【0001】
【発明の属する技術分野】
本発明は、ガスタービンにおいて、高温にさらされるガスタービン用高温部材に施した遮熱コーティングの劣化を診断する遮熱コーティング劣化診断方法に関し、より詳細には、この遮熱コーティングの劣化を非破壊検査方法で適確に診断してその剥離・減耗等を早期に発見し、再コーティング等の処置を迅速に行えるようにする技術に関する。
【0002】
【従来の技術】
近年の高性能ガスタービン翼(動翼・静翼)には、高温の燃焼ガスから翼材を保護するために遮熱コーティングが施されている。このガスタービン翼の一例として、図8にガスタービン動翼1を示す。
このガスタービン動翼1の内部には、冷却空気を流すための複数の冷却空気流路2が形成され、また、翼材3の外面全体には、断熱性の高いセラミックスから成る遮熱コーティング4が施されている。ところで、今後更なる高温化が予定されていることから、遮熱コーティング4の劣化検査を求める要求が益々高まる傾向にあり、遮熱コーティング4の健全性を保つことが、ガスタービンの信頼性向上に繋がるものと考えられている。
【0003】
しかしながら、従来は、遮熱コーティングの劣化診断を、目視により評価している。すなわち、図9に示すように、まず検査員による目視検査(外観検査)を行って、遮熱コーティングの表面が剥離等していないかを検査し、その後、翼母材の微少欠陥(数百ミクロンの亀裂等)を検出するために浸透探傷検査(亀裂等に浸透液を染み込ませて浮き出させる方法)を行い、遮熱コーティングの健全性についての判定を行っていた。なお、従来におけるセラミックス部材の非破壊検査方法の一例としては、下記特許文献1がある。
【0004】
【特許文献1】
特開平8−254530号公報
【0005】
【発明が解決しようとする課題】
ところで、従来は、遮熱コーティングの健全性については目視にて評価しているため、検査員の「見た目」による判断が支配的な診断となり、遮熱コーティングの剥離の形態として「スケールの剥離」と「遮熱コーティングの剥離」との区別がつき難い状態であった。すなわち、実機運転翼の表面にはスケールが付着しており、その「スケールの剥離」を「遮熱コーティングの剥離」と判断するケースや、「遮熱コーティングの剥離部の上にスケールが堆積したもの」について「遮熱コーティングが健全」であるとしたなど、誤った判断が多数引き起こされていた。また、目視検査では、遮熱コーティングの外部剥離(表面剥離)を見つけることはできても、内部剥離や減耗等の損傷を見つけることが不可能であった。したがって、遮熱コーティングの内部剥離(剥離の初期の段階)を把握するためには、破壊検査を行うしか方法がないため、遮熱コーティングの剥離が目視で確認できるレベルに達するまでは、定量的な評価ができない状況にあった。
以上述べたことから、近年、遮熱コーティングの重要性が高まるのに対し、遮熱コーティングの劣化、特に内部剥離・減耗等の損傷を早期のうちに適確に発見し、再コーティング等の処置を迅速に行える定量的な評価手法の確立が急務とされている。
【0006】
本発明は、上記の課題を解決するためになされたもので、ガスタービン翼の如きガスタービン用高温部材に施した遮熱コーティングの劣化を非破壊検査方法で適確に診断してその剥離・減耗等の損傷を早期に発見し、再コーティング等の処置を迅速に行えるようにすることを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の請求項1に記載の遮熱コーティング劣化診断方法は、ガスタービン用高温部材に施した遮熱コーティングの劣化を診断する方法において、赤外線サーモグラフィ法により前記遮熱コーティングの減摩耗、脱落部、付着物、外部剥離及び内部剥離を検査する内部剥離検査と、蛍光X線法により前記遮熱コーティングの表面元素を分析する表面元素分析検査と、渦流探傷法により前記遮熱コーティングの膜厚を測定する膜厚測定検査とを包含し、前記内部剥離検査と前記表面元素分析検査及び/又は前記膜厚測定検査との検査結果に基づき前記遮熱コーティングの劣化を診断することを特徴とする。
【0008】
これによれば、最初に赤外線サーモグラフィ法により遮熱コーティングの内部剥離を検査し、その結果、剥離模様部が検出された場合には、この剥離模様部について、蛍光X線法による表面元素分析検査とこれに続く渦流探傷法による膜厚測定検査とを行い、その検査結果から遮熱コーティングの剥離・減耗等の有無を検出して劣化を診断することができる。赤外線サーモグラフィ法による内部剥離検査の結果、剥離模様部が検出されない場合には、蛍光X線法による表面元素分析検査を省略し、確認のために渦流探傷法による膜厚測定検査を行うだけで十分である。
【0009】
請求項2に記載の遮熱コーティング劣化診断方法は、請求項1に記載の遮熱コーティング劣化診断方法において、前記表面元素分析検査をする前に、この検査をしようとする剥離模様部を研磨することを特徴とする。
これによれば、剥離模様部に付着しているスケール等の不純物を予め取り除いて表面元素分析検査を正確にすることができる。
【0010】
