【0001】
【発明の属する技術分野】
本発明は、複数のRFID(Radio Frequency Identification)素子を、長く延びた部材の長手方向に、間隔をあけて設けて構成された連長体、その製造方法及び上記連長体が設けられたケーブルに係り、特に、上記長く延びた部材がパイプ状の部材であるものに関する。
【0002】
【従来の技術】
従来、たとえば、敷設されている多数のメタルケーブルや光ファイバケーブルの中から、目的とするケーブルのみを識別する方法として、上記各ケーブルの外皮(シース)表面に印字を施し、または上記各ケーブルにタグを取り付け、ケーブルを識別する方法が知られている。
【0003】
ここで、上記印字は、製造者名、製造年月日、ケーブルの品名、ケーブルの長さ等の情報を、インクや熱転写レーザ等で、上記ケーブルの外皮表面に施すことによって行われている。また、上記タグには、上記印字されているものとほぼ同様な情報が、たとえば刻印されている。そして、上記タグは上記ケーブルの外皮に貼り付けられ、または上記ケーブルにたとえば金属線を用いて吊り下げられている。
【0004】
ところで、ケーブル表面に印字をする場合、上記ケーブルの長手方向に沿って印字がされるため、文字数が多くなると、敷設されているケーブルを長い区間にわたって露出させる必要がある。しかし、上記ケーブルが、たとえば、トラフ内に敷設され、このトラフに蓋がされている場合、上記蓋を長い区間にわたって取り外す必要があり、さらに上記トラフが土砂の中に埋設されていると、上記土砂を長い区間にわたって取り除く必要があり、上記ケーブルを露出させるために多大な工数が必要になる。
【0005】
そこで、上記印字をする場合、上記ケーブルの長手方向に沿ってされる印字の長さを極力短くすることが望ましいが、このように印字の長さを制限すると、上記ケーブルに関して必要な情報の総てを、上記ケーブルの外皮に印字することが困難であるという問題がある。
【0006】
また、上記ケーブルの外皮表面に印字された文字や記号等の、上記ケーブルに関する情報は、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0007】
さらに、タグを上記ケーブルに設ける場合、長尺のケーブルに一定の間隔で、タグを多数個設けなければならず、タグを設ける際の工数がかかり、また、上記印字をする場合と同様に、タグに多くの情報を書き込むことは困難であり、さらに、上記ケーブルに設けたタグがケーブルから離脱し、またはタグに記載されている情報が時間の経過とともにかすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0008】
そこで、上述のようなケーブル外皮表面への印字やタグに代えて、ケーブル外皮表面に、たとえば、QRコード(二次元バーコード)を貼り付けた構成のケーブルが開示されている(たとえば特許文献1)。
【0009】
【特許文献1】
特開2001−21730号公報
【0010】
【発明が解決しようとする課題】
ところで、上記特許文献1に示すケーブルによれば、このケーブルに関する情報がQRコード化されているので、上述のように印字やタグを使用する場合よりも、上記ケーブルに関する情報を大量に格納することができる。
【0011】
しかし、上記QRコード化された情報は、上記ケーブルの表面に設けられているので、上述のように印字をした場合と同様に、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい、またはケーブル表面からはがれてしまい判読不可能になる場合があるという問題がある。
【0012】
本発明は、上記問題点に鑑みてなされたものであり、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少ないケーブルおよびこのケーブルへの設置が容易な連長体およびこの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の本発明は、弾性を備え長く延びたパイプ状部材と、上記パイプ状部材の長手方向に連続して設けられたスリットと、上記パイプ状部材の内部で、上記パイプ状部材の長手方向に間隔をあけて設けられた複数のRFID素子とを有する連長体である。
【0014】
請求項2に記載の本発明は、請求項1に記載の連長体において、上記パイプ状部材は耐熱性樹脂で構成され、上記各RFID素子は円柱状に形成され、上記パイプ状部材の内径は、上記円柱状のRFID素子の外径と同じ寸法または上記円柱状のRFID素子の外径よりも僅かに大きな寸法である連長体である。
【0015】
請求項3に記載の本発明は、ケーブルコアと、弾性を備え長く延びたパイプ状部材と、上記パイプ状部材の長手方向に連続して設けられたスリットと、上記パイプ状部材の内部で、上記パイプ状部材の長手方向に間隔をあけて設けられた複数のRFID素子とを具備していると共に、上記ケーブルコアに一体化して設けられた連長体と、上記ケーブルコアを被覆しているシースとを有するケーブルである。
【0016】
請求項4に記載の本発明は、弾性を備え長く延びたパイプ状部材と、このパイプ状部材の長手方向に間隔をあけて設けられた複数のRFID素子とで構成された連長体の製造方法において、上記各RFID素子を上記パイプ状部材に挿入するために、上記パイプ状部材の長手方向に連続して設けられているスリットの一部を開口する開口工程と、上記開口部に対して相対的に上記パイプ状部材をこのパイプ状部材の長手方向に移動する移動工程と、上記移動をしているときに、上記開口部を介して、上記RFID素子を間歇的に上記パイプ状部材の内部に挿入する挿入工程とを有する連長体の製造方法である。
【0017】
請求項5に記載の本発明は、弾性を備え長く延びたパイプ状部材と、上記パイプ状部材の長手方向に、間隔をあけて設けられた複数のスリットと、上記各スリットの位置に応じて上記パイプ状部材の内部に設けられたRFID素子と、上記パイプ状部材の内壁面に形成され、上記各RFID素子を保持している粘着部とを有する連長体である。
【0018】
請求項6に記載の本発明は、請求項5に記載の連長体において、上記パイプ状部材は耐熱性樹脂で構成され、上記各RFID素子は、両端部が半球状である円柱状に形成されている連長体である。
【0019】
請求項7に記載の本発明は、ケーブルコアと、弾性を備え長く延びたパイプ状部材と、上記パイプ状部材の長手方向に、間隔をあけて設けられた複数のスリットと、上記各スリットの位置に応じて上記パイプ状部材の内部に設けられた複数のRFID素子と、上記パイプ状部材の内壁面に形成され、上記各RFID素子を保持している粘着部とを具備していると共に、上記ケーブルコアに一体化して設けられた連長体と、上記ケーブルコアと上記連長体とを被覆しているシースとを有するケーブルである。
【0020】
請求項8に記載の本発明は、弾性を備え長く延びたパイプ状部材と、上記パイプ状部材の長手方向に連続して設けられたスリットと、上記パイプ状部材の内部で、上記パイプ状部材の長手方向に間隔をあけて設けられた複数のRFID素子と、上記パイプ状部材の内壁面に形成され、上記各RFID素子を保持している粘着部とを有する連長体である。
【0021】
請求項9に記載の本発明は、請求項8に記載の連長体において、上記パイプ状部材は耐熱性樹脂で構成され、上記各RFID素子は円柱状に形成されている連長体である。
【0022】
請求項10に記載の本発明は、ケーブルコアと、上記パイプ状部材の長手方向に連続して設けられたスリットと、上記パイプ状部材の内部で、上記パイプ状部材の長手方向に間隔をあけて設けられた複数のRFID素子と、上記パイプ状部材の内壁面に形成され、上記各RFID素子を保持している粘着部とを備えていると共に、上記ケーブルコアに一体化して設けられた連長体と、上記ケーブルコアと上記連長体とを被覆しているシースとを有するケーブルである。
【0023】
【発明の実施の形態】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る連長体1の概略構成を示す斜視図である。
【0024】
連長体1は、弾性を備えた、長く延びたパイプ状部材3を備え、このパイプ状部材3の長手方向には、スリット5が連続して設けられている。
【0025】
また、上記パイプ状部材3の内部(円環状の外壁で囲まれている内部空間)には、複数のRFID(Radio Frequency Identification)素子7が、上記パイプ状部材3の長手方向に間隔をあけて設けられている。なお、上記RFID素子7に格納されている情報は、たとえば電磁波を媒体にして、RFIDリーダで読み取り可能になっている。また、上記各RFID素子7同士の各間隔は一定の値であってもよいし、上記各RFID素子7同士の各間隔の値は互いが異なっていてもよい。
【0026】
上記連長体1の上記パイプ状部材3は、たとえば、耐熱性樹脂(ポリアミド系樹脂、ポリイミド系樹脂、ポリエステル系樹脂等)で構成され、また、上記各RFID素子7は、たとえば両端部が半球状である円柱状に形成され、上記パイプ状部材3の内径は上記円柱状の各RFID素子7の外径と同じ寸法または上記円柱状の各RFID素子7の外径よりも僅かに大きな寸法に構成されている。たとえば、RFID素子7の外径が2.1mmである場合、上記パイプ状部材3の内径は、上記外径よりも0.2mmほど大きな2.3mmに構成してある。
【0027】
また、上記円柱状の各RFID素子7の外郭部は電磁波を通過させる硬質の部材(たとえば、ガラスやプラスチック)で構成され、上記円柱状の各RFID素子7の長手方向と上記パイプ状部材3の長手方向とがほぼ一致するように、上記円柱状の各RFID素子7が設けられている。
【0028】
図2は、上記連長体1を製造するための連長体製造装置9の概略構成を示す図である。
【0029】
連長体製造装置9は、弾性を備え長く延び、長手方向に連続したスリット5を備えたパイプ状部材3の内部に、このパイプ状部材3の長手方向に間隔をあけて複数のRFID素子7を挿入等するための装置である。
【0030】
ここで、連長体製造装置9は、基台11を備え、この基台11の上部側には、上記各RFID素子7を格納自在なRFID素子格納手段13が設けられ、また、上記基台11の上部側には、上記各RFID素子7が挿入される前の上記パイプ状部材3を格納自在な第1の格納手段15と、上記第1の格納手段15とは離隔して設けられ、上記各RFID素子7が挿入された後の上記パイプ状部材(上記第1の格納手段15に格納されているパイプ状部材と一体的に連続しているパイプ状部材)3を格納自在な第2の格納手段17とが、図示しない連結部材を介して設けられている。
【0031】
