Movatterモバイル変換


[0]ホーム

URL:


JP2004182728A - Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue - Google Patents

Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue
Download PDF

Info

Publication number
JP2004182728A
JP2004182728AJP2003389975AJP2003389975AJP2004182728AJP 2004182728 AJP2004182728 AJP 2004182728AJP 2003389975 AJP2003389975 AJP 2003389975AJP 2003389975 AJP2003389975 AJP 2003389975AJP 2004182728 AJP2004182728 AJP 2004182728A
Authority
JP
Japan
Prior art keywords
drug
ultrasonic
periodontal tissue
tooth
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003389975A
Other languages
Japanese (ja)
Inventor
Katsuro Tachibana
克郎 立花
Misako Nakajima
美砂子 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to JP2003389975ApriorityCriticalpatent/JP2004182728A/en
Priority to US10/535,696prioritypatent/US20060134016A1/en
Priority to PCT/JP2003/014953prioritypatent/WO2004049964A2/en
Priority to AU2003284647Aprioritypatent/AU2003284647A1/en
Publication of JP2004182728ApublicationCriticalpatent/JP2004182728A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromJapanese

【課題】 超音波エネルギーにより導入する傷害性の少ない、歯あるいは歯周組織への導入用薬剤の歯あるいは歯周組織の薬剤導入装置を提供する。
【解決手段】 導入用薬剤は、超音波エネルギーにより歯あるいは歯周組織に導入して治療する混合物であって、プラスミドDNAあるいは薬剤と微小気泡との混合物からなる導入用薬剤を、超音波を歯の標的部に照射する、取り外しできる超音波発振部を先端部に備えた超音波発振器1と、標的部に歯への導入用薬剤を供給する薬物押し出し装置9とを備えた薬剤導入装置で歯あるいは歯周組織に導入する。
【選択図】図1
PROBLEM TO BE SOLVED: To provide a drug introduction device for a tooth or a periodontal tissue of a drug for introduction into a tooth or a periodontal tissue, which is less harmful to be introduced by ultrasonic energy.
SOLUTION: An introduction agent is a mixture to be introduced into a tooth or periodontal tissue by ultrasonic energy to be treated, and the introduction agent comprising a mixture of plasmid DNA or an agent and microbubbles is subjected to ultrasonic wave to the tooth. An ultrasonic oscillator 1 having a detachable ultrasonic oscillator at its distal end for irradiating a target portion of the patient with a drug, and a drug pushing device 9 for supplying a drug for introduction to the tooth to the target portion are provided by a drug introducing device. Alternatively, it is introduced into the periodontal tissue.
[Selection diagram] Fig. 1

Description

Translated fromJapanese

本発明は、超音波エネルギーにより歯あるいは歯周組織に導入される導入用薬剤および歯あるいは歯周組織への薬剤導入装置に関する。  The present invention relates to a drug for introduction introduced into a tooth or periodontal tissue by ultrasonic energy and a device for introducing a drug into a tooth or periodontal tissue.

疾患に関わる遺伝子情報を治療へ応用するゲノム医療が近年急速に進展しつつある。そのひとつとして遺伝子治療は、癌、糖尿病、心疾患、血管疾患、神経変性疾患など広範な疾患へ臨床応用がなされつつある。遺伝子治療には、細胞に傷害を与えず目的遺伝子が標的細胞に効率良く組み込まれ、その遺伝子が発現して蛋白合成がなされ機能が発現する遺伝子導入が必要である。  In recent years, genomic medicine that applies genetic information related to diseases to therapy has been rapidly advancing. As one of them, gene therapy is being clinically applied to a wide range of diseases such as cancer, diabetes, heart disease, vascular disease, and neurodegenerative disease. Gene therapy requires gene transfer in which a target gene is efficiently incorporated into a target cell without damaging the cell, the gene is expressed, protein is synthesized, and the function is expressed.

遺伝子の導入法には、ウイルスが元来もつ細胞侵人機構を利用するウイルスベクター法と、化学的(リン酸カルシウム法、リポソーム法)あるいは物理的操作(遺伝子銃、エレクトロポレーション法)による非ウイルスベクター法があげられる。  Gene transfer methods include a virus vector method that utilizes the cell invasion mechanism inherent in the virus, and a non-viral vector that is chemically (calcium phosphate method, liposome method) or physically manipulated (gene gun, electroporation method). Law.

一方、骨形成因子(BMPs:Born Morphogenetic Proteins)は歯牙の発生に深く関与することが知られており、象牙芽細胞が最終分化する時期にBMP2(Bone Morphogenetic Protein2)、BMP7およびGDF11(Growth/differentiation Factor11)/BMP11のmRNA発現がみられる。ヒトリコンビナントBMPs蛋白を吸着させたビーズを応用する、あるいはBMP遺伝子をエレクトロポレーションにより遺伝子導入すると象牙芽細胞のマーカーであるDSP(Dentin Sialoprotein)の発現が誘導される。またin vivoにおいて、生活歯髄切断面にヒトリコンビナントBMPs蛋白を応用すると大量の修復象牙質形成がみられる。このことから、ヒトリコンビナントBMPsは歯髄細胞の象牙芽細胞への分化に関与し、象牙質形成を促進すると考えられ、覆髄剤として臨床応用する可能性が示唆されている。
特開平5−78260号公報
On the other hand, bone morphogenetic proteins (BMPs) are known to be deeply involved in the development of teeth, and BMP2 (Bone Morphogenetic Protein2), BMP7 and GDF11 (Growth / differentiation) at the time of final differentiation of odontoblasts. Factor11) / BMP11 mRNA expression. Application of beads to which human recombinant BMPs protein is adsorbed, or introduction of the BMP gene by electroporation induces the expression of DSP (Dentin Sialoprotein), a marker for odontoblasts. In addition, when human recombinant BMPs protein is applied to the cut surface of living dental pulp in vivo, formation of a large amount of repaired dentin is observed. This suggests that human recombinant BMPs are involved in the differentiation of dental pulp cells into odontoblasts and promote dentin formation, suggesting the possibility of clinical application as a pulp capping agent.
JP-A-5-78260

しかしながら、ウイルスベクターでは導入効率は高いが、挿入により変異原性が生じる。また、レトロウイルスは、ウイルスゲノムが宿主染色体に組み込まれるため、外来遺伝子を安定に長期に発現させられるが、発癌性があり、分裂している細胞にしか遺伝子を導入できない。アデノウイルスは細胞傷害性と細胞性免疫反応が強く、発現持続が十分でない。また正電荷型リポソームは導入できる遺伝子サイズに制限がなく、複製されず、免疫反応がほとんど起こらないが、導入効率が低く、細胞毒性がある。  However, although the introduction efficiency is high in a viral vector, mutagenicity is caused by insertion. In addition, retroviruses can stably express foreign genes for a long period of time because the viral genome is integrated into the host chromosome, but they are carcinogenic and can only introduce genes into dividing cells. Adenovirus has strong cytotoxicity and cell-mediated immune response, and does not maintain sufficient expression. Positively charged liposomes are not limited in gene size that can be introduced, are not replicated, and hardly cause an immune reaction, but have a low introduction efficiency and are cytotoxic.

これらの導入法に対して、エレクトロポレーション法では遺伝子導入量に限界がなく、ウイルスなどの特殊なDNA構造に組み込む必要はなく、暫間的、一過性なので安全性が高い。しかも導入効率が他の方法に比べ高く有利である。しかしながら、電極があたったところでは組織に損傷を与え、遺伝子導入の不均一性から、露髄面が完全に象牙質で覆われることが困難であった。  In contrast to these introduction methods, the electroporation method has no limitation on the gene introduction amount, does not need to be incorporated into a special DNA structure such as a virus, and is temporary and transient, so that the safety is high. Moreover, the introduction efficiency is higher and more advantageous than other methods. However, tissue was damaged where the electrode was hit, and it was difficult to completely cover the exposed pulp surface with dentin due to non-uniform gene transfer.

そこで本発明は、超音波エネルギーにより導入する傷害性の少ない、歯あるいは歯周組織への導入用薬剤および歯あるいは歯周組織の薬剤導入装置を提供するものである。  Therefore, the present invention provides a drug for introduction into teeth or periodontal tissue and a drug introduction device for teeth or periodontal tissue, which are less harmful to be introduced by ultrasonic energy.