請求項3に記載の遮熱コーティング劣化診断方法は、請求項1又は2に記載の遮熱コーティング劣化診断方法において、前記表面元素分析検査によりスケール等の不純物を検出したときには、この検査をした剥離模様部を研磨し、この研磨した剥離模様部を再び蛍光X線法により表面元素分析検査することを特徴とする。
これによれば、表面元素分析検査後に残っているスケール等の不純物を取り除き、再び表面元素分析を検査することで、表面元素分析検査を一層正確にすることができる。
【0011】
請求項4に記載の遮熱コーティング劣化診断方法は、請求項1〜3の何れか1項に記載の遮熱コーティング劣化診断方法において、前記ガスタービン用高温部材がガスタービン翼であることを特徴とする。
これによれば、ガスタービン用高温部材の中でもとりわけ遮熱コーティングに高い信頼性が要求されるガスタービン翼(特に、回転体である動翼)の劣化を適確に診断して、ガスタービン全体の信頼性を一段と向上させることができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の遮熱コーティング劣化診断方法の一実施形態について詳述する。
【0013】
図1は、ガスタービン翼の如きガスタービン用高温部材に施した遮熱コーティングの劣化を診断する、本発明方法の基本的な検査手順を示す。同図に示すように、まず、図9で示した従来法と同様に、実機運転翼につき検査員による目視検査(外観検査)及び浸透探傷検査が行われる。それから、本発明にしたがって、赤外線サーモグラフィ法による遮熱コーティングの内部剥離検査、蛍光X線法による表面元素分析検査及び渦流探傷法による膜厚測定検査が行われる。すなわち、最初に赤外線サーモグラフィ法により遮熱コーティングの内部剥離を検査し、その結果、剥離模様部が検出された場合には、この剥離模様部につき蛍光X線法による表面元素分析検査とこれに続く渦流探傷法による膜厚測定検査とを行い、その検査結果から、遮熱コーティングの剥離・減耗等の有無を検出して劣化を診断する判定を行う。赤外線サーモグラフィ法による内部剥離検査の結果、剥離模様部が検出されない場合には、蛍光X線法による表面元素分析検査を省略し、確認のために渦流探傷法による膜厚測定検査を行うだけで十分である。
【0014】
次に、各検査の詳細について説明する。赤外線サーモグラフィ法は、図2に示すように、外観上認識不可能な遮熱コーティングの内部剥離、すなわち、母材21上に施したアンダーコート22とその上に施したトップコート(遮熱コーティング)23との界面の剥離部(空気)24を検出するもので、遮熱コーティング表面により符号25で示すように入熱(急速加熱:フラッシュで瞬間的に温める)し、母材21側へ伝わる熱の流れに対して、トップコート23とアンダーコート22との界面の剥離部24と健全部との温度差を例えば0.1秒間隔で観察することによって、剥離を検出する。すなわち、剥離部24の空気層は熱伝導率が低いため、この剥離部24の真上におけるトップコート23の表面の温度Td(t)は、健全な部分の温度Ti(t)よりも高くなる。したがって、赤外線カメラ26及び測定系27により、高速でこの温度差を測定することによって、剥離部24、トップコート減耗部、トップコート脱落部、付着物、トップコート縦割れ部等を検出することができる。
【0015】
蛍光X線法は、運転後の遮熱コーティング施工翼において、スケール等の付着物により遮熱コーティング剥離の有無が目視で判別できない場合があるため行うものである。すなわち、蛍光X線分析装置により遮熱コーティング表面の元素(成分)分析を行い、その元素から遮熱コーティング剥離の有無を確認するものである。その検査法は、図3に示すように、遮熱コーティング施工翼(被測定物)にX線(一次X線)31を照射することで、原子32が励起され、特性X線(蛍光X線)33を発生する。この特性X線は、各原子固有のエネルギーを有するため、その検出結果を同定すれば、原子の特定を行うことができる。また、特性X線量から含有量も推定できる。
【0016】
渦流探傷法は、遮熱コーティングの被膜厚さを計測するものである。その検査法では、図4に示すように、遮熱コーティング施工翼(被試験体)41の表面に、交流を流したコイル(プローブ)42を近づけることで、渦電流43を発生させる(電磁誘導作用)。遮熱コーティング44は非導電体であるため、渦電流が発生しないので、母材(非磁性体)45に発生する渦電流の強さを計測することにより、膜厚(リフトオフ量)46を測定する(インピーダンスの変化を計測する)。なお、符号47はアンダーコート(導電体)、符号48は磁束を示す。
【0017】
次に、図5を参照して本発明方法をガスタービン翼に適用した場合の具体的な一検査手順について説明する。なお、遮熱コーティングは、一般に、TBC(Thermal Barrier Coating)と称されているので、図5の説明では「TBC」と言う。同様に、渦流探傷法は、一般に、ECT(Eddy Current Test)と称されているので、図5の説明では「ECT法」と言う。
【0018】
