【0001】
【発明の属する技術分野】
本発明は、携帯電話等の無線移動局を用いた移動通信システムおよび移動通信制御方法に係り、特に無線移動局と通信する無線基地局を切り替えるハンドオーバ制御に関する。
【0002】
【従来の技術】
従来の移動通信システムでは、無線移動局が無線基地局との通信中に他の無線基地局への通信を切り替えるハンドオーバ制御を行う場合、周辺無線基地局情報として、通信中の無線基地局からの報知情報内のスクランブルコードと呼ばれる無線基地局の電波方位(セクタ)を同定するための下り拡散コードが無線移動局に与えられており、無線移動局がこの拡散コードの下り通信品質を測定することでハンドオーバ先の無線基地局を決定していた。この従来の方式に加えてGPSによる位置情報を利用したハンドオーバ制御を考案しているものもある(特許文献1参照)。
【0003】
【特許文献1】
特開平2002−199428号公報 (第5頁、第2図)
【0004】
【発明が解決しようとする課題】
従来の移動通信システムでは、無線移動局がハンドオーバ制御を行う場合、周辺無線基地局情報として通信中の無線基地局からの報知情報により下り拡散コード(スクランブルコード)が無線移動局に与えられており、この拡散コードの下り通信品質によってハンドオーバ制御を行っていた。しかし、無線移動局が高速道路や新幹線等で高速に移動する場合、下り通信品質によるハンドオーバ制御を行うと、隣接する無線基地局の通信品質が激しく変動するため、ハンドオーバ制御回数が増加する。また、高速で移動を行うことにより、通常のハンドオーバ制御パラメータでのハンドオーバ制御では、ハンドオーバ制御タイミングにずれが発生し、無線通信の制御データが不通になることで、呼切断に至る現象が発生していた。
【0005】
本発明は、上記課題を解決するためになされたもので、不要なハンドオーバ制御回数を抑制して、無線移動局の消費電力を低減できると共に無線システム全体の負荷を低減して安定な通信を維持することができる移動通信システムおよび移動通信制御方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は以下のような手段を講じた。
請求項1記載の発明は、複数の無線基地局と、無線基地局と無線通信回線を介して通信を行う無線移動局とを有する移動通信システムであり、前記無線移動局は、前記無線基地局との下り通信品質を検出する品質検出手段と、自局の位置情報を検出する位置情報検出手段と、自局と前記無線基地局までの距離を算出する距離算出手段と、自局の移動方位を検出する移動方位検出手段と、自局の速度を検出する移動速度検出手段と、前記検出された前記無線基地局までの距離と自局の移動方位と自局の速度に基づいて任意時間後の自局の位置を予測する位置予測手段と、前記予測された位置での各無線基地局までの距離と自局の移動方位と自局の速度と無線基地局毎の下り通信品質とを算出して周辺無線基地局情報とする情報作成手段と、前記算出された周辺無線基地局情報の各無線基地局までの距離と各無線基地局毎の下り通信品質とに基づいてハンドオーバ先の無線基地局を求めるハンドオーバ先決定手段と、前記決定されたハンドオーバ先無線基地局との間でハンドオーバ制御を行うハンドオーバ制御手段とを有することを特徴とする。
【0007】
上記構成によれば、無線移動局は、無線移動局の任意の時間後の予測位置での周辺無線基地局との距離と通話品質に基づいてハンドオーバ制御を行うことにより、不要なハンドオーバ制御回数を抑制して、無線移動局の消費電力を低減できると共に無線システム全体の負荷を低減して安定な通信を維持することができる。
【0008】
また、請求項2記載の発明は、請求項1記載の移動通信システムにおいて、前記位置情報検出手段は、GPS衛星からの測位情報を受信して自装置の位置情報を算出することを特徴とする。
【0009】
また、請求項3記載の発明は、請求項1記載の移動通信システムにおいて、前記移動方位検出手段は、方位識別センサや無線基地局との無線通信状態に基づいて前記無線移動局の移動方位を算出することを特徴とする。
【0010】
また、請求項4記載の発明は、請求項1記載の移動通信システムにおいて、前記移動速度検出手段は、GPS衛星からの測位情報および無線通信状態情報を用いて前記無線移動局の速度を算出することを特徴とする。
【0011】
また、請求項5記載の発明は、請求項1記載の移動通信システムにおいて、前記無線基地局は、自局の位置情報および周辺基地局の位置情報をあらかじめ記憶する機能を有し、前記無線移動局に対して自局および周辺基地局の位置情報を報知情報として通知する位置情報報知手段を有することを特徴とする。
【0012】
また、請求項6記載の発明は、請求項1記載の移動通信システムにおいて、前記距離算出手段は、前記位置情報検出手段により検出された前記無線移動局の位置情報と前記位置情報報知手段の報知情報を用いて、周辺無線基地局までの距離を算出することを特徴とする。
【0013】
また、請求項7記載の発明は、請求項1記載の移動通信システムにおいて、前記ハンドオーバ先決定手段は、前記予測計算された周辺無線基地局情報の各無線基地局までの距離と各無線基地局毎の下り通信品質を比較して、最も距離が短く且つ下り通信品質が改善される無線基地局をハンドオーバ先として決定することを特徴とする。
【0014】
また、請求項8記載の発明は、請求項1記載の移動通信システムにおいて、前記ハンドオーバ制御手段は、前記周辺無線基地局情報から算出される周辺無線基地局密度によってハンドオーバ制御用パラメータを変更してハンドオーバ制御を行うことを特徴とする。
【0015】
また、請求項9記載の発明は、請求項1記載の移動通信システムにおいて、前記ハンドオーバ制御手段は、前記周辺無線基地局情報から算出される周辺無線基地局密度によって前記無線移動局の送信電力を変更してハンドオーバ制御を行うことを特徴とする。
【0016】
また、請求項10記載の発明は、複数の無線基地局と、無線基地局と無線通信回線を介して通信を行う無線移動局とを有する移動通信制御方法であり、前記無線移動局は、任意時間後の自局の位置を予測するステップと、前記予測された位置での各無線基地局までの距離と自局の移動方位と自局の速度と無線基地局毎の下り通信品質とを算出するステップと、前記算出された各無線基地局までの距離と自局の移動方位と自局の速度と無線基地局毎の下り通信品質とに基づいてハンドオーバ先の無線基地局を求めるステップと、前記決定されたハンドオーバ先無線基地局との間でハンドオーバ制御を行うステップとを有することを特徴とする。