また、RFID素子格納手段13の下部側には、上記RFID素子格納手段13に格納されている各RFID素子7を上記パイプ状部材3に挿入するために、上記第1の格納手段15と上記第2の格納手段17との間で直線状に存在する上記パイプ状部材3の上記スリット5の一部に差し込み可能に構成されている供給口19が設けられており、また、上記RFID素子格納手段13と上記供給口19との間には、上記供給口19を介して、上記パイプ状部材3内に上記各RFID素子7を間歇的に供給可能な供給手段21が設けられている。
【0032】
また、上記第1の格納手段15と上記第2の格納手段17との間には、上記第1の格納手段15から上記第2の格納手段17へ上記パイプ状部材3を移動させる(搬送する)ための移動手段23が設けられている。
【0033】
ここで、上記第1の格納手段15と上記第2の格納手段17とは、巻き取ることによって上記パイプ状部材3を格納可能なドラムで形成され、互いがほぼ平行で、水平方向に延びた各回転軸15A、17Aを回転中心にして、回転自在になっている。
【0034】
移動手段23は、上下方向で互いが対向している履帯23A、23Bを備え、これらの履帯23A、23Bの間で、上記パイプ状部材3を付勢して挟み込み、履帯23A、23Bを、図示しないアクチュエータで回転することによって、上記パイプ状部材3を移動するものであり、上記移動手段23によって、上記パイプ状部材3の移動速度を律している。また、上記移動手段23には、上記パイプ状部材3の移動量を計測可能な移動量検出手段23Cが設けられている。
【0035】
供給手段21は、RFID素子格納手段13と供給口19との間の通路25内で水平方向に延伸し水平方向に移動自在な平板状のシャッタ21A、21Bを備え、上記各シャッタ21A、21Bは、シャッタ駆動部21Cに設けられているアクチュエータ(図示せず)によって移動するようになっている。
【0036】
また、シャッタ21Aの上部側にシャッタ21Bが設けられており、シャッタ21Aとシャッタ21Bとで囲繞される通路25の空間内には、RFID素子を1つだけ収納できるようになっている。
【0037】
そして、図2に示す状態、すなわち、シャッタ21Aとシャッタ21Bとの間に、1つのRFID素子7Aが存在し、シャッタ21Bの上部に多数のRFID素子7が存在し、シャッタ21Aとシャッタ21Bとが、通路25を塞いでいる状態から、シャッタ21Bが通路25を閉じたまま、シャッタ21Aが通路25を解放すると、供給口19を介して、RFID素子7Aがパイプ状部材3内に供給され、続いて、シャッタ21Aで通路25を塞いで、シャッタ21Bが通路25を解放すると、RFID素子7Bが、シャッタ21Aとシャッタ21Bとの間に落下し、続いて、シャッタ21Bで通路25を塞ぐことによって、図2に示す状態と同様の状態になる。
【0038】
各シャッタ21A、21Bが上述の動作を繰り返すことによって、パイプ状部材3内にRFID素子7を1つづつ供給できるようになっている。
【0039】
また、移動量検出手段23Cで、パイプ状部材3が所定量だけ移動したことを検出した場合、移動量検出手段23が供給手段21に制御信号を送り、この制御信号に応じて、各シャッタ21A、21Bが動作することによって、所定の間隔をあけて、複数のRFID素子7が、パイプ状部材3内に供給されるようになっている。
【0040】
次に、連長体製造装置9の動作について説明する。
【0041】
連長体製造装置9の初期状態においては、RFID素子格納手段13には、複数のRFID素子7が格納され、シャッタ21Bの上部側の通路25内にも複数のRFID素子7B等が格納され、シャッタ21Aとシャッタ21Bとの間には1つのRFID素子7Aが格納されている。また、第1の格納手段15には、長く延びたパイプ状部材3であって、内部にRFID素子7が格納される前の(内部にRFID素子7が格納されていない)パイプ状部材3が、巻かれて格納されている。
【0042】
さらに、上記第1の格納手段15に格納されているパイプ状部材3の一端部側が、たとえば僅かに巻き取られていることによって、上記第2の格納手段17に固定され、パイプ状部材3が、上記第1の格納手段15から上記第2の格納手段17に向かって水平方向に直線的に延伸している。
【0043】
また、上記第1の格納手段15から上記第2の格納手段17に向かって延伸し、上記第2の格納手段17と供給口19との間におけるパイプ状部材3の中間部は、移動手段23の履帯23Aと履帯23Bとによって挟み込まれている。
【0044】
上記初期状態において、上記各RFID素子7を上記パイプ状部材に挿入するための供給口19を、パイプ状部材3のスリット5に差し込み、この差し込みによって、スリット5の一部を開口し、上記供給口19を差し込んだ状態で、上記パイプ状部材3を上記供給口19に対して(上記スリット5の上記開口部に対して)相対的に、上記パイプ状部材3の長手方向に、移動手段23を用いて移動し、この移動をしているときに、供給手段21を用いて上記供給口19(上記スリット5の上記開口部)を介して、RFID素子7を間歇的に(たとえば、移動量検出手段23Cが、パイプ状部材3が一定量移動したことを検知する度に)上記パイプ状部材3の内部に挿入する。このように動作することによって、上記パイプ状部材3内に間隔をあけて、複数のRFID素子7を設ける。
【0045】
第1の格納手段15から供給されて、内部にRFID素子が設けられたパイプ状部材3は、第2の格納手段17によって巻き取られて格納される。
【0046】
なお、上記パイプ状部材3は弾性体であるので、上記供給口19が差し込まれている近傍では、スリット5が開いているが、上記供給口19から、上記第1の格納手段15の方向や上記第2の格納手段17の方向に離れるにしたがって、スリット5は閉じる。特に、RFID素子7が挿入された後に、すなわち、上記供給口19から第2の格納手段17の方向に向かうにしたがって、スリット5が閉じるので、供給口19を介して供給されたRFID素子7は、パイプ状部材3の内部空間に設置されることになる。
【0047】
また、上記パイプ状部材3の内径が、上記RFID素子7の外径よりも僅かに大きく形成されていても、上記第2の格納手段17で巻き取ったときに、パイプ状部材3が、この長手方向の軸芯を中心にして僅かに捻れるので、すなわち、スリット5によって形成された、互いに対向している面同士が相対的に僅かにずれるので、上記パイプ状部材3の内径が僅かに小さくなり、挿入されたRFID素子7は上記パイプ状部材3で押さえ込まれ、パイプ状部材3の内部で位置ずれしないようになっている。
【0048】
次に、連長体1が設けられているケーブル27について説明する。
【0049】
図3は、連長体1が設けられているケーブル27の概略構成を示す断面図である。
【0050】
なお、上記断面図(図3)は、ケーブル27の軸方向に直角な平面でケーブル27を切断した場合の断面図である。
【0051】
ケーブル27は、内部にケーブルコア29を備え、このケーブルコア29の外側はシース31で覆われている。
【0052】
ケーブルコア29は、この中心部にケーブル27の長手方向に沿って長く設けられた抗張体33を備え、抗張体33の周りを囲むように、断面が円形状のスロット35が、ケーブル27の長手方向に沿って長く設けられている。
【0053】
スロット35の外周のほぼ等角度で分配された位置には、ケーブル27の長手方向に沿って、複数の溝39A〜39Fが設けられている。そして、上記各溝39A〜39Fのうちのたとえば1つの溝39F内に、ケーブル27の長手方向に沿って、連長体1が設けられている。また他の各溝39A〜39Eには、たとえば4芯の光ファイバテープ41が適数個設けられている。
【0054】
さらに、連長体1と光ファイバテープ41とが設けられているスロット35の外周には、上記連長体1と光ファイバテープ41とを押さえ込むための押え巻き43が横巻きされている。
【0055】
このようにして、連長体1は、ケーブルコア29に一体化されて設けられている。
【0056】
なお、格納するためにケーブル27をドラムに巻いた場合、外側に位置する光ファイバテープ41のみが延びることを防いで、各光ファイバテープ41が、ほぼ均等に延びるようにするために、上記各溝39A〜39Eは、ケーブル27の長手方向に延伸する中心軸CLに対して、平行に直進しているのではなく(図3の紙面に直角に延びているのではなく)、僅かにねじれて長手方向に延伸している。つまり、図3の紙面に対して僅かに斜めに傾いて延びている。
【0057】
そして、溝39Fも僅かにねじれて延伸しているので、連長体1のパイプ状部材3が、長手方向の軸心を中心にして僅かに捻れ、パイプ状部材3の内径が僅かに小さくなって、パイプ状部材3がRFID素子7を保持している。
【0058】
また、押え巻き43がされたケーブルコア29の外側は、長手方向の断面が円環状のシース31で被覆されている。なお、上記シース31は、たとえば、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ノンハロゲン難燃材、燃やした場合に有毒ガスを発生せず、またビニルとの分別が容易なエコ材等で構成されている。
【0059】
次に、ケーブル47について説明する。
【0060】
図4は、連長体1が設けられているケーブル47の概略構成を示す断面図である。
【0061】
なお、上記断面図(図4)は、ケーブル47の軸方向に直角な平面でケーブル47を切断した場合の断面図である。
【0062】
ケーブル47は、内部にケーブルコア49を備え、このケーブルコア49の外側はシース51で覆われている。
【0063】
ケーブルコア49は、この中心部にケーブル47の長手方向に沿って長く設けられた抗張体53を具備した、長手方向に垂直な断面が円形状のテンションメンバ55を備え、連長体1と、長手方向に垂直な断面が円形状である複数の光ファイバコード57とが、テンションメンバ55の周りを囲んで、ケーブル47の長手方向に沿って長く設けられている。換言すれば、図4に示すケーブル47の断面図では、各光ファイバコード57および連長体1が、テンションメンバ55の外周壁に接し、さらに、隣り合う各光ファイバコード57同士が互いに接し、連長体1が設けられている箇所では、この連長体1とこの連長体1と隣り合う光ファイバコード57とが互いに接している。
【0064】
さらに、図4の断面図において、連長体1の外周のうちで、テンションメンバ55から最も離れた部位と、各光ファイバコード57の各外周のうちで、テンションメンバ55から最も離れた各部位とを、互いに結んだ包絡線に沿って、上記連長体1と光ファイバコード57とを押さえ込むための押え巻き59が横巻きされている。
【0065】
このように押え巻き59がされていることによって、連長体1は、ケーブルコア49に一体化されて設けられている。
【0066】
なお、格納するためにケーブル47をドラムに巻いた場合、外側に位置する光ファイバコード57のみが延びることを防いで、各光ファイバコードが、ほぼ均等に延びるようにするため、上記光ファイバコード57と連長体1とは、ケーブル27と同様に、僅かにねじれて長手方向に延伸している。つまり、図4の紙面に対して僅かに斜めに傾いて延びている。