図5において、まず、検査員はTBCが施されている実機運転翼の運転履歴、特に使用時間及び発停回数を予め把握しておく。それから、目視検査(外観検査)及び浸透探傷検査を行う。ここまでは、従来と同じである。
【0019】
浸透探傷検査の後、本発明方法にしたがい、赤外線サーモグラフィ法によるTBCの内部剥離検検査を行う。その検査の結果、剥離模様部(温度不均一部分)と判断した部位及び先の目視検査で剥離と見える部位につき推定評価を行う。すなわち、TBCの剥離なのか、TBCの減耗なのか、それとも付着物(スケール)なのかの推定評価を行う。
【0020】
次に、蛍光X線法によりTBCの表面元素分析検査をする前に、この検査をしようとする剥離模様部を軽く研磨する。これにより、剥離模様部に付着しているスケール等の不純物を予め取り除いて、表面元素分析検査を正確にすることができる。しかし、この研磨は選択的であって、スケール等の不純物が多く付着していると推定される場合に行うと良い。
【0021】
次に、蛍光X線法によりTBCの剥離模様部の表面元素分析検査を行う。その検査結果に基づき、次に述べるような異なる検査手順をとる。
【0022】
すなわち、蛍光X線法による表面元素分析検査により、Ni,Co,Cr(翼母材の金属色)を検出した場合には、TBCが剥離してアンダーコートもしくは翼母材が露出していると推定される。その後、ECT法による膜厚測定検査に進み、膜厚の計測結果、「正常」及び「厚い」のときにはNi,Coを含む付着物有りと推定評価し、再研磨し、蛍光X線法による表面元素分析検査に戻る。「薄い」及び「無し」のときには、TBCの減耗又は剥離と推定評価する。「測定不可」のときには、被測定物の膜厚がECTの測定上限値を超える場合であり、厚いスケールが付着している可能性がある。そのため、再研磨し、蛍光X線元素分析に戻る。
【0023】
一方、蛍光X線法による表面元素分析検査により、Fe(サビ)を検出した場合には、まだスケールが付着していると推定されるので、軽く再研磨し、その後、再び蛍光X線法による表面元素分析検査を行う。その検査の結果、なおもFeを検出した場合は、厚いスケールが付着している可能性が高い(ガスタービン動翼にあっては、スケールの付着により動翼形状が変って性能に大きな影響を与えることがある。)。また軽く再研磨し、蛍光X線法による表面元素分析検査によりFeが検出されないで、前述したNi,Co,Cr(翼母材の金属)を検出するか(前述した如く、これはまだスケールが付着していると推定される)、又は後述するZr(白色)を検出する(これはスケールが取れて内部のTBCが露出していると推定される)まで繰り返す。
【0024】
他方、蛍光X線法による表面元素分析検査により、Zr(白色)を検出した場合には(前述した如く、これはスケールが剥離してTBCが露出していると推定される)、ECT法による膜厚測定検査に進み、膜厚の計測結果、「正常」及び「厚い」のときにはTBC有りと推定評価する。「薄い」のときには、TBCの減耗と推定評価する。「測定不可」のときには、被測定物が厚すぎると推定評価し、軽く再研磨し、ECT法による膜厚測定検査に戻る。
【0025】
最後に、赤外線サーモグラフィ法によるTBCの内部剥離検査の結果、剥離模様部が無い(温度均一:正常)場合には、TBCは健全であると推定評価するが、確認のため、ECT法による膜厚測定検査に進み、膜厚の計測結果、「正常」及び「厚い」のときにはTBC有りと推定評価する。
【0026】
以上述べたECT法による膜厚測定検査の結果に基づき、「TBC健全」、「TBC剥離(剥離面積・ギャップ)」又は「TBC減耗」の判定を行い、「継続使用可」又は「再コーティング要」の最終評価を行う。図6は、遮熱コーティングの健全及び劣化の種々の形態を示す。
【0027】
次に、図7の(A)は、本発明の遮熱コーティング劣化診断方法における蛍光X線法による表面元素分析検査で用いられるセンサプローブの一例を示す。すなわち、蛍光X線のセンサプローブ10は一般に大きくて、図7(B)に示すような動翼フィレットR部や図7(C)に示すような動翼の凹部等では密着できず、このため、翼部とプラットフォームの分析をしてしまい、肝心のフィレットR部の分析ができない。また、図7(D)では、剥離模様部と剥離模様部ではない部分との両方を含めて表面元素分析検査をするようになることから、検査精度に影響を及ぼすものである。そこで、図7(A)に示すように、センサプローブ10にスリット11を設けることにより剥離模様部のみの表面元素分析検査をできるようにして、検査精度を高めるようにしたものである。
【0028】
なお、以上の説明では、本発明の遮熱コーティング劣化診断方法をガスタービン翼に適用した例について詳述したが、これに限らず、他のガスタービン用高温部材、例えば、燃焼器内筒、シュラウド等に施されている遮熱コーティングの劣化を診断する方法にも適用できることは勿論である。
【0029】
【発明の効果】
