本発明は、電気エネルギーを光に変換できる発光素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な発光素子に関するものである。 The present invention is a light emitting device capable of converting electric energy into light, and can be used in the fields of display devices, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and the like. It relates to a light emitting element.
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴であり注目を集めている。 In recent years, research has been actively conducted on an organic laminated thin film light emitting device in which electrons injected from a cathode and holes injected from an anode emit light when they recombine in an organic phosphor sandwiched between both electrodes. This element has attracted attention because it is thin, emits light with high luminance under a low driving voltage, and emits multicolor light by selecting a fluorescent material.
この研究は、コダック社のC.W.Tangらが有機積層薄膜素子が高輝度に発光することを示して以来、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機積層薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層である8−ヒドロキシキノリンアルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000cd/m2の緑色発光が可能であった(例えば、非特許文献1参照)。This study was based on Kodak's C.I. W. Since Tang et al. Showed that the organic laminated thin-film element emits light with high luminance, many research institutions have been studying. A typical configuration of an organic laminated thin-film light-emitting device presented by a research group of Kodak Company is a diamine compound having a hole-transporting property on an ITO glass substrate, 8-hydroxyquinoline aluminum as a light-emitting layer, and Mg: Ag as a cathode.They were sequentially provided, and green light emission of 1000 cd / m2 was possible at a drive voltage of about 10 V (for example, see Non-Patent Document 1).
有機積層薄膜発光素子は発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能である。なかでも白色発光素子は、薄型光源、液晶ディスプレイのバックライト、カラーフィルターとの組み合わせによるフルカラーディスプレイなどの多種多様な用途があり、実用化に向けた研究が盛んである。 The organic laminated thin-film light-emitting element can obtain various luminescent colors by using various fluorescent materials for the light-emitting layer. Above all, white light-emitting elements have a wide variety of uses, such as thin light sources, backlights of liquid crystal displays, and full-color displays in combination with color filters, and researches for practical use are being actively pursued.
白色発光の生成方法としては、発光層に青〜緑色発光を示すホストとその補色にあたる発光色を示すドーパントを混合して白色を得る方法、青、緑、赤を異なる層から発生させ実質的に白色を得る方法等が提案されている。例えば、赤色蛍光染料を含む緑色発光層と青色発光層との組み合わせで白色発光を生成する方法(例えば、特許文献1参照)や、青、緑、又は赤色発光を示す異なる発光層を積層することにより白色発光を生成する方法(例えば、非特許文献2参照)などが報告されている。 As a method of generating white light emission, a method of obtaining a white color by mixing a host that emits blue to green light and a dopant that emits a light emission color complementary to the host to the light-emitting layer, generating blue, green, and red from different layers substantially A method of obtaining white color and the like have been proposed. For example, a method of generating white light emission by a combination of a green light emitting layer containing a red fluorescent dye and a blue light emitting layer (for example, see Patent Document 1), or stacking different light emitting layers that emit blue, green, or red light (For example, see Non-Patent Document 2) and the like.
また、赤色光発光物質を青緑発光層に含有させることにより白色発光が可能な発光素子が開示されている(例えば、特許文献2参照)。
しかし従来の白色発光素子では発光効率が低く、十分な輝度が得られていなかった。本発明は、かかる従来技術の問題を解決し、発光効率が高く、色純度に優れた白色発光素子を提供することを目的とするものである。 However, the conventional white light-emitting device has low luminous efficiency and has not obtained sufficient luminance. An object of the present invention is to solve the problems of the prior art and to provide a white light emitting device having high luminous efficiency and excellent color purity.
上記課題を解決するため本発明は以下の構成を取る。すなわち、本発明は、陽極と陰極の間に少なくとも発光層と電子輸送層が存在し、電気エネルギーにより発光する素子であって、該発光層が下記一般式(1)で表されるピロメテン化合物もしくはその金属錯体を含有し、該電子輸送層のイオン化ポテンシャルが5.8eV以上であり、該発光層が白色発光を生ずることを特徴とする発光素子をその骨子とする。 In order to solve the above problems, the present invention has the following configurations. That is, the present invention is an element in which at least a light emitting layer and an electron transport layer exist between an anode and a cathode, and emits light by electric energy, wherein the light emitting layer is a pyromethene compound represented by the following general formula (1) or A light emitting element containing the metal complex, wherein the electron transporting layer has an ionization potential of 5.8 eV or more, and the light emitting layer emits white light, is the gist of the light emitting element.
(ここでR1〜R7はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。XはNまたはC原子を表し、XがNの場合R7は存在しない。金属錯体の場合の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。)
また、別の本発明は、陽極と陰極の間に少なくとも二層以上に積層された発光層が存在し、電気エネルギーにより発光する素子であって、該発光層の少なくとも一層が上記一般式(1)で表されるピロメテン化合物もしくはその金属錯体を含有し、該発光層が白色発光を生ずることを特徴とする発光素子をその骨子とする。(Wherein R1 to R7 may be the same or different, and each represents hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, Arylthioether group, aryl group, heterocyclic group, halogen, cyano group, aldehyde group, carbonyl group, ester group, carbamoyl group, amino group, silyl group, and condensed ring formed between adjacent substituents X represents an N or C atom, and when X is N, there is no R7. In the case of the metal complex, the metal is boron, beryllium, magnesium, chromium, iron, cobalt, nickel, copper, zinc, platinum. At least one selected from the group consisting of:
Another aspect of the present invention is an element which has at least two light-emitting layers stacked between an anode and a cathode and emits light by electric energy, wherein at least one of the light-emitting layers has the general formula (1) The light-emitting element contains a pyromethene compound represented by the formula (1) or a metal complex thereof, and the light-emitting layer emits white light.
本発明によれば、発光輝度が高く、色純度に優れた白色発光素子を提供できるものである。 According to the present invention, it is possible to provide a white light emitting device having high emission luminance and excellent color purity.
本発明の発光素子について詳細に説明する。 The light emitting device of the present invention will be described in detail.
陽極は、光を取り出すために透明であれば良く、使用する素材としては、酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。 透明電極である陽極の抵抗は、素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが特に望ましい。ITOの厚みは、抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。また、ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスが好ましいが、SiO2などのバリアコートを施したソーダライムガラスなど市販されているガラスも使用できる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法などを使用することができ、特に制限を受けるものではない。The anode only needs to be transparent in order to extract light, and as a material to be used, a conductive metal oxide such as tin oxide, indium oxide, and indium tin oxide (ITO), or a metal such as gold, silver, and chromium; Inorganic conductive substances such as copper iodide and copper sulfide, and conductive polymers such as polythiophene, polypyrrole, and polyaniline are not particularly limited, but ITO glass and Nesa glass are particularly preferable. The resistance of the anode, which is a transparent electrode, is not limited as long as a current sufficient for light emission of the element can be supplied, but is preferably low in terms of power consumption of the element. For example, an ITO substrate having a resistance of 300 Ω / □ or less functions as an element electrode. However, a substrate having a resistance of about 10 Ω / □ can be supplied at present. The thickness of the ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of usually 100 to 300 nm. Further, as the glass substrate, soda lime glass, non-alkali glass, or the like is used, and the thickness is sufficient if it has a sufficient thickness to maintain mechanical strength. As for the material of the glass, non-alkali glass is preferable because it is preferable that the amount of ions eluted from the glass is small, but commercially available glass such as soda lime glass coated with a barrier coat such as SiO2 can also be used. Furthermore, if the anode functions stably, the substrate does not need to be glass, and for example, the anode may be formed on a plastic substrate. The method of forming the ITO film can be an electron beam method, a sputtering method, a chemical reaction method, or the like, and is not particularly limited.
陰極に使用する素材は、電子を本有機物層に効率良く注入できる物質であれば特に限定されず、例えば、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどを使用することができる。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムまたはこれらの低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム(例えば、真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができるが、フッ化リチウムのような無機塩の使用も可能であることから特にこれらに限定されるものではない。更に、電極保護のために、白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい例として挙げられる。これらの電極の作製法についても、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができれば特に制限されない。 The material used for the cathode is not particularly limited as long as it is a substance capable of efficiently injecting electrons into the organic material layer.For example, platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, Sodium, potassium, calcium, magnesium and the like can be used. In order to improve the device characteristics by increasing the electron injection efficiency, lithium, sodium, potassium, calcium, magnesium or an alloy containing these low work function metals is effective. However, these low work function metals are generally unstable in the air in many cases. For example, doping an organic layer with a small amount of lithium or magnesium (for example, 1 nm or less as indicated by a film thickness gauge by vacuum evaporation) is performed. A method using a highly stable electrode can be cited as a preferable example, but the method is not particularly limited because an inorganic salt such as lithium fluoride can be used. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and silica, titania, inorganic substances such as silicon nitride, polyvinyl alcohol, It is preferable to laminate vinyl chloride, a hydrocarbon polymer, or the like. The method for producing these electrodes is not particularly limited as long as electrical conduction such as resistance heating, electron beam, sputtering, ion plating, and coating can be achieved.
本発明の発光素子は発光素子材料を含む。発光素子材料とは、自ら発光するものまたは発光を助けるものであり、発光に関与している化合物を指すものである。具体的には、例えば、正孔輸送材料、発光材料、電子輸送材料などが該当する。 The light emitting device of the present invention includes a light emitting device material. The light emitting element material is a material that emits light or assists light emission, and refers to a compound that participates in light emission. Specifically, for example, a hole transporting material, a light emitting material, an electron transporting material, and the like are applicable.