本発明による歯あるいは歯周組織への導入用薬剤は、超音波エネルギーにより歯に導入して治療する混合物であって、プラスミドDNAあるいは薬剤と微小気泡との混合物からなることを特徴とする。    The drug to be introduced into a tooth or periodontal tissue according to the present invention is a mixture to be treated by being introduced into a tooth by ultrasonic energy, and is characterized by comprising a mixture of plasmid DNA or a drug and microbubbles.

また、本発明の歯あるいは歯周組織への薬剤導入装置は、超音波を歯あるいは歯周組織の標的部に照射する、取り外しできる超音波発振部を先端部に備えた超音波発振器と、標的部に歯への導入用薬剤を供給する薬物押し出し装置とを備えたことを特徴とする。  Further, the apparatus for introducing a drug into a tooth or periodontal tissue of the present invention irradiates an ultrasonic wave to a target portion of the tooth or periodontal tissue, an ultrasonic oscillator having a detachable ultrasonic oscillation portion at a distal end portion, and a target. A drug pushing device for supplying a drug to be introduced into the teeth to the part.

本発明では超音波エネルギーを利用するので、電気的遺伝子導入法に比べて、特殊な電極を開発する必要もなく、その電極棒の先があたった面の必然的壊死を免れた。また電気が流れた部位のみの限局的遺伝子導入に比べて、歯髄面に広範囲に効率よく遺伝子が導入された。In the present invention, since ultrasonic energy is used, there is no need to develop a special electrode as compared with the electric gene transfer method, and the necessity of necrosis on the surface where the tip of the electrode rod contacts is avoided. In addition, the gene was efficiently introduced into the dental pulp surface over a wide area as compared with the localized gene transfer only at the site where electricity was applied.

また、in vivoにおいて生活歯髄切断面に超音波遺伝子導入した場合においても、露出した歯髄表面全体にわたり均一に遺伝子が導入され、修復象牙質は露髄面全体に形成されていたことから、電気的遺伝子導入法より有利である。  In addition, even when the ultrasonic gene was introduced into the living pulp cut surface in vivo, the gene was uniformly introduced over the entire exposed pulp surface, and the repaired dentin was formed on the entire exposed pulp surface. It is more advantageous than the gene transfer method.

また、現在遺伝子導入に多く用いられているアデノウイルス・ベクターは発癌性、毒性、免疫反応などの安全性について非常に問題となっている。  In addition, adenovirus vectors, which are currently frequently used for gene transfer, are very problematic in safety such as carcinogenicity, toxicity, and immune response.

本発明により、超音波を用いてプラスミドDNAを効率的にしかも安全に露髄面に遺伝子導入できることが示されたことから、今後、新しい覆髄法として臨床応用が可能となる。  According to the present invention, it has been shown that plasmid DNA can be efficiently and safely introduced into the exposed pulp surface using ultrasonic waves, and thus clinical application as a new pulp capping method is possible in the future.

本発明では、従来の単に薬剤を塗布あるいは貼薬する方法に比べて、薬剤が象牙細管内により深く浸透し、超音波造影剤併用による化学的・物理的相乗効果により、即座に確実に無菌化をはかることができ、非常に有利である。本発明の超音波を用いた新しい虫歯治療あるいは抜髄・感染根管治療あるいは歯周組織疾患の治療により、治療の能率化によるチェアタイム、通院回数の減少、歯の痛み、咬合不全による国民の生産性の減少の防止、歯髄の確実な保存しいては歯の保存によるQOLの向上、医療費の削減など、国民・国家に多大な影響が与えられることが期待される。  According to the present invention, the drug penetrates deeper into the dentinal tubules and is instantly and reliably sterilized by the chemical and physical synergistic effect of the combined use of the ultrasonic contrast agent as compared with the conventional method of simply applying or applying the drug. Can be measured, which is very advantageous. New treatment of caries, treatment of root canal / infection of root canal or treatment of periodontal tissue disease using the ultrasonic wave of the present invention, resulting in streamlining of chair time, reduction in the number of hospital visits, dental pain, and occlusal malocclusion. It is expected that the nation and the nation will be greatly affected, such as prevention of a decrease in gender, reliable preservation of dental pulp, improvement of QOL by preservation of teeth, and reduction of medical expenses.

マイクロバブルとして用いたOptisonは、アルブミンでできた赤血球より小さいカプセルの殼の中にプロパンガス(perfluorocarbon)が含まれている。マイクロバブルは、弾性、圧縮性があり、水より密度が低く、生体組織と体液の間で音響インピーダンスの不均衡を生じる。よってこのような性質により超音波を効率良く反射する。また、マイクロバブルはキャビテーションのためのエネルギー閾値を低下させる。キャビテーションにおいて、超音波エネルギーはミクロ領域に濃縮され、キャビテーションは小さな衝撃波を引き起こし細胞透過性を増加させる。キャビテーションはマイクロバブルを破壊し、マイクロバブルに付着あるいは封入されていた薬物や遺伝子が放出される。いずれガスは体内に吸収されるが、超音波の照射によってカプセルの崩壊を時間的、空間的に制御できる。マイクロバブルはまた、細胞に特異的なあるレセプターをターゲットにすることが可能である。The Optison used as a microbubble contains propane gas (perfluorocarbon) in the shell of a capsule smaller than red blood cells made of albumin. Microbubbles are elastic, compressible, have a lower density than water, and cause an acoustic impedance imbalance between living tissue and body fluids. Therefore, ultrasonic waves are efficiently reflected by such properties. Microbubbles also lower the energy threshold for cavitation. In cavitation, ultrasonic energy is concentrated in the micro-region, and cavitation causes small shock waves to increase cell permeability. Cavitation destroys the microbubbles and releases the drug or gene attached or encapsulated in the microbubbles. The gas is eventually absorbed into the body, but the collapse of the capsule can be temporally and spatially controlled by the irradiation of ultrasonic waves. Microbubbles can also target certain receptors specific to cells.

本発明では、歯髄組織に超音波エネルギーを利用して、プラスミドDNAをマイクロバブルと混合した形でGFP(Green Fluorescence Protein)遺伝子を導入する。その結果、Optisonが10%前後の含有率で、周波数1MHz、強度0.5W/cm、照射時間30秒が最も効率よく歯髄面上に遺伝子導入できる条件であることが判明した。In the present invention, the GFP (Green Fluorescence Protein) gene is introduced into the dental pulp tissue using ultrasonic energy in a form in which plasmid DNA is mixed with microbubbles. As a result, it has been found that, with an Optison content of about 10%, a frequency of 1 MHz, an intensity of 0.5 W / cm2 , and an irradiation time of 30 seconds are the conditions under which the gene can be most efficiently transferred onto the dental pulp surface.

このような条件下での超音波による遺伝子の導入では歯髄細胞組織に傷害や壊死を与えることなく、細胞核内に遺伝子を導入することが可能であった。  The introduction of a gene by ultrasound under such conditions allowed the gene to be introduced into the cell nucleus without causing damage or necrosis to the dental pulp cell tissue.

同様の条件下で歯髄組織にGDFllプラスミドDNAを超音波エネルギーにより導入を行ったところ、マウス歯胚間葉を用いて電気的遺伝子導入を行った場合と同様に、歯髄細胞の象牙芽細胞への分化が誘導された。  When GDF11 plasmid DNA was introduced into the dental pulp tissue by ultrasonic energy under the same conditions, the pulp cells were introduced into odontoblasts in the same manner as in the case where the electrical gene was introduced using mouse tooth germ mesenchyme. Differentiation was induced.

図1は本発明の歯への薬剤導入装置の全体図、図2(a)は導入装置の操作装置の説明図、(b)はテレビモニターの画像の一例を示す図、図3は超音波素子の振動方向の説明図である。  FIG. 1 is an overall view of an apparatus for introducing a drug into a tooth of the present invention, FIG. 2 (a) is an explanatory view of an operating device of the introducing apparatus, FIG. It is explanatory drawing of the vibration direction of an element.

図1において、導入装置は、超音波発振器1、超音波発振器1のケース2に支持された照明・内視鏡3および薬物投与チューブ4で構成される。超音波発振器1のケース2は、ハンドル5と角度を調整できる、関節部6を備えた屈折部材6aと連結されている。屈折部材6は、ハンドル5に設けられた角度調整つまみ7と関節部6をワイヤ8で結び、角度調整つまみ7を操作することにより関節部6を動かして超音波発振器1の角度を調整する。超音波発振器1は、先端の大きさは0.1×0.1×0.1mmから1×1×1cmの大きさで、交換可能にして、使い捨てにしてもよい。  In FIG. 1, the introduction device includes an ultrasonic oscillator 1, an illumination /endoscope 3 supported on acase 2 of the ultrasonic oscillator 1, and adrug administration tube 4. Thecase 2 of the ultrasonic oscillator 1 is connected to a handle 6 and a refraction member 6 a having an articulation 6 whose angle can be adjusted. The bending member 6 adjusts the angle of the ultrasonic oscillator 1 by moving the joint 6 by operating the angle adjusting knob 7 by connecting the angle adjusting knob 7 provided on thehandle 5 and the joint 6 with awire 8. The ultrasonic oscillator 1 may have a tip size of 0.1 × 0.1 × 0.1 mm to 1 × 1 × 1 cm, and may be replaceable and disposable.