【0017】
上記構成によれば、無線移動局の任意の時間後の予測位置での周辺無線基地局との距離と通話品質に基づいてハンドオーバ制御を行うことにより、不要なハンドオーバ制御回数を抑制して、無線移動局の消費電力を低減できると共に無線システム全体の負荷を低減して安定な通信を維持することができる。
【0018】
また、請求項11記載の発明は、無線基地局と無線移動局間の通信における下り通信品質を検出する機能と、前記無線移動局の位置情報を検出する機能と、前記無線移動局と前記無線基地局までの距離を算出する機能と、前記無線移動局の移動方位を検出する機能と、前記無線移動局の速度を検出する機能と、前記算出された前記無線基地局までの距離と自局の移動方位と自局の速度に基づいて任意時間後の自局の位置を予測する機能と、前記予測された位置での各無線基地局までの距離と自局の移動方位と自局の速度と無線基地局毎の下り通信品質とを算出して周辺無線基地局情報とする機能と、前記算出された周辺無線基地局情報の各無線基地局までの距離と各無線基地局毎の下り通信品質とに基づいてハンドオーバ先の無線基地局を求める機能と、前記周辺無線基地局情報から算出される周辺無線基地局密度によってハンドオーバ制御用パラメータまたは無線移動局の送信電力を変更した後、前記決定されたハンドオーバ先無線基地局との間でハンドオーバ制御を行う機能とをコンピュータに実現させることを特徴とする。
【0019】
上記構成によれば、無線移動局の任意の時間後の予測位置での周辺無線基地局との距離と通話品質に基づいてハンドオーバ制御を行うことにより、不要なハンドオーバ制御回数を抑制して、無線移動局の消費電力を低減できると共に無線システム全体の負荷を低減して安定な通信を維持することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
(実施の形態1)
図1は、本発明の第1の実施の形態に係る移動通信システムの無線移動局の構成を示したブロック図である。図1において、無線移動局100は、送受信部110、GPS受信機111、方位センサ112、ベースバンド信号処理部113、位置算出部114、方位算出部115、速度算出部116、下り通信品質測定部117、ハンドオーバ制御部118、ハンドオーバ制御用パラメータ記憶装置119、周辺基地局情報記憶装置120を有している。
【0021】
上記の構成の無線移動局100は、報知情報130および通信データ140を無線基地局150、無線基地局160または無線基地局170との間で送受する。
【0022】
次に本実施の形態の動作について説明する。無線移動局100が無線基地局150と通信中または待ち受け動作中に、無線基地局150は報知情報130により自局および周辺基地局の位置情報を送信する。無線移動局100では、その報知情報130を送受信部110により受信し、その受信信号がベースバンド信号処理部113により信号処理されて下り通信品質測定部117に入力され、ここで下り通信品質が算出される。
【0023】
一方、位置算出部114はGPS受信機111の受信信号より自局100の位置を算出すると共に、算出された位置情報と前記報知情報130とにより無線移動局100から無線基地局150および無線基地局160および無線基地局170までの距離を算出する。また、方位算出部115は方位センサ112が検出した方位情報と位置算出部114から知らされる自局100の位置情報と前記報知情報130とにより自局の移動方向を算出する。
【0024】
速度算出部116はGPS受信機111の受信情報、方位センサ112の方位情報および報知情報130をベースバンド信号処理部113によりベースバンドに変換した報知情報信号に基づいて自局100の移動速度を算出する。また、下り通信品質測定部117は上記したベースバンドに変換した報知情報信号により下り通信品質を測定する。
【0025】
ハンドオーバ制御部118は、位置算出部114、方位算出部115、速度算出部116および下り通信品質測定部117からそれぞれ距離、方位、速度、下り通信品質を入力して、周辺基地局毎に周辺基地局情報記憶装置120へ記憶すると共に、任意時間後の位置予測および周辺基地局情報を算出してハンドオーバ制御用パラメータ記憶装置119からのパラメータに応じたハンドオーバ制御を行う。
【0026】
図2は第1の実施の形態の無線移動局および無線基地局の配置例を示した図である。図2に示すように、無線移動局100がP1地点を移動中であり、P2地点とP3地点を通過する移動経路を通るものとする。図2(A)はP1地点での無線通信状況を示し、図2(B)は任意時刻後の移動予測地点であるP3地点での予測される無線通信状況を示す。P1地点を移動中の無線移動局100は無線基地局150と通信中であり、無線基地局160および無線基地局170は下り通信品質を測定しているモニタ通信状態にある。
【0027】
図3の上段は、図2のP1地点での無線移動局情報および周辺無線基地局情報を示し、図3の下段は、任意時刻後の移動予測地点であるP3地点での予測される無線移動局情報および周辺無線基地局情報を示す。無線移動局100がP1地点での位置算出部114と方位算出部115と速度算出部116と下り通信品質測定部117からの情報を基に、無線基地局150、160、170の位置、無線移動局100から無線基地局150、160、170までの距離、無線移動局100からの無線基地局150、160、170の方位、下り通信品質情報をそれぞれ周辺基地局情報記憶装置120へ保存したものが図3の上段の図である。
【0028】
図3の上段に示したP1地点での無線基地局および周辺無線基地局情報から任意時間後の移動予測位置をP3地点とした場合の無線移動局情報および周辺無線基地局情報を予測して算出した結果が図3の下段に示した図である。
【0029】
無線移動局100は予測後の情報を基に次のハンドオーバ先である無線基地局170を決定する制御を行う。P3地点における無線移動局100および無線基地局150、160、170の配置は図2(b)に示すとおりである。
【0030】