本発明の発光素子は発光素子材料を含む層を含むことが必要であり、例えば、1)正孔輸送層/発光層、2)正孔輸送層/発光層/電子輸送層、3)発光層/電子輸送層、4)1)〜3)の組合わせ材料を一層に混合した形態のいずれであってもよい。即ち、素子構成としては、上記1)〜3)の多層積層構造の他に4)のように発光材料単独または発光材料と正孔輸送材料や電子輸送材料を含む層を一層設けるだけでもよい。また、上記正孔輸送層、発光層および電子輸送層は、それぞれ単一層からなってもよいし、複数層からなってもよい。但し、本発明の発光素子では、高輝度を得るために、発光層は二層以上に積層されるか、少なくとも発光層と電子輸送層を有しかつ該電子輸送層のイオン化ポテンシャルが5.8eV以上であることのいずれかが必要である。 The light emitting device of the present invention needs to include a layer containing a light emitting device material. For example, 1) a hole transport layer / a light emitting layer, 2) a hole transport layer / a light emitting layer / an electron transport layer, and 3) a light emitting layer. / Electron transport layer, 4) Any one of the forms in which the combination material of 1) to 3) is mixed. That is, as the element configuration, in addition to the multi-layer structure of the above 1) to 3), only a single layer of a light emitting material or a layer containing a light emitting material and a hole transport material or an electron transport material as in 4) may be provided. Further, each of the hole transport layer, the light emitting layer and the electron transport layer may be composed of a single layer or a plurality of layers. However, in the light-emitting element of the present invention, in order to obtain high luminance, the light-emitting layer is stacked in two or more layers or has at least a light-emitting layer and an electron transport layer, and the ion transport potential of the electron transport layer is 5.8 eV. Either of the above is necessary.
白色発光を得る方法としては、単一の材料で白色発光を得られることが好ましいが、単一で白色発光を示す発光材料がほとんどなく、また発光強度も低いため、複数の発光材料からの複数の発光色の重ね合わせにより白色発光を取り出す方法を用いることができる。具体的には、別々の発光材料から青・緑・赤の三原色発光を得て、それらの重ね合わせとして白色発光を取り出す方法や、青緑・黄色などの三原色の補色発光を重ね合わせて白色発光を得る方法などが挙げられる。また、複数の発光色を得るための素子構成としては、これに限定されるものではないが、単一の発光層に異なる発光色を示す複数の発光材料を混合する方法、発光層を二層以上に積層し、それぞれに一種または複数の発光材料を混合する方法などが挙げられる。 As a method for obtaining white light emission, it is preferable that white light emission can be obtained with a single material.However, since there is almost no single light-emitting material that emits white light and the light emission intensity is low, a plurality of light-emitting materials A method of extracting white light emission by superimposing the light emission colors of the above can be used. Specifically, a method of obtaining three primary colors of blue, green, and red from different light emitting materials and extracting white light as a superposition thereof, or a method of superimposing complementary colors of three primary colors such as blue, green, and yellow to emit white light And the like. The element structure for obtaining a plurality of light-emitting colors is not limited to this, but a method of mixing a plurality of light-emitting materials showing different light-emitting colors in a single light-emitting layer, a method in which two light-emitting layers are used, A method in which the layers are stacked as described above, and one or a plurality of light-emitting materials are mixed with each other, and the like are given.
正孔輸送層は、正孔輸送材料の一種または二種以上を積層、混合するか、正孔輸送材料と高分子結着剤の混合物により形成することができる。正孔輸送材料としては、例えば、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましく使用される。ただし、素子作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。 The hole transport layer can be formed by laminating and mixing one or two or more hole transport materials, or by using a mixture of a hole transport material and a polymer binder. Examples of the hole transport material include N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine and N, N'-dinaphthyl- Triphenylamines such as N, N'-diphenyl-4,4'-diphenyl-1,1'-diamine, bis (N-allylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds , A hydrazone-based compound, an oxadiazole derivative or a phthalocyanine derivative, a heterocyclic compound represented by a porphyrin derivative, and in a polymer system, a polycarbonate or a styrene derivative having the monomer in a side chain, polyvinyl carbazole, or polysilane is preferably used. . However, the compound is not particularly limited as long as it is a compound capable of forming a thin film necessary for element production, injecting holes from the anode, and transporting holes.
本発明における発光層は、発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち本発明の白色発光を示す発光素子では、発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して10重量%以下で用いることが好ましく、さらに好ましくは5重量%以下である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。 The light emitting layer in the present invention is formed of a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material, or a single host material. That is, in the light-emitting element that emits white light of the present invention, in the light-emitting layer, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light. The host material and the dopant material may each be of one type or a combination of a plurality of types. The dopant material may be included in the entire host material, may be partially included, or may be included therein. The dopant material may be stacked, dispersed, or the like. When the amount of the dopant material is too large, the concentration quenching phenomenon occurs. Therefore, the amount of the dopant material is preferably 10% by weight or less, more preferably 5% by weight or less based on the host material. As a doping method, it can be formed by a co-evaporation method with a host material, but may be mixed with the host material in advance and then vapor-deposited at the same time.
本発明における発光層は、ホスト材料と一種以上のドーパント材料とからなり、該ドーパント材料のうち少なくとも一つが下記一般式(1)で表されるピロメテン化合物もしくはその金属錯体であることが好ましい。 The light emitting layer in the present invention comprises a host material and one or more dopant materials, and at least one of the dopant materials is preferably a pyromethene compound represented by the following general formula (1) or a metal complex thereof.
ここでR1〜R7はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。XはNまたはC原子を表し、XがNの場合R7は存在しない。金属錯体の場合の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。Here, R1 to R7 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, or an aryl group. Selected from thioether groups, aryl groups, heterocyclic groups, halogens, cyano groups, aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups, silyl groups, and condensed rings formed between adjacent substituents It is. X represents an N or C atom, and when X is N, R7 is absent. The metal in the case of the metal complex is at least one selected from boron, beryllium, magnesium, chromium, iron, cobalt, nickel, copper, zinc, and platinum.
これらの置換基の内、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これらは無置換でも置換されていてもかまわない。また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これらは無置換でも置換されていてもかまわない。また、アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これらは無置換でも置換されていてもかまわない。また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これらは無置換でも置換されていてもかまわない。また、アルキニル基とは、例えば、アセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これらは無置換でも置換されていてもかまわない。また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。また、アルキルチオ基とはアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。また、アリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、該アリール基は無置換でも置換されていてもかまわない。また、複素環基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これらは無置換でも置換されていてもかまわない。ハロゲンとはフッ素、塩素、臭素、ヨウ素を示す。アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は、無置換でも置換されていてもかまわない。シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。隣接置換基との間に形成される縮合環とは、前記一般式(1)で説明すると、R1とR2、R2とR3、R4とR5、R5とR6、R6とR7、R7とR1のいずれか1箇所以上の間で共役または非共役の縮合環を形成するものである。これらの縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。Among these substituents, the alkyl group refers to, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group, and these may be unsubstituted or substituted. The cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl, which may be unsubstituted or substituted. The aralkyl group refers to, for example, an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group and a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter. The alkenyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, and a butadienyl group, and these may be unsubstituted or substituted. Further, the cycloalkenyl group means, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexene group, etc., and these may be unsubstituted or substituted. I don't care. The alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, and these may be unsubstituted or substituted. Further, the alkoxy group indicates, for example, an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. Further, the aryl ether group indicates, for example, an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. The arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is substituted with a sulfur atom. The aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group, and the aryl group may be unsubstituted or substituted. Absent. Further, the heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, and a carbazolyl group. It doesn't matter. Halogen refers to fluorine, chlorine, bromine and iodine. Aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, and amino groups include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, those substituted with a heterocyclic ring, and the like. The alicyclic hydrocarbon, aromatic hydrocarbon, and heterocyclic ring may be unsubstituted or substituted. The silyl group indicates, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. The condensed ring formed between the adjacent substituents may be, as described in the aforementioned general formula (1), R1 and R2 , R2 and R3 , R4 and R5 , R5 and R6 , RA conjugated or non-conjugated condensed ring is formed between at leastone of R6 and R7 , or R7 and R1 . These condensed rings may contain nitrogen, oxygen and sulfur atoms in the ring structure, or may be condensed with another ring.
また、金属に配位する時には、ピロメテン化合物単独でも混合配位子でも特に限定されない。混合配位子の場合の第二の配位子としては、アルコキシ、フェノキシ、ハロゲン、アルキル、アリールその他縮合環炭化水素、複素環化合物、または酸素原子を介して結合された芳香環または複素環化合物などを導入することが可能である。 When coordinating to a metal, there is no particular limitation on the pyromethene compound alone or a mixed ligand. As the second ligand in the case of a mixed ligand, alkoxy, phenoxy, halogen, alkyl, aryl and other condensed ring hydrocarbons, heterocyclic compounds, or aromatic rings or heterocyclic compounds bonded via an oxygen atom It is possible to introduce such as.
さらに高輝度発光を得るためには、ピロメテン化合物として下記一般式(2)で表されるピロメテン金属錯体が好ましく使用される。 In order to further obtain high luminance emission, a pyrromethene metal complex represented by the following general formula (2) is preferably used as the pyrromethene compound.
ここでR8〜R16はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。XはNまたはC原子を表し、XがNの場合R14は存在しない。これらの置換基については上記一般式(1)の説明と同様である。Here, R8 to R16 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, or an aryl group. Selected from thioether groups, aryl groups, heterocyclic groups, halogens, cyano groups, aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups, silyl groups, and condensed rings formed between adjacent substituents It is. X represents an N or C atom, and when X is N, R14 is not present. About these substituents, it is the same as that of description of the said General formula (1).
白色発光を得る方法のなかでも、三原色の重ね合わせで白色発光を得る方法は、フルカラーディスプレイを得るために有効な方法であり、赤色発光が特に重要である。そこで、本発明に使用するピロメテン化合物もしくはその金属錯体が、580nm以上720nm以下に発光ピーク波長を有することが好ましい。 Among methods for obtaining white light emission, a method for obtaining white light emission by superimposing three primary colors is an effective method for obtaining a full-color display, and red light emission is particularly important. Therefore, it is preferable that the pyrromethene compound or its metal complex used in the present invention has an emission peak wavelength at 580 nm or more and 720 nm or less.
金属錯体は、下記一般式(3)で表されることが蛍光量子収率が高いため、特に好ましい。 The metal complex is particularly preferably represented by the following general formula (3) because of its high fluorescence quantum yield.
ここでR17〜R20はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar1〜Ar5はそれぞれ同じでも異なっていてもよく、アリール基を表す。これらの置換基については上記一般式(1)の説明と同様である。Here, R17 to R20 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, or an aryl group. Selected from thioether groups, aryl groups, heterocyclic groups, halogens, cyano groups, aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups, silyl groups, and condensed rings formed between adjacent substituents It is. Ar1 to Ar5 may be the same or different and each represents an aryl group. About these substituents, it is the same as that of description of the said General formula (1).