照明・内視鏡3は、超音波の標的部11(図2)を照明する角度に調整可能にケース2に支持されている。  The illumination /endoscope 3 is supported by thecase 2 so as to be adjustable to an angle for illuminating the ultrasonic target portion 11 (FIG. 2).

薬物投与チューブ4の先端の開口部4aも標的部11に薬物を供給する角度に調整可能にケース2に支持され、他端には薬物を押し出すためのトリガー9aを備えた薬物押し出し装置9が設けられている。  The opening 4a at the distal end of thedrug administration tube 4 is also supported by thecase 2 so as to be adjustable to an angle for supplying the drug to the target portion 11, and the other end is provided with a drug pushing device 9 having a trigger 9a for pushing the drug. Have been.

図2(a)において、操作装置10は超音波発振器・増幅器を内蔵し、超音波の周波数、強度を調整する調整手段として、超音波強度調整つまみ10a、周波数調整つまみにより超音波強度を調整する。また、内視鏡3からの映像を画像処理して、図2(b)に示すように、テレビーモニター10bに標的部11の映像を表示することができる。フットペダルスイッチ10cにより超音波発振器1をオンオフすることができる。  In FIG. 2A, theoperating device 10 has a built-in ultrasonic oscillator / amplifier, and as an adjusting means for adjusting the frequency and intensity of the ultrasonic wave, adjusts the ultrasonic intensity with the ultrasonic intensity adjusting knob 10a and the frequency adjusting knob. . Further, the image from theendoscope 3 can be image-processed, and the image of the target unit 11 can be displayed on the television monitor 10b as shown in FIG. The ultrasonic oscillator 1 can be turned on and off by thefoot pedal switch 10c.

図3において、超音波の周波数を100kHz〜10MHzを変化させて横方向(周波数A)あるいは縦方向(周波数B)に同調させことができ、約1MHzが適している。超音波強度は0.5〜10W/cmに調整可能であり、超音波強度約2W/cmが適している。A、Bの周波数を切り換えることによって、同一の超音波発振素子で超音波の発振方向を自由に変えることができる。また、切り替え周波数はあらかじめ設定されていて、2方向とは限らず、使用者が自由に選べる。なお、超音波の照射時間は、数秒から10分程度である。In FIG. 3, the frequency of the ultrasonic wave can be changed in the horizontal direction (frequency A) or the vertical direction (frequency B) by changing the frequency from 100 kHz to 10 MHz, and about 1 MHz is suitable. Ultrasonic intensity is adjustable 0.5~10W / cm2, ultrasound intensity of about 2W / cm2 is suitable. By switching the frequencies of A and B, the oscillation direction of the ultrasonic wave can be freely changed by the same ultrasonic oscillation element. The switching frequency is set in advance and is not limited to two directions, and can be freely selected by the user. The irradiation time of the ultrasonic wave is from several seconds to about 10 minutes.

本発明の導入装置の操作について説明する。薬物押し出し装置9に薬物を充填した後、ハンドル5を持って角度調整つまみ7で超音波発振器1の角度を調整し、超音波の周波数、強度をセットした後、照明・内視鏡3をONし、超音波発振器1を駆動するとともに、薬物押し出し装置9のトリガー9aを引いて薬物を標的部11に注入し、標的部11の様子をテレビモニター10bで観察しながら遺伝子や薬剤の導入を行っていく。  The operation of the introduction device of the present invention will be described. After filling the drug extruder 9 with the drug, hold thehandle 5, adjust the angle of the ultrasonic oscillator 1 with the angle adjusting knob 7, set the frequency and intensity of the ultrasonic wave, and turn on the illumination /endoscope 3. Then, while driving the ultrasonic oscillator 1, the trigger 9a of the drug pushing device 9 is pulled to inject the drug into the target portion 11, and the gene and the drug are introduced while observing the state of the target portion 11 on the television monitor 10b. To go.

新鮮抜去ウシ前歯の歯根側面よりタービン用ダイヤモンドラウンドバー#440を用いて歯髄に到達する窩洞を形成し、pEGFP−N3(Clontech,Palo Alto)にTIMP promoterを結合させたプラスミド(TIMP−pEGFP)を注入した。プラスミドDNA(25μg)はあらかじめ超音波造影剤Optison(Molecular Biosystems Inc., San Diego)を1:3で混合した。窩洞内を完全にUltr/Phonic Conductivity Gel液(Nishimoto Sangyo Co.LTD)で覆い、Gel面上からソニトロン1000インビボ用1MHz(リッチマー社・ST1000V−W)にて超音波を照射した。超音波強度は0.5W/cmあるいは1W/cm、周波数は1MHzを使用した(照射時間15、30、60秒)。その後歯髄を摘出して、10%仔ウシ血清含有DMEM中で、Trowell型の器官培養を行った。24時間後、実体蛍光顕微鏡にてGFPの蛍光発色の観察を行った。A cavity (TIMP-pEGFP) in which TIMP promoter was bound to pEGFP-N3 (Clontech, Palo Alto) was formed by using a diamond round bar for turbine # 440 to form a cavity reaching the pulp from the root side of the freshly extracted bovine anterior tooth. Injected. Plasmid DNA (25 μg) was previously mixed with an ultrasonic contrast agent Optison (Molecular Biosystems Inc., San Diego) at a ratio of 1: 3. The cavity was completely covered with Ultr / Phonic Conductivity Gel solution (Nishimoto Sangyo Co. LTD), and ultrasonic waves were irradiated from above the Gel surface with Sonitron 1000 in vivo 1 MHz (Richmer ST1000V-W). The ultrasonic intensity was 0.5 W / cm2 or 1 W / cm2 , and the frequency was 1 MHz (irradiation time 15, 30, 60 seconds). Thereafter, the dental pulp was excised, and a trowell-type organ culture was performed in DMEM containing 10% calf serum. Twenty-four hours later, the fluorescence of GFP was observed with a stereoscopic fluorescence microscope.

その結果、超音波を照射した群のGFPの量は非照射群に比べ完全に有意差が認められ、非照射群にはほとんどGFPは見られなかった。遺伝子導入効率の促進作用が証明され、その導入効率は超音波の強度および照射時間に依存した。すなわち、周波数1MHzの場合、強度は0.5W/cm、照射時間30秒が最もGFPが窩洞内の歯髄組織にびまん性に分布しており、組織傷害性がなく、遺伝子導入効率が最も良いと考えられた。As a result, the amount of GFP in the group irradiated with ultrasonic waves was completely significantly different from that in the non-irradiated group, and almost no GFP was observed in the non-irradiated group. The effect of enhancing the gene transfer efficiency was proved, and the transfer efficiency was dependent on the intensity of the ultrasonic wave and the irradiation time. That is, in the case of the frequency of 1 MHz, the intensity is 0.5 W / cm2 and the irradiation time is 30 seconds. GFP is most diffusely distributed in the dental pulp tissue in the cavity, there is no tissue damage, and the gene transfer efficiency is the best. It was considered.

実施例2
超音波造影剤Optisonの濃度の至適化について試験した。実施例1と同様にして、超音波造影剤Optisonの濃度を変化させて、導入効率の比較を行った。すなわち、プラスミドDNA(25μg)に対してOptisonを0.001%、5%、10%、20%、50%、75%に調整し、0.5W/cm周波数は1MHz、60秒、超音波照射した。コントロールとしてはOptison0%で照射、あるいはOptison5%で非照射を用いた。
Example 2
The optimization of the concentration of the ultrasound contrast agent Optison was tested. In the same manner as in Example 1, the introduction efficiency was compared by changing the concentration of the ultrasonic contrast agent Optison. That is, the Optison was adjusted to 0.001%, 5%, 10%, 20%, 50%, and 75% with respect to the plasmid DNA (25 μg), the frequency of 0.5 W / cm2 was 1 MHz, 60 seconds, Irradiated. As a control, irradiation was performed at 0% of Optison, or no irradiation was performed at 5% of Optison.