以上述べたように、請求項1に記載の遮熱コーティング劣化診断方法によれば、ガスタービン用高温部材に施した遮熱コーティングの劣化検診断方法において、赤外線サーモグラフィ法による遮熱コーティングの内部剥離検査と、蛍光X線法による遮熱コーティングの表面元素分析検査と、渦流探傷法による遮熱コーティングの膜厚測定検査とを適宜組み合わせることにより、遮熱コーティングの劣化を非破壊検査方法で適確に診断してその剥離・減耗等の損傷を早期に発見し、再コーティング等の処置を迅速に行うことができる。なお、本発明を実機量産翼に実施して得た非破壊検査結果は、破壊検査結果と概ね整合性がとれており、遮熱コーティングの定量評価が可能であることが分っている。したがって、本発明はガスタービンの信頼性向上に大いに寄与するものである。
【0030】
また、請求項2に記載の遮熱コーティング劣化診断方法は、請求項1に記載の遮熱コーティング劣化診断方法において、蛍光X線法により表面元素分析検査をする前に、この検査をしようとする剥離模様部を研磨することにより、剥離模様部に付着しているスケール等の不純物を予め取り除いて表面元素分析検査を正確にすることができる。
【0031】
また、請求項3に記載の遮熱コーティング劣化診断方法は、請求項1又は2に記載の遮熱コーティング劣化診断方法において、表面元素分析検査によりスケール等の不純物を検出したときに、この検査をした剥離模様部を研磨し、この研磨した剥離模様部を再び蛍光X線法により表面元素分析検査をすることで、表面元素分析検査後に残っているスケール等の不純物を取り除き、再び表面元素分析を検査することで、表面元素分析検査を一層正確にすることができる。
【0032】
また、請求項4に記載の遮熱コーティング劣化診断方法は、請求項1〜3のいずれか一項に記載の遮熱コーティング劣化診断方法において、前記ガスタービン用高温部材がガスタービン翼であるものとした。これによれば、ガスタービン用高温部材の中でもとりわけ遮熱コーティングに高い信頼性が要求されるガスタービン翼(特に、回転体である動翼)の劣化を適確に診断して、ガスタービン全体の信頼性を一段と向上させることができる。
【図面の簡単な説明】
【図1】ガスタービン用高温部材に施した遮熱コーティングの劣化を診断する本発明方法の基本的な検査手順を示す図である。
【図2】本発明方法において、遮熱コーティングの内部剥離を検査するために用いられる赤外線サーモグラフィ法を説明するための図である。
【図3】本発明方法において、遮熱コーティングの表面元素を分析検査するために用いられる蛍光X線法を説明するための図である。
【図4】本発明方法において、遮熱コーティングの膜厚を測定検査するために用いられる渦流探傷法を説明するための図である。
【図5】本発明方法をガスタービン翼に実施した具体的な一検査手順を示す図である。
【図6】遮熱コーティングの健全及び劣化の種々の形態を示す図である。
【図7】(A)は本発明方法における蛍光X線法による表面元素分析検査で用いられるセンサプローブにスリットを設けた例を示す図、(B)及び(C)をこのようなスリット付きセンサプローブで検査するのが好ましいガスタービン翼の部位を示す図である。
【図8】遮熱コーティングが施されているガスタービン翼の一例を示す断面図である。
【図9】ガスタービン翼に施した遮熱コーティングの劣化を診断する従来方法の検査手順を示す図である。
【符号の説明】
1 ガスタービン動翼
2 冷却空気流路
3 翼母材
4 遮熱コーティング(TBC)
10 センサプローブ
11 スリット
21 母材
22 アンダーコート
23 トップコート(遮熱コーティング)
24 剥離部(空気)
25 入熱
26 赤外線カメラ
27 測定系
31 一次X線
32 原子
33 特性X線(蛍光X線)
41 遮熱コーティング施工翼
42 コイル(プローブ)
43 渦電流
44 遮熱コーティング(非導電体)
45 母材(非磁性体)
46 膜厚(リフトオフ量)
47 アンダーコート(導電体)
48 磁束[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal barrier coating deterioration diagnosis method for diagnosing deterioration of a thermal barrier coating applied to a high temperature member for a gas turbine exposed to a high temperature in a gas turbine, and more particularly, to a non-destructive method of diagnosing the thermal barrier coating degradation. TECHNICAL FIELD The present invention relates to a technique for accurately diagnosing by an inspection method, detecting exfoliation, wear and the like at an early stage, and promptly performing a treatment such as recoating.