【0067】
そして、連長体1が僅かにねじれて延伸しているので、連長体1のパイプ状部材3が、長手方向の軸心を中心にして僅かに捻れ、パイプ状部材3の内径が僅かに小さくなって、パイプ状部材3がRFID素子7を保持している。
【0068】
また、押え巻き59がされたケーブルコア49の外側は、長手方向の断面が円環状のシース51で被覆されている。なお、上記シース51は、シース31とほぼ同様に、たとえば、ポリエチレン、ポリ塩化ビニル、ノンハロゲン難燃材、または、エコ材等で構成されている。
【0069】
連長体1によれば、パイプ状部材3の長手方向に間隔をあけて、複数のRFID素子7が配置され固定されており、連長体1が長く一体的に形成されているので、連長体1の長手方向とケーブルの長手方向とを互いにそろえて、連長体1を上記ケーブルのケーブルコアに一体化して設けることが容易になり、各RFID素子7を上記ケーブルの長手方向に間隔をあけて設ける作業が容易になる。
【0070】
また、連長体1によれば、この連長体1を製造する場合、弾性を備え長く延びたパイプ状部材3の長手方向に連続して設けられたスリット5の一部を広げて、RFID素子7を上記パイプ状部材3内に挿入し、上記RFID素子7を挿入した後に、上記開いていたスリット5を上記パイプ状部材3の復元力で閉じ、続いて、上記スリット5の上記一部とは異なる他の一部を広げて、他のRFID素子7を上記パイプ状部材3内に挿入することを繰り返すことによって、所定の間隔をあけて、パイプ状部材3内に複数のRFID素子7を挿入して設けるので、特殊な冶具や工具や装置を使わなくても、連長体1を容易に製造することができる。
【0071】
なお、上記RFID素子7の形状を円柱状にして、上記RFID素子7の側面外壁が、上記パイプ状部材3の内面壁に沿うように、上記RFID素子7を配置すれば、上記RFID素子7と上記パイプ状部材3との間の接触面積が大きくなり、上記RFID素子7をパイプ状部材3の内部に安定した状態で設置することができる。
【0072】
また、上記RFID素子7の形状を円柱状にして、さらに両端部を半球状に形成すれば、RFID素子7の外径形状において角部がなくなり、RFID素子7の強度が増すと共に、RFID素子7をパイプ状部材3内に挿入する場合、RFID素子7をパイプ状部材3に対して傾け、上記半球状部分から先にパイプ状部材3内に挿入するようにすれば、上記半球状部を挿入していくにしたがって、上記スリット5の開口量が除々に増加するので、スリット5を予め大きく開く必要はなく、RFID素子7をパイプ状部材3内に容易に挿入することができる。
【0073】
また、連長体1によれば、上記パイプ状部材3の内径が上記円柱状のRFID素子7の外径と同じ寸法または上記円柱状のRFID素子7の外径よりも僅かに大きな寸法であるので、パイプ状部材3の内部に、RFID素子7を収納するための空間が確保されており、RFID素子7をパイプ状部材3内に容易に挿入することができる。
【0074】
なお、上述のように、上記パイプ状部材3の内径が上記円柱状のRFID素子7の外径と同じ寸法または上記円柱状のRFID素子の外径よりも僅かに大きな寸法であると、パイプ状部材3内に挿入配置されたRFID素子7が、パイプ状部材3内で移動して(ずれて)しまうのではないかという懸念があるが、各RFID素子7が内部に挿入されたパイプ状部材3(連長体1)は、直線状に長く延びた状態ではなく、たとえばドラム等に巻き取った状態で保管されるため、この巻かれたときに、連長体1がこの軸線を中心にして僅かに捻れ、この捻れによって、パイプ状部材3の内径が小さくなり、内部に挿入されたRFID素子7を保持することができる。
【0075】
また、連長体1において、パイプ状部材3を耐熱性樹脂で構成すれば、連長体1の耐熱性が向上し、たとえば、RFID素子7が耐熱性を備えているにもかかわらず、パイプ状部材3が高温で先に軟化し、連長体1の形態が変化してしまうという事態を極力回避することができる。たとえば、連長体1をケーブル27のケーブルコア29に設け、このケーブルコア29を溶融した高温のシースで被覆する場合でも、連長体1のパイプ状部材3が軟化することを防止することができる。
【0076】
また、連長体1によれば、パイプ状部材3の内部に各RFID素子7が設けられることによって、各RFID素子7が保護されている。したがって、たとえば、各RFID素子7の外皮が破損しやすい部材で構成されている場合に連長体1が外力を受けても、RFID素子7が破損しにくくなっており、連長体1の取り扱いが容易になる。
【0077】
連長体製造装置9によれば、各RFID素子7を上記パイプ状部材3に挿入するための供給口19を、パイプ状部材3のスリット5に差し込み、上記供給口19を差し込んだ状態で、上記パイプ状部材3を上記供給口19に対して相対的に、上記パイプ状部材3の長手方向に、移動手段23を用いて移動し、この移動をしているときに、供給手段21を用い上記供給口19を介して、RFID素子7を一定の間隔で上記パイプ状部材3の内部に挿入するので、正確な設置間隔で、RFID素子7をパイプ状部材3の内部に容易にしかも迅速に設置することができる。
【0078】
連長体1を備えたケーブル27によれば、ケーブル27に関する情報を記憶している記憶媒体としてRFID素子を採用しているので、ケーブル27の外皮(シースの外周面)への印字またはケーブル27へのタグの貼り付けやタグの吊り下げによって、ケーブル27に関する情報(たとえば、ケーブル27を識別するための情報)を格納(表示)するよりも、大量の情報を格納でき、しかも、ケーブル27の外皮を露出させずに、RFID素子7の情報を読み取り表示可能なRFIDリーダをケーブル27に近づけるだけで、RFID素子7に格納されている情報を上記RFIDリーダで読み取って表示することができる。つまり、ケーブル27に関する情報を容易に読み取って表示することができる。
【0079】
また、連長体1を備えたケーブル27によれば、ケーブル27に関する情報を記憶している記憶媒体としてRFID素子7を採用し、このRFID素子7を、ケーブル27のシース31が被覆しているので、ケーブル27敷設後の長い期間の経過や、ケーブル27を設置するときの擦り等によって、ケーブル27に関する情報がかすれたり消えたりして、判読不可能になることを回避することができる。さらに、RFID素子7が、シース31で被覆されているので、たとえばケーブル27を設置するときにこのケーブル27に外力がかかっても、この外力がシース31で緩和され、上記RFID素子7が破損しにくくなる。
【0080】
また、連長体1を備えたケーブル27によれば、パイプ状のシース31の肉厚部に、RFID素子7が埋め込まれていることはなく、シース31がこの長手方向でほぼ一様な形態になっているので、ケーブル27を、たとえば、設置や保守のために折り曲げても、シース31の肉厚部に応力集中が発生しにくく、したがって、上記設置や保守による折り曲げによって、ケーブル27のシース31が破損しにくくなる。
【0081】
さらに、RFID素子7を、シース31の肉厚部内に設置するとすれば、高温で溶融している状態の、シース31の構成部材中にRFID素子7を挿入しなければならず、このときに、上記高温によってRFID素子7の機能が阻害されるおそれがあるが、ケーブル27では、シース31でケーブルコア29を被覆する場合、押え巻き43やパイプ状部材3が間に介在しているので、連長体1のRFID素子7が直接高温状態のシース31の構成部材にさらされることはなく、したがって、シース31を被覆するときにRFID素子7の機能が阻害されるおそれが少ない。
【0082】
また、ケーブルコア29にシース31を被覆する場合、断面がほぼ円形状のケーブルコア29に、断面が円環状のシース31を被覆すればよく、シース31の肉厚部内にRFID素子7を設ける必要はないので、上記被覆を容易に行うことができる。
【0083】
また、ケーブル27によれば、連長体1の長手方向に所定の間隔をあけて、各RFID素子7を設けているので、ケーブル27の長手方向の任意に位置で、ケーブル27に関する情報を取得することができる。そして、ケーブル27がたとえばトラフ内に敷設されこのトラフに蓋がされ、さらにこのトラフが土砂の中に埋設されている場合でも、上記土砂を長い区間にわたって取り除くことなく、土砂の一部を取り除くだけで、上記ケーブル27の情報を読み取ることができ、上記土砂を取り除く工数を削減することができる。
【0084】
なお、上記各RFID素子7の設置間隔は、RFID素子7に格納されている情報を、RFIDリーダが読み取り可能な距離に応じて決定すればよい。たとえば、上記読み取り可能な距離が1mである場合に、各RFID素子7の設置間隔を1mにすれば、ケーブル27から0.87m(1m÷2×√3≒0.87m)以内の距離にRFIDリーダを近づければ、RFID素子7に格納されている情報を、上記RFIDリーダで読み取ることができる。
【0085】
なお、上記各RFID素子7に格納されている、ケーブル27に関する情報は、連長体1の製造前に予め各RFID素子7に格納されていてもよいし、たとえば、図2に示す連長体製造装置9の移動手段23と第2格納手段17の間に、RFID素子7に情報を書き込み可能なRFIDライターを設置し、または、連長体製造装置9の通路25の近傍にRFIDライターを設置して、連長体1を製造するときに、ケーブル27に関する情報を、各RFID素子7に書き込んでもよい。さらに、ケーブル27の敷設後、RFIDライターを用いて、各RFID素子7の情報を書き換えてもよい。
【0086】
連長体1を備えたケーブル47によれば、ケーブル27とほぼ同様に、ケーブル47に関する情報を大量に格納でき、しかも、ケーブル47に関する情報を容易に読み取って表示することができる等の効果を奏する。
【0087】
なお、ケーブル47における上記各RFID素子7の設置間隔は、ケーブル27と同様に決定すればよい。また、上記各RFID素子7に格納されている、ケーブル47に関する情報も、ケーブル27と同様に書き込むことができる。
【0088】
また、上記ケーブル27やケーブル47を、光ファイバケーブルではなくメタルケーブルにしてもよいし、光ファイバとメタル線とが混在しているケーブルにしてもよい。
【0089】
[第2の実施の形態]
図5は、本発明の第2の実施の形態に係る連長体63の概略構成を示す図であり、図5(1)は、連長体63の斜視図を示し、図5(2)は、連長体63の長手方向の断面を示す図である。
【0090】