図4は第1の実施の形態に示した移動通信システムの無線通信動作を説明するシーケンス図で、図5は同移動通信システムの無線通信動作手順を説明するフローチャートである。尚、図4のシーケンスにおけるステップを400番台で示し、図5のフローチャートのステップを500番台で示すものとする。
【0031】
無線移動局100がステップ500で、無線基地局150と通信中(ステップ400)、無線基地局150はステップ501で、任意のタイミングで無線基地局150が周辺無線基地局の位置情報を報知情報130として無線移動局100に通知する(ステップ401)。(無線基地局150はあらかじめ自局および周辺無線基地局情報を記憶している)
【0032】
無線移動局100はステップ502で、受信した報知情報130とGPS受信機111の位置情報に基づいて自局100と周辺の無線基地局150、160、170との距離を算出し、また、ステップ503で、方位センサ112等により自局100と周辺の無線基地局150、160、170の方位を算出し、さらに、ステップ504で、速度算出部116により自局100の速度を算出する(ステップ402)。次に無線移動局100はステップ505で、下り通信品質測定部117にて通信中の無線基地局150および周辺の無線基地局160、170の下り通信品質を測定する(ステップ403)。
【0033】
無線移動局100はステップ506で、上記算出した距離、方位、速度および下り通信品質に基づいて周辺無線基地局情報を作成し(ステップ404)、ステップ507で、これら周辺無線基地局情報の距離、方位、速度のパラメータから任意時間後の自局100の位置を予測する。
【0034】
この間、無線移動局100は無線基地局150で通信中で(ステップ405)、無線基地局160、無線基地局170との通信モニタ中(ステップ406、407)である。
【0035】
無線移動局100はステップ508で、予測した無線移動局100の位置での周辺無線基地局情報を算出して、周辺無線基地局情報を作成する(ステップ408)。さらに、無線移動局100はステップ509で、算出した予測後の周辺無線基地局情報の中で無線基地局毎の距離および下り通信品質を比較する。
【0036】
無線移動局100はステップ509で、距離が最も近く且つ下り通信品質の改善も予測される例えば無線基地局170をハンドオーバ先の無線基地局に決定し(ステップ409)、ステップ510で、無線基地局170とのハンドオーバ制御を行う(ステップ410)。
【0037】
無線移動局100はステップ511で、ハンドオーバ制御が完了し、ステップ512で、無線基地局170と通信中状態へ移行する(ステップ411)。また、無線移動局100は無線基地局160とのモニタ通信を行う(ステップ412)。
【0038】
本実施の形態によれば、無線移動局100の任意時間後の予測した移動位置での無線通信状態を予測することでハンドオーバ制御を行うことにより、不要なハンドオーバ制御を行う回数を減少させることができ、無線通信システム全体の負荷低減と無線移動局100が高速移動中でのハンドオーバ制御時の通信の安定性を向上させることができ、さらにハンドオーバ制御を行う回数が減少した分、無線移動局100の消費電力を低減させる効果がある。
【0039】
(実施の形態2)
図6は、本発明の第2の実施の形態に係る移動通信システムの無線移動局および無線基地局の配置を示した図であり、図6(a)は市街地等の無線基地局が密集している場合、図6(b)は郊外や高速道路、新幹線による高速移動時等の無線基地局が閑散としている場合の配置例である。但し、本例の構成は上記した第1の実施の形態と同様であるため、以下同一の構成を持つ各部については、その構成動作の説明を省略し、以下、その動作の特徴部分を説明する。
【0040】
本実施の形態は図6に示すように、無線移動局100が上記2つの特徴的な場所を移動中に、ハンドオーバ制御が発生する場合を想定している。図7の上段に、市街地等の無線基地局が密集している場合の無線移動局情報および周辺無線基地局情報を示してある。無線移動局100が低速で走行中であり、また周辺の無線基地局150〜170との距離が近距離であって、下り通信品質が安定している場合に、ハンドオーバ制御部118で地域予想を“市街地”と判断することによって、図7の下段に示すように報告待ち時間を延長し、ハンドオーバイベント報告レンジを短縮して、無線移動局100の送信電力を減少する制御を行う。
【0041】
図8の上段は、郊外、高速道路、新幹線による移動時等、周囲にある無線基地局が閑散としている場合の無線移動局情報および周辺無線基地局情報を示した図である。無線移動局100が中速〜高速で走行中であり、また周辺無線基地局との距離が遠距離であって、下り通信品質が不安定な場合に、ハンドオーバ制御部118で地域予想を“郊外”または“高速移動”と判断することによって、図8の下段に示すように報告待ち時間を短縮し、ハンドオーバイベント報告レンジを伸長して無線移動局100の送信電力を増加する制御を行う。
【0042】
図9(a)は市街地等の無線基地局が密集している場合、図9(b)は郊外、高速道路、新幹線による移動時等の周辺無線基地局が閑散としている場合のハンドオーバ制御タイミング図を示す。図9(a)の場合は、周辺無線基地局が密集しているため、91に示すようにハンドオーバイベント報告レンジを短縮することでイベント報告の発生を減少し、また、92に示すように報告待ち時間を延長することでイベント報告の時間間隔を延長させ、不要なハンドオーバイベント報告の発生を抑制する。同時に無線移動局100の送信電力も減少することで無線移動局100の消費電力の低減を図る。
【0043】
図9(b)の場合は、周辺無線基地局が閑散としているため、93に示すようにハンドオーバイベント報告レンジを伸長することでイベント報告の発生を増加させ、また、94に示すように報告待ち時間を短縮することでイベント報告の時間間隔を短縮させる。同時に無線移動局100の送信電力も増加することで閑散地での呼切断の減少を図る。
【0044】
図10は図9で示した条件による本実施の形態の移動無線局のハンドオーバ制御タイミングを示したフローチャートである。無線移動局100はステップ1000にて、例えば無線基地局150と通信中にステップ1001にて、任意のタイミングで無線基地局150が周辺無線基地局の位置情報を報知情報130として無線移動局100に通知する。(なお、無線基地局150〜170はあらかじめ自局および周辺無線基地局情報を記憶している)
