial resonator are made of an Invar alloy material from the viewpoint of electrical characteristics.
[0005]
FIG. 2 shows input-output matching using a semi-coaxial resonator in the first stage on the input side, two multi-mode dielectric resonators in the next stage symmetrically, and a semi-coaxial resonator in the final stage (output side). FIG. 6 is a perspective view showing an eight-stage pass band filter configured via a coupling rod for use in the present invention. 2,reference numeral 201 denotes a shielding metal body, 21 denotes a shielding metal case, 22 denotes a shielding metal cover, 23 denotes a multi-mode dielectric resonator, 24 denotes an inner conductor of a semi-coaxial resonator, 26 denotes an input / output coupling rod, and 27 Is an input / output terminal.
[0006]
Also in this case, an Invar alloy material was used for theinner conductor 24 of the semi-coaxial resonator.
[0007]
In the above-described conventional band-pass filter and the duplexer using the same, the frequency change of the multi-mode dielectric resonator and the frequency change of the semi-coaxial resonator do not follow the temperature change. As shown in (1), the filter attenuation characteristic is reduced or the reflection characteristic is reduced, causing the input / output impedance of the wireless device as a whole to be disturbed. Here, FIG. 6 shows the transmission characteristicsS 21 and the reflection characteristicS 11, FIG. 6 (a), the FIG. 6 (b), the and FIG. 6 (c), respectively, 25 ° C., 70 ° C., and -30 ° C. The case of is shown.
[0008]
In order to compensate for such a change in characteristics due to temperature, the following Patent Document 1 discloses a filter in which a metal loop provided on an inner wall surface of an outer conductor is controlled to an open loop state or a closed loop state by electrical control. A technique for suppressing temperature changes in the attenuation characteristic and the reflection characteristic is disclosed.
[0009]
[Patent Document 1]
JP-A-11-88012
[Problems to be solved by the invention]
In a conventional bandpass filter using a combination of a multi-mode dielectric resonator and a semi-coaxial resonator, the amount of change in the resonance frequency due to a temperature change between the multi-mode dielectric resonator and the semi-coaxial resonator is different. Attenuation characteristics and reflection characteristics were reduced. Therefore, it is necessary to insert an isolator between the band-pass filter and the wireless device, and to perform readjustment after connection. Further, an electric control means based on characteristic feedback as shown in Patent Document 1 is required.
[0011]
Therefore, an object of the present invention is to provide a band-pass filter and a duplexer that simplify and suppress the deterioration of filter attenuation characteristics and reflection characteristics due to environmental temperature changes and operating temperature changes, and suppress disturbance of input / output impedance as a wireless device. Is to provide.
[0012]
[Means for Solving the Problems]
The band-pass filter according to the first configuration of the present invention is a band-pass filter having five or more stages in which one multi-mode dielectric resonator and a semi-coaxial resonator are arranged outside thereof, and is common to the resonators. The shielding metal body is an aluminum material, and at least one of the semi-coaxial resonators on the input side includes an inner conductor of an iron material, and an adjusting screw rod disposed coaxially with the inner conductor, and an output screw on the output side. At least one of the semi-coaxial resonators is provided with an inner conductor of an Invar alloy material and an adjusting screw bar arranged perpendicular to the inner conductor.
[0013]
The bandpass filter according to the second configuration of the present invention is an eight-stage or more bandpass filter in which two multi-mode dielectric resonators are symmetrically arranged and a semi-coaxial resonator is arranged outside thereof. The shielding metal body common to the resonator is an aluminum material, and at least one of the semi-coaxial resonators on each of an input side and an output side is provided with an inner conductor made of an iron material and the inner conductor arranged coaxially. And a set adjustment screw rod.
[0014]
A duplexer according to the present invention is characterized by using the bandpass filter of the first or second configuration.
[0015]
Next, the operation of the present invention will be described. Conventionally, since the temperature coefficient τf of the multi-mode dielectric resonator is 0 to 3 ppm / ° C., it has been considered that a material having a small linear expansion coefficient may be used for the inner conductor of the semi-coaxial resonator. However, in the semi-coaxial resonator, as shown in FIGS. 4 and 5, a capacitance is created by an air gap at the open end of the inner conductor, and the tuning frequency is adjusted. Even if the frequency change due to the length of the internal conductor is reduced, the change in the tuning frequency of the semi-coaxial resonator is not the same as the frequency change of the dielectric resonator because the gap length changes due to the temperature change.
[0016]
According to the present invention, when the shielding metal case is made of an aluminum material, the material of the inner conductor of the semi-coaxial resonator which is optimal to make the amount of change in the tuning frequency due to the temperature of the semi-coaxial resonator and the dielectric resonator substantially the same. Is used.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Embodiment 1) The structure of a five-stage bandpass filter according to Embodiment 1 is as shown in FIG.
[0019]
The equation for calculating the tuning capacitance C of the semi-coaxial resonator used here is as shown in the following equation (1).
[0020]
C = 1 / {ω · Z0 · tan (ω · L0 / V0 )} (1)
Here, ω = 2πf0 , f0 : tuning frequency (Hz), Z0 : characteristic impedance (Ω) of the resonator, L0 : length (m) of the inner conductor of the semi-coaxial resonator, V0 : The speed of light (m / s).
[0021]
Further, the approximate expression of the capacitance Cg by the gap length is given by the following equation (2).