ピロメテン化合物は、ホスト材料として用いてもよいが、蛍光量子収率が高いことや、発光スペクトルの半値幅が小さいことから、ドーパント材料として好適に用いられる。上記のピロメテン化合物の構造として、具体的に以下のようなものが挙げられる。 The pyrromethene compound may be used as a host material, but is preferably used as a dopant material because of its high fluorescence quantum yield and small half-width of the emission spectrum. Specific examples of the structure of the above pyromethene compound include the following.
ドーパント材料としては、上記したピロメテン化合物一種のみに限る必要はなく、複数のピロメテン化合物を混合して用いたり、既知のドーパント材料の一種類以上を上記したピロメテン化合物と混合して用いてもよい。また、発光層を二層以上に積層する場合は、ピロメテン化合物は一層のみに含まれてもよいし、複数の層に含まれていてもよい。また、ピロメテン化合物を含有する層以外の層にも既知のドーパント材料を好適に用いることができる。 The dopant material does not need to be limited to the above-described pyromethene compound alone, and a plurality of pyromethene compounds may be used as a mixture, or one or more known dopant materials may be used as a mixture with the above-described pyromethene compound. In the case where two or more light-emitting layers are stacked, the pyromethene compound may be contained in only one layer or may be contained in a plurality of layers. In addition, a known dopant material can be suitably used for a layer other than the layer containing the pyromethene compound.
既知のドーパント材料としては、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、限定されるものではないが、青〜青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などが挙げられる。 Known dopant materials can be selected from a variety of materials depending on the desired emission color. Specifically, although not limited, as the blue to blue-green dopant material, naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, aromatic hydrocarbon compounds such as indene and derivatives thereof, furan, Pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene, etc. Aromatic heterocyclic compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiazide Azole derivatives such as sol, carbazole, oxazole, oxadiazole, and triazole and metal complexes thereof, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1 And aromatic amine derivatives typified by '-diamine.
また、緑〜黄色ドーパント材料としては、例えば、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体、ルブレンなどのナフタセン誘導体などが挙げられ、さらに上記した青〜青緑色ドーパント材料として例示した化合物にアリール基、ヘテロアリール基、アリールビニル基、アミノ基、シアノ基など長波長化を可能とする置換基を導入した化合物も好適な例として挙げられる。 Examples of the green-yellow dopant material include, for example, naphthacene derivatives such as coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and rubrene. Compounds obtained by introducing a substituent capable of increasing the wavelength, such as an aryl group, a heteroaryl group, an arylvinyl group, an amino group, and a cyano group, into the compounds exemplified as the blue to blue-green dopant materials described above are also preferable examples. .
橙〜赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体、チアジアゾロピレン誘導体など挙げられ、さらに上記した青〜黄色ドーパント材料として例示した化合物にアリール基、ヘテロアリール基、アリールビニル基、アミノ基、シアノ基など長波長化を可能とする置換基を導入した化合物も好適な例として挙げられる。さらに、トリス(2−フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属としたリン光性金属錯体も好適な例として挙げられる。 Examples of the orange-red dopant material include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4- ( Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone derivatives, Phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives, phenoxazone derivatives, Asianzolopyrene derivatives and the like, and further, a substituent capable of increasing the wavelength, such as an aryl group, a heteroaryl group, an arylvinyl group, an amino group, and a cyano group, are introduced into the compounds exemplified as the blue to yellow dopant materials described above. Compounds are also mentioned as preferred examples. Furthermore, a phosphorescent metal complex having iridium represented by tris (2-phenylpyridine) iridium (III) or platinum as a central metal is also a preferred example.
本発明に使用するホスト材料としては、特に限定されるものではないが、例えば、従来から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。 The host material used in the present invention is not particularly limited, and includes, for example, condensed ring derivatives such as anthracene and pyrene, and tris (8-quinolinolato) aluminum, which are conventionally known as luminous bodies. Metal chelated oxinoid compounds, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, In the case of the Asiazolopyridine derivative, the Pyrrolopyrrole derivative, and the polymer system, a polyphenylenevinylene derivative, a polyparaphenylene derivative, and a polythiophene derivative are suitably used.
また、リン光発光を示す発光層のホスト材料としては、特に限定されるものではないが、4,4’−ビス(カルバゾリル−N−イル)ビフェニルに代表されるカルバゾール誘導体、トリアゾール、オキサジアゾール、イミダゾールなどのアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、キノキサリン誘導体、ナフチリジン誘導体、ビピリジン、ターピリジンなどのオリゴピリジン誘導体などが挙げられる。 The host material of the light-emitting layer that emits phosphorescence is not particularly limited, but a carbazole derivative represented by 4,4′-bis (carbazolyl-N-yl) biphenyl, a triazole, an oxadiazole , Azole derivatives such as imidazole, phenanthroline derivatives, quinoline derivatives, quinoxaline derivatives, naphthyridine derivatives, and oligopyridine derivatives such as bipyridine and terpyridine.
なかでも、ピロメテン化合物をドーパント材料として含有する発光層のホスト材料としては、下記一般式(4)で表されるピロロピロール誘導体が好適に用いられる。 In particular, a pyrrolopyrrole derivative represented by the following general formula (4) is suitably used as a host material of a light emitting layer containing a pyromethene compound as a dopant material.
ここでR21およびR22はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar6およびAr7はそれぞれ同じでも異なっていてもよく、アリール基を表す。これらの置換基については上記一般式(1)の説明と同様である。Here, R21 and R22 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, or an aryl group. Selected from thioether groups, aryl groups, heterocyclic groups, halogens, cyano groups, aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups, silyl groups, and condensed rings formed between adjacent substituents It is. Ar6 and Ar7 may be the same or different and each represents an aryl group. About these substituents, it is the same as that of description of the said General formula (1).
ピロロピロール誘導体としては、具体的に下記のような化合物が挙げられる。 Specific examples of the pyrrolopyrrole derivative include the following compounds.
電子輸送層とは陰極から電子が注入され、さらに電子を輸送することを司る層である。したがって、電子輸送層は、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本発明における電子輸送層は、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含むことができる。 The electron transport layer is a layer that injects electrons from the cathode and transports the electrons. Therefore, it is desirable that the electron transport layer has a high electron injection efficiency and efficiently transports the injected electrons. For this purpose, it is required that the material has a high electron affinity, a high electron mobility, excellent stability, and hardly generate impurities serving as traps during production and use. However, considering the transport balance between holes and electrons, if the role of mainly preventing the holes from the anode from flowing to the cathode side without recombination is to play an important role, the electron transport capability is not so high. Even if it is not high, the effect of improving the luminous efficiency is equivalent to a material having a high electron transporting ability. Therefore, the electron transport layer in the present invention can include a hole blocking layer capable of efficiently blocking the movement of holes as the same thing.
本発明における電子輸送層のイオン化ポテンシャルは5.8eV以上であることが望ましい。イオン化ポテンシャルが5.8eV以上であれば、陽極より注入された正孔が発光層内で再結合せずに陰極側に流れ出るのを効率よく阻止することができ、発光効率を向上させるからである。なかでも発光層が単一層からなる場合には、正孔輸送層側から発光層に注入された正孔が電子輸送層との界面に速やかに伝搬されるため、電子輸送材料による正孔阻止がより重要になる。このため本発明では、発光層が単一層からなる場合、電子輸送層を構成する材料のイオン化ポテンシャルが5.8eV以上であることが必要である。このことにより、発光効率の高い白色発光素子を得ることができる。より好ましくは5.9eV以上、更に好ましくは6.0eV以上である。イオン化ポテンシャルの上限はとくに定めないが、電子輸送材料が有機化合物である点から、通常7.5eV以下である。 The ion transport potential of the electron transport layer in the present invention is desirably 5.8 eV or more. When the ionization potential is 5.8 eV or more, holes injected from the anode can be efficiently prevented from flowing toward the cathode without recombination in the light emitting layer, thereby improving luminous efficiency. . In particular, when the light emitting layer is composed of a single layer, holes injected into the light emitting layer from the hole transport layer side are quickly propagated to the interface with the electron transport layer. Become more important. For this reason, in the present invention, when the light emitting layer is composed of a single layer, the material constituting the electron transporting layer needs to have an ionization potential of 5.8 eV or more. As a result, a white light-emitting element having high luminous efficiency can be obtained. It is more preferably at least 5.9 eV, even more preferably at least 6.0 eV. Although the upper limit of the ionization potential is not particularly defined, it is usually 7.5 eV or less because the electron transporting material is an organic compound.
電子輸送層を構成する電子輸送材料としては、具体的には、8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタレン、クマリン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体、ナフチリジン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。なかでも、電子輸送層がオキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ナフチリジン誘導体、ビピリジン誘導体、ターピリジン誘導体、リンオキサイド誘導体の中から選ばれる少なくとも1種を含有することが、高いイオン化ポテンシャルを有するため好ましい。 Specific examples of the electron transporting material constituting the electron transporting layer include a quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum, a terpyridine metal complex, a tropolone metal complex, a flavonol metal complex, a perylene derivative, a perinone derivative, and naphthalene. , Coumarin derivative, benzimidazole derivative, benzoxazole derivative, benzthiazole derivative, oxadiazole derivative, thiadiazole derivative, triazole derivative, aldazine derivative, bisstyryl derivative, pyrazine derivative, phenanthroline derivative, quinoxaline derivative, quinoline derivative, benzoquinoline derivative, bipyridine Oligopyridine derivatives such as pyridine and terpyridine, quinoxaline derivatives, naphthyridine derivatives, naphthalimide derivatives, anthraquinone and diphe Quinone derivatives such as quinones, although such as phosphorus oxide derivatives are not particularly limited. These electron transporting materials may be used alone or may be laminated or mixed with different electron transporting materials. Among them, the electron transport layer contains at least one selected from oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, quinoline derivatives, quinoxaline derivatives, benzoquinoline derivatives, naphthyridine derivatives, bipyridine derivatives, terpyridine derivatives, and phosphorus oxide derivatives. Is preferable because of having a high ionization potential.