連長体63は、パイプ状部材65に、間隔をあけて複数のスリット67が設けられ、また、パイプ状部材65の内壁に、RFID素子7を保持するための粘着部71が形成されている点が、第1の実施の形態に係る連長体1とは異なり、さらに、粘着部71でRFID素子7を保持するので、パイプ状部材65の内径をRFID素子7の外径よりも大きく構成する際に、連長体1の場合よりも一層大きく構成してもよい点が、連長体1とは異なり、その他の点は連長体1とほぼ同様に構成されている。
【0091】
すなわち、連長体63は、弾性を備え長く延びたパイプ状部材65を備え、このパイプ状部材65の長手方向には、間隔をあけて複数のスリット67が設けられ、これらの各スリット67の位置に応じて上記パイプ状部材65の内部には複数のRFID素子7が設けられ、上記各RFID素子7を保持している粘着部71が上記パイプ状部材65の内壁面に形成されている。
【0092】
また、連長体63では、たとえば、上記パイプ状部材65は耐熱性樹脂で構成され、上記各RFID素子7は、両端部が半球状である円柱状に形成されている。
【0093】
連長体63の長手方向に沿って設けられた上記各スリット67の長さは、RFID素子7をパイプ状部材65の内部に挿入可能な長さであればよく、RFID素子7の長さよりも短くてもよいし長くてもよいしさらに同じ長さでもよい。なお、短い場合でも、RFID素子7を斜めにすれば、上記パイプ状部材65内にRFID素子7を挿入することができる。また、粘着部71は、上記パイプ状部材65の内壁面全面に形成されていてもよいし、各RFID素子7を保持するために、各スリット67に対応する位置(各スリット67に一致する位置)のみに設けられていてもよい。
【0094】
連長体63によれば、連長体1とほぼ同様の効果を奏すると共に、粘着部71でRFID素子7を確実に保持することができる。また、スリット67が、連続してパイプ状部材65に設けられていないので、パイプ状部材65の強度、ひいては連長体63の強度が、連長体1に比べて増す。さらに、RFID素子7の挿入後、スリット67が簡単に開口するおそれが少なくなり、また、RFID素子7が粘着部71に保持されているので、連長体63を取り扱う場合、一旦挿入したRFID素子7がパイプ状部材65の外部にでてくるおそれや、各RFID素子7の位置がずれるおそれが少なくなり、連長体63の取り扱いが容易になる。
【0095】
次に、連長体63が設けられているケーブル73について説明する。
【0096】
図6は、連長体63が設けられているケーブル73の概略構成を示す断面図である。
【0097】
なお、上記断面図(図6)は、ケーブル73の軸方向に直角な平面でケーブル73を切断した場合の断面図である。
【0098】
ケーブル73は、連長体63の設置態様が、第1の実施の形態に係るケーブル27とは異なり、その他の点はケーブル27とほぼ同様に構成されている。
【0099】
すなわち、ケーブル73は、内部にケーブルコア75を備え、このケーブルコア75の外側をシース77で覆い、ケーブルコア75を形成しているスロット79の外周のほぼ等分配された位置に、複数の溝81A〜81Eが設けられている点は、ケーブル27とほぼ同様であるが、上記各溝81A〜81Eの総てには光ファイバテープ41が配設されており、各溝81A〜81Eが設けられている箇所以外の、スロット79の外周壁に接して連長体63が設けられている点がケーブル27とは異なる。なお、連長体63は、スロット79の外周壁に縦添えまたは横巻きされている。
【0100】
そして、連長体63と光ファイバテープ41が設けられているスロット79とを一体にして両者を覆うように、スロット79の外周と上記連長体63とには、上記連長体63と光ファイバテープ41とを押さえ込むための押え巻き83が横巻きされ、ケーブルコア75に連長体63が一体化されて設けられている。また、押え巻き83がされたケーブルコア75の外側は、長手方向の断面が円環状のシース77で被覆されている。
【0101】
また、上記各溝81A〜81Eおよび上記連長体63は、ケーブル27の場合と同様に、ケーブル73の長手方向に僅かに捻れて延伸している。
【0102】
ケーブル73によれば、ケーブル27とほぼ同様の効果を奏する。
【0103】
なお、ケーブル73では、スロット79の外径に対して、連長体63の外径が十分に小さくなっているが、スロット79の外径に対して、連長体63の外径が十分に小さくなっていない場合には、図3に示すケーブル27のような構成を採用することが望ましい。
【0104】
次に、連長体63が設けられているケーブル85について説明する。
【0105】
図7は、連長体63が設けられているケーブル85の概略構成を示す断面図である。
【0106】
なお、上記断面図(図7)は、ケーブル85の軸方向に直角な平面でケーブル85を切断した場合の断面図である。
【0107】
ケーブル85は、連長体63の設置態様が、ケーブル47とは異なり、その他の点はケーブル47とほぼ同様に構成されている。
【0108】
すなわち、ケーブル85は、内部にケーブルコア87を備え、このケーブルコア87の外側はシース89で覆われ、ケーブルコア87が、この中心部にテンションメンバ55を備えている点は、ケーブル47と同様であるが、長手方向に垂直な断面が円形状である複数の光ファイバコード57のみで、テンションメンバ55の周りを囲んでおり、そして、上記各光ファイバコード57を、上記テンションメンバ55に固定するために、上記各光ファイバコード57を覆うように押え巻き91がケーブル47の場合とほぼ同様に横巻きされている。
【0109】
さらに、横巻きされた押え巻き91の外壁に連長体63を接触させて配設し(縦添えまたは横巻きして、連長体63をケーブルコア87に設け)、この連長体63と押え巻き91がされたケーブルコア87とを一体化して両者を覆うように、押え巻き93が横巻きされている。また、押え巻き93がされたケーブルコア87の外側は、長手方向の断面が円環状のシース89で被覆されている。
【0110】
また、上記各光ファイバコード57および上記連長体63は、ケーブル47の場合と同様に、ケーブル85の長手方向に僅かに捻れて延伸している。
【0111】
ケーブル85によれば、ケーブル47とほぼ同様の効果を奏する。
【0112】
なお、ケーブル85では、テンションメンバ55の外径に対して、連長体63の外径が十分に小さくなっているが、テンションメンバ55の外径に対して、連長体63の外径が十分に小さくなっていない場合には、図4に示すケーブル47のような構成を採用することが望ましい。
【0113】
また、ケーブル73やケーブル85も、ケーブル27やケーブル47のように、必ずしも、光ファイバケーブルである必要はなく、また、RFID素子7の設置間隔もケーブル27やケーブル47と同様に考えることができ、さらに、RFID素子7への情報の書き込みも、ケーブル27やケーブル47と同様に考えることができる。
【0114】
[第3の実施例]
図8は、本発明の第3の実施の形態に係る連長体95の概略構成を示す図であり、図8(1)は、連長体95の斜視図を示し、図8(2)は、連長体95の長手方向の断面を示す図である。
【0115】
連長体95は、パイプ状部材97の長手方向に連続したスリット99が設けられている点が、第2の実施の形態に係る連長体63とは異なり、その他の点は連長体63とほぼ同様に構成されている。
【0116】
すなわち、連長体95は、弾性を備え長く延びたパイプ状部材97を備え、この上記パイプ状部材97の長手方向にはスリット99が連続して設けられ、上記パイプ状部材97の内部で、上記パイプ状部材97の長手方向に間隔をあけて、複数のRFID素子7が設けられ、上記パイプ状部材97の内壁面には、上記各RFID素子7を保持している粘着部71形成されている。
【0117】
連長体95によれば、連長体1が備える効果に加え、粘着部71でRFID素子7を確実に保持することができる。そして、RFID素子7が粘着部71で保持されているので、連長体95を取り扱う場合、一旦挿入した各RFID素子7がパイプ状部材97の外部にでてくるおそれや、各RFID素子7の位置がずれるおそれが少なくなり、連長体95の取り扱いが容易になる。
【0118】
また、パイプ状部材97に、連続したスリット99が設けられているので、図2に示す連長体製造装置9と同様な装置を用いて、連長体95を製造することができる。
【0119】
さらに、連長体95を、ケーブルに配設する場合には、上述の各ケーブル27、47、73、85に示すような態様で、配設することができる。加えて、連長体1を、各ケーブル73、85に示すような態様で配設してもよい。
【0120】
【発明の効果】
本発明によれば、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少なく、設置や保守のために折り曲げても破損しにくいケーブルおよびこのケーブルへの設置が容易な連長体およびこの連長体の製造方法を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る連長体の概略構成を示す斜視図である。
【図2】連長体を製造するための連長体製造装置の概略構成を示す図である。
【図3】連長体が設けられているケーブルの概略構成を示す断面図である。
【図4】連長体が設けられているケーブルの概略構成を示す断面図である。
【図5】本発明の第2の実施の形態に係る連長体の概略構成を示す図である。
【図6】連長体が設けられているケーブルの概略構成を示す断面図である。
【図7】連長体が設けられているケーブルの概略構成を示す断面図である。
【図8】本発明の第3の実施の形態に係る連長体の概略構成を示す図である。
【符号の説明】
1、63、95 連長体
3、65、97 パイプ状部材
5、67、99 スリット
7 RFID素子
9 連長体製造装置
13 RFID素子格納手段
19 供給口
21 供給手段
23 移動手段
27、47、73、85 ケーブル
29、49、75、87 ケーブルコア
31、51、77、89 シース
43、59、83、91、93 押え巻き
55 テンションメンバ
71 粘着部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous body formed by providing a plurality of RFID (Radio Frequency Identification) elements at intervals in the longitudinal direction of a long member, a method of manufacturing the same, and a cable provided with the continuous body. In particular, the present invention relates to a structure in which the elongated member is a pipe-shaped member.