【0045】
無線移動局100はステップ1002にて、報知情報130とGPSによる位置算出部114により自局および周辺無線基地局との距離を算出し、ステップ1003にて方位算出部115等により無線移動局100と周辺無線基地局の方位を算出し、ステップ1004にて、速度算出部116により無線移動局100の速度を算出し、ステップ1005にて、下り通信品質測定部117にて通信中の無線移動局100と周辺の無線基地局150〜170の下り通信品質を測定する。無線移動局100はステップ1006にて、上記算出した距離、方位、速度、下り通信品質の諸情報により周辺無線基地局情報を作成する。
【0046】
無線移動局100はステップ1007にて、周辺無線基地局情報より無線移動局100の周辺無線基地局状況を予測し、ステップ1008にて無線移動局100の周辺状況が市街地であるかどうかを判断し、この予測結果が市街地の場合はステップ1009の処理を、郊外の場合はステップ1012の処理を実行する。
【0047】
予測結果が市街地の場合、無線移動局100はステップ1009にて、ハンドオーバ制御用パラメータの報告待ち時間パラメータを延長し且つ、ステップ1010にて、ハンドオーバ制御用パラメータのハンドオーバイベント報告レンジパラメータを短縮する。これにより、無線移動局100はステップ1011にて、無線移動局100の送信電力を減少させる制御を行う。
【0048】
一方、予測結果が郊外の場合、無線移動局100はステップ1012にて、ハンドオーバ制御用パラメータの報告待ち時間パラメータを短縮し、且つステップ1013にて、ハンドオーバ制御用パラメータのハンドオーバイベント報告レンジパラメータを伸長する。これにより、無線移動局100はステップ1014にて、送信電力を増加させる制御を行う。
【0049】
無線移動局100はステップ1015にて、次のハンドオーバ制御時にハンドオーバ制御用パラメータを反映した制御を行う。
【0050】
本実施の形態によれば、地域ごとの無線基地局環境に応じてハンドオーバ制御用パラメータおよび無線移動局100の送信電力を変更するハンドオーバ制御を行うことができ、これにより、呼切断の少ない高精度なハンドオーバ制御が可能になり、無線通信システム全体の負荷低減と無線移動局100の消費電力を低減させることができる。
【0051】
なお、上記した各実施の形態の動作をプログラム化し、コンピュータに実行させることで実施できる。その際、コンピュータプログラムはフロッピーディスク(R)やハードディスク等のディスク型記録媒体、半導体メモリやカード型メモリ等の各種メモリまたは通信ネットワーク等の各種プログラム記録媒体を通じてコンピュータに供給することができる。
【0052】
これにより、呼切断の少ない高精度なハンドオーバ制御と無線移動局の消費電力を低減させる無線通信制御をプログラムにより実行することで、複雑かつ自由な無線通信制御が可能になり、移動通信システムの仕様変更等が発生した場合にも柔軟な設計変更が可能になる。また記録媒体に不揮発性の性質をもつ不揮発性記録媒体を使用することにより、設計変更等により再度記録媒体へのプログラムの書き込みが必要になった場合でも、ユーザーが何回でも書き直して修正できる機能を容易に実現できる点にある。
【0053】
【発明の効果】
以上のように本発明によれば、無線移動局の任意の時間後の予測位置での周辺無線基地局との距離と通話品質に基づいてハンドオーバ制御を行うことにより、不要なハンドオーバ制御回数を抑制して、無線移動局の消費電力を低減できると共に無線システム全体の負荷を低減して安定な通信を維持することができる。
【0054】
また、無線移動局の周辺基地局密度に応じて、ハンドオーバ制御用パラメータまたは送信電力を変更することにより、都市部等でのshadowing 現象等によるハンドオーバ制御時の呼切断を減少させることができる高精度なハンドオーバ制御を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る移動通信システムの無線移動局の構成を示したブロック図。
【図2】第1の実施の形態の無線移動局および無線基地局の配置例を示した図。
【図3】第1の実施の形態の無線移動局の任意時刻後の移動予測地点での予測される無線移動局情報および周辺無線基地局情報を示した図。
【図4】第1の実施の形態に示した移動通信システムの無線通信動作を説明するシーケンス図。
【図5】第1の実施の形態に示した移動通信システムの無線通信動作手順を説明するフローチャート。
【図6】本発明の第2の実施の形態に係る移動通信システムの無線移動局および無線基地局の配置を示した図。
【図7】第2の実施の形態の無線移動局の周囲にある無線基地局が密集している場合の無線移動局情報および周辺無線基地局情報を示した図。
【図8】第2の実施の形態の無線移動局の周囲にある無線基地局が閑散としている場合の無線移動局情報および周辺無線基地局情報を示した図。
【図9】第2の実施の形態の無線移動局の周囲の無線基地局が密集している場合と無線基地局が閑散としている場合のハンドオーバ制御タイミングを示した波形図。
【図10】第2の実施の形態の移動無線局のハンドオーバ制御タイミングを示したフローチャート。
【符号の説明】
100 無線移動局
110 送受信部
111 GPS受信機
112 方位センサ
113 ベースバンド信号処理部
114 位置算出部
115 方位算出部
116 速度算出部
117 下り通信品質測定部
118 ハンドオーバ制御部
119 ハンドオーバ制御用パラメータ記憶装置
120 周辺基地局情報記憶装置
150、160、170 無線基地局[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mobile communication system and a mobile communication control method using a wireless mobile station such as a mobile phone, and more particularly to handover control for switching a wireless base station communicating with a wireless mobile station.