[0022]
Cg = 8.854 × 10−12 × (S / G) (2)
Here, S is the facing area, and G is the gap length.
[0023]
Based on the above equations (1) and (2), the temperature characteristic of the semi-coaxial resonator will be described with reference to FIG. 4 which is a cross-sectional view of the semi-coaxial resonator taken along the line AA in FIG. 1 or FIG. . As shown in FIG. 4, the adjustingscrew rod 31 is disposed coaxially with theinner conductor 14 or 24. If the temperature rises, shielded metal case extends only LT. Whereby the gapG 1 is spread. At this time, theadjustment screw rod 31 is also extending onlyLN, can be ignored because it isL T »LN. Also, a change in the characteristic impedance Z0 by the elongation LY shielding metal case, which can be ignored. Therefore, the tuning capacitor CG1 by a change in the gap G1 is small, the tuning frequency becomes high.
[0024]
However, since the extending only L1 by the internal conductor of the semi-coaxial resonator temperature rise, the variation of the tuning capacitor CG1 is less by that amount, the variation of the tuning frequency is also reduced by that amount.
[0025]
Next, when the temperature decreases, the tuning frequency decreases due to the change in the gap length in the opposite idea to the case where the temperature rises, but the change in the tuning frequency decreases by that much due to the shrinkage of the internal conductor of the semi-coaxial resonator. Become.
[0026]
As described above, for the linear expansion coefficient of each metal material, the amount of change in the tuning frequency due to the change in the gap length between the inner conductor of the semi-coaxial resonator and the adjusting screw rod changes the length of the inner conductor. By selecting a material that substantially matches the change amount of the tuning frequency due to this, it is possible to suppress the temperature change of the tuning frequency.
[0027]
On the other hand, as shown in FIG. 5 which is a cross-sectional view of the semi-coaxial resonator taken along the line BB in FIG. 1, the direction in which the inner conductor of the semi-coaxial resonator is attached to the shielding metal case differs by 90 °. If the conductor is disposed vertically, a change in gap length G2 and G3. For this reason, a material having a smaller coefficient of linear expansion than the case of FIG. 4 must be used for the inner conductor of the semi-coaxial resonator in response to a change in temperature.
[0028]
Therefore, in the five-stage bandpass filter having the structure shown in FIG. 1, when the shielding metal body 101 including the shieldingmetal case 11 and the shieldingmetal cover 12 is made of aluminum, the tuning capacitance must be induced by about 0.15 pF. As the material of the inner conductor of the semi-coaxial resonator, an iron material is used on the input side (type in FIG. 4), and an Invar alloy material having a small linear expansion coefficient on the output side (type in FIG. 5).
[0029]
Shows the transmission characteristics S21 and the reflection characteristic S11 of the band-pass filter obtained in this manner in FIG. Here, FIG. 3A, FIG. 3B, and FIG. 3C show the cases of 25 ° C., 70 ° C., and −30 ° C., respectively. Compared with the characteristic example in FIG. 6 of the conventional example, a decrease in the reflection characteristic is suppressed.
[0030]
By the way, even in a band-pass filter having six or more stages in which a semi-coaxial resonator is added to the input / output side, the semi-coaxial resonator having the structure shown in FIG. As for the semi-coaxial resonator having the structure of No. 5, it is preferable to use an invar material for the inner conductor of the semi-coaxial resonator.
[0031]
Embodiment 2 On the other hand, in the eight-stage bandpass filter shown in FIG. 2, the semi-coaxial resonator has the structure shown in FIG. 4 on both the input and output sides. Therefore, the material of the inner conductor of the semi-coaxial resonator in this case is optimally iron.
[0032]
Further, the internal conductor of the semi-coaxial resonator in the band-pass filter having nine or more stages obtained by adding the semi-coaxial resonator on the input / output side, and the semi-coaxial resonator having the structure of FIG. Should be used.
[0033]
Further, when the band-pass filter according to the present invention is used as a band-pass filter for transmission and a band-pass filter for reception and coupled on the antenna side, the antenna is shared between the transmission side and the reception side of the base station radio communication apparatus. Transmission / reception duplexer is obtained. In this way, the duplexer of the present invention in which the temperature fluctuation of the input / output impedance is suppressed is obtained.
[0034]
【The invention's effect】
As described above, the band-pass filter and the duplexer using the multi-mode dielectric resonator and the semi-coaxial resonator of the present invention can reduce the filter attenuation characteristics and the reflection characteristics with respect to environmental temperature changes and operating temperature changes. , The deterioration of the characteristics of the entire apparatus can be suppressed. Therefore, it is not necessary to readjust the characteristics or use an isolator, so that an inexpensive device can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a five-stage bandpass filter.
FIG. 2 is a perspective view showing an eight-stage band-pass filter.
FIG. 3 is a characteristic diagram of a five-stage bandpass filter according to the present invention. FIG. 3A shows the case at 25 ° C., FIG. 3B shows the case at 70 ° C., and FIG. 3C shows the case at −30 ° C.
FIG. 4 is a sectional view of the semi-coaxial resonator taken along line AA in FIG. 1 or FIG. 2;
FIG. 5 is a sectional view of the semi-coaxial resonator taken along the line BB in FIG. 1;
FIG. 6 is a characteristic diagram of a conventional five-stage bandpass filter. 6 (a) shows the case at 25 ° C., FIG. 6 (b) shows the case at 70 ° C., and FIG. 6 (c) shows the case at −30 ° C.
[Explanation of symbols]
11, 21Shielding metal case 12, 22Shielding metal cover 13, 23 Multi-modedielectric resonator 14, 15, 24Inner conductor 16, 26 I /O coupling rod 17, 27 I /O terminal 31Adjustment screw rod 101, 201 Shielding metal body