[0002]
[Prior art]
BACKGROUND ART In recent years, high-performance gas turbine blades (moving blades and stationary blades) are provided with a thermal barrier coating to protect blade materials from high-temperature combustion gas. FIG. 8 shows a
A plurality of
[0003]
However, conventionally, the deterioration diagnosis of the thermal barrier coating is visually evaluated. That is, as shown in FIG. 9, first, a visual inspection (appearance inspection) is performed by an inspector to check whether the surface of the thermal barrier coating has peeled off or the like. In order to detect micron cracks or the like, a penetrant inspection (a method of infiltrating a crack or the like with a penetrating liquid and embossing) was performed to determine the soundness of the thermal barrier coating. In addition, as an example of a conventional nondestructive inspection method of a ceramic member, there is the following
[0004]
[Patent Document 1]
JP-A-8-254530
[Problems to be solved by the invention]
By the way, conventionally, since the soundness of the thermal barrier coating is visually evaluated, the judgment by the inspector's “appearance” becomes the dominant diagnosis, and “scale peeling” is used as a form of thermal barrier coating peeling. And "peeling of the thermal barrier coating" were difficult to distinguish. In other words, scale is attached to the surface of the actual operating blade, and the case where the "peeling of the scale" is judged as "peeling of the thermal barrier coating" or "scale is deposited on the peeled part of the thermal barrier coating" Many misjudgments were made, such as "the thermal barrier coating was sound" for "things." Further, a visual inspection was able to find external peeling (surface peeling) of the thermal barrier coating, but was not able to find damage such as internal peeling and wear. Therefore, the only way to grasp the internal peeling of the thermal barrier coating (the initial stage of peeling) is to perform a destructive inspection. Therefore, until the thermal barrier coating peels to a level that can be visually confirmed, quantitative analysis is required. Evaluation was not possible.