[0002]
[Prior art]
In a conventional mobile communication system, when a wireless mobile station performs handover control for switching communication with another wireless base station during communication with a wireless base station, information from a wireless base station during communication is used as peripheral wireless base station information. A down-spread code, called a scramble code in the broadcast information, for identifying the radio direction (sector) of the radio base station is given to the radio mobile station, and the radio mobile station measures the down-link communication quality of the spread code. Has determined the wireless base station of the handover destination. In addition to this conventional method, there is also a device devising a handover control using position information by GPS (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-199428 (page 5, FIG. 2)
[0004]
[Problems to be solved by the invention]
In a conventional mobile communication system, when a wireless mobile station performs handover control, a downlink spreading code (scramble code) is given to a wireless mobile station as peripheral wireless base station information by broadcast information from a communicating wireless base station. The handover control is performed based on the downlink communication quality of the spread code. However, when a wireless mobile station moves at high speed on an expressway, a Shinkansen, or the like, if handover control based on downlink communication quality is performed, the communication quality of an adjacent wireless base station fluctuates drastically, and the number of times of handover control increases. In addition, by moving at high speed, in handover control with normal handover control parameters, a deviation occurs in handover control timing, and a phenomenon that leads to call disconnection occurs due to interruption of wireless communication control data. I was
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and can suppress unnecessary handover control times, reduce power consumption of a wireless mobile station, and maintain stable communication by reducing the load on the entire wireless system. It is an object of the present invention to provide a mobile communication system and a mobile communication control method that can perform the communication.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has taken the following measures.
The invention according to claim 1 is a mobile communication system having a plurality of radio base stations and a radio mobile station that communicates with the radio base station via a radio communication line, wherein the radio mobile station includes the radio base station. Quality detection means for detecting the downlink communication quality of the mobile station, position information detection means for detecting the position information of the own station, distance calculation means for calculating the distance between the own station and the radio base station, and the movement direction of the own station A moving direction detecting means for detecting the speed of the own station, a moving speed detecting means for detecting the speed of the own station, and after an arbitrary time based on the detected distance to the radio base station, the moving direction of the own station, and the speed of the own station. Position predicting means for predicting the position of the own station, calculating the distance to each wireless base station at the predicted position, the moving direction of the own station, the speed of the own station, and the downlink communication quality for each wireless base station. Information creating means to make the surrounding radio base station information, Handover destination determining means for determining a handover destination wireless base station based on the distance to each wireless base station in the issued peripheral wireless base station information and the downlink communication quality of each wireless base station; and the determined handover destination Handover control means for performing handover control with the radio base station.
[0007]
According to the above configuration, the radio mobile station performs the handover control based on the distance and the communication quality with the surrounding radio base station at the predicted position after an arbitrary time of the radio mobile station, thereby reducing the number of unnecessary handover control times. Thus, power consumption of the wireless mobile station can be reduced, and the load on the entire wireless system can be reduced to maintain stable communication.
[0008]
According to a second aspect of the present invention, in the mobile communication system according to the first aspect, the position information detecting means receives positioning information from a GPS satellite and calculates position information of the own device. .
[0009]
According to a third aspect of the present invention, in the mobile communication system according to the first aspect, the moving azimuth detecting means determines a moving azimuth of the wireless mobile station based on a wireless communication state with an azimuth identification sensor or a wireless base station. It is characterized in that it is calculated.
[0010]
According to a fourth aspect of the present invention, in the mobile communication system of the first aspect, the moving speed detecting means calculates the speed of the wireless mobile station using positioning information and wireless communication state information from a GPS satellite. It is characterized by the following.
[0011]
According to a fifth aspect of the present invention, in the mobile communication system according to the first aspect, the wireless base station has a function of preliminarily storing position information of its own station and position information of peripheral base stations. It is characterized by having a position information notifying means for notifying the station of the position information of the own station and the neighboring base stations as the notification information.
[0012]
According to a sixth aspect of the present invention, in the mobile communication system according to the first aspect, the distance calculating means notifies the position information of the wireless mobile station detected by the position information detecting means and the position information notifying means. The method is characterized in that a distance to a peripheral wireless base station is calculated using the information.
[0013]
According to a seventh aspect of the present invention, in the mobile communication system according to the first aspect, the handover destination determining unit determines a distance to each wireless base station in the predicted and calculated peripheral wireless base station information and each wireless base station. By comparing the downlink communication qualities for each mobile station, a wireless base station having the shortest distance and improving the downlink communication quality is determined as a handover destination.
[0014]
The invention according to claim 8 is the mobile communication system according to claim 1, wherein the handover control means changes a handover control parameter according to a peripheral radio base station density calculated from the peripheral radio base station information. It is characterized by performing handover control.
[0015]
According to a ninth aspect of the present invention, in the mobile communication system according to the first aspect, the handover control means adjusts a transmission power of the wireless mobile station based on a peripheral radio base station density calculated from the peripheral radio base station information. It is characterized in that handover control is performed by making changes.
[0016]
The invention according to claim 10 is a mobile communication control method including a plurality of radio base stations and a radio mobile station that communicates with the radio base station via a radio communication line, wherein the radio mobile station is an arbitrary radio base station. Estimating the position of the own station after a time, calculating the distance to each wireless base station at the predicted position, the moving direction of the own station, the speed of the own station, and the downlink communication quality for each wireless base station Determining the handover destination radio base station based on the calculated distance to each radio base station, the moving direction of the own station, the speed of the own station, and the downlink communication quality for each radio base station. Performing a handover control with the determined handover destination radio base station.