次に、本発明の発光素子を構成する各層の形成について記載する。正孔輸送層、発光層、電子輸送層は、例えば、上記した単独または二種類以上の材料を混合、積層する方法、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いる方法などで、それぞれの層を形成することが可能である。 Next, formation of each layer constituting the light emitting element of the present invention will be described. The hole transporting layer, the light emitting layer, and the electron transporting layer are, for example, a method of mixing and laminating the above-mentioned single or two or more kinds of materials, and polyvinyl chloride, polycarbonate, polystyrene, poly (N-vinyl) as a polymer binder. Carbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin and other solvent-soluble resins Each layer is dispersed in a curable resin such as phenolic resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, and silicone resin. Formation can be.
発光素子を構成する層の形成手段は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましく使用される。 The means for forming the layers constituting the light emitting element is not particularly limited, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, and coating. Is preferably used.
発光素子を構成する各層の厚みは、発光素子材料の抵抗値にもよるので限定することはできないが、通常、1〜1000nmの間から選ばれる。 Although the thickness of each layer constituting the light emitting element depends on the resistance value of the light emitting element material and cannot be limited, it is usually selected from the range of 1 to 1000 nm.
本発明において、電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、発光素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするのが好ましい。 In the present invention, electric energy mainly refers to direct current, but pulse current or alternating current can also be used. The current value and the voltage value are not particularly limited, but it is preferable that the maximum brightness be obtained with as low energy as possible in consideration of the power consumption and the life of the light emitting element.
本発明の発光素子の好適な積層例は、基板/陽極/発光層/電子輸送層/陰極がこの順に積層された素子である。ここで/は積層を表す。 A preferred example of the light-emitting device of the present invention is a device in which a substrate / anode / light-emitting layer / electron transport layer / cathode are stacked in this order. Here, / represents a lamination.
本発明の発光素子の用途は特に限定されないが、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。 The application of the light emitting device of the present invention is not particularly limited, but is preferably used as, for example, a display for displaying in a matrix and / or segment system.
ここで、マトリクスとは、表示のための画素が格子状、モザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが好ましい。 Here, the matrix refers to a matrix in which pixels for display are two-dimensionally arranged in a lattice shape, a mosaic shape, or the like, and displays a character or an image by a set of pixels. The shape and size of the pixel depend on the application. For example, a square pixel having a side of 300 μm or less is generally used for displaying images and characters on a personal computer, a monitor, and a television. In the case of a large display such as a display panel, a pixel having a side on the order of mm is used. In the case of monochrome display, pixels of the same color may be arranged. In the case of color display, red, green and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix may be driven by either a line-sequential driving method or an active matrix. Although the line-sequential driving has an advantage that the structure is simpler, the active matrix is sometimes superior in consideration of the operation characteristics.
また、セグメントタイプとは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させるものである。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、自動車のパネル表示などがあげられる。 In the segment type, a pattern is formed so as to display predetermined information, and a predetermined area emits light. For example, there are a time display and a temperature display on a digital clock or a thermometer, an operation state display of an audio device or an electromagnetic cooker, a vehicle panel display, and the like.
マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The matrix display and the segment display may coexist in the same panel.
本発明の発光素子はバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板、標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本発明における発光素子を用いたバックライトは薄型、軽量化が可能となり、好適に使用される。 The light emitting device of the present invention is also preferably used as a backlight. The backlight is mainly used for improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, considering that it is difficult to reduce the thickness of liquid crystal display devices, especially the backlights for personal computers for which thinning is an issue, because of the use of fluorescent lamps and light guide plates, The backlight using the light emitting element according to the present invention can be made thin and lightweight, and is suitably used.
以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
実施例1
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、エッチングを行った。得られた基板をアセトンと”セミコクリン56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-5Pa以下になるまで排気した。Example 1
A glass substrate (available from Asahi Glass Co., Ltd., 15Ω / □, electron beam deposited) on which an ITO transparent conductive film was deposited to 150 nm was cut into a size of 30 × 40 mm and etched. The obtained substrate was subjected to ultrasonic cleaning with acetone and "Semicocline 56" (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then with ultrapure water. Subsequently, the substrate was subjected to ultrasonic cleaning with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to be dried. This substrate was subjected to UV-ozone treatment for one hour immediately before producing the element, placed in a vacuum evaporation apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10−5 Pa or less.
抵抗加熱法によって、まず正孔注入材料として、銅フタロシアニンを10nm、正孔輸送材料として、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを50nm蒸着した。次に発光材料として、ホスト材料として、1,4−ジケト−2,5−ビス(3,5−ジメチルベンジル)−3,6−ビス(4−メチルフェニル)ピロロ[3,4−c]ピロールを、ドーパント材料として前述した化学式群の中の化合物〔116〕をドープ濃度が1%になるように15nmの厚さに蒸着し、第一発光層とした。次に発光材料として、ホスト材料として4,4’−ビス(ジフェニルビニル)ビフェニル(DPVBi)を、ドーパント材料として4,4’−ビス(9−エチル−3−カルバゾビニレン)ビフェニル(BCzVBi)をドープ濃度が3%になるように20nmの厚さに積層し、第二発光層とした。次に電子輸送材料として、トリス(8−キノリノラート)アルミニウム(Alq3)を30nmの厚さに積層した。電子輸送層のイオン化ポテンシャルは5.6eVであった。 First, 10 nm of copper phthalocyanine was deposited as a hole injecting material, and 50 nm of 4,4'-bis (N- (1-naphthyl) -N-phenylamino) biphenyl was deposited as a hole transporting material by a resistance heating method. Next, as a light emitting material, as a host material, 1,4-diketo-2,5-bis (3,5-dimethylbenzyl) -3,6-bis (4-methylphenyl) pyrrolo [3,4-c] pyrrole Was deposited as a dopant material to a thickness of 15 nm so that the doping concentration of the compound [116] in the above-mentioned chemical formula group was 1% to obtain a first light emitting layer. Next, as a light emitting material, 4,4′-bis (diphenylvinyl) biphenyl (DPVBi) is used as a host material, and 4,4′-bis (9-ethyl-3-carbazovinylene) biphenyl (BCzVBi) is used as a dopant material. Was set to be 3% to a thickness of 20 nm to form a second light emitting layer. Next, tris (8-quinolinolato) aluminum (Alq3) was laminated as an electron transporting material to a thickness of 30 nm. The ion transport potential of the electron transport layer was 5.6 eV.
次にリチウムを0.5nm有機層にドーピングした後、アルミニウムを200nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は水晶発振式膜厚モニター表示値である。この発光素子からは、発光効率3.0lm/Wの高輝度白色発光が得られた。また、この発光素子を真空セル内で1mAパルス駆動(Duty比1/60、パルス時の電流値60mA)させたところ、良好な発光が確認された。 Next, after doping lithium into the organic layer with a thickness of 0.5 nm, aluminum was deposited to a thickness of 200 nm to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness referred to here is a value indicated by a crystal oscillation type film thickness monitor. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.0 lm / W was obtained. When the light emitting device was driven by a 1 mA pulse (duty ratio 1/60, current value at the time of pulse 60 mA) in a vacuum cell, good light emission was confirmed.
実施例2
第一発光層のドーパント材料として前述した化学式群の中の化合物〔73〕を用いた以外は実施例1と同様に素子を作製した。この発光素子からは、発光効率2.9lm/Wの高輝度白色発光が得られた。Example 2
A device was produced in the same manner as in Example 1, except that the compound [73] in the above-described chemical formula group was used as the dopant material for the first light-emitting layer. From this light emitting device, high-luminance white light emission having a light emission efficiency of 2.9 lm / W was obtained.
実施例3
第一発光層のドーパント材料として前述した化学式群の中の化合物〔56〕を用いた以外は実施例1と同様に素子を作製した。この発光素子からは、発光効率2.5lm/Wの高輝度白色発光が得られた。Example 3
A device was produced in the same manner as in Example 1, except that the compound [56] in the above-mentioned chemical formula group was used as a dopant material for the first light-emitting layer. From this light emitting device, high-luminance white light emission with a light emission efficiency of 2.5 lm / W was obtained.
実施例4
第一発光層のドーパント材料として前述した化学式群の中の化合物〔21〕を用いた以外は実施例1と同様に素子を作製した。この発光素子からは、発光効率2.6lm/Wの高輝度白色発光が得られた。Example 4
A device was manufactured in the same manner as in Example 1, except that the compound [21] in the above-described chemical formula group was used as a dopant material for the first light-emitting layer. From this light emitting device, high-luminance white light emission having a light emission efficiency of 2.6 lm / W was obtained.
実施例5
第一発光層のドーパント材料として前述した化学式群の中の化合物〔126〕を用いた以外は実施例1と同様に素子を作製した。この発光素子からは、発光効率3.2lm/Wの高輝度白色発光が得られた。Example 5
A device was produced in the same manner as in Example 1, except that the compound [126] in the above-described chemical formula group was used as a dopant material for the first light-emitting layer. From this light emitting device, high-luminance white light emission having a light emission efficiency of 3.2 lm / W was obtained.
実施例6
第一発光層のドーパント材料として前述した化学式群の中の化合物〔127〕を用いた以外は実施例1と同様に素子を作製した。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 6
A device was manufactured in the same manner as in Example 1, except that the compound [127] in the above-described chemical formula group was used as a dopant material for the first light-emitting layer. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
比較例1
第一発光層の発光材料として、ホスト材料としてAlq3を、ドーパント材料として4−(ジシアノメチレン)−2−tブチル−6−(1,1,7,7−テトラメチルジュロリジル−9−エニル)−4H−ピラン(DCJTB)をドープ濃度が2%になるように用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からは白色発光が得られたが、発光効率は1.8lm/Wと低かった。Comparative Example 1
As a light emitting material of the first light emitting layer, Alq3 as a host material and 4- (dicyanomethylene) -2-tbutyl-6- (1,1,7,7-tetramethyljulolidyl-9- as a dopant material. A light-emitting device was produced in exactly the same manner as in Example 1, except that (enyl) -4H-pyran (DCJTB) was used at a doping concentration of 2%. White light emission was obtained from this light emitting device, but the light emission efficiency was as low as 1.8 lm / W.