[0002]
[Prior art]
Conventionally, for example, as a method of identifying only a target cable from among a large number of laid metal cables or optical fiber cables, printing is performed on the outer surface (sheath) of each cable, or Methods for attaching tags and identifying cables are known.
[0003]
Here, the printing is performed by applying information such as a manufacturer name, a manufacturing date, a cable product name, and a cable length to the outer surface of the cable with ink, a thermal transfer laser, or the like. Further, information substantially similar to the printed information is engraved on the tag, for example. Then, the tag is attached to an outer cover of the cable, or is suspended from the cable using, for example, a metal wire.
[0004]
By the way, when printing is performed on the cable surface, the printing is performed along the longitudinal direction of the cable. Therefore, when the number of characters increases, it is necessary to expose the laid cable over a long section. However, if the cable is, for example, laid in a trough and the trough is covered, it is necessary to remove the cover over a long section, and if the trough is buried in earth and sand, It is necessary to remove earth and sand over a long section, and a large number of steps are required to expose the cable.
[0005]
Therefore, when performing the above-described printing, it is desirable to minimize the length of the printing along the longitudinal direction of the cable. However, if the length of the printing is limited in this manner, the total information necessary for the cable is required. However, there is a problem that it is difficult to print on the outer sheath of the cable.
[0006]
In addition, information on the cable, such as characters and symbols printed on the outer surface of the cable, may be unreadable due to elapse of a long period of time or, for example, rubbing at the time of cable installation or the like. There is a problem.
[0007]
Further, when the tags are provided on the cable, a large number of tags must be provided at regular intervals on the long cable, which takes a lot of man-hours when providing the tags, and, like the case of printing, It is difficult to write a lot of information on the tag, and furthermore, the tag provided on the cable is detached from the cable, or the information written on the tag is faded or disappears over time and becomes unreadable. There is a problem that sometimes.
[0008]
Therefore, a cable having a configuration in which, for example, a QR code (two-dimensional barcode) is attached to the surface of the cable outer cover instead of the above-described printing or tag on the outer surface of the cable is disclosed (for example, Patent Document 1). ).
[0009]
[Patent Document 1]
JP 2001-21730A
[0010]
[Problems to be solved by the invention]
By the way, according to the cable disclosed inPatent Document 1, since the information about the cable is QR-coded, it is necessary to store a large amount of information about the cable as compared with the case of using a print or a tag as described above. Can be.
[0011]
However, since the QR-coded information is provided on the surface of the cable, as in the case of printing as described above, the information may be blurred due to the elapse of a long period of time or rubbing when installing the cable, for example. There is a problem that it may be lost or disappear, or it may come off from the cable surface and become unreadable.
[0012]
The present invention has been made in view of the above problems, and it is possible to store a large amount of information on a cable than before, and it is difficult to determine the stored information even after a long time has elapsed after installation. It is an object of the present invention to provide a cable that is less likely to be formed, a continuous body that can be easily installed on the cable, and a method of manufacturing the same.
[0013]
[Means for Solving the Problems]
The present invention according toclaim 1, wherein the pipe-shaped member having elasticity and extending, a slit provided continuously in the longitudinal direction of the pipe-shaped member, and the pipe-shaped member inside the pipe-shaped member. Is a continuous body having a plurality of RFID elements provided at intervals in the longitudinal direction.
[0014]
According to a second aspect of the present invention, in the continuous body according to the first aspect, the pipe-shaped member is made of a heat-resistant resin, each of the RFID elements is formed in a columnar shape, and an inner diameter of the pipe-shaped member is formed. Is a continuous body having the same size as the outer diameter of the cylindrical RFID element or a size slightly larger than the outer diameter of the cylindrical RFID element.
[0015]
The present invention according toclaim 3, the cable core, a pipe member having a long length with elasticity, a slit provided continuously in the longitudinal direction of the pipe member, inside the pipe member, A plurality of RFID elements provided at intervals in the longitudinal direction of the pipe-shaped member, and a continuous body provided integrally with the cable core, and covering the cable core. And a cable having a sheath.
[0016]
According to a fourth aspect of the present invention, there is provided a manufacturing method of a continuous body comprising an elongated pipe member having elasticity and a plurality of RFID elements provided at intervals in the longitudinal direction of the pipe member. In the method, in order to insert each of the RFID elements into the pipe-shaped member, an opening step of opening a part of a slit provided continuously in a longitudinal direction of the pipe-shaped member; A moving step of relatively moving the pipe-shaped member in the longitudinal direction of the pipe-shaped member, and, during the movement, intermittently moving the RFID element through the opening, And a step of inserting the inside of the continuous body.
[0017]
According to a fifth aspect of the present invention, there is provided a pipe-shaped member which has elasticity and extends, a plurality of slits provided at intervals in a longitudinal direction of the pipe-shaped member, and a position of each of the slits. A continuous body having an RFID element provided inside the pipe-shaped member and an adhesive portion formed on an inner wall surface of the pipe-shaped member and holding each of the RFID elements.
[0018]
According to a sixth aspect of the present invention, in the continuous body according to the fifth aspect, the pipe-shaped member is formed of a heat-resistant resin, and each of the RFID elements is formed in a columnar shape having both ends in a hemispherical shape. It is a run-length body.
[0019]
The present invention according toclaim 7 is a cable core, a pipe-shaped member having elasticity and extending, a plurality of slits provided at intervals in the longitudinal direction of the pipe-shaped member, and a plurality of slits. A plurality of RFID elements provided inside the pipe-shaped member according to the position, and including an adhesive portion formed on the inner wall surface of the pipe-shaped member and holding each of the RFID elements, A cable having a continuous body provided integrally with the cable core, and a sheath covering the cable core and the continuous body.
[0020]
The present invention as set forth in claim 8, wherein the pipe-shaped member having elasticity and extending, a slit provided continuously in the longitudinal direction of the pipe-shaped member, and the pipe-shaped member inside the pipe-shaped member. Is a continuous body having a plurality of RFID elements provided at intervals in the longitudinal direction and an adhesive portion formed on an inner wall surface of the pipe-shaped member and holding each of the RFID elements.
[0021]
According to a ninth aspect of the present invention, in the continuous body according to the eighth aspect, the pipe-shaped member is formed of a heat-resistant resin, and each of the RFID elements is a continuous body formed in a columnar shape. .
[0022]
According to a tenth aspect of the present invention, there is provided a cable core, a slit continuously provided in a longitudinal direction of the pipe-shaped member, and a space inside the pipe-shaped member in the longitudinal direction of the pipe-shaped member. And a plurality of RFID elements provided on the inner surface of the pipe-shaped member, the adhesive portions holding the respective RFID elements, and provided integrally with the cable core. A cable having a long body and a sheath covering the cable core and the continuous body.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
FIG. 1 is a perspective view illustrating a schematic configuration of acontinuous body 1 according to a first embodiment of the present invention.
[0024]
Theelongated body 1 includes an elongated pipe-shapedmember 3 having elasticity, and aslit 5 is continuously provided in a longitudinal direction of the pipe-shapedmember 3.
[0025]
Further, a plurality of RFID (Radio Frequency Identification)elements 7 are provided inside the pipe-shaped member 3 (an internal space surrounded by an annular outer wall) at intervals in the longitudinal direction of the pipe-shapedmember 3. Is provided. The information stored in theRFID element 7 can be read by an RFID reader using, for example, an electromagnetic wave as a medium. Further, each interval between theRFID elements 7 may be a fixed value, or each interval value between theRFID elements 7 may be different from each other.
[0026]
The pipe-shapedmember 3 of theelongated body 1 is made of, for example, a heat-resistant resin (a polyamide-based resin, a polyimide-based resin, a polyester-based resin, etc.). The inner diameter of the pipe-shapedmember 3 is the same as the outer diameter of each of thecylindrical RFID elements 7 or slightly larger than the outer diameter of each of thecylindrical RFID elements 7. It is configured. For example, when the outer diameter of theRFID element 7 is 2.1 mm, the inner diameter of the pipe-shapedmember 3 is set to 2.3 mm, which is about 0.2 mm larger than the outer diameter.
[0027]
The outer portion of each of thecolumnar RFID elements 7 is made of a hard member (for example, glass or plastic) that allows electromagnetic waves to pass therethrough. The column-shapedRFID elements 7 are provided so that the longitudinal directions substantially coincide with each other.
[0028]
FIG. 2 is a diagram showing a schematic configuration of a continuousbody manufacturing apparatus 9 for manufacturing thecontinuous body 1.
[0029]
The continuousbody manufacturing apparatus 9 is provided with a plurality ofRFID elements 7 inside a pipe-like member 3 having elasticity, extending long and havingslits 5 continuous in the longitudinal direction, at intervals in the longitudinal direction of the pipe-like member 3. This is a device for inserting, for example.
[0030]
Here, the continuousbody manufacturing apparatus 9 includes abase 11, and an RFID element storage means 13 capable of storing theRFID elements 7 is provided on the upper side of thebase 11. A first storage means 15 capable of storing the pipe-shapedmember 3 before theRFID elements 7 are inserted therein is provided on an upper side of the first storage means 11, and the first storage means 15 is provided apart from the first storage means 15. The second pipe-shaped member (pipe-shaped member that is integrally connected to the pipe-shaped member stored in the first storage means 15) 3 into which therespective RFID elements 7 have been inserted can be stored. Is provided via a connecting member (not shown).
[0031]
In addition, the first storage means 15 and the first storage means 15 are provided below the RFID element storage means 13 in order to insert eachRFID element 7 stored in the RFID element storage means 13 into the pipe-shapedmember 3. Asupply port 19 is provided which can be inserted into a part of theslit 5 of the pipe-shapedmember 3 existing linearly between the storage means 17 and the RFID element storage means 17. Between thesupply port 13 and thesupply port 19, a supply means 21 capable of intermittently supplying theRFID elements 7 into the pipe-shapedmember 3 via thesupply port 19 is provided.
[0032]
In addition, the pipe-shapedmember 3 is moved (conveyed) from the first storage means 15 to the second storage means 17 between the first storage means 15 and the second storage means 17. ) Is provided.