In light of the above, in recent years, the importance of thermal barrier coatings has increased, but deterioration of thermal barrier coatings, especially damage such as internal peeling and depletion, has been accurately and promptly discovered at an early stage, and measures such as recoating have been taken. There is an urgent need to establish a quantitative evaluation method that can quickly perform the evaluation.
[0006]
The present invention has been made to solve the above-mentioned problems, and accurately diagnoses deterioration of a thermal barrier coating applied to a high-temperature member for a gas turbine, such as a gas turbine blade, by a non-destructive inspection method, and removes the delamination. An object of the present invention is to detect damage such as wear at an early stage and to promptly perform a treatment such as recoating.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for diagnosing deterioration of a thermal barrier coating according to
[0008]
According to this, first, the internal peeling of the thermal barrier coating is inspected by an infrared thermography method, and as a result, if a peeling pattern part is detected, the surface pattern analysis of this peeling pattern part by a fluorescent X-ray method is performed. Then, a film thickness measurement inspection by the eddy current flaw detection method is performed, and the presence / absence of peeling / depletion of the thermal barrier coating can be detected from the inspection result to diagnose deterioration. If the peeling pattern is not detected as a result of the internal peeling inspection by infrared thermography, it is sufficient to omit the surface elemental analysis inspection by the fluorescent X-ray method and perform the film thickness measurement inspection by the eddy current inspection method for confirmation It is.
[0009]
According to a second aspect of the present invention, in the method for diagnosing deterioration of a thermal barrier coating according to the first aspect, before performing the surface elemental analysis inspection, a peeling pattern portion to be inspected is polished. It is characterized by the following.
According to this, impurities such as scale attached to the peeling pattern portion can be removed in advance, and the surface elemental analysis can be accurately performed.
[0010]
According to a third aspect of the present invention, there is provided a method for diagnosing deterioration of a thermal barrier coating according to the first or second aspect of the present invention. The pattern portion is polished, and the polished peeled pattern portion is subjected to surface elemental analysis inspection again by a fluorescent X-ray method.
According to this, the impurities such as scale remaining after the surface element analysis inspection are removed, and the surface element analysis is inspected again, so that the surface element analysis inspection can be made more accurate.
[0011]
According to a fourth aspect of the present invention, there is provided a method of diagnosing deterioration of a thermal barrier coating according to any one of the first to third aspects, wherein the high temperature member for a gas turbine is a gas turbine blade. And
According to this, the deterioration of gas turbine blades (especially, rotating blades), which require high reliability in the thermal barrier coating, among the high-temperature members for gas turbines, is accurately diagnosed, and the entire gas turbine is diagnosed. Can be further improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the thermal barrier coating deterioration diagnosis method of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a basic inspection procedure of the method of the present invention for diagnosing deterioration of a thermal barrier coating applied to a high-temperature component for a gas turbine such as a gas turbine blade. As shown in the figure, first, a visual inspection (appearance inspection) and a penetrant inspection are performed on the operating blades of the actual machine by an inspector, similarly to the conventional method shown in FIG. Then, according to the present invention, an internal peeling inspection of the thermal barrier coating by an infrared thermography method, a surface element analysis inspection by a fluorescent X-ray method, and a film thickness measurement inspection by an eddy current inspection method are performed. That is, first, the internal peeling of the thermal barrier coating is inspected by an infrared thermography method, and as a result, if a peeling pattern is detected, the peeling pattern is subjected to a surface elemental analysis inspection by a fluorescent X-ray method and subsequently to the inspection. A film thickness measurement inspection by an eddy current flaw detection method is performed, and based on the inspection result, the presence or absence of peeling, depletion, etc. of the thermal barrier coating is detected to make a determination of diagnosing deterioration. If the peeling pattern is not detected as a result of the internal peeling inspection by infrared thermography, it is sufficient to omit the surface elemental analysis inspection by the fluorescent X-ray method and perform the film thickness measurement inspection by the eddy current inspection method for confirmation It is.