実施例7
電子輸送材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BTCPN)を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.1eVであった。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 7
A device was manufactured in the same manner as in Example 1, except that 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BTCPN) was used as the electron transporting material. The ionization potential of the electron transport layer was 6.1 eV. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
実施例8
電子輸送材料として下記に示すETL1を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.2eVであった。この発光素子からは、発光効率4.0lm/Wの高輝度白色発光が得られた。Example 8
A device was prepared in the same manner as in Example 1, except that ETL1 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.2 eV. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 4.0 lm / W was obtained.
実施例9
電子輸送材料として下記に示すETL2を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.3eVであった。この発光素子からは、発光効率4.2lm/Wの高輝度白色発光が得られた。Example 9
A device was produced in the same manner as in Example 1, except that ETL2 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.3 eV. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.2 lm / W was obtained.
実施例10
電子輸送材料として下記に示すETL3を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは5.9eVであった。この発光素子からは、発光効率3.6lm/Wの高輝度白色発光が得られた。Example 10
A device was produced in the same manner as in Example 1, except that ETL3 shown below was used as the electron transporting material. The ion transport potential of the electron transport layer was 5.9 eV. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 3.6 lm / W was obtained.
実施例11
電子輸送材料として下記に示すETL4を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.2eVであった。この発光素子からは、発光効率4.4lm/Wの高輝度白色発光が得られた。Example 11
A device was produced in the same manner as in Example 1, except that ETL4 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.2 eV. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.4 lm / W was obtained.
実施例12
電子輸送材料として下記に示すETL5を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.1eVであった。この発光素子からは、発光効率4.3lm/Wの高輝度白色発光が得られた。Example 12
A device was produced in the same manner as in Example 1, except that ETL5 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.1 eV. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.3 lm / W was obtained.
実施例13
電子輸送材料として下記に示すETL6を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.1eVであった。この発光素子からは、発光効率3.8lm/Wの高輝度白色発光が得られた。Example 13
An element was produced in the same manner as in Example 1, except that ETL6 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.1 eV. From this light emitting device, high-luminance white light emission having a luminous efficiency of 3.8 lm / W was obtained.
実施例14
電子輸送材料として下記に示すETL7を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは5.9eVであった。この発光素子からは、発光効率3.9lm/Wの高輝度白色発光が得られた。Example 14
A device was produced in the same manner as in Example 1, except that ETL7 shown below was used as the electron transporting material. The ion transport potential of the electron transport layer was 5.9 eV. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.9 lm / W was obtained.
実施例15
電子輸送材料として下記に示すETL8を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.0eVであった。この発光素子からは、発光効率4.0lm/Wの高輝度白色発光が得られた。Example 15
A device was produced in the same manner as in Example 1, except that ETL8 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.0 eV. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 4.0 lm / W was obtained.
実施例16
電子輸送材料として下記に示すETL9を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは5.9eVであった。この発光素子からは、発光効率3.8lm/Wの高輝度白色発光が得られた。Example 16
A device was produced in the same manner as in Example 1, except that ETL9 shown below was used as the electron transporting material. The ion transport potential of the electron transport layer was 5.9 eV. From this light emitting device, high-luminance white light emission having a luminous efficiency of 3.8 lm / W was obtained.
実施例17
電子輸送材料として下記に示すETL10を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは5.8eVであった。この発光素子からは、発光効率4.1lm/Wの高輝度白色発光が得られた。Example 17
A device was produced in the same manner as in Example 1, except that ETL10 shown below was used as the electron transporting material. The ion transport potential of the electron transport layer was 5.8 eV. From this light emitting device, high-luminance white light emission having a light emission efficiency of 4.1 lm / W was obtained.
実施例18
電子輸送材料として下記に示すETL11を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.1eVであった。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 18
A device was produced in the same manner as in Example 1, except that ETL11 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.1 eV. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
実施例19
電子輸送材料として下記に示すETL12を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.0eVであった。この発光素子からは、発光効率4.2lm/Wの高輝度白色発光が得られた。Example 19
A device was produced in the same manner as in Example 1, except that ETL12 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.0 eV. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.2 lm / W was obtained.
実施例20
電子輸送材料として下記に示すETL13を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは5.9eVであった。この発光素子からは、発光効率3.8lm/Wの高輝度白色発光が得られた。Example 20
A device was produced in the same manner as in Example 1, except that ETL13 shown below was used as the electron transporting material. The ion transport potential of the electron transport layer was 5.9 eV. From this light emitting device, high-luminance white light emission having a luminous efficiency of 3.8 lm / W was obtained.
実施例21
電子輸送材料として下記に示すETL14を用いた以外は実施例1と同様に素子を作製した。電子輸送層のイオン化ポテンシャルは6.0eVであった。この発光素子からは、発光効率3.7lm/Wの高輝度白色発光が得られた。Example 21
A device was produced in the same manner as in Example 1, except that ETL14 shown below was used as the electron transporting material. The ionization potential of the electron transport layer was 6.0 eV. From this light emitting device, high-luminance white light emission with a luminous efficiency of 3.7 lm / W was obtained.
実施例22
第一発光層のホスト材料として1,4−ジケト−2,5−ジメチル−3,6−ビス(1−ナフチル)ピロロ[3,4−c]ピロールを用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率4.4lm/Wの高輝度白色発光が得られた。Example 22
As in Example 8, except that 1,4-diketo-2,5-dimethyl-3,6-bis (1-naphthyl) pyrrolo [3,4-c] pyrrole was used as the host material of the first light emitting layer. An element was manufactured. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.4 lm / W was obtained.
実施例23
第一発光層のホスト材料として1,4−ジケト−2,5−ジメチル−3,6−ビス(9−フェナンスリル)ピロロ[3,4−c]ピロールを用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率4.2lm/Wの高輝度白色発光が得られた。Example 23
As in Example 8, except that 1,4-diketo-2,5-dimethyl-3,6-bis (9-phenanthryl) pyrrolo [3,4-c] pyrrole was used as the host material of the first light emitting layer. An element was manufactured. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.2 lm / W was obtained.
実施例24
第一発光層のホスト材料としてトリス(5−フェニル−8−キノリノラート)アルミニウムを用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率3.6lm/Wの高輝度白色発光が得られた。Example 24
A device was produced in the same manner as in Example 8, except that tris (5-phenyl-8-quinolinolato) aluminum was used as a host material for the first light emitting layer. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 3.6 lm / W was obtained.
実施例25
第二発光層のドーパント材料として1,4−ビス(2−(4−ジフェニルアミノフェニル)エテニル)ベンゼンをドープ濃度が5%になるように用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率4.2lm/Wの高輝度白色発光が得られた。Example 25
A device was fabricated in the same manner as in Example 8, except that 1,4-bis (2- (4-diphenylaminophenyl) ethenyl) benzene was used as a dopant material for the second light emitting layer so that the doping concentration was 5%. . From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.2 lm / W was obtained.
実施例26
第二発光層のドーパント材料として9−フェニル−10−フェニルエチニルアントラセンをドープ濃度が2%になるように用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率4.0lm/Wの高輝度白色発光が得られた。Example 26
A device was fabricated in the same manner as in Example 8, except that 9-phenyl-10-phenylethynylanthracene was used as a dopant material for the second light emitting layer so that the doping concentration was 2%. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 4.0 lm / W was obtained.
実施例27
第二発光層のドーパント材料として9,10−ジフェニル−2−(ベンゾチアゾール−2−イル)アントラセンをドープ濃度が2%になるように用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率3.8lm/Wの高輝度白色発光が得られた。Example 27
A device was manufactured in the same manner as in Example 8, except that 9,10-diphenyl-2- (benzothiazol-2-yl) anthracene was used as a dopant material for the second light emitting layer so that the doping concentration was 2%. From this light emitting device, high-luminance white light emission having a luminous efficiency of 3.8 lm / W was obtained.
実施例28
第二発光層のホスト材料として9,10−ビス(9−フェナンスリル)アントラセンを用いた以外は実施例26と同様に素子を作製した。この発光素子からは、発光効率4.2lm/Wの高輝度白色発光が得られた。Example 28
A device was manufactured in the same manner as in Example 26 except that 9,10-bis (9-phenanthryl) anthracene was used as a host material of the second light emitting layer. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 4.2 lm / W was obtained.
実施例29
第二発光層の発光材料として、ホスト材料として9,10−ビス(3,5−ジ(2−ナフチル)フェニル)アントラセンを、ドーパント材料としてペリレンをドープ濃度が1%になるように用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率3.6lm/Wの高輝度白色発光が得られた。Example 29
Except for using 9,10-bis (3,5-di (2-naphthyl) phenyl) anthracene as a host material and perylene as a dopant material so as to have a doping concentration of 1% as a light emitting material of the second light emitting layer. Prepared an element in the same manner as in Example 8. From this light-emitting device, high-luminance white light emission with a luminous efficiency of 3.6 lm / W was obtained.
実施例30
第二発光層のホスト材料として下記に示すHTM1を用いた以外は実施例29と同様に素子を作製した。この発光素子からは、発光効率3.7lm/Wの高輝度白色発光が得られた。Example 30
An element was fabricated in the same manner as in Example 29 except that HTM1 shown below was used as a host material for the second light emitting layer. From this light emitting device, high-luminance white light emission with a luminous efficiency of 3.7 lm / W was obtained.
実施例31
第一発光層のホスト材料としてAlq3を、ドーパント材料として化合物〔5〕をドープ濃度が1%になるように用いた以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率3.2lm/Wの高輝度白色発光が得られた。Example 31
A device was manufactured in the same manner as in Example 8, except that Alq3 was used as the host material of the first light-emitting layer, and compound [5] was used as the dopant material so that the doping concentration was 1%. From this light emitting device, high-luminance white light emission having a light emission efficiency of 3.2 lm / W was obtained.
実施例32
第一発光層のドーパント材料として化合物〔15〕を用いた以外は実施例31と同様に素子を作製した。この発光素子からは、発光効率3.1lm/Wの高輝度白色発光が得られた。Example 32
An element was fabricated in the same manner as in Example 31, except that the compound [15] was used as a dopant material for the first light-emitting layer. From this light-emitting device, high-luminance white light with a luminous efficiency of 3.1 lm / W was obtained.