[0033]
Here, the first storage means 15 and the second storage means 17 are formed of drums capable of storing the pipe-shapedmember 3 by winding, and are substantially parallel to each other and extend in the horizontal direction. It is rotatable around each of therotation shafts 15A and 17A.
[0034]
The moving means 23 is provided withcrawler belts 23A and 23B opposed to each other in the vertical direction. The pipe-shapedmember 3 is urged and sandwiched between thesecrawler belts 23A and 23B, and thecrawler belts 23A and 23B are illustrated. The pipe-shapedmember 3 is moved by rotating with a non-actuated actuator, and the moving speed of the pipe-shapedmember 3 is controlled by the movingmeans 23. The moving means 23 is provided with a moving amount detecting means 23C capable of measuring the moving amount of the pipe-shapedmember 3.
[0035]
Thesupply unit 21 includesflat shutters 21A and 21B that extend in the horizontal direction and are movable in the horizontal direction in thepassage 25 between the RFIDelement storage unit 13 and thesupply port 19, and each of theshutters 21A and 21B is , And is moved by an actuator (not shown) provided in the shutter driving section 21C.
[0036]
Further, ashutter 21B is provided above theshutter 21A, and only one RFID element can be accommodated in the space of thepassage 25 surrounded by theshutter 21A and theshutter 21B.
[0037]
Then, one RFID element 7A exists between theshutter 21A and theshutter 21B, that is, a large number ofRFID elements 7 exist above theshutter 21B, and theshutter 21A and theshutter 21B When theshutter 21A opens thepassage 25 while theshutter 21B closes thepassage 25 from the state where thepassage 25 is closed, the RFID element 7A is supplied into the pipe-shapedmember 3 through thesupply port 19, When theshutter 21A closes thepassage 25 with theshutter 21A and theshutter 21B releases thepassage 25, the RFID element 7B falls between theshutter 21A and theshutter 21B, and then closes thepassage 25 with theshutter 21B. The state is similar to the state shown in FIG.
[0038]
When theshutters 21A and 21B repeat the above-described operations, theRFID elements 7 can be supplied into the pipe-shapedmember 3 one by one.
[0039]
Further, when the movement amount detecting means 23C detects that the pipe-shapedmember 3 has moved by a predetermined amount, the movementamount detecting means 23 sends a control signal to the supply means 21, and according to the control signal, eachshutter 21A , 21B operate so that a plurality ofRFID elements 7 are supplied into the pipe-shapedmember 3 at predetermined intervals.
[0040]
Next, the operation of the continuousbody manufacturing apparatus 9 will be described.
[0041]
In the initial state of the continuousbody manufacturing apparatus 9, the plurality ofRFID elements 7 are stored in the RFID element storage means 13, and the plurality of RFID elements 7B and the like are also stored in thepassage 25 on the upper side of theshutter 21B. One RFID element 7A is stored between theshutter 21A and theshutter 21B. Further, the first storage means 15 includes the elongated pipe-shapedmember 3 which is the elongated pipe-shapedmember 3 before theRFID element 7 is stored therein (in which theRFID element 7 is not stored therein). , Wound and stored.
[0042]
Further, the one end side of the pipe-shapedmember 3 stored in the first storage means 15 is fixed to the second storage means 17 by, for example, being slightly wound, so that the pipe-shapedmember 3 is , Extending linearly in the horizontal direction from the first storage means 15 to the second storage means 17.
[0043]
Further, the first storage means 15 extends toward the second storage means 17, and an intermediate portion of the pipe-shapedmember 3 between the second storage means 17 and thesupply port 19 is provided with a movingmeans 23. Between thecrawler belts 23A and 23B.
[0044]
In the initial state, asupply port 19 for inserting each of theRFID elements 7 into the pipe-shaped member is inserted into theslit 5 of the pipe-shapedmember 3, and a part of theslit 5 is opened by the insertion, and the supply is performed. With theport 19 inserted, the pipe-shapedmember 3 is moved relative to the supply port 19 (with respect to the opening of the slit 5) in the longitudinal direction of the pipe-shapedmember 3. During this movement, theRFID element 7 is intermittently moved (for example, by a moving amount) through the supply port 19 (the opening of the slit 5) using the supply means 21. Each time the detecting means 23C detects that the pipe-shapedmember 3 has moved by a certain amount, it is inserted into the pipe-shapedmember 3. With such an operation, a plurality ofRFID elements 7 are provided at intervals in the pipe-shapedmember 3.
[0045]
The pipe-shapedmember 3 supplied from the first storage means 15 and provided with the RFID element therein is wound up and stored by the second storage means 17.
[0046]
Since the pipe-shapedmember 3 is an elastic body, theslit 5 is opened in the vicinity where thesupply port 19 is inserted. As the distance from the second storage means 17 increases, theslit 5 closes. In particular, since theslit 5 closes after theRFID element 7 is inserted, that is, as it goes from thesupply port 19 toward thesecond storage unit 17, theRFID element 7 supplied via thesupply port 19 , In the internal space of the pipe-shapedmember 3.
[0047]
Further, even when the inner diameter of the pipe-shapedmember 3 is formed slightly larger than the outer diameter of theRFID element 7, when the pipe-shapedmember 3 is wound by the second storage means 17, Since the surfaces facing each other formed by theslits 5 are slightly distorted because they are slightly twisted about the longitudinal axis, the inner diameter of the pipe-shapedmember 3 is slightly reduced. The size of theRFID element 7 becomes smaller, and the insertedRFID element 7 is pressed by the pipe-shapedmember 3 so as not to be displaced inside the pipe-shapedmember 3.
[0048]
Next, thecable 27 provided with theelongated body 1 will be described.
[0049]
FIG. 3 is a cross-sectional view showing a schematic configuration of thecable 27 provided with theelongated body 1.
[0050]
The sectional view (FIG. 3) is a sectional view when thecable 27 is cut along a plane perpendicular to the axial direction of thecable 27.
[0051]
Thecable 27 includes acable core 29 inside, and the outside of thecable core 29 is covered with asheath 31.
[0052]
Thecable core 29 has a tension member 33 provided at the center thereof along the longitudinal direction of thecable 27, and aslot 35 having a circular cross section is formed around the tension member 33 so as to surround the tension member 33. Are provided long along the longitudinal direction.
[0053]
A plurality of grooves 39 </ b> A to 39 </ b> F are provided along the longitudinal direction of thecable 27 at positions distributed at substantially equal angles on the outer periphery of theslot 35. Thecontinuous body 1 is provided along the longitudinal direction of thecable 27 in, for example, one of the grooves 39A to 39F. In each of the other grooves 39A to 39E, for example, an appropriate number of 4-coreoptical fiber tapes 41 are provided.
[0054]
Further, on the outer periphery of theslot 35 in which theelongated body 1 and theoptical fiber tape 41 are provided, a holdingroll 43 for holding down theelongated body 1 and theoptical fiber tape 41 is horizontally wound.
[0055]
Thus, theelongated body 1 is provided integrally with thecable core 29.
[0056]
In addition, when thecable 27 is wound around a drum for storage, only the outeroptical fiber tape 41 is prevented from extending, and each of theoptical fiber tapes 41 is extended substantially uniformly. The grooves 39A to 39E do not straightly extend in parallel with the central axis CL extending in the longitudinal direction of the cable 27 (rather than extend at right angles to the paper surface of FIG. 3), but are slightly twisted. It extends in the longitudinal direction. That is, they extend slightly obliquely with respect to the paper surface of FIG.
[0057]
Since thegroove 39F is also slightly twisted and extended, the pipe-shapedmember 3 of theelongated body 1 is slightly twisted about the longitudinal axis, and the inner diameter of the pipe-shapedmember 3 is slightly reduced. Thus, the pipe-shapedmember 3 holds theRFID element 7.
[0058]
Further, the outside of thecable core 29 on which the presser winding 43 is wound is covered with asheath 31 whose cross section in the longitudinal direction is annular. Thesheath 31 is made of, for example, polyethylene (PE), polyvinyl chloride (PVC), a halogen-free flame retardant, an eco-friendly material that does not generate toxic gas when burned, and is easily separated from vinyl. Have been.
[0059]
Next, thecable 47 will be described.
[0060]
FIG. 4 is a cross-sectional view illustrating a schematic configuration of thecable 47 provided with theelongated body 1.
[0061]
The sectional view (FIG. 4) is a sectional view when thecable 47 is cut along a plane perpendicular to the axial direction of thecable 47.
[0062]
Thecable 47 has acable core 49 inside, and the outside of thecable core 49 is covered with asheath 51.
[0063]
Thecable core 49 includes atension member 55 having atensile member 53 provided in the center thereof along the longitudinal direction of thecable 47 and having a circular cross section perpendicular to the longitudinal direction. A plurality ofoptical fiber cords 57 having a circular cross section perpendicular to the longitudinal direction are provided along the longitudinal direction of thecable 47 so as to surround thetension member 55. In other words, in the cross-sectional view of thecable 47 shown in FIG. 4, eachoptical fiber cord 57 and theelongated body 1 are in contact with the outer peripheral wall of thetension member 55, and further, each adjacentoptical fiber cord 57 is in contact with each other. At the position where theelongated body 1 is provided, theelongated body 1 and theoptical fiber cord 57 adjacent to theelongated body 1 are in contact with each other.
[0064]
Further, in the cross-sectional view of FIG. 4, a portion of the outer circumference of theelongated body 1 that is farthest from thetension member 55 and a portion of each outer circumference of eachoptical fiber cord 57 that is farthest from thetension member 55. A holdingroll 59 for holding down thecontinuous body 1 and theoptical fiber cord 57 is wound horizontally along an envelope connecting the two.
[0065]
Since the presser winding 59 is formed in this manner, thecontinuous body 1 is provided integrally with thecable core 49.
[0066]
When thecable 47 is wound around a drum for storage, only theoptical fiber cords 57 located outside are prevented from extending, and the respective optical fiber cords are extended substantially uniformly. Like thecable 27, the 57 and theelongated body 1 are slightly twisted and extend in the longitudinal direction. That is, they extend slightly obliquely with respect to the paper surface of FIG.