その結果、Optisonの含有率の変化による影響は、プラスミドDNAをOptisonと混合しない場合、超音波照射群および非照射群の両方ともほとんどGFPは見られなかった。  As a result, when the plasmid DNA was not mixed with the Optison, almost no GFP was observed in both the ultrasonic irradiation group and the non-irradiation group, as a result of the change in the content of the Optison.

また、Optison含有率0.001%で導入率が上昇し、Optison含有率5−10%でほぼ一定した導入率が得られ、20%ではやや減少、50%以上では導入率は激減した。  The introduction rate increased at an Optison content of 0.001%, and an almost constant introduction rate was obtained at an Optison content of 5 to 10%. The introduction rate was slightly decreased at 20%, and drastically decreased at 50% or more.

実施例3
歯髄組織への影響について試験した。実施例1と同様に、ウシ歯髄組織にOptisonを5%含む20μgのTIMP−pEGFPプラスミドを応用し、0.5W/cm、周波数1MHz、照射時間30秒で超音波照射し、器官培養2日後に歯髄組織を急速凍結した。20μmの凍結切片を作製し、共焦点レーザー顕微鏡(カールツアイス社、LSM410、アルゴンレーザー、B 488nm、30mW)にて細胞内GFPの蛍光発色をコンピュータ画像観察した。また、HE染色により、炎症や壊死所見の観察を行った。
Example 3
The effect on dental pulp tissue was tested. As in Example 1, 20 μg of TIMP-pEGFP plasmid containing 5% of Optison was applied to bovine dental pulp tissue, and ultrasonic irradiation was performed at 0.5 W / cm2 , frequency of 1 MHz, irradiation time of 30 seconds, and organ culture for 2 days. Later, the pulp tissue was snap frozen. A frozen section of 20 μm was prepared, and the fluorescence of intracellular GFP was observed with a computer image using a confocal laser microscope (Carz Ice, LSM410, argon laser, B 488 nm, 30 mW). In addition, inflammation and necrosis were observed by HE staining.

また、TIMP−pEGFPプラスミドを含まずOptisonのみで照射、あるいはTIMP−pEGFP(Optison5%含)に非照射を用いた。  Irradiation was performed using only Optison without TIMP-pEGFP plasmid, or non-irradiation was used for TIMP-pEGFP (including 5% Optison).

その結果、遺伝子導入して器官培養2日後の歯髄組織をHE染色して形態観察したところ、炎症や壊死所見は認められなかった。  As a result, thedental pulp tissue 2 days after organ transfer after the gene transfer was subjected to HE staining and morphological observation. No inflammation or necrosis was found.

また、共焦点レーザー顕微鏡下でGFPの蛍光発色をコンピュータ画像解析したところ、遺伝子導入により表層下200μmまで、細胞内にGFP遺伝子が取り込まれていることが判明した。コントロールのTIMP−pEGFPプラスミドを含まずOptisonのみで照射したものおよびTIMP−pEGFP(Optison5%含)に非照射ものではGFPは全く見られなかった。  Computer image analysis of the fluorescence of GFP under a confocal laser microscope revealed that the GFP gene had been incorporated into cells up to 200 μm below the surface layer by gene transfer. No GFP was observed in the control irradiated with only Optison without TIMP-pEGFP plasmid and the non-irradiated TIMP-pEGFP (containing 5% of Optison).

実施例4
mGDFll−TIMP−pEGFPのプラスミド20μg(Optison5%含)を2と同様に超音波遺伝子導入した。
Example 4
Ultrasonic gene transfer was carried out in the same manner as in 2, using 20 μg of the plasmid of mGDFll-TIMP-pEGFP (containing 5% of Optison).

また、TIMP−pEGFP(Optison5%含)あるいはmGdfll−TIMP−pEGFP(Optison5%含)を応用するが非照射を用いた。器官培養7日後の歯髄を4%パラホルムアルデヒドで固定して、象牙芽細胞のマーカーであるDentin Sialoprotein(DSP)を用いてwholemount in situ hybridizationを行い、DSP mRNAの発現を検索した。  In addition, TIMP-pEGFP (containing 5% of Optison) or mGdfl-TIMP-pEGFP (containing 5% of Optison) was applied, but non-irradiation was used. After 7 days of organ culture, the dental pulp was fixed with 4% paraformaldehyde, and whole mount in situ hybridization was performed using Dentin Sialoprotein (DSP), a marker for odontoblasts, to search for expression of DSP mRNA.

その結果、超音波遺伝子導入後7日目の器官培養歯髄組織をウシDSPのプローブを用いてwhole−mount in situを行ったところ、窩洞内の超音波遺伝子導入部位に一致して、DSP mRNA発現がびまん性に広がってみられた。  As a result, when the organ culture dental pulp tissue on the 7th day after the ultrasonic gene transfer was subjected to whole-mount in situ using a bovine DSP probe, DSP mRNA expression coincided with the ultrasonic gene transfer site in the cavity. But diffusely spread.

また、コントロールのTIMP−pEGFP(Optison5%含)あるいはmGdfll−TIMP−pEGFP(Optison5%含)で非照射標本ではDSP mRNA発現は見られなかった。したがって、GDFllの超音波遺伝子導入により、歯髄細胞の象牙芽細胞への分化が促進されたことが分かった。  DSP mRNA expression was not observed in non-irradiated specimens of control TIMP-pEGFP (containing 5% of Optison) or mGdfl-TIMP-pEGFP (containing 5% of Optison). Therefore, it was found that the differentiation of dental pulp cells into odontoblasts was promoted by the ultrasonic gene transfer of GDF11.

実施例5
一歳前後のイヌ6頭の上下顎犬歯計24本をエアータービンにて露髄させ、次亜塩素酸ソーダと過酸化水素水による交互洗浄後、エンジン用ラウンドバー#18にて生活歯髄切断を行った。再度交互洗浄と生食水による洗浄後、断面を乾燥させ、Optison5%とmGdfll−TIMP−pEGFPのプラスミド40μgを含むPBS溶液10μlを歯髄切断面上に注入し、気泡を入れないように注意しながらUltra/Phonic Conductivityゲル液で窩渭内を満たした。ゲル液の上から超音波を、強度は0.5W/cm、周波数IMHz、照射時間30秒で照射した(計14本)。
Example 5
Twenty-four canine teeth of six dogs around the age of one year were exposed to the pulp with an air turbine, and after washing alternately with sodium hypochlorite and aqueous hydrogen peroxide, vital pulp was cut with a round bar for engine # 18. went. After alternate washing and washing with saline again, the cross section was dried, and 10 μl of a PBS solution containing 5% of Optison and 40 μg of the plasmid of mGdfl-TIMP-pEGFP was injected onto the cut surface of the dental pulp, while taking care not to introduce air bubbles. / Phonic Conductivity gel solution was used to fill Dorainai. Ultrasonic waves were irradiated from above the gel solution at an intensity of 0.5 W / cm2 , a frequency of 1 MHz, and an irradiation time of 30 seconds (a total of 14 tubes).

また、TIMP−pEGFPのプラスミド40μgを含むPBS溶液(計6本)あるいはmGDFll−TIMP−pEGFPを注入のみで超音波照射をしないもの(計4本)を用いた。その後、ゲル液を生理食塩水で洗い流し、切断面上に吸収性スポンゲルを軽圧にておき、その上を燐酸亜鉛セメントならびに化学重合レジンにて封鎖した。1ケ月後、パラフィン切片を作製し、修復象牙質形成の形態学的観察を行った。  In addition, a PBS solution containing 40 μg of TIMP-pEGFP plasmid (a total of six) or a solution containing only mGDFll-TIMP-pEGFP but not subjected to ultrasonic irradiation (a total of four) was used. Thereafter, the gel solution was washed away with a physiological saline solution, the absorbent sponge was kept on the cut surface under light pressure, and the surface was sealed with zinc phosphate cement and a chemically polymerized resin. One month later, paraffin sections were prepared, and morphological observation of repaired dentin formation was performed.

観察の結果、イヌの生活歯髄切断歯髄にGDFll−TIMP−pEGFPを超音波遺伝子導入すると、一ケ月後にリコンビナントBMP蛋白をコラーゲンとともに応用した場合と同様に断髄面上歯髄に大量の修復象牙質形成が見られた。  As a result of the observation, when GDFll-TIMP-pEGFP was transduced into the living dental pulp of the canine dental pulp by ultrasound, a large amount of repaired dentin was formed in the pulp on the demyelinated surface one month later, as in the case where recombinant BMP protein was applied together with collagen. It was observed.