実施例33
第一発光層のドーパント材料として化合物〔39〕を用いた以外は実施例31と同様に素子を作製した。この発光素子からは、発光効率3.3lm/Wの高輝度白色発光が得られた。Example 33
An element was produced in the same manner as in Example 31, except that the compound [39] was used as a dopant material for the first light-emitting layer. From this light-emitting device, high-luminance white light with a luminous efficiency of 3.3 lm / W was obtained.
実施例34
第二発光層までは実施例8と同様に作製後、発光材料として、ホスト材料としてAlq3を、ドーパント材料として下記に示すDPM1をドープ濃度が1%になるように10nmの厚さに積層し、第三発光層とした。次の電子輸送層以降は実施例8と同様にして素子を作製した。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 34
After manufacturing up to the second light-emitting layer in the same manner as in Example 8, Alq3 as a host material as a light-emitting material, and DPM1 shown below as a dopant material are laminated to a thickness of 10 nm so that the doping concentration becomes 1%. This was the third light emitting layer. A device was manufactured in the same manner as in Example 8 after the next electron transport layer. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
実施例35
第一発光層の発光材料として、ホスト材料としてDPVBiを、ドーパント材料としてBCzVBiをドープ濃度が3%になるように用い、第二発光層の発光材料として、ホスト材料としてAlq3を、ドーパント材料としてDPM1をドープ濃度が1%になるように用い、第三発光層の発光材料として、ホスト材料として1,4−ジケト−2,5−ビス(3,5−ジメチルベンジル)−3,6−ビス(4−メチルフェニル)ピロロ[3,4−c]ピロールを、ドーパント材料として化合物〔116〕をドープ濃度が1%になるように用いた以外は実施例34と同様に素子を作製した。この発光素子からは、発光効率3.7lm/Wの高輝度白色発光が得られた。Example 35
As a light emitting material of the first light emitting layer, DPVBi is used as a host material, BCzVBi is used as a dopant material so as to have a doping concentration of 3%, Alq3 is used as a light emitting material of the second light emitting layer, and DPM1 is used as a dopant material. Is used so that the doping concentration becomes 1%, and 1,4-diketo-2,5-bis (3,5-dimethylbenzyl) -3,6-bis ( A device was produced in the same manner as in Example 34, except that 4-methylphenyl) pyrrolo [3,4-c] pyrrole was used as a dopant material so that the compound [116] had a doping concentration of 1%. From this light emitting device, high-luminance white light emission with a luminous efficiency of 3.7 lm / W was obtained.
実施例36
第二発光層のドーパント材料として化合物〔2〕をドープ濃度が1%になるように用いた以外は実施例35と同様に素子を作製した。この発光素子からは、発光効率3.8lm/Wの高輝度白色発光が得られた。Example 36
A device was produced in the same manner as in Example 35, except that Compound [2] was used as a dopant material for the second light emitting layer so that the doping concentration was 1%. From this light emitting device, high-luminance white light emission having a luminous efficiency of 3.8 lm / W was obtained.
比較例2
第三発光層の発光材料として、ホスト材料としてAlq3を、ドーパント材料としてDCJTBをドープ濃度が1%になるように用いた以外は実施例35と同様に素子を作製した。この発光素子からは白色発光が得られたが、発光効率は1.6lm/Wと低かった。Comparative Example 2
A device was manufactured in the same manner as in Example 35, except that Alq3 was used as a host material as a light emitting material of the third light emitting layer, and DCJTB was used as a dopant material so as to have a doping concentration of 1%. White light emission was obtained from this light emitting device, but the luminous efficiency was as low as 1.6 lm / W.
実施例37
第一発光層のホスト材料としてDPVBiを用い35nmの厚さに積層し、第二発光層を形成しなかった以外は実施例8と同様に素子を作製した。この発光素子からは、発光効率2.7lm/Wの高輝度白色発光が得られた。Example 37
A device was produced in the same manner as in Example 8, except that DPVBi was used as a host material of the first light-emitting layer, and was laminated to a thickness of 35 nm, and the second light-emitting layer was not formed. From this light emitting device, high-luminance white light emission with a luminous efficiency of 2.7 lm / W was obtained.
比較例3
電子輸送材料としてAlq3を用いた他は実施例37と全く同様にして発光素子を作製した。この発光素子からは白色発光が得られたが、発光効率は1.9lm/Wと低かった。Comparative Example 3
A light emitting device was manufactured in exactly the same manner as in Example 37 except that Alq3 was used as the electron transporting material. White light emission was obtained from this light emitting device, but the light emission efficiency was as low as 1.9 lm / W.
比較例4
ドーパント材料としてDCJTBを用いた他は実施例37と全く同様にして発光素子を作製した。この発光素子からは白色発光が得られたが、発光効率は1.5lm/Wと低かった。Comparative Example 4
A light emitting device was manufactured in exactly the same manner as in Example 37 except that DCJTB was used as a dopant material. White light was emitted from this light emitting device, but the luminous efficiency was as low as 1.5 lm / W.
実施例38
ホスト材料としてHTM1を用いた以外は実施例37と同様に素子を作製した。この発光素子からは、発光効率2.9lm/Wの高輝度白色発光が得られた。Example 38
An element was fabricated in the same manner as in Example 37 except that HTM1 was used as a host material. From this light emitting device, high-luminance white light emission having a light emission efficiency of 2.9 lm / W was obtained.
実施例39
ドーパント材料として化合物〔5〕を用いた以外は実施例38と同様に素子を作製した。この発光素子からは、発光効率3.1lm/Wの高輝度白色発光が得られた。Example 39
A device was produced in the same manner as in Example 38 except that the compound [5] was used as a dopant material. From this light-emitting device, high-luminance white light with a luminous efficiency of 3.1 lm / W was obtained.
実施例40
発光材料として、ホスト材料としてDPVBiを、第一ドーパント材料として前述した化学式群の中の化合物〔116〕を、第二ドーパント材料として前述した化学式群の中の化合物〔2〕をドーパント濃度がともに1%となるように用いた以外は実施例37と同様に素子を作製した。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 40
As a light emitting material, DPVBi as a host material, a compound [116] in the above-mentioned chemical formula group as a first dopant material, and a compound [2] in the above chemical formula group as a second dopant material, both having a dopant concentration of 1 % Was prepared in the same manner as in Example 37, except that the element was used so as to be%. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
実施例41
第一ドーパント材料として前述した化学式群の中の化合物〔116〕を、第二ドーパント材料としてルブレンをドーパント濃度がそれぞれ1%および3%となるように用いた以外は実施例40と同様に素子を作製した。この発光素子からは、発光効率3.4lm/Wの高輝度白色発光が得られた。Example 41
A device was fabricated in the same manner as in Example 40, except that the compound [116] in the above formula group was used as the first dopant material, and rubrene was used as the second dopant material so that the dopant concentrations became 1% and 3%, respectively. Produced. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.4 lm / W was obtained.
実施例42
第一ドーパント材料としてDCJTBを、第二ドーパント材料として前述した化学式群の中の化合物〔2〕をドーパント濃度がともに1%となるように用いた以外は実施例40と同様に素子を作製した。この発光素子からは、発光効率2.9lm/Wの高輝度白色発光が得られた。Example 42
An element was fabricated in the same manner as in Example 40, except that DCJTB was used as the first dopant material, and the compound [2] in the above-described chemical formula group was used as the second dopant material so that the dopant concentration was 1%. From this light emitting device, high-luminance white light emission having a light emission efficiency of 2.9 lm / W was obtained.
実施例43
発光材料として、ホスト材料としてHTM1を、第一ドーパント材料として前述した化学式群の中の化合物〔116〕を、第二ドーパント材料として1,4−ジケト−2,5−ジメチル−3,6−ビス(1−ナフチル)ピロロ[3,4−c]ピロールをドーパント濃度がそれぞれ1%および5%となるように用いた以外は実施例40と同様に素子を作製した。この発光素子からは、発光効率3.5lm/Wの高輝度白色発光が得られた。Example 43
As a light emitting material, HTM1 as a host material, a compound [116] in the above-mentioned chemical formula group as a first dopant material, and 1,4-diketo-2,5-dimethyl-3,6-bis as a second dopant material. A device was prepared in the same manner as in Example 40, except that (1-naphthyl) pyrrolo [3,4-c] pyrrole was used so that the dopant concentrations became 1% and 5%, respectively. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 3.5 lm / W was obtained.
実施例44
発光材料として、ホスト材料として4,4’−ジ(カルバゾール−N−イル)ビフェニルを、第一ドーパント材料として前述した化学式群の中の化合物〔116〕を、第二ドーパント材料として下記に示すDPM2をドーパント濃度がそれぞれ1%および5%となるように用いた以外は実施例40と同様に素子を作製した。この発光素子からは、発光効率4.0lm/Wの高輝度白色発光が得られた。Example 44
As a light emitting material, 4,4′-di (carbazol-N-yl) biphenyl is used as a host material, a compound [116] in the above-described chemical formula group is used as a first dopant material, and DPM2 shown below is used as a second dopant material. Was prepared in the same manner as in Example 40, except that was used so that the dopant concentrations were 1% and 5%, respectively. From this light-emitting element, high-luminance white light emission with a luminous efficiency of 4.0 lm / W was obtained.
実施例45
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、フォトリソグラフィ法によって300μmピッチ(残り幅270μm)×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ(開口部幅800μm)まで広げてある。得られた基板をアセトンと”セミコクリン56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。Example 45
A glass substrate (15 Ω / □, manufactured by Asahi Glass Co., Ltd., electron beam vapor deposition) on which an ITO transparent conductive film is deposited to a thickness of 150 nm is cut into 30 × 40 mm, and a 300 μm pitch (remaining width of 270 μm) × 32 stripes is formed by photolithography. Pattern processing. One side of the ITO stripe in the long side direction is widened to a pitch of 1.27 mm (opening width 800 μm) to facilitate electrical connection with the outside. The obtained substrate was subjected to ultrasonic cleaning with acetone and "Semicocline 56" (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then with ultrapure water. Subsequently, the substrate was subjected to ultrasonic cleaning with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to be dried. This substrate was subjected to UV-ozone treatment for one hour immediately before producing the element, placed in a vacuum evaporation apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10−4 Pa or less.