Claims (3)

Translated fromJapanese
1個の多重モード誘電体共振器とその外側に半同軸共振器を配置した5段以上の帯域通過フィルタであって、前記共振器に共通する遮蔽金属体がアルミニウム材であり、入力側における少なくとも1つの前記半同軸共振器は、鉄材の内部導体と、この内部導体とは同軸上に配設された調整ねじ棒とを備え、出力側における少なくとも1つの前記半同軸共振器はインバー合金材の内部導体と、この内部導体に垂直に配設された調整ねじ棒とを備えることを特徴とする帯域通過フィルタ。A five-stage or more band-pass filter in which one multi-mode dielectric resonator and a semi-coaxial resonator are arranged outside the dielectric resonator, wherein a shielding metal body common to the resonator is an aluminum material, and One of the semi-coaxial resonators includes an inner conductor made of an iron material, and an adjusting screw rod disposed coaxially with the inner conductor. At least one of the semi-coaxial resonators on the output side is made of an invar alloy material. A band-pass filter comprising: an inner conductor; and an adjusting screw bar disposed perpendicular to the inner conductor.2個の多重モード誘電体共振器を対称に配置し、その外側に半同軸共振器を配置した8段以上の帯域通過フィルタであって、前記共振器に共通する遮蔽金属体がアルミニウム材であり、入力側および出力側のそれぞれの少なくとも1つの前記半同軸共振器は、鉄材の内部導体と、この内部導体とは同軸上に配設された調整ねじ棒とを備えることを特徴とする帯域通過フィルタ。An eight-stage or more band-pass filter in which two multi-mode dielectric resonators are symmetrically arranged and a semi-coaxial resonator is arranged outside thereof, wherein a shielding metal body common to the resonators is an aluminum material. Wherein at least one of the semi-coaxial resonators on the input side and the output side comprises an inner conductor made of a ferrous material and an adjusting screw bar arranged coaxially with the inner conductor. filter.請求項1または2に記載の帯域通過フィルタを用いてなることを特徴とする送受信共用器。A transmission / reception duplexer using the bandpass filter according to claim 1.
JP2003042413A2003-02-202003-02-20Bandpass filter, and transmission and reception devicePendingJP2004254085A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2003042413AJP2004254085A (en)2003-02-202003-02-20Bandpass filter, and transmission and reception device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2003042413AJP2004254085A (en)2003-02-202003-02-20Bandpass filter, and transmission and reception device