また、修復象牙質は象牙芽細胞が並ぶ細管構造をもつ象牙質ではなく、細胞が基質に埋もれている骨様象牙質がほとんどであった。超音波遺伝子を行っていないあるいはpEGFPのみを遺伝子導入した場合(図5B)には、骨様象牙質形成は見られなかった。  The repaired dentin was not a dentin having a tubular structure in which odontoblasts lined up, but mostly bone-like dentin in which cells were buried in a matrix. When no ultrasonic gene was used or only pEGFP was transfected (FIG. 5B), no bone-like dentin formation was observed.

したがって、超音波エネルギーを用いてGDFll遺伝子を歯髄へ直接遺伝子導入する覆髄法の有効性が認められた。  Therefore, the effectiveness of the pulp capping method of directly transducing the GDF11 gene into the dental pulp using ultrasonic energy was confirmed.

実施例6
歯の延命化のためには歯質切除を最小限にとどめ、露随の可能性を減少させて可及的に歯髄を残すことが是非必要である。しかし、従来より齲蝕治療は無菌化をはかるため感染歯質の徹底除去を原則とし、したがって完全に無菌化するには大量に歯質を削除し結果として歯髄を失うことになりかねない。
Example 6
To prolong the life of a tooth, it is imperative that dental resection be minimized, the possibility of exposure is reduced, and the pulp remains as much as possible. However, the treatment of dental caries has conventionally been based on the thorough removal of infected dentin in order to sterilize it. Therefore, in order to completely sterilize the caries, a large amount of the dentin is deleted and the pulp may be lost as a result.

本実施例は、超音波エネルギーを利用して抗菌剤あるいは消毒剤、抗炎症剤と併用して象牙細管内あるいはさらに歯髄内に深く浸透させ、歯髄内に侵入した齲蝕原性菌を無菌化するものであり、即効性に、化学的ならびに物理的に細菌を完全死滅させてより炎症を鎮めると同時に、超音波エネルギーにより、歯髄組織幹細胞を活性化させ、歯髄再生力を強化する。あるいは象牙芽細胞の分化を促進作用させ、より早期に修復象牙質を再生させるものである。  In this embodiment, the ultrasonic energy is used to penetrate deeply into the dentinal tubule or further into the dental pulp in combination with an antibacterial agent or a disinfectant or an anti-inflammatory agent to sterilize cariogenic bacteria that have entered the dental pulp. It rapidly and chemically kills bacteria physically and physically to reduce the inflammation, and at the same time, activates dental pulp tissue stem cells by ultrasonic energy and enhances the pulp regeneration power. Alternatively, it promotes the differentiation of odontoblasts and regenerates the repaired dentin earlier.

本実施例では次の効果が得られる。  In the present embodiment, the following effects can be obtained.

1.抗菌剤が象牙細管内を通ってより深く浸透するため、象牙質にただ塗布した場合に比べて、細管内深くに存在する細菌により到達しやすく、虫歯切削量が少なくてすむ。1. Since the antimicrobial agent penetrates deeper through the dentinal tubule, it is easier to reach bacteria existing deep in the tubule than when simply applied to the dentin, and the amount of caries cut is small.

2.残存歯質が少ない場合には、細管を通って感染歯髄組織にも作用が及ぶため、直接に露髄させて薬剤を応用せずとも抗炎症剤、抗菌剤を導入できる。2. When the remaining tooth substance is small, the affected dental pulp tissue is also affected through the tubule, so that an anti-inflammatory agent and an antibacterial agent can be introduced without directly exposing the pulp and applying a drug.

3.超音波造影剤のバブルと併用した超音波の物理的細菌壁の破壊効力により、抗菌剤の薬効が強化される。耐性菌およびトレラント菌の出現を阻止できる。3. The efficacy of the antimicrobial agent is enhanced by the destructive effect of the ultrasonic wave in combination with the bubble of the ultrasonic contrast agent on the physical bacterial wall. The emergence of resistant and tolerant bacteria can be prevented.

4.薬剤の即効性が期待できる。4. Immediate effect of the drug can be expected.

5.歯髄組織幹細胞を活性化し、歯髄再生力を強化できる。5. It can activate dental pulp tissue stem cells and enhance dental pulp regeneration.

超音波エネルギーにより、歯髄組織幹細胞が活性化され、歯髄再生力を強化できる。また、象牙芽細胞の機能冗進により、齲蝕により変性したコラーゲンやリン蛋白などの基質蛋白代謝が高まり、再石灰化可能となる。さらに、象牙芽細胞の分化促進作用により、より早期に修復象牙質を再生可能となる。この際、定期的に歯の表面から、超音波刺激を与えることも有効な手段となる。The ultrasonic energy activates the dental pulp tissue stem cells and can enhance the pulp regeneration power. In addition, due to the function of odontoblasts, metabolism of substrate proteins such as collagen and phosphoprotein denatured by dental caries is increased, and remineralization becomes possible. Furthermore, the repaired dentin can be regenerated earlier due to the action of promoting the differentiation of odontoblasts. At this time, it is also an effective means to periodically apply ultrasonic stimulation from the tooth surface.

6.フッ素入りの歯磨剤を用いてハブラシのように歯面清掃を行いながら歯牙表面の細菌を超音波エネルギーとフッ素により殺菌することによる齲蝕予防する。6. Prevents dental caries by sterilizing bacteria on the tooth surface with ultrasonic energy and fluorine while cleaning the tooth surface like a toothbrush using a toothpaste containing fluorine.

実施例7
齲蝕原性菌について試験した。
Example 7
Tested for cariogenic bacteria.

(1)細管内到達距離に及ぼす超音波の出力、照射時間の影響について試験した。ヒト新鮮抜去智歯を用いて、咬合面に直径6mm、深さ3mmの窩洞を形成し、Optison5%含有、抗生物質テトラサイクリン塩酸塩(100μg/μl)を超音波により導入し、窩底部からの薬剤の到達距離を蛍光実体顕微鏡UVフィルターにて観察した。(1) The effects of the output of the ultrasonic wave and the irradiation time on the reaching distance in the thin tube were tested. Using a freshly extracted human wisdom tooth, a cavity having a diameter of 6 mm and a depth of 3 mm was formed on the occlusal surface, and the antibiotic tetracycline hydrochloride (100 μg / μl) containing 5% of Optison was introduced by ultrasound, and the drug from the bottom of the cavity was introduced. The reaching distance was observed with a fluorescent stereo microscope UV filter.

超音波の出力を2.0Wから0.IW刻みで最低0.0Wまで低下させ、1分照射したところ、1.4Wから薬剤到達距離が激減し、1.3W以下では薬剤は全く導入されなかった。また、Optisonを含有させない場合には2.0Wで3分照射しても、薬剤は導入されなかった。次に、超音波出力を1.5Wとし、照射時間を60秒から10秒刻みで減少させたところ、30秒で薬剤到達距離の減少がみられ、0秒では全く薬剤は導入されなかった。  The output of the ultrasonic wave is increased from 2.0 W to 0.1 W. When the irradiation was reduced to a minimum of 0.0 W in increments of IW and illuminated for 1 minute, the drug reaching distance was drastically reduced from 1.4 W, and no drug was introduced at 1.3 W or less. When Optison was not contained, the drug was not introduced even after irradiation at 2.0 W for 3 minutes. Next, when the ultrasonic output was set to 1.5 W and the irradiation time was reduced in steps of 10 seconds from 60 seconds, the drug reaching distance was reduced in 30 seconds, and no drug was introduced at 0 seconds.

齲蝕象牙質(変色層)に対して、1.5W、60秒で完全に全面にわたり到達がみられたが、その下の細菌感染のない透明層は細管内が結晶化されているため、到達されなかった。  The carious dentin (discolored layer) reached the entire surface completely at 1.5 W for 60 seconds, but the transparent layer without bacterial infection under it reached because the inside of the tubule was crystallized. Was not done.

(2)歯髄組織に及ぼす影響について試験した。Optison5%含有にて、超音波出力1.5W、照射時間60秒で超音波薬剤導入した直後の歯髄組織を凍結切片を作製し、形態観察を行ったところ、やや血管拡張があるものの、歯髄細胞の熱変性などの傷害性はみられなかった。(2) The effect on dental pulp tissue was examined. A frozen section was prepared from the dental pulp tissue immediately after the introduction of the ultrasonic drug with an ultrasonic output of 1.5 W and an irradiation time of 60seconds containing Optison 5%, and morphological observation was performed. No injuries such as heat denaturation were observed.