[0017]
According to the above configuration, by performing handover control based on the communication quality and the distance to the surrounding radio base station at the predicted position of the radio mobile station after an arbitrary time, unnecessary handover control times can be suppressed, Power consumption of the mobile station can be reduced, and the load on the entire wireless system can be reduced to maintain stable communication.
[0018]
The invention according to claim 11 provides a function of detecting downlink communication quality in communication between a radio base station and a radio mobile station, a function of detecting position information of the radio mobile station, A function of calculating a distance to a base station, a function of detecting a moving direction of the wireless mobile station, a function of detecting a speed of the wireless mobile station, and a method of calculating the calculated distance to the wireless base station and the own station. A function of predicting the position of the own station after an arbitrary time based on the moving direction of the own station and the speed of the own station, the distance to each wireless base station at the predicted position, the moving direction of the own station, and the speed of the own station And the function of calculating the downlink communication quality for each radio base station to obtain peripheral radio base station information, the distance to each radio base station of the calculated peripheral radio base station information, and the downlink communication for each radio base station. Calculate handover destination radio base station based on quality After changing the handover control parameter or the transmission power of the radio mobile station according to the peripheral radio base station density calculated from the peripheral radio base station information, and performing a handover with the determined handover destination radio base station. It is characterized by causing a computer to realize the function of performing control.
[0019]
According to the above configuration, by performing handover control based on the communication quality and the distance to the surrounding radio base station at the predicted position of the radio mobile station after an arbitrary time, unnecessary handover control times can be suppressed, Power consumption of the mobile station can be reduced, and the load on the entire wireless system can be reduced to maintain stable communication.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a wireless mobile station of the mobile communication system according to the first embodiment of the present invention. In FIG. 1, aradio mobile station 100 includes a transmission /reception unit 110, a GPS receiver 111, adirection sensor 112, a baseband signal processing unit 113, aposition calculation unit 114, adirection calculation unit 115, aspeed calculation unit 116, and a downlink communication quality measurement unit. 117, ahandover control unit 118, a handover controlparameter storage device 119, and a peripheral base stationinformation storage device 120.
[0021]
Theradio mobile station 100 configured as described above transmits and receives thebroadcast information 130 and thecommunication data 140 to and from theradio base station 150, theradio base station 160, or theradio base station 170.
[0022]
Next, the operation of the present embodiment will be described. While the wirelessmobile station 100 is communicating with thewireless base station 150 or in a standby operation, thewireless base station 150 transmits the position information of its own station and peripheral base stations by using thebroadcast information 130. In theradio mobile station 100, thebroadcast information 130 is received by the transmission /reception unit 110, the received signal is subjected to signal processing by the baseband signal processing unit 113 and input to the downlink communication quality measurement unit 117, where the downlink communication quality is calculated. Is done.
[0023]
On the other hand, theposition calculation unit 114 calculates the position of theown station 100 from the received signal of the GPS receiver 111, and also uses the calculated position information and thebroadcast information 130 to transmit theradio base station 150 and theradio base station 150 from theradio mobile station 100. The distance to thebase station 160 and thewireless base station 170 is calculated. Theazimuth calculation unit 115 calculates the moving direction of the own station based on the azimuth information detected by theazimuth sensor 112, the position information of theown station 100 notified from theposition calculation unit 114, and thenotification information 130.
[0024]
Thespeed calculation unit 116 calculates the moving speed of theown station 100 based on the notification information signal obtained by converting the reception information of the GPS receiver 111, the azimuth information of theazimuth sensor 112, and thenotification information 130 into baseband by the baseband signal processing unit 113. I do. Further, the downlink communication quality measuring unit 117 measures the downlink communication quality based on the broadcast information signal converted into the baseband.
[0025]
Thehandover control unit 118 inputs the distance, direction, speed, and downlink communication quality from theposition calculation unit 114, thedirection calculation unit 115, thespeed calculation unit 116, and the downlink communication quality measurement unit 117, respectively. In addition to storing the information in the stationinformation storage device 120 and calculating the position prediction and the surrounding base station information after an arbitrary time, the handover control according to the parameters from the handover controlparameter storage device 119 is performed.
[0026]
FIG. 2 is a diagram illustrating an example of the arrangement of the wireless mobile stations and the wireless base stations according to the first embodiment. As shown in FIG. 2, it is assumed that the wirelessmobile station 100 is moving at the point P1, and passes through a moving route passing through the points P2 and P3. FIG. 2A shows a wireless communication state at the point P1, and FIG. 2B shows a predicted wireless communication state at the point P3, which is a predicted movement point after an arbitrary time. Theradio mobile station 100 moving at the point P1 is communicating with theradio base station 150, and theradio base station 160 and theradio base station 170 are in a monitor communication state for measuring downlink communication quality.
[0027]
The upper part of FIG. 3 shows the wireless mobile station information and the surrounding wireless base station information at the point P1 in FIG. 2, and the lower part of FIG. 3 shows the predicted wireless movement at the point P3, which is a predicted movement point after an arbitrary time. Station information and peripheral wireless base station information are shown. Based on information from theposition calculation unit 114, theazimuth calculation unit 115, thespeed calculation unit 116, and the downlink communication quality measurement unit 117 at the point P1, the position of theradio base station 150, 160, 170, The distances from thestation 100 to theradio base stations 150, 160, and 170, the directions of theradio base stations 150, 160, and 170 from theradio mobile station 100, and the downlink communication quality information are stored in the peripheral base stationinformation storage device 120, respectively. FIG. 4 is an upper diagram of FIG. 3.