抵抗加熱法によって、まず正孔輸送材料として4,4’−ビス(N−(m−トリル)−N−フェニルアミノ)ビフェニルを150nm蒸着した。次に、発光材料として、ホスト材料として、1,4−ジケト−2,5−ビス(3,5−ジメチルベンジル)−3,6−ビス(4−メチルフェニル)ピロロ[3,4−c]ピロールを、ドーパント材料として前述した化学式群の中の化合物〔116〕をドープ濃度が1%になるように15nmの厚さに蒸着し、第一発光層とした。次に発光材料として、ホスト材料として4,4’−ビス(ジフェニルビニル)ビフェニル(DPVBi)を、ドーパント材料として4,4’−ビス(9−エチル−3−カルバゾビニレン)ビフェニル(BCzVBi)をドープ濃度が3%になるように20nmの厚さに積層し、第二発光層とした。 First, 150 nm of 4,4'-bis (N- (m-tolyl) -N-phenylamino) biphenyl was deposited as a hole transporting material by a resistance heating method. Next, as a light emitting material, as a host material, 1,4-diketo-2,5-bis (3,5-dimethylbenzyl) -3,6-bis (4-methylphenyl) pyrrolo [3,4-c] Pyrrole was vapor-deposited as a dopant material with the compound [116] in the above-mentioned chemical formula group to a thickness of 15 nm so as to have a doping concentration of 1% to form a first light emitting layer. Next, as a light emitting material, 4,4′-bis (diphenylvinyl) biphenyl (DPVBi) is used as a host material, and 4,4′-bis (9-ethyl-3-carbazovinylene) biphenyl (BCzVBi) is used as a dopant material. Was set to be 3% to a thickness of 20 nm to form a second light emitting layer.
次に電子輸送材料として、トリス(8−キノリノラート)アルミニウム(Alq3)を30nmの厚さに積層した。ここで言う膜厚は水晶発振式膜厚モニター表示値である。次に厚さ50μmのコバール板にウエットエッチングによって16本の250μmの開口部(残り幅50μm、300μmピッチに相当)を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から磁石で固定した。そしてリチウムを0.5nm有機層にドーピングした後、アルミニウムを200nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。 Next, tris (8-quinolinolato) aluminum (Alq3) was laminated as an electron transporting material to a thickness of 30 nm. The film thickness referred to here is a value indicated by a crystal oscillation type film thickness monitor. Next, a mask having 16 openings of 250 μm (corresponding to a remaining width of 50 μm, corresponding to a pitch of 300 μm) provided on a Kovar plate having a thickness of 50 μm by wet etching is exchanged in a vacuum so as to be orthogonal to the ITO stripes. It was fixed with a magnet from the back so that the and the ITO substrate were in close contact with each other. Then, after doping the organic layer with 0.5 nm of lithium, 200 nm of aluminum was vapor-deposited to produce a 32 × 16 dot matrix element. When this device was driven in a matrix, characters could be displayed without crosstalk.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003407179AJP2004200162A (en) | 2002-12-05 | 2003-12-05 | Light emitting element |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002353461 | 2002-12-05 | ||
| JP2003407179AJP2004200162A (en) | 2002-12-05 | 2003-12-05 | Light emitting element |
| Publication Number | Publication Date |
|---|---|
| JP2004200162Atrue JP2004200162A (en) | 2004-07-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003407179APendingJP2004200162A (en) | 2002-12-05 | 2003-12-05 | Light emitting element |
| Country | Link |
|---|---|
| JP (1) | JP2004200162A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004253298A (en)* | 2003-02-21 | 2004-09-09 | Konica Minolta Holdings Inc | White light-emitting organic electroluminescent element |
| JP2005053900A (en)* | 2003-07-23 | 2005-03-03 | Toray Ind Inc | Pyrromethene compound, light emitting element material using the same, and light emitting element |
| JP2005120296A (en)* | 2003-10-20 | 2005-05-12 | Toray Ind Inc | Material for light-emitting element and light-emitting element using the same |
| JP2005276801A (en)* | 2003-10-06 | 2005-10-06 | Mitsubishi Chemicals Corp | Compound, electron transport material and organic electroluminescence device |
| WO2006022193A1 (en)* | 2004-08-23 | 2006-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element, light emitting device, and lighting system |
| JP2006073581A (en)* | 2004-08-31 | 2006-03-16 | Toray Ind Inc | Light emitting device material and light emitting device |
| JP2006089728A (en)* | 2004-08-23 | 2006-04-06 | Semiconductor Energy Lab Co Ltd | Light-emitting element, light-emitting device and illuminator |
| WO2008047744A1 (en) | 2006-10-16 | 2008-04-24 | Toray Industries, Inc. | Light-emitting device |
| WO2008111554A1 (en)* | 2007-03-09 | 2008-09-18 | Idemitsu Kosan Co., Ltd. | Organic el device and display |
| EP1783189A4 (en)* | 2004-08-23 | 2009-04-08 | Toray Industries | Material for luminescent element and luminescent element |
| WO2009057567A1 (en)* | 2007-11-02 | 2009-05-07 | Toray Industries, Inc. | Luminescent-element material and luminescent element |
| US20110001129A1 (en)* | 2008-02-26 | 2011-01-06 | Hodogaya Chemical Co., Ltd. | Substituted bipyridyl compound and organic electroluminescent device |
| WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
| WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
| US7927720B2 (en) | 2007-11-30 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative |
| WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
| WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
| WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
| DE102010006280A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent GmbH, 64293 | color conversion |
| WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
| WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
| WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
| WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
| WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
| US8119259B2 (en) | 2007-11-30 | 2012-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element and electronic device using the same |
| WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
| WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
| WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
| WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
| US8314101B2 (en) | 2007-11-30 | 2012-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative |
| US20120295436A1 (en)* | 2009-02-09 | 2012-11-22 | Intermolecular, Inc. | Formation of a zinc passivation layer on titanium or titanium alloys used in semiconductor processing |
| JP2012234825A (en)* | 2005-07-06 | 2012-11-29 | Semiconductor Energy Lab Co Ltd | Light-emitting element |
| WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
| WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
| US8420693B2 (en) | 2004-12-28 | 2013-04-16 | Gemin X Pharmaceuticals Canada Inc. | Dipyrrole compounds, compositions, and methods for treating cancer or viral diseases |
| WO2013060411A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, methods for producing same, and use of same in electronic devices |
| WO2013073169A1 (en)* | 2011-11-15 | 2013-05-23 | 出光興産株式会社 | White organic electroluminescent element |
| US8795855B2 (en) | 2007-01-30 | 2014-08-05 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| US8815412B2 (en) | 2007-12-21 | 2014-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the quinoxaline derivative |
| WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
| WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
| CN104447824A (en)* | 2013-09-25 | 2015-03-25 | 华东理工大学 | Fluoro-boron diisoindole compounds and preparation method thereof |
| US9040170B2 (en) | 2004-09-20 | 2015-05-26 | Global Oled Technology Llc | Electroluminescent device with quinazoline complex emitter |
| WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
| WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
| TWI568742B (en)* | 2014-12-29 | 2017-02-01 | Lg 化學股份有限公司 | Metal complex and color conversion film comprising the same |
| WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
| WO2017052279A1 (en)* | 2015-09-25 | 2017-03-30 | 주식회사 엘지화학 | Nitrogen-containing cyclic compound and color conversion film comprising same |
| KR20170037500A (en)* | 2015-09-25 | 2017-04-04 | 주식회사 엘지화학 | Compound containing nitrogen and color conversion film comprising the same |
| US9666826B2 (en) | 2005-11-30 | 2017-05-30 | Global Oled Technology Llc | Electroluminescent device including an anthracene derivative |
| WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
| WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
| WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
| WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
| WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2017157783A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Receptacle comprising a formulation containing at least one organic semiconductor |
| WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
| US9884877B2 (en) | 2014-04-17 | 2018-02-06 | Samsung Electronics Co., Ltd. | Compound and organic photoelectronic device and image sensor |
| WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
| WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
| EP3252060A4 (en)* | 2015-01-27 | 2018-07-18 | LG Chem, Ltd. | Metal complex and color conversion film comprising same |
| WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
| WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
| WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
| TWI675038B (en)* | 2017-11-10 | 2019-10-21 | 南韓商Lg化學股份有限公司 | Cyclic compound containing nitrogen and color conversion film, backlight unit, and display device including the same |
| WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
| WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2021161860A1 (en)* | 2020-02-10 | 2021-08-19 | 三菱ケミカル株式会社 | Composition containing semiconductor nanoparticles, color filter, and image display device |
| JP2021128338A (en)* | 2020-02-10 | 2021-09-02 | 三菱ケミカル株式会社 | Composition containing semiconductor nanoparticles, color filter, and image display device |
| WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
| WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
| WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
| CN115312671A (en)* | 2016-03-10 | 2022-11-08 | 三星显示有限公司 | organic light emitting device |
| WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
| WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
| WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
| WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2025032039A1 (en) | 2023-08-07 | 2025-02-13 | Merck Patent Gmbh | Process for the preparation of an electronic device |
| US12295260B2 (en) | 2019-03-22 | 2025-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004253298A (en)* | 2003-02-21 | 2004-09-09 | Konica Minolta Holdings Inc | White light-emitting organic electroluminescent element |
| JP2005053900A (en)* | 2003-07-23 | 2005-03-03 | Toray Ind Inc | Pyrromethene compound, light emitting element material using the same, and light emitting element |
| JP2005276801A (en)* | 2003-10-06 | 2005-10-06 | Mitsubishi Chemicals Corp | Compound, electron transport material and organic electroluminescence device |
| JP2005120296A (en)* | 2003-10-20 | 2005-05-12 | Toray Ind Inc | Material for light-emitting element and light-emitting element using the same |
| WO2006022193A1 (en)* | 2004-08-23 | 2006-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element, light emitting device, and lighting system |
| JP2006089728A (en)* | 2004-08-23 | 2006-04-06 | Semiconductor Energy Lab Co Ltd | Light-emitting element, light-emitting device and illuminator |
| US7951470B2 (en) | 2004-08-23 | 2011-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element, light emitting device, and lighting system |
| KR101163194B1 (en) | 2004-08-23 | 2012-07-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light emitting element, light emitting device, and lighting system |
| EP1783189A4 (en)* | 2004-08-23 | 2009-04-08 | Toray Industries | Material for luminescent element and luminescent element |