(3)細管内の細菌を採取、嫌気性培養後、殺菌効果を検討した。Optisonを5%含有させ、薬剤(タリビット)を、超音波出力1.5W、照射時間60秒で超音波導入した直前、直後の齲蝕象牙質(変色層)をスプーンエキスカにて無菌的に採取した。その産物をカルチュレット(栄研化学)に移しCDC嫌気性菌用血液寒天培地に分離塗抹し、アネロバック・ケンキを入れたアネロバック角形ジャー(三菱ガス)中37℃で嫌気性培養を行い、その後好気性培養を行った。その結果、超音波にてタリビットを導入した場合には、コロニーの発育がみられなかった。タリビットのみで超音波を導入しなかった揚合は嫌気性菌およびカンジダの生育がみられ、超音波の有効性が明らかとなった。(3) Bacteria in the tubules were collected, and after anaerobic culture, the bactericidal effect was examined. 5% of Optison is contained, and the carious dentin (discolored layer) immediately before and after the introduction of the drug (Taribit) with ultrasonic power of 1.5W and irradiation time of 60 seconds is aseptically collected with a spoon extractor. did. The product was transferred to a culture tube (Eiken Chemical Co., Ltd.), separated and smeared on a blood agar medium for CDC anaerobic bacteria, and anaerobically cultured at 37 ° C. in an Anerobac square jar (Mitsubishi Gas) containing Anerobac and Kenki. Culture was performed. As a result, when the Taribit was introduced by ultrasonic waves, the growth of colonies was not observed. The anaerobic bacteria and Candida grew when Taribit alone did not introduce ultrasonic waves, and the effectiveness of ultrasonic waves was clarified.

実施例8
歯髄幹細胞の増殖あるいは象牙芽細胞への分化に有効な超音波周波数について検討した。歯髄幹細胞を高速自動細胞解析分取装置にて分離し、浮遊状態にて超音波出力0.1W、照射時間30秒、超音波照射を行い、培養2日後の細胞数をカウントしたところ、非照射に比べて、約3倍の増加がみられた。
Example 8
We examined the ultrasonic frequency effective for proliferation of dental pulp stem cells or differentiation into odontoblasts. The dental pulp stem cells were separated by a high-speed automatic cell analysis and sorting device, subjected to ultrasonic irradiation in a suspended state at an ultrasonic output of 0.1 W, irradiation time of 30 seconds, and subjected to ultrasonic irradiation. Approximately a three-fold increase was observed.

実施例9
感染根管治療における化学的清掃の促進について試験した。齲蝕が歯髄に達し、炎症や痛みが生じた場合、歯髄は除去(抜髄)せざるを得ない。この際、抜髄後の根管内を無菌化するために、根管内に水酸化カルシウムや抗菌剤を貼薬する。しかしながら、根管の形態は複雑で、特に根尖付近では複根管や側枝が存在し、またしばしば狭窄や湾曲のため、薬剤の到達が困難で完全無菌化が困難である。したがって、根管充填後も細菌は残存し、根尖部歯周組織に細菌が侵入して骨が吸収破壊され、臨床的にも痛みや腫脹が生じる。よって、数年後から十数年後には根管充填材を除去し再び根管内を清掃しなおさねばならない状況がしばしばみられる。すなわち、抜髄ならびに感染根管治療は無菌化を図ることが必須であるが、単に薬剤の貼薬では不十分であり、レーザーでは出力の制御、歯周組織へ
の安全性(熱作用)、細管内深部への到達性が問題となる。
本実施例は、超音波エネルギーを利用して抗菌剤あるいは消毒剤、抗炎症剤を根管壁の象牙細管内に隅々に行き渡らせ、あるいは根尖歯周組織病巣に深く浸透させ、侵入した原性菌を無菌化するものである。細菌を即効的に、化学的ならびに物理的に完全死滅させ、超音波エネルギーにより、歯根膜幹細胞を活性化させ、骨、セメント質および歯根膜の再生力を強化する。あるいはセメント芽細胞分化を促進作用させ、より早期に根尖歯周組織を治癒させるものである。
Example 9
The promotion of chemical cleaning in the treatment of infected root canals was tested. If the caries reach the pulp and cause inflammation or pain, the pulp must be removed (pulp removal). At this time, calcium hydroxide or an antibacterial agent is applied to the inside of the root canal to sterilize the inside of the root canal after the removal of the spinal cord. However, the form of the root canal is complicated, and in particular, there are multiple root canals and side branches near the apex, and the stenosis and curvature often make it difficult to reach the drug, making it difficult to completely sterilize the root canal. Therefore, the bacteria remain even after the root canal filling, and the bacteria invade the apical periodontal tissue to absorb and destroy the bone, resulting in clinical pain and swelling. Therefore, it is often the case that the root canal filler must be removed and the inside of the root canal must be cleaned again after several to ten years. In other words, it is essential to sterilize the removal of the medulla and the treatment of the infected root canal, but it is not enough to simply apply the drug, and the output is controlled by the laser, the safety to the periodontal tissue (heat action), the tubule Reachability to the inner part becomes a problem.
In the present example, an antibacterial agent or a disinfectant or an anti-inflammatory agent was spread all over the dentinal tubule of the root canal wall using ultrasonic energy, or penetrated deeply into the apical periodontal tissue lesion and invaded. It is to sterilize protozoa. It kills bacteria quickly, chemically and physically, activates periodontal ligament stem cells with ultrasonic energy, and enhances bone, cementum and periodontal regeneration. Alternatively, it promotes the differentiation of cementoblasts and heals the apical periodontal tissue earlier.

本実施例の効果は次のとおりである。  The effects of this embodiment are as follows.

1.狭窄、湾曲根管あるいは副根管、側枝などにも薬剤の効果が期待できる。1. The effect of the drug can also be expected on stenosis, curved root canal or accessory root canal, side branch, and the like.

2.象牙細管内に深く浸透するため、象牙質にただ塗布した場合に比べて、細管内深くに存在する細菌により到達しやすく、根管拡大形成量が少なくてすむ。よって、根尖部の拡大形成による機械的刺激、過剰根管充填、破折を防止できる。2. Since it penetrates deeply into the dentinal tubule, it can be more easily reached by bacteria existing deep in the tubule and the amount of root canal enlargement and formation can be reduced as compared with the case where it is simply applied to the dentin. Therefore, it is possible to prevent mechanical stimulation, excessive root canal filling, and fracture due to the enlarged formation of the apical portion.

3.超音波造影剤のバブルと併用した超音波の物理的細菌壁の破壊効力により、抗菌剤の薬効が強化される。耐性菌およびトレラント菌の出現を阻止できる。3. The efficacy of the antimicrobial agent is enhanced by the destructive effect of the ultrasonic wave in combination with the bubble of the ultrasonic contrast agent on the physical bacterial wall. The emergence of resistant and tolerant bacteria can be prevented.

4.薬剤の即効性が期待できる。4. Immediate effect of the drug can be expected.

5.歯根膜組織幹細胞を活性化し、根尖歯周組織の再生治癒力を強化できる。5. It can activate periodontal ligament stem cells and enhance the regeneration and healing power of apical periodontal tissue.

実施例10
1.細菌に対する効果について試験した。
Example 10
1. The effect on bacteria was tested.

(1)根管象牙細管内到達距離に及ぼす超音波の出力、照射時間の影響について試験した。ヒト新鮮抜去前歯を用いて、通法に従い、抜髄根管拡大形成し、3%過酸化水素水と5%次亜塩素酸ナトリウムにて交互洗浄後、Optison5%含有、抗生物質テトラサイクリン塩酸塩(100μg/μl)を超音波出力1.5W、照射時間60秒で導入した。根管壁の象牙細管内への薬剤の到達が蛍光実体顕微鏡UVフィルターにて観察された。Optisonを含有させない場合には2.0Wで3分照射しても、薬剤は導入されなかった。(1) The effects of the output of ultrasonic waves and the irradiation time on the reach within the root canal dentinal tubule were tested. Using human freshly extracted pre-extracted teeth, enucleated root canal dilatation was formed according to the conventional method, and after washing alternately with 3% hydrogen peroxide and 5% sodium hypochlorite,Optison 5% contained, antibiotic tetracycline hydrochloride (100 μg) / Μl) was introduced with an ultrasonic output of 1.5 W and an irradiation time of 60 seconds. The arrival of the drug in the dentinal tubules of the root canal wall was observed with a fluorescent stereo microscope UV filter. When Optison was not contained, the drug was not introduced even after irradiation at 2.0 W for 3 minutes.