Publications (1)

Publication NumberPublication Date
JP2004254085Atrue JP2004254085A (en)2004-09-09

Family

ID=33025698

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003042413APendingJP2004254085A (en)2003-02-202003-02-20Bandpass filter, and transmission and reception device

Country Status (1)

CountryLink
JP (1)JP2004254085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2006073027A1 (en)*2005-01-072006-07-13Murata Manufacturing Co., Ltd.Cavity reentrant cylindrical resonator, filter using the resonator, and communication equipment
WO2009067056A1 (en)*2007-11-202009-05-28Telefonaktiebolaget Lm Ericsson (Publ)A filter for use in a wireless communications network
JP2011035792A (en)*2009-08-042011-02-17Tamagawa Electronics Co LtdSemi-coaxial resonator and filter device
JP2011097463A (en)*2009-10-302011-05-12Nec Toshiba Space Systems LtdCoaxial band-pass filter, coaxial resonator and microwave communication equipment
RU2620924C1 (en)*2016-03-162017-05-30Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ")Dielectric resonator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2006073027A1 (en)*2005-01-072006-07-13Murata Manufacturing Co., Ltd.Cavity reentrant cylindrical resonator, filter using the resonator, and communication equipment
US7400221B2 (en)2005-01-072008-07-15Murata Manufacturing Co., Ltd.Semi-coaxial cavity resonator, filter using the same, and communication apparatus using the same
WO2009067056A1 (en)*2007-11-202009-05-28Telefonaktiebolaget Lm Ericsson (Publ)A filter for use in a wireless communications network
JP2011035792A (en)*2009-08-042011-02-17Tamagawa Electronics Co LtdSemi-coaxial resonator and filter device
JP2011097463A (en)*2009-10-302011-05-12Nec Toshiba Space Systems LtdCoaxial band-pass filter, coaxial resonator and microwave communication equipment
RU2620924C1 (en)*2016-03-162017-05-30Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ")Dielectric resonator

Similar Documents

PublicationPublication DateTitle
US6150898A (en)Low-pass filter with directional coupler and cellular phone
US6052041A (en)TM mode dielectric resonator and TM mode dielectric filter and duplexer using the resonator
US4578655A (en)Tuneable ultra-high frequency filter with mode TM010 dielectric resonators
JP3239552B2 (en) Dielectric resonator device
US7432786B2 (en)High frequency filter
JP5320207B2 (en) Semi-coaxial resonator and filter device
EP2800201B1 (en)High frequency filter
US6529094B1 (en)Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
GB2273393A (en)Multi-passband,dielectric filter construction
JP2004254085A (en)Bandpass filter, and transmission and reception device
EP0508733A2 (en)Adjustable ceramic filter
JP4643681B2 (en) Resonator, waveguide filter
EP1315228A1 (en)Dielectric filter
US4313097A (en)Image frequency reflection mode filter for use in a high-frequency receiver
US6677836B2 (en)Dielectric filter device having conductive strip removed for improved filter characteristics
CN1261987A (en)Temperature compensation structure for resonator cavity
JP3633280B2 (en) Half-wave resonator type high frequency filter
KR101897625B1 (en)(BPF(BandPass Filter) using Triple Mode Dielectric Resonator and NRN(Non-resonating node) Stub
US20120206217A1 (en)Band-Elimination Filter
KR20010021163A (en)Dielectric Duplexer and Communication Apparatus
JP2004349981A (en)Resonator device, filter, compound filter device, and communication apparatus
JP2011097463A (en)Coaxial band-pass filter, coaxial resonator and microwave communication equipment
US6011452A (en)Filtering arrangement with impedance step resonators
JP2002043805A (en)Band-pass filter
KR100258788B1 (en)Microwave band pass filters made with an half-cut coaxial resonators

[8]ページ先頭

©2009-2025 Movatter.jp