[0067]
Since theelongated body 1 is slightly twisted and stretched, the pipe-shapedmember 3 of theelongated body 1 is slightly twisted around the longitudinal axis, and the inner diameter of the pipe-shapedmember 3 is slightly increased. When it becomes smaller, the pipe-shapedmember 3 holds theRFID element 7.
[0068]
The outside of thecable core 49 on which the presser winding 59 is wound is covered with asheath 51 having a cross section in the longitudinal direction having an annular shape. Thesheath 51 is made of, for example, polyethylene, polyvinyl chloride, a non-halogen flame-retardant material, an eco-friendly material, or the like, similarly to thesheath 31.
[0069]
According to theelongated body 1, a plurality ofRFID elements 7 are arranged and fixed at intervals in the longitudinal direction of the pipe-shapedmember 3, and theelongated body 1 is formed integrally long and continuous. The longitudinal direction of theelongated body 1 and the longitudinal direction of the cable are aligned with each other, so that the continuouselongated body 1 can be easily provided integrally with the cable core of the cable, and theRFID elements 7 can be spaced apart in the longitudinal direction of the cable. This facilitates the installation work.
[0070]
According to thecontinuous body 1, when manufacturing thecontinuous body 1, a part of theslit 5 continuously provided in the longitudinal direction of the elongated pipe-shapedmember 3 having elasticity is expanded, and the RFID is manufactured. After inserting theelement 7 into the pipe-shapedmember 3 and inserting theRFID element 7, the openedslit 5 is closed by the restoring force of the pipe-shapedmember 3, and then the part of theslit 5 is closed. By repeating the insertion of anotherRFID element 7 into the pipe-shapedmember 3 by expanding another part different from the above, a plurality ofRFID elements 7 are inserted into the pipe-shapedmember 3 at predetermined intervals. Is inserted, so that theelongated body 1 can be easily manufactured without using a special jig, tool, or device.
[0071]
In addition, if the shape of theRFID element 7 is cylindrical and theRFID element 7 is arranged so that the side outer wall of theRFID element 7 is along the inner wall of the pipe-shapedmember 3, theRFID element 7 The contact area with the pipe-shapedmember 3 increases, and theRFID element 7 can be stably installed inside the pipe-shapedmember 3.
[0072]
Further, if theRFID element 7 is formed in a columnar shape and the both ends are formed in a hemispherical shape, the outer diameter of theRFID element 7 has no corners, so that the strength of theRFID element 7 is increased, and Is inserted into the pipe-shapedmember 3, theRFID element 7 is inclined with respect to the pipe-shapedmember 3, and the hemispherical portion is inserted into the pipe-shapedmember 3 first. Since the opening amount of theslit 5 gradually increases as the operation is performed, it is not necessary to open theslit 5 widely in advance, and theRFID element 7 can be easily inserted into the pipe-shapedmember 3.
[0073]
Further, according to theelongated body 1, the inner diameter of the pipe-shapedmember 3 is the same as the outer diameter of thecylindrical RFID element 7 or slightly larger than the outer diameter of thecylindrical RFID element 7. Therefore, a space for accommodating theRFID element 7 is secured inside the pipe-shapedmember 3, and theRFID element 7 can be easily inserted into the pipe-shapedmember 3.
[0074]
As described above, if the inner diameter of the pipe-shapedmember 3 is the same as the outer diameter of thecylindrical RFID element 7 or slightly larger than the outer diameter of the cylindrical RFID element, the pipe-shaped There is a concern that theRFID element 7 inserted and arranged in themember 3 may move (shift) in the pipe-shapedmember 3, but the pipe-shaped member in which eachRFID element 7 is inserted 3 (the elongated body 1) is not extended in a straight line, but is stored, for example, in a state of being wound up on a drum or the like. Therefore, when wound, theelongated body 1 is centered on this axis. The inner diameter of the pipe-shapedmember 3 is reduced by the torsion, and theRFID element 7 inserted therein can be held.
[0075]
Further, if the pipe-shapedmember 3 of theelongated body 1 is made of a heat-resistant resin, the heat resistance of theelongated body 1 is improved. For example, despite the fact that theRFID element 7 has heat resistance, It is possible to avoid as much as possible that theshape member 3 is softened first at a high temperature and the form of theelongated body 1 is changed. For example, even when theelongated body 1 is provided on thecable core 29 of thecable 27 and thecable core 29 is covered with a molten high-temperature sheath, it is possible to prevent the pipe-shapedmember 3 of theelongated body 1 from being softened. it can.
[0076]
Further, according to theelongated body 1, eachRFID element 7 is provided inside the pipe-shapedmember 3, thereby protecting eachRFID element 7. Therefore, for example, when the outer skin of eachRFID element 7 is made of a member that is easily damaged, even if theelongated body 1 receives an external force, theRFID element 7 is less likely to be damaged. Becomes easier.
[0077]
According to the continuousbody manufacturing apparatus 9, thesupply port 19 for inserting eachRFID element 7 into the pipe-shapedmember 3 is inserted into theslit 5 of the pipe-shapedmember 3, and thesupply port 19 is inserted. The pipe-shapedmember 3 is moved relative to thesupply port 19 in the longitudinal direction of the pipe-shapedmember 3 by using a moving means 23, and during this movement, the supply means 21 is used. Since theRFID elements 7 are inserted into the pipe-shapedmember 3 at regular intervals through thesupply port 19, theRFID elements 7 can be easily and quickly inserted into the pipe-shapedmember 3 at accurate installation intervals. Can be installed.
[0078]
According to thecable 27 provided with theelongated body 1, since the RFID element is employed as a storage medium for storing information on thecable 27, printing on the outer surface of the cable 27 (outer peripheral surface of the sheath) or thecable 27 is performed. By attaching a tag to a cable or hanging a tag, a larger amount of information can be stored than storing (displaying) information about the cable 27 (for example, information for identifying the cable 27). The information stored in theRFID element 7 can be read and displayed by the RFID reader only by bringing the RFID reader capable of reading and displaying the information of theRFID element 7 close to thecable 27 without exposing the outer skin. That is, information on thecable 27 can be easily read and displayed.
[0079]
Further, according to thecable 27 provided with theelongated body 1, theRFID element 7 is employed as a storage medium for storing information on thecable 27, and theRFID element 7 is covered with thesheath 31 of thecable 27. Therefore, it is possible to prevent the information about thecable 27 from being blurred or disappearing due to the elapse of a long period of time after thecable 27 is laid, the rubbing when thecable 27 is installed, and the like, and the information being unreadable. Further, since theRFID element 7 is covered with thesheath 31, even if an external force is applied to thecable 27 when thecable 27 is installed, for example, the external force is reduced by thesheath 31 and theRFID element 7 is damaged. It becomes difficult.
[0080]
Further, according to thecable 27 provided with theelongated body 1, theRFID element 7 is not embedded in the thick portion of the pipe-shapedsheath 31, and thesheath 31 is substantially uniform in the longitudinal direction. Therefore, even if thecable 27 is bent for installation or maintenance, for example, stress concentration hardly occurs in the thick portion of thesheath 31. 31 is less likely to be damaged.
[0081]
Furthermore, if theRFID element 7 is installed in the thick part of thesheath 31, theRFID element 7 must be inserted into the constituent member of thesheath 31 in a state of being melted at a high temperature. The function of theRFID element 7 may be impaired by the high temperature. However, in the case of thecable 27, when thecable core 29 is covered with thesheath 31, the presser winding 43 and the pipe-shapedmember 3 are interposed therebetween. TheRFID element 7 of theelongated body 1 is not directly exposed to the components of thesheath 31 in a high-temperature state, so that the function of theRFID element 7 when coating thesheath 31 is less likely to be hindered.
[0082]
When covering thecable core 29 with thesheath 31, thecable core 29 having a substantially circular cross section may be covered with thesheath 31 having an annular cross section, and theRFID element 7 must be provided in the thick portion of thesheath 31. Therefore, the coating can be easily performed.
[0083]
Further, according to thecable 27, since theRFID elements 7 are provided at predetermined intervals in the longitudinal direction of theelongated body 1, information on thecable 27 is obtained at an arbitrary position in the longitudinal direction of thecable 27. can do. And even if thecable 27 is laid in a trough and the trough is covered, and the trough is buried in the earth and sand, only a part of the earth and sand is removed without removing the earth and sand over a long section. Thus, the information of thecable 27 can be read, and the number of steps for removing the earth and sand can be reduced.
[0084]
Note that the installation interval of each of theRFID elements 7 may be determined according to the distance at which the information stored in theRFID element 7 can be read by the RFID reader. For example, if the readable distance is 1 m and the interval between theRFID elements 7 is set to 1 m, the RFID is set to a distance within 0.87 m (1 m ÷ 2 × √3 ≒ 0.87 m) from thecable 27. When the reader is brought closer, the information stored in theRFID element 7 can be read by the RFID reader.
[0085]
The information on thecable 27 stored in each of theRFID elements 7 may be stored in advance in each of theRFID elements 7 before the manufacture of theelongated body 1 or, for example, the elongated body shown in FIG. An RFID writer capable of writing information to theRFID element 7 is installed between the movingunit 23 and thesecond storage unit 17 of themanufacturing apparatus 9, or an RFID writer is installed near thepassage 25 of the continuousbody manufacturing apparatus 9. Then, when manufacturing theelongated body 1, information on thecable 27 may be written to eachRFID element 7. Furthermore, after laying thecable 27, the information of eachRFID element 7 may be rewritten using an RFID writer.
[0086]
According to thecable 47 provided with theelongated body 1, almost in the same manner as thecable 27, a large amount of information on thecable 47 can be stored, and information on thecable 47 can be easily read and displayed. Play.
[0087]
The installation interval of each of theRFID elements 7 in thecable 47 may be determined in the same manner as thecable 27. Further, information on thecable 47 stored in each of theRFID elements 7 can be written in the same manner as thecable 27.
[0088]
Further, thecable 27 or thecable 47 may be a metal cable instead of an optical fiber cable, or a cable in which an optical fiber and a metal wire are mixed.