(2)根管内の細菌を採取、嫌気性培養後、殺菌効果を検討した。Optisonを5%含有させ、薬剤(タリビット)を、超音波出力1.5W、照射時間60秒で超音波導入した直前、直後の根管壁をKファイルにて無菌的に採取した。その産物をカルチュレット(栄研化学)に移しCDC嫌気性菌用血液寒天培地に分離塗抹し、アネロバック・ケンキを入れたアネロバック角形ジャー(三菱ガス)中37C゜で嫌気性培養を行い、その後好気性培養を行った。その結果、超音波にてタリビットを導入した場合には、コロニーの発育がみられなかった。タリビットのみで超音波を導入しなかった場合は嫌気性菌の生育がみられ、超音波薬剤導入の有効性が明らかとなった。(2) Bacteria in the root canal were collected and subjected to anaerobic culture, and then the bactericidal effect was examined. Optison was contained at 5%, and the root canal wall immediately before and immediately after the introduction of the drug (Taribit) with the ultrasonic output of 1.5 W and the irradiation time of 60 seconds was aseptically collected using a K file. The product was transferred to a culture tray (Eiken Chemical Co., Ltd.), separated and smeared on a blood agar medium for CDC anaerobic bacteria, anaerobically cultured in an anerobac square jar (Mitsubishi Gas) containing Anerobac and Kenki at 37 C ゜, and then aerobic. Culture was performed. As a result, when the Taribit was introduced by ultrasonic waves, the growth of colonies was not observed. When ultrasound was not introduced with only Taribit, the growth of anaerobic bacteria was observed, and the effectiveness of the ultrasound drug introduction became clear.

実施例11 知覚過敏歯の治療について試験した。Example 11 The treatment of hypersensitive teeth was tested.

知覚過敏歯に対して、フッ化ナトリウム、乳酸アルミニウム、硝酸カリウムを超音波により即効性に歯質へ浸透させ、ハイドロキシアパタイトからフルオロアパタイトへの変化を助長し、露出した象牙質の再石灰化を促進し、歯髄神経への刺激伝達を阻害することにより、治癒に向かわせることができる。  Ultrasound rapidly penetrates sodium fluoride, aluminum lactate, and potassium nitrate into the dentin of hypersensitive teeth, promotes the change from hydroxyapatite to fluoroapatite, and promotes remineralization of exposed dentin However, by inhibiting the transmission of stimuli to the pulp nerve, healing can be promoted.

本実施例では次の効果が得られる。  In the present embodiment, the following effects can be obtained.

1.薬剤の即効性が期待できる。1. Immediate effect of the drug can be expected.

2.象牙細管内に深く浸透するため、象牙質にただ塗布した場合に比べて、到達しやすく、確実な薬効が期待できる。よって、抜髄にいたるのを防止できる。2. Since it penetrates deeply into the dentinal tubules, it is easier to reach than when it is simply applied to dentin, and it can be expected to have a certain effect. Therefore, it is possible to prevent the pulp from being extracted.

3.歯髄組織幹細胞を活性化し、二次象牙質形成を促進できる。3. It can activate dental pulp tissue stem cells and promote secondary dentin formation.

実施例12
歯周組織疾患(歯槽膿漏)の治療について試験した。
Example 12
The treatment of periodontal tissue disease (alveolar pyorrhea) was tested.

超音波エネルギーを利用して抗菌剤(タリビットなどのキノロン剤、ミノサイクリンやアモキシシリンなどのペニシリン系、メトロニダゾールなど)あるいは消毒剤(グルコン酸クロルヘキシジンなど)、消炎酵素剤(グリチルレチン酸、セラチオペプチダーゼなど)あるいはplasmid遺伝子(BMPなどの細胞成長因子、転写調節因子)と併用してセメント質内あるいは歯周組織内に深く浸透させ、侵入した歯周疾患原性菌を無菌化した。  Utilizing ultrasonic energy, antibacterial agents (quinolone agents such as Taribit, penicillins such as minocycline and amoxicillin, metronidazole, etc.) or disinfectants (chlorhexidine gluconate, etc.) In combination with the plasmid gene (a cell growth factor such as BMP, a transcriptional regulator), it was deeply penetrated into cementum or periodontal tissue to sterilize the invading periodontopathogenic bacteria.

即効性に、化学的ならびに物理的に細菌を完全死減させてより炎症を鎮めると同時に、超音波エネルギーにより、歯根膜組織幹細胞を活性化させ、歯周組織再生力を強化する。あるいはセメント芽細胞、骨芽細胞の分化を促進させ、より早期に骨、セメント質を再生させるものである。  Immediately, it completely kills bacteria chemically and physically to reduce inflammation, and at the same time, ultrasonic energy activates periodontal ligament stem cells to enhance periodontal tissue regeneration. Alternatively, it promotes the differentiation of cement blasts and osteoblasts, and regenerates bone and cementum earlier.

本実施例では次の効果が得られる。  In the present embodiment, the following effects can be obtained.

1.抗菌剤などが歯周組織、セメント質内を通ってより深く浸透するため、歯周ポケットにただ注入した場合に比べて、歯周組織、セメント質、骨内に深くに存在する細菌により到達しやすい。よって、歯石除去や歯周掻爬時のセメント質削除量が少なくてすみ、知覚過敏を引き起こす可能性が減る。また、歯肉剥離掻爬術などの外科的処置を必要としなくなる。1. Because antimicrobial agents penetrate deeper into periodontal tissue and cementum, bacteria reach deeper into periodontal tissue, cementum and bone than if they were just injected into the periodontal pocket. Cheap. Thus, the amount of cementum removed during scaling and periodontal curettage can be reduced, and the possibility of causing hypersensitivity is reduced. Also, surgical procedures such as gingival abrasion curettage are not required.

2.超音波造影剤のバブルと併用した超音波の物理的細菌壁の破壊効力により、抗菌剤の薬効が強化される。耐性菌およびトレラント菌の出現を阻止できる。2. The efficacy of the antimicrobial agent is enhanced by the destructive effect of the ultrasonic wave in combination with the bubble of the ultrasonic contrast agent on the physical bacterial wall. The emergence of resistant and tolerant bacteria can be prevented.

3.薬剤の即効性が期待できる。3. Immediate effect of the drug can be expected.

4.超音波エネルギーにより、歯根膜組織幹細胞が活性化され、歯周組織再生力を強化できる。また、セメント芽細胞、骨芽細胞の機能冗進により、歯周疾患により変性したコラーゲンやリン蛋白などの基質蛋白代謝が高まり、再石灰化可能となる。さらに、セメント芽細胞、骨芽細胞の分化促進作用により、より早期にセメント質・骨を再生可能となる。4. The periodontal tissue stem cells are activated by the ultrasonic energy, and the periodontal tissue regeneration power can be enhanced. In addition, metabolism of substrate proteins such as collagen and phosphoprotein denatured due to periodontal disease is increased due to a function of cement blasts and osteoblasts, and remineralization becomes possible. Further, the differentiation promoting action of the cement blasts and osteoblasts makes it possible to regenerate cementum and bone earlier.

本発明の処理方法に使用する薬物投与装置の全体図である。1 is an overall view of a drug administration device used in the treatment method of the present invention.(a)は投与装置の操作装置の説明図、(b)はモニターの映像を示す図である。(A) is an explanatory view of an operation device of the administration device, and (b) is a diagram showing an image on a monitor.超音波素子の振動方向の説明図である。It is an explanatory view of the vibration direction of the ultrasonic element.