| US8114529B2 (en)* | 2004-08-23 | 2012-02-14 | Daisuke Kitazawa | Material for lighting emitting device and light emitting device |
| JP2006073581A (en)* | 2004-08-31 | 2006-03-16 | Toray Ind Inc | Light emitting device material and light emitting device |
| US9040170B2 (en) | 2004-09-20 | 2015-05-26 | Global Oled Technology Llc | Electroluminescent device with quinazoline complex emitter |
| US8420693B2 (en) | 2004-12-28 | 2013-04-16 | Gemin X Pharmaceuticals Canada Inc. | Dipyrrole compounds, compositions, and methods for treating cancer or viral diseases |
| US8901814B2 (en) | 2005-07-06 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and electronic device |
| JP2012234825A (en)* | 2005-07-06 | 2012-11-29 | Semiconductor Energy Lab Co Ltd | Light-emitting element |
| US9666826B2 (en) | 2005-11-30 | 2017-05-30 | Global Oled Technology Llc | Electroluminescent device including an anthracene derivative |
| US8183560B2 (en) | 2006-10-16 | 2012-05-22 | Toray Industries, Inc. | Light-emitting device |
| KR101540637B1 (en)* | 2006-10-16 | 2015-07-31 | 도레이 카부시키가이샤 | Light-emitting device |
| EP2075859A1 (en) | 2006-10-16 | 2009-07-01 | Toray Industries, Inc. | Light-emitting device |
| WO2008047744A1 (en) | 2006-10-16 | 2008-04-24 | Toray Industries, Inc. | Light-emitting device |
| US8795855B2 (en) | 2007-01-30 | 2014-08-05 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| US9620721B2 (en) | 2007-01-30 | 2017-04-11 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| US8278819B2 (en) | 2007-03-09 | 2012-10-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and display |
| JP2013179326A (en)* | 2007-03-09 | 2013-09-09 | Idemitsu Kosan Co Ltd | Organic el element and display device |
| WO2008111554A1 (en)* | 2007-03-09 | 2008-09-18 | Idemitsu Kosan Co., Ltd. | Organic el device and display |
| JPWO2009057567A1 (en)* | 2007-11-02 | 2011-03-10 | 東レ株式会社 | Light emitting device material and light emitting device |
| US8962155B2 (en) | 2007-11-02 | 2015-02-24 | Toray Industries, Inc. | Light emitting device based on a pyrromethene compound |
| WO2009057567A1 (en)* | 2007-11-02 | 2009-05-07 | Toray Industries, Inc. | Luminescent-element material and luminescent element |
| US7927720B2 (en) | 2007-11-30 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative |
| US8314101B2 (en) | 2007-11-30 | 2012-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative |
| US8586740B2 (en) | 2007-11-30 | 2013-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative |
| US8119259B2 (en) | 2007-11-30 | 2012-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element and electronic device using the same |
| US8815412B2 (en) | 2007-12-21 | 2014-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the quinoxaline derivative |
| US8642189B2 (en)* | 2008-02-26 | 2014-02-04 | Hodogaya Chemical Co., Ltd. | Substituted bipyridyl compound and organic electroluminescent device |
| US20110001129A1 (en)* | 2008-02-26 | 2011-01-06 | Hodogaya Chemical Co., Ltd. | Substituted bipyridyl compound and organic electroluminescent device |
| JPWO2009107651A1 (en)* | 2008-02-26 | 2011-07-07 | 保土谷化学工業株式会社 | Substituted bipyridyl compounds and organic electroluminescent devices |
| US8728879B2 (en)* | 2009-02-09 | 2014-05-20 | Intermolecular, Inc. | Formation of a zinc passivation layer on titanium or titanium alloys used in semiconductor processing |
| US20120295436A1 (en)* | 2009-02-09 | 2012-11-22 | Intermolecular, Inc. | Formation of a zinc passivation layer on titanium or titanium alloys used in semiconductor processing |
| WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
| WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
| WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
| WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
| WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
| DE102010006280A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent GmbH, 64293 | color conversion |
| WO2011091946A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent Gmbh | Organic electroluminescent device comprising an integrated layer for colour conversion |
| WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
| WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
| WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
| EP3309236A1 (en) | 2010-05-27 | 2018-04-18 | Merck Patent GmbH | Compositions comprising quantum dots |
| WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
| WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
| WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
| WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
| WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
| WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
| WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
| WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
| WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
| DE102011117422A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, process for their preparation and their use in electronic devices |
| WO2013060411A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, methods for producing same, and use of same in electronic devices |
| WO2013073169A1 (en)* | 2011-11-15 | 2013-05-23 | 出光興産株式会社 | White organic electroluminescent element |
| WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
| WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
| CN104447824A (en)* | 2013-09-25 | 2015-03-25 | 华东理工大学 | Fluoro-boron diisoindole compounds and preparation method thereof |
| US10457694B2 (en) | 2014-04-17 | 2019-10-29 | Samsung Electronics Co., Ltd. | Compound and organic photoelectronic device and image sensor |
| US9884877B2 (en) | 2014-04-17 | 2018-02-06 | Samsung Electronics Co., Ltd. | Compound and organic photoelectronic device and image sensor |
| WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
| TWI568742B (en)* | 2014-12-29 | 2017-02-01 | Lg 化學股份有限公司 | Metal complex and color conversion film comprising the same |
| WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
| EP3252060A4 (en)* | 2015-01-27 | 2018-07-18 | LG Chem, Ltd. | Metal complex and color conversion film comprising same |
| US10150911B2 (en) | 2015-01-27 | 2018-12-11 | Lg Chem, Ltd. | Metal complex and color conversion film comprising same |
| WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
| WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
| EP3581633A1 (en) | 2015-06-12 | 2019-12-18 | Merck Patent GmbH | Esters containing non-aromatic cycles as solvents for oled formulations |
| WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
| KR20170037500A (en)* | 2015-09-25 | 2017-04-04 | 주식회사 엘지화학 | Compound containing nitrogen and color conversion film comprising the same |
| TWI672310B (en)* | 2015-09-25 | 2019-09-21 | 南韓商Lg化學股份有限公司 | Compound containing nitrogen and color conversion film,backlight unit and display device comprising the same |
| KR102148058B1 (en)* | 2015-09-25 | 2020-08-26 | 주식회사 엘지화학 | Compound containing nitrogen and color conversion film comprising the same |
| US10988486B2 (en) | 2015-09-25 | 2021-04-27 | Lg Chem, Ltd. | Nitrogen-containing cyclic compound and color conversion film comprising same |
| CN107922440B (en)* | 2015-09-25 | 2021-04-13 | 株式会社Lg化学 | Nitrogen-containing cyclic compound and color conversion film containing the same |
| CN107922440A (en)* | 2015-09-25 | 2018-04-17 | 株式会社Lg化学 | Nitrogen-containing cyclic compound and color conversion film comprising same |
| WO2017052279A1 (en)* | 2015-09-25 | 2017-03-30 | 주식회사 엘지화학 | Nitrogen-containing cyclic compound and color conversion film comprising same |
| WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
| EP4084109A1 (en) | 2015-12-15 | 2022-11-02 | Merck Patent GmbH | Esters containing aromatic groups as solvents for organic electronic formulations |
| WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
| WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
| WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
| WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| CN115312671A (en)* | 2016-03-10 | 2022-11-08 | 三星显示有限公司 | organic light emitting device |
| DE102016003104A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Container comprising a formulation containing at least one organic semiconductor |
| WO2017157783A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Receptacle comprising a formulation containing at least one organic semiconductor |
| WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
| WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
| WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
| WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
| WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| TWI675038B (en)* | 2017-11-10 | 2019-10-21 | 南韓商Lg化學股份有限公司 | Cyclic compound containing nitrogen and color conversion film, backlight unit, and display device including the same |
| WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
| WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| US12295260B2 (en) | 2019-03-22 | 2025-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting device |
| JP7593156B2 (en) | 2020-02-10 | 2024-12-03 | 三菱ケミカル株式会社 | Semiconductor nanoparticle-containing composition, color filter, and image display device |
| WO2021161860A1 (en)* | 2020-02-10 | 2021-08-19 | 三菱ケミカル株式会社 | Composition containing semiconductor nanoparticles, color filter, and image display device |
| JP2021128338A (en)* | 2020-02-10 | 2021-09-02 | 三菱ケミカル株式会社 | Composition containing semiconductor nanoparticles, color filter, and image display device |
| WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
| WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
| WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
| WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
| WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
| WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
| WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2025032039A1 (en) | 2023-08-07 | 2025-02-13 | Merck Patent Gmbh | Process for the preparation of an electronic device |
| Publication | Publication Date | Title |
|---|---|---|
| JP4876333B2 (en) | Light emitting element | |
| JP2004200162A (en) | Light emitting element | |
| JP4876311B2 (en) | Light emitting element | |
| JP4725056B2 (en) | Light emitting device material and light emitting device | |
| KR101540637B1 (en) | Light-emitting device | |
| JP2000208265A (en) | Light emitting element | |
| JP2004204140A (en) | Material for light-emitting element and light-emitting element using the same | |
| JP2002063988A (en) | Light emitting element | |
| JP2006073581A5 (en) | ||
| JP2008135498A (en) | Light emitting element | |
| JP4052010B2 (en) | Light emitting device material and light emitting device using the same | |
| JP4432313B2 (en) | Tetraphenylmethane derivative and light emitting device including the same | |
| JP2005093425A (en) | Light emitting device | |
| JP2003109767A (en) | Light emitting element | |
| JP2001332384A (en) | Light emitting element | |
| JP2001307884A (en) | Electoluminiscent element | |
| JP4085574B2 (en) | Light emitting element | |
| JP4729776B2 (en) | Light emitting element | |
| JP2001291590A5 (en) | ||
| JP2001297881A (en) | Light emission element | |
| JP2001291590A (en) | Light emitting element | |
| JP2004203828A (en) | Phosphine oxide compound, material for light-emitting element obtained by using the same, and light-emitting element | |
| JP2005154534A (en) | Light emitting device material and light emitting device using the same | |
| JP4613411B2 (en) | Light emitting element | |
| JP4524901B2 (en) | Light emitting element |