[0089]
[Second embodiment]
FIG. 5 is a diagram illustrating a schematic configuration of acontinuous body 63 according to a second embodiment of the present invention. FIG. 5A is a perspective view of thecontinuous body 63, and FIG. FIG. 7 is a view showing a cross section in the longitudinal direction of theelongated body 63.
[0090]
In the continuouselongated body 63, a plurality ofslits 67 are provided at intervals in the pipe-shapedmember 65, and anadhesive portion 71 for holding theRFID element 7 is formed on the inner wall of the pipe-shapedmember 65. This is different from theelongated body 1 according to the first embodiment in that theRFID element 7 is held by theadhesive portion 71, so that the inner diameter of the pipe-shapedmember 65 is larger than the outer diameter of theRFID element 7. In this case, the configuration may be larger than that of theelongated body 1, which is different from theelongated body 1, and the other points are substantially the same as those of theelongated body 1.
[0091]
That is, theelongated body 63 includes an elongated pipe-shapedmember 65 having elasticity, and a plurality ofslits 67 are provided at intervals in the longitudinal direction of the pipe-shapedmember 65. A plurality ofRFID elements 7 are provided inside the pipe-shapedmember 65 according to the position, and anadhesive portion 71 holding each of theRFID elements 7 is formed on the inner wall surface of the pipe-shapedmember 65.
[0092]
In the continuouselongated body 63, for example, the pipe-shapedmember 65 is made of a heat-resistant resin, and each of theRFID elements 7 is formed in a columnar shape with both end portions being hemispherical.
[0093]
The length of each of theslits 67 provided along the longitudinal direction of theelongated body 63 may be a length that allows theRFID element 7 to be inserted into the inside of the pipe-shapedmember 65, and is longer than the length of theRFID element 7. It may be shorter, longer, or the same length. In addition, even if it is short, if theRFID element 7 is inclined, theRFID element 7 can be inserted into the pipe-shapedmember 65. Further, theadhesive portion 71 may be formed on the entire inner wall surface of the pipe-shapedmember 65, or may be provided at a position corresponding to each slit 67 (a position corresponding to each slit 67) in order to hold each RFID element 7. ) May be provided only.
[0094]
According to theelongated body 63, substantially the same effect as theelongated body 1 can be obtained, and theRFID element 7 can be reliably held by theadhesive portion 71. Further, since theslits 67 are not provided continuously in the pipe-shapedmember 65, the strength of the pipe-shapedmember 65 and thus the strength of theelongated body 63 are increased as compared with theelongated body 1. Further, after theRFID element 7 is inserted, the risk that theslit 67 is easily opened is reduced, and theRFID element 7 is held by theadhesive portion 71. The risk that the 7 comes out of the pipe-shapedmember 65 and the position of each of theRFID elements 7 is reduced, and the handling of theelongated body 63 is facilitated.
[0095]
Next, thecable 73 provided with theelongated body 63 will be described.
[0096]
FIG. 6 is a cross-sectional view illustrating a schematic configuration of thecable 73 provided with theelongated body 63.
[0097]
The sectional view (FIG. 6) is a sectional view when thecable 73 is cut along a plane perpendicular to the axial direction of thecable 73.
[0098]
Thecable 73 is different from thecable 27 according to the first embodiment in the manner in which theelongated body 63 is installed, and is otherwise substantially the same as thecable 27.
[0099]
That is, thecable 73 has acable core 75 inside, and covers the outside of thecable core 75 with asheath 77, and a plurality of grooves are provided at substantially equally distributed positions on the outer periphery of theslot 79 forming thecable core 75. The point where thecables 81A to 81E are provided is almost the same as that of thecable 27, but theoptical fiber tape 41 is provided in all thegrooves 81A to 81E, and thegrooves 81A to 81E are provided. Thecable 27 is different from thecable 27 in that thecontinuous body 63 is provided in contact with the outer peripheral wall of theslot 79 except for the above-described location. Theelongated body 63 is vertically attached or horizontally wound around the outer peripheral wall of theslot 79.
[0100]
Then, thecontinuous body 63 and theslot 79 provided with theoptical fiber tape 41 are integrally formed, and the outer periphery of theslot 79 and thecontinuous body 63 are attached to the outer periphery of theslot 79 so as to cover both. A holdingroll 83 for holding down thefiber tape 41 is wound horizontally, and a continuous-length body 63 is provided integrally with thecable core 75. Further, the outside of thecable core 75 on which the presser winding 83 is wound is covered with asheath 77 whose cross section in the longitudinal direction is annular.
[0101]
Thegrooves 81A to 81E and theelongated body 63 are slightly twisted and extend in the longitudinal direction of thecable 73, as in the case of thecable 27.
[0102]
According to thecable 73, substantially the same effects as those of thecable 27 can be obtained.
[0103]
In thecable 73, the outer diameter of theelongated body 63 is sufficiently smaller than the outer diameter of theslot 79, but the outer diameter of theelongated body 63 is sufficiently smaller than the outer diameter of theslot 79. If not reduced, it is desirable to adopt a configuration like thecable 27 shown in FIG.
[0104]
Next, thecable 85 provided with thecontinuous body 63 will be described.
[0105]
FIG. 7 is a cross-sectional view illustrating a schematic configuration of thecable 85 provided with theelongated body 63.
[0106]
The sectional view (FIG. 7) is a sectional view when thecable 85 is cut along a plane perpendicular to the axial direction of thecable 85.
[0107]
Thecable 85 differs from thecable 47 in the manner in which thecontinuous body 63 is installed, and is otherwise substantially the same as thecable 47.
[0108]
That is, thecable 85 is provided with acable core 87 inside, the outside of thecable core 87 is covered with asheath 89, and thecable core 87 is provided with atension member 55 at the center thereof, similarly to thecable 47. However, only the plurality ofoptical fiber cords 57 having a circular cross section perpendicular to the longitudinal direction surround thetension member 55, and each of theoptical fiber cords 57 is fixed to thetension member 55. In order to cover theoptical fiber cords 57, thepresser windings 91 are wound horizontally in substantially the same manner as thecable 47.
[0109]
Further, thecontinuous body 63 is disposed so as to be in contact with the outer wall of the horizontally wound presser winding 91 (thecontinuous body 63 is provided on thecable core 87 by vertical attachment or horizontal winding). A holdingroll 93 is wound horizontally so as to integrate thecable core 87 with the holdingroll 91 and cover both. Further, the outside of thecable core 87 on which the presser winding 93 is wound is covered with asheath 89 having an annular cross section in the longitudinal direction.
[0110]
Each of theoptical fiber cords 57 and theelongated body 63 is slightly twisted and extended in the longitudinal direction of thecable 85, as in the case of thecable 47.
[0111]
According to thecable 85, substantially the same effects as those of thecable 47 can be obtained.
[0112]
In thecable 85, the outer diameter of theelongated body 63 is sufficiently smaller than the outer diameter of thetension member 55, but the outer diameter of theelongated body 63 is smaller than the outer diameter of thetension member 55. If it is not sufficiently small, it is desirable to adopt a configuration like thecable 47 shown in FIG.
[0113]
Also, thecables 73 and 85 are not necessarily optical fiber cables like thecables 27 and 47, and the installation intervals of theRFID elements 7 can be considered in the same manner as thecables 27 and 47. Further, writing of information to theRFID element 7 can be considered in the same manner as thecable 27 and thecable 47.
[0114]
[Third embodiment]
FIG. 8 is a diagram illustrating a schematic configuration of acontinuous body 95 according to the third embodiment of the present invention. FIG. 8A is a perspective view of thecontinuous body 95, and FIG. FIG. 7 is a view showing a cross section in the longitudinal direction of theelongated body 95.
[0115]
Thecontinuous body 95 is different from thecontinuous body 63 according to the second embodiment in that aslit 99 continuous in the longitudinal direction of the pipe-shapedmember 97 is provided. The configuration is almost the same.
[0116]
That is, theelongated body 95 includes an elongated pipe-like member 97 having elasticity, aslit 99 is continuously provided in a longitudinal direction of the pipe-like member 97, and inside the pipe-like member 97, A plurality ofRFID elements 7 are provided at intervals in the longitudinal direction of the pipe-shapedmember 97, and anadhesive portion 71 holding each of theRFID elements 7 is formed on an inner wall surface of the pipe-shapedmember 97. I have.
[0117]
According to theelongated body 95, in addition to the effect of theelongated body 1, theRFID element 7 can be reliably held by theadhesive portion 71. Since theRFID element 7 is held by theadhesive portion 71, when handling theelongated body 95, there is a possibility that each of the insertedRFID elements 7 may come out of the pipe-shapedmember 97, The risk of displacement is reduced, and handling of theelongated body 95 is facilitated.
[0118]
Further, since thecontinuous slit 99 is provided in the pipe-shapedmember 97, thecontinuous body 95 can be manufactured using the same apparatus as the continuousbody manufacturing apparatus 9 shown in FIG.
[0119]
Further, in the case where thecontinuous body 95 is provided on the cable, it can be provided in a manner as shown in each of thecables 27, 47, 73, and 85 described above. In addition, thecontinuous body 1 may be arranged in a manner as shown in each of thecables 73 and 85.
[0120]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the information regarding a cable can be stored in a larger amount than before, and even if a long time passes after installation, there is little possibility that the stored information cannot be determined. It is possible to provide a cable that is not easily damaged even when bent into a bent shape, a continuous body that can be easily installed on the cable, and a method of manufacturing the continuous body.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a continuous body according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a schematic configuration of a continuous body manufacturing apparatus for manufacturing a continuous body.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 4 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 5 is a diagram showing a schematic configuration of a continuous body according to a second embodiment of the present invention.
FIG. 6 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 7 is a cross-sectional view showing a schematic configuration of a cable provided with a continuous body.
FIG. 8 is a diagram showing a schematic configuration of a continuous body according to a third embodiment of the present invention.
[Explanation of symbols]
1, 63, 95 run length
3,65,97 Pipe-shaped member
5, 67, 99 slit
7 RFID element
9 Continuous body production equipment
13 RFID element storage means
19 Supply port
21 Supply means
23 Transportation
27, 47, 73, 85 Cable
29, 49, 75, 87 Cable core
31, 51, 77, 89 sheath
43, 59, 83, 91, 93 Presser winding
55 tension member
71 Adhesive part