符号の説明Explanation of reference numerals

1:超音波発振器 2:ケース
3:照明・内視鏡 4:薬物投与チューブ
4a:開口部
5:ハンドル 6:屈折部材
6a:関節部
7:角度調整つまみ 8:ワイヤ
9:薬物押し出し装置 9a:トリガー
10:操作装置 10a:超音波強度調整つまみ
10b:テレビーモニター
10c:フットペダルスイッチ
11:標的部
1: Ultrasonic oscillator 2: Case 3: Illumination / endoscope 4: Drug administration tube 4a: Opening 5: Handle 6: Refraction member 6a: Joint 7: Angle adjustment knob 8: Wire 9: Drug extruder 9a: Trigger 10: Operation device 10a: Ultrasonic intensity adjustment knob 10b:Television monitor 10c: Foot pedal switch 11: Target unit

Claims (4)

Translated fromJapanese
超音波エネルギーにより歯あるいは歯周組織に導入して治療する混合物であって、プラスミドDNAあるいは薬剤と微小気泡との混合物からなることを特徴とする歯あるいは歯周組織への導入用薬剤。  A drug to be introduced into a tooth or periodontal tissue, which is a mixture to be treated by being introduced into a tooth or periodontal tissue by ultrasonic energy, comprising a mixture of plasmid DNA or a drug and microbubbles. 微小気泡の含有量が0.001〜10%であることを特徴とする請求項1記載の歯あるいは歯周組織への導入用薬剤。  The agent for introducing into teeth or periodontal tissue according to claim 1, wherein the content of the microbubbles is 0.001 to 10%. 超音波を歯あるいは歯周組織の標的部に照射する、取り外しできる超音波発振部を先端部に備えた超音波発振器と、標的部に請求項1記載の歯あるいは歯周組織への導入用薬剤を供給する薬物押し出し装置とを備えた歯あるいは歯周組織への薬剤導入装置。  An ultrasonic oscillator having a detachable ultrasonic oscillator at its distal end for irradiating an ultrasonic wave to a target portion of a tooth or periodontal tissue, and the drug for introducing into a tooth or periodontal tissue according to claim 1 at the target portion. And a drug extruding device for supplying a drug to the tooth or periodontal tissue. 超音波発振器の超音波の周波数および強度を調整する調整手段と、周波数を切り替えることで超音波発振方向を自由に選べる操作装置を備えたことを特徴とする請求項3記載の歯あるいは歯周組織への薬剤導入装置。  4. The tooth or periodontal tissue according to claim 3, further comprising adjusting means for adjusting the frequency and intensity of the ultrasonic wave of the ultrasonic oscillator, and an operating device capable of freely selecting the ultrasonic oscillation direction by switching the frequency. Drug introduction device to the.
JP2003389975A2002-11-222003-11-19 Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissuePendingJP2004182728A (en)

Priority Applications (4)

Application NumberPriority DateFiling DateTitle
JP2003389975AJP2004182728A (en)2002-11-222003-11-19 Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue
US10/535,696US20060134016A1 (en)2002-11-222003-11-21Drug to be introduced tooth or periodontal tissue and apparatus for introducing drug to tooth or periodontal tissue
PCT/JP2003/014953WO2004049964A2 (en)2002-11-222003-11-21Drug to be introduced tooth or periodontal tissue and apparatus for introducing drug to tooth or periodontal tissue
AU2003284647AAU2003284647A1 (en)2002-11-222003-11-21Drug to be introduced tooth or periodontal tissue and apparatus for introducing drug to tooth or periodontal tissue

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
JP20023399442002-11-22
JP2003389975AJP2004182728A (en)2002-11-222003-11-19 Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue

Publications (1)

Publication NumberPublication Date
JP2004182728Atrue JP2004182728A (en)2004-07-02

Family

ID=32473643

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2003389975APendingJP2004182728A (en)2002-11-222003-11-19 Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue

Country Status (3)

CountryLink
JP (1)JP2004182728A (en)
AU (1)AU2003284647A1 (en)
WO (1)WO2004049964A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2011143242A (en)*2009-12-162011-07-28Japan Health Science FoundationUltrasonic drug delivery system for dental use and ultrasonic drug delivery method for dental use

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0578260A (en)*1991-03-221993-03-30Katsuro TachibanaPromoter for ultrasonic therapy and medicine for ultrasonic therapy
JPH07502441A (en)*1991-12-261995-03-16ジャコビー,ベネット Endoscopic methods and devices for subgingival dental treatment
JPH1085227A (en)*1996-09-181998-04-07Fuji Photo Optical Co LtdGuide device of medical instrument with flexible cord
JPH11279039A (en)*1998-03-311999-10-12Saiseido Yakuhin KkComposition for oral cavity
JP2002263114A (en)*2001-03-082002-09-17Olympus Optical Co LtdUltrasonic treating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2063529A1 (en)*1991-03-221992-09-23Katsuro TachibanaBooster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
CA2334075A1 (en)*1998-07-152000-01-27Human Genome Sciences, Inc.Bone morphogenic protein
JP2002145784A (en)*2000-11-102002-05-22Ryuichi MorishitaBiologically active medicament-introducing composition and method for using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0578260A (en)*1991-03-221993-03-30Katsuro TachibanaPromoter for ultrasonic therapy and medicine for ultrasonic therapy
JPH07502441A (en)*1991-12-261995-03-16ジャコビー,ベネット Endoscopic methods and devices for subgingival dental treatment
JPH1085227A (en)*1996-09-181998-04-07Fuji Photo Optical Co LtdGuide device of medical instrument with flexible cord
JPH11279039A (en)*1998-03-311999-10-12Saiseido Yakuhin KkComposition for oral cavity
JP2002263114A (en)*2001-03-082002-09-17Olympus Optical Co LtdUltrasonic treating device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本歯科保存学雑誌, vol. Vol.45(5), JPN6009059377, 31 October 2002 (2002-10-31), pages 744 - 752, ISSN: 0001467110*
日本臨床, vol. 56, JPN6010014569, 1998, pages 584 - 88, ISSN: 0001573267*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2011143242A (en)*2009-12-162011-07-28Japan Health Science FoundationUltrasonic drug delivery system for dental use and ultrasonic drug delivery method for dental use
CN102802555A (en)*2009-12-162012-11-28独立行政法人国立长寿医疗研究中心Dental ultrasonic drug delivery system and dental ultrasonic drug delivery method
CN102802555B (en)*2009-12-162016-02-17独立行政法人国立长寿医疗研究中心 Dental Ultrasonic Drug Introduction System
US9452036B2 (en)2009-12-162016-09-27National Center For Geriatrics And GerontologyDental ultrasonic drug delivery system and dental ultrasonic drug delivery method

Also Published As

Publication numberPublication date
AU2003284647A8 (en)2004-06-23
AU2003284647A1 (en)2004-06-23
WO2004049964A3 (en)2004-09-23
WO2004049964A2 (en)2004-06-17

Similar Documents

PublicationPublication DateTitle
Gomes et al.Irrigants and irrigation activation systems in Endodontics
Romanos et al.Removal of epithelium in periodontal pockets following diode (980 nm) laser application in the animal model: an in vitro study
Shayegan et al.The use of beta‐tricalcium phosphate, white MTA, white Portland cement and calcium hydroxide for direct pulp capping of primary pig teeth
Pendyala et al.Contemporary apprise on LASERS and its applications in dentistry
Prompreecha et al.Dynamic irrigation promotes apical papilla cell attachment in an ex vivo immature root canal model
JP2007527275A (en) Dental instruments
RU2719924C2 (en)Device for sterilization procedures, equipment containing said device and related method
Yildirim et al.Characterization of dental pulp defect and repair in a canine model.
RU2627582C1 (en)Method for treatment of destructive chronic periodontitis using injection form of autological platelet plasma
Garipov et al.Analysis of the effect of Nd: YAG laser irradiation on soft tissues of the oral cavity in different modes in an in vivo experiment
RU2552911C1 (en)Method for surgical management of chronic periodontitis
JP2004182728A (en) Drug for introduction into teeth or periodontal tissue and drug introduction device for teeth or periodontal tissue
Singh et al.Lasers: an emerging trend in dentistry
US20060134016A1 (en)Drug to be introduced tooth or periodontal tissue and apparatus for introducing drug to tooth or periodontal tissue
Shafei et al.Laser-assisted new attachment procedure–LANAP
Reynolds et al.Lasers in Periodontal and Peri-implant Therapy: Challenges and Opportunities
Mishra et al.Advances in endodontics a complete guide
SubramanyaEvaluation of healing effect of laser bandage following gingivectomy-A case report
RU2809568C1 (en)Method of treating peri-implantitis using laser pigment-free photoablation
RU2785010C1 (en)Method for treating moderate periodontitis in patients after a coronavirus infection
Dianat et al.Clinical approach to regenerative endodontics
RU2495691C2 (en)Method for prevention of hyperesthesia following ododentical tooth preparation for permanent dental prostheses with preserved pulp vitality
Beltagy et al.Histopathological Pulp Response to Platelet-Rich Plasma Pulpotomy in Primary teeth
US20230233299A1 (en)Dental, endodontic, and periodontic treatment methods and systems
Tavares et al.Guided Tissue Regeneration in Class IV External Cervical Resorption: A Case Report

Legal Events

DateCodeTitleDescription
A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20040302

A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20061102

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20091120

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20100119

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20100326

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20100716


[8]ページ先頭

©2009-2025 Movatter.jp