[0028]
Predicted and calculated wireless mobile station information and peripheral wireless base station information when the predicted movement position after an arbitrary time is set to point P3 from the wireless base station and peripheral wireless base station information at the point P1 shown in the upper part of FIG. The result obtained is shown in the lower part of FIG.
[0029]
Theradio mobile station 100 performs control to determine theradio base station 170 as the next handover destination based on the information after the prediction. The arrangement of theradio mobile station 100 and theradio base stations 150, 160, 170 at the point P3 is as shown in FIG.
[0030]
FIG. 4 is a sequence diagram illustrating a wireless communication operation of the mobile communication system shown in the first embodiment, and FIG. 5 is a flowchart illustrating a wireless communication operation procedure of the mobile communication system. The steps in the sequence of FIG. 4 are indicated by 400s, and the steps of the flowchart of FIG. 5 are indicated by 500s.
[0031]
Instep 500, theradio mobile station 100 is communicating with the radio base station 150 (step 400). Instep 501, theradio base station 150 transmits the position information of the peripheral radio base station to thebroadcast information 130 at an arbitrary timing. To the mobile station 100 (step 401). (Wireless base station 150 stores its own and peripheral wireless base station information in advance.)
[0032]
The wirelessmobile station 100 calculates the distance between theown station 100 and the surroundingwireless base stations 150, 160, 170 based on the receivedbroadcast information 130 and the position information of the GPS receiver 111 instep 502, and further, instep 503. Then, the azimuth of theown station 100 and the surroundingwireless base stations 150, 160, and 170 is calculated by theazimuth sensor 112 and the like, and further, instep 504, the speed of theown station 100 is calculated by the speed calculator 116 (step 402). . Next, instep 505, the wirelessmobile station 100 measures the downlink communication quality of the communicatingwireless base station 150 and the surroundingwireless base stations 160 and 170 by the downlink communication quality measuring unit 117 (step 403).
[0033]
Instep 506, the wirelessmobile station 100 creates peripheral wireless base station information based on the calculated distance, azimuth, speed and downlink communication quality (step 404). The position of theown station 100 after an arbitrary time is predicted from the azimuth and speed parameters.
[0034]
During this time, theradio mobile station 100 is communicating with the radio base station 150 (step 405) and is monitoring communication with theradio base station 160 and the radio base station 170 (steps 406 and 407).
[0035]
Instep 508, the wirelessmobile station 100 calculates peripheral wireless base station information at the predicted position of the wirelessmobile station 100, and creates peripheral wireless base station information (step 408). Further, instep 509, theradio mobile station 100 compares the distance and the downlink communication quality for each radio base station in the calculated predicted peripheral radio base station information.
[0036]
Instep 509, theradio mobile station 100 determines, for example, theradio base station 170, which is the shortest distance and is also expected to improve downlink communication quality, as a handover destination radio base station (step 409). Handover control with the H.170 is performed (step 410).
[0037]
The wirelessmobile station 100 completes the handover control instep 511, and shifts to a communication state with thewireless base station 170 in step 512 (step 411). Further, the wirelessmobile station 100 performs monitor communication with the wireless base station 160 (step 412).
[0038]
According to the present embodiment, the number of unnecessary handover controls can be reduced by performing handover control by predicting a wireless communication state at a predicted moving position of the wirelessmobile station 100 after an arbitrary time. It is possible to reduce the load on the entire wireless communication system and improve the stability of communication at the time of handover control during high-speed movement of the wirelessmobile station 100, and further reduce the number of times of performing the handover control. This has the effect of reducing power consumption.
[0039]
(Embodiment 2)
FIG. 6 is a diagram showing an arrangement of wireless mobile stations and wireless base stations in the mobile communication system according to the second embodiment of the present invention. FIG. FIG. 6B is an example of an arrangement in a case where the radio base station is quiet, such as when traveling on a suburb, a highway, or a high speed train by a Shinkansen. However, since the configuration of this example is the same as that of the above-described first embodiment, the description of the configuration operation of each unit having the same configuration will be omitted, and the characteristic portions of the operation will be described below. .
[0040]
In the present embodiment, as shown in FIG. 6, it is assumed that handover control occurs while the wirelessmobile station 100 is moving between the above two characteristic locations. The upper part of FIG. 7 shows wireless mobile station information and peripheral wireless base station information when wireless base stations in an urban area or the like are densely packed. When the wirelessmobile station 100 is traveling at a low speed, the distance to the nearbywireless base stations 150 to 170 is short, and the downlink communication quality is stable, thehandover control unit 118 estimates the area. By judging that it is “city area”, control is performed to extend the report waiting time, shorten the handover event report range, and reduce the transmission power of the wirelessmobile station 100, as shown in the lower part of FIG.
[0041]
The upper part of FIG. 8 is a diagram illustrating wireless mobile station information and peripheral wireless base station information when the surrounding wireless base stations are idle, such as when traveling on a suburb, a highway, or a bullet train. When the wirelessmobile station 100 is traveling at a medium speed to a high speed, the distance to the peripheral wireless base station is long, and the downlink communication quality is unstable, By determining “” or “high-speed movement”, control is performed to reduce the report waiting time, extend the handover event report range, and increase the transmission power of the wirelessmobile station 100, as shown in the lower part of FIG.
[0042]
FIG. 9A is a handover control timing diagram when the radio base stations in a city area or the like are dense, and FIG. 9B is a handover control timing when the peripheral radio base stations in a suburb, an expressway, a bullet train, or the like are idle. Is shown. In the case of FIG. 9A, since the surrounding radio base stations are dense, the occurrence of the event report is reduced by shortening the handover event report range as shown in 91, and the report is made as shown in 92. By extending the waiting time, the time interval of event reporting is extended, and the occurrence of unnecessary handover event reporting is suppressed. At the same time, the power consumption of the wirelessmobile station 100 is reduced by reducing the transmission power of the wirelessmobile station 100.
[0043]
In the case of FIG. 9B, since the surrounding wireless base stations are idle, the handover event report range is extended as shown at 93 to increase the occurrence of event reports, and as shown at 94, the report waits. Shortening the time shortens the time interval of event reporting. At the same time, the transmission power of the wirelessmobile station 100 is also increased to reduce call disconnection in off-peak areas.
[0044]
FIG. 10 is a flowchart showing the handover control timing of the mobile radio station according to the present embodiment under the conditions shown in FIG. Instep 1000, for example, during communication with theradio base station 150, theradio base station 150 transmits the position information of the peripheral radio base station to theradio mobile station 100 asbroadcast information 130 atstep 1001 atstep 1001. Notice. (Note that thewireless base stations 150 to 170 previously store their own and peripheral wireless base station information.)
[0045]
Instep 1002, themobile station 100 calculates the distance between itself and the surrounding radio base station by using thebroadcast information 130 and the GPS-basedposition calculation unit 114. Instep 1003, theazimuth calculation unit 115 etc. Instep 1004, the speed of the wirelessmobile station 100 is calculated by thespeed calculating unit 116, and instep 1005, the wirelessmobile station 100 in communication with the downlink communication quality measuring unit 117 is calculated. And the downlink communication quality of the surroundingwireless base stations 150 to 170. Instep 1006, the wirelessmobile station 100 creates peripheral wireless base station information based on the information on the calculated distance, azimuth, speed, and downlink communication quality.
[0046]
Instep 1007, the wirelessmobile station 100 predicts the surrounding wireless base station situation from the surrounding wireless base station information, and determines instep 1008 whether the surrounding situation of the wirelessmobile station 100 is in an urban area. If the prediction result is in an urban area, the processing instep 1009 is executed, and in the case of a suburb, the processing instep 1012 is executed.
[0047]
If the prediction result is an urban area, theradio mobile station 100 extends the report waiting time parameter of the handover control parameter instep 1009 and shortens the handover event report range parameter of the handover control parameter instep 1010. Accordingly, the wirelessmobile station 100 performs control to reduce the transmission power of the wirelessmobile station 100 instep 1011.
[0048]
On the other hand, if the prediction result is a suburb, theradio mobile station 100 shortens the report waiting time parameter of the handover control parameter instep 1012, and extends the handover event report range parameter of the handover control parameter instep 1013. I do. Accordingly, theradio mobile station 100 performs control to increase the transmission power instep 1014.
[0049]
Instep 1015, theradio mobile station 100 performs control reflecting the handover control parameters at the time of the next handover control.
[0050]
According to the present embodiment, it is possible to perform handover control for changing the handover control parameters and the transmission power of theradio mobile station 100 according to the radio base station environment in each region, thereby achieving high precision with little call disconnection Handover control can be performed, and the load on the entire wireless communication system can be reduced and the power consumption of the wirelessmobile station 100 can be reduced.
[0051]
The operation of each of the above-described embodiments can be implemented by being programmed and executed by a computer. At that time, the computer program can be supplied to the computer through a disk-type recording medium such as a floppy disk (R) or a hard disk, various memories such as a semiconductor memory or a card-type memory, or various program recording media such as a communication network.
[0052]
This makes it possible to perform complex and free wireless communication control by executing high-precision handover control with less call disconnection and wireless communication control to reduce power consumption of the wireless mobile station by a program. Even when a change or the like occurs, a flexible design change becomes possible. In addition, by using a non-volatile recording medium with a non-volatile property as a recording medium, even if it becomes necessary to rewrite the program to the recording medium due to design change, the user can rewrite and modify the program as many times as necessary. Can be easily realized.
[0053]
【The invention's effect】
As described above, according to the present invention, unnecessary handover control times can be suppressed by performing handover control based on the distance to the surrounding radio base station and the communication quality at the predicted position of the radio mobile station at an arbitrary time later. As a result, the power consumption of the wireless mobile station can be reduced, and the load on the entire wireless system can be reduced to maintain stable communication.
[0054]
In addition, by changing the parameters for handover control or the transmission power according to the density of the base stations in the vicinity of the wireless mobile station, it is possible to reduce call disconnection during handover control due to shadowing phenomena in urban areas and the like. Handover control can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a wireless mobile station in a mobile communication system according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of an arrangement of a wireless mobile station and a wireless base station according to the first embodiment;
FIG. 3 is a diagram showing predicted wireless mobile station information and peripheral wireless base station information at a predicted movement point after an arbitrary time of the wireless mobile station according to the first embodiment;
FIG. 4 is a sequence diagram illustrating a wireless communication operation of the mobile communication system shown in the first embodiment.
FIG. 5 is a flowchart for explaining a wireless communication operation procedure of the mobile communication system shown in the first embodiment.
FIG. 6 is a diagram showing an arrangement of radio mobile stations and radio base stations in a mobile communication system according to a second embodiment of the present invention.
FIG. 7 is a diagram showing wireless mobile station information and peripheral wireless base station information when wireless base stations around the wireless mobile station according to the second embodiment are densely packed;
FIG. 8 is a diagram illustrating wireless mobile station information and peripheral wireless base station information when wireless base stations around the wireless mobile station according to the second embodiment are idle;
FIG. 9 is a waveform chart showing handover control timings when the radio base stations around the radio mobile station according to the second embodiment are dense and when the radio base stations are idle.
FIG. 10 is a flowchart showing handover control timing of the mobile radio station according to the second embodiment.
[Explanation of symbols]
Reference Signs List 100 wirelessmobile station 110 transmitting / receiving section 111GPS receiver 112 direction sensor 113 basebandsignal processing section 114position calculation section 115direction calculation section 116 speed calculation section 117 downlink communicationquality measurement section 118handover control section 119 handover controlparameter storage device 120 Peripheral base stationinformation storage device 150, 160, 170 Wireless base station