[0014]
Next, details of each inspection will be described. In the infrared thermography method, as shown in FIG. 2, an internal coating of a thermal barrier coating, which cannot be visually recognized, that is, an
[0015]
The fluorescent X-ray method is performed because the presence or absence of thermal barrier coating peeling may not be visually discerned due to deposits such as scale on the thermal barrier coating application blade after operation. That is, an element (component) analysis of the surface of the thermal barrier coating is performed by a fluorescent X-ray analyzer, and the presence or absence of peeling of the thermal barrier coating is confirmed from the element. As shown in FIG. 3, the inspection method involves irradiating an X-ray (primary X-ray) 31 to a wing (object to be measured) on which a thermal barrier coating is applied, whereby an
[0016]
Eddy current testing measures the thickness of the thermal barrier coating. In the inspection method, as shown in FIG. 4, an
[0017]
Next, a specific inspection procedure when the method of the present invention is applied to a gas turbine blade will be described with reference to FIG. The thermal barrier coating is generally referred to as TBC (Thermal Barrier Coating), and is referred to as “TBC” in the description of FIG. Similarly, since the eddy current flaw detection method is generally called ECT (EDY Current Test), it is referred to as “ECT method” in the description of FIG.
[0018]
In FIG. 5, first, the inspector grasps in advance the operation history of the actual operation blades on which the TBC is applied, in particular, the usage time and the number of times of starting and stopping. Then, a visual inspection (appearance inspection) and a penetrant inspection are performed. Up to this point, it is the same as the conventional one.
[0019]
After the penetrant inspection, according to the method of the present invention, an internal peel inspection of the TBC is performed by infrared thermography. As a result of the inspection, estimation and evaluation are performed for a portion determined to be a peeling pattern portion (temperature unevenness portion) and a portion that appears to be peeling in the previous visual inspection. That is, estimation and evaluation are performed as to whether the peeling of the TBC, the depletion of the TBC, or the attached matter (scale).
[0020]
Next, before performing the surface element analysis inspection of the TBC by the fluorescent X-ray method, the peeling pattern portion to be inspected is lightly polished. Thus, impurities such as scales adhering to the peeling pattern portion can be removed in advance, and the surface elemental analysis can be accurately performed. However, this polishing is optional, and is preferably performed when it is estimated that many impurities such as scales are attached.
[0021]
Next, a surface element analysis inspection of the peeled pattern portion of the TBC is performed by a fluorescent X-ray method. Based on the inspection result, a different inspection procedure as described below is taken.
[0022]
That is, when Ni, Co, and Cr (metal color of the wing base material) are detected by the surface element analysis inspection by the fluorescent X-ray method, it is determined that the TBC is peeled off and the undercoat or the wing base material is exposed. Presumed. After that, proceed to the film thickness measurement inspection by the ECT method. When the film thickness measurement result is “normal” or “thick”, it is estimated that there is a deposit containing Ni and Co, and it is re-polished. Return to elemental analysis. In the case of “thin” and “none”, it is estimated that TBC is worn or peeled. When “measurement is impossible”, the film thickness of the object to be measured exceeds the upper limit of the ECT measurement, and a thick scale may be attached. Therefore, re-polishing is performed and the process returns to the fluorescent X-ray elemental analysis.
[0023]
On the other hand, when Fe (rust) is detected by the surface elemental analysis inspection by the fluorescent X-ray method, it is presumed that the scale is still attached, so that it is polished lightly and then again by the fluorescent X-ray method. Perform a surface elemental analysis. As a result of the inspection, if Fe is still detected, there is a high possibility that a thick scale is attached (in the case of a gas turbine rotor blade, the blade shape changes due to the adhesion of the scale, which greatly affects the performance. May be given.) In addition, if the surface is polished lightly and Ni, Co, and Cr (metals of the wing base material) are detected without detecting Fe by the surface element analysis inspection by the fluorescent X-ray method (as described above, this is still a scale). This is repeated until it is estimated that Zr (white), which will be described later, is detected (this is assumed to be scaled and the internal TBC is exposed).
[0024]
On the other hand, when Zr (white) is detected by the surface elemental analysis inspection by the fluorescent X-ray method (as described above, it is estimated that the scale is peeled and the TBC is exposed), the ECT method is used. The process proceeds to the film thickness measurement inspection. When the result of the film thickness measurement is “normal” or “thick”, it is estimated that TBC is present and evaluated. When it is "thin", it is estimated that TBC is consumed. When "measurement is impossible", the object to be measured is estimated to be too thick, and the object is polished lightly, and the process returns to the film thickness measurement inspection by the ECT method.
[0025]
Finally, as a result of the internal peeling inspection of the TBC by the infrared thermography method, if there is no peeling pattern portion (temperature uniformity: normal), the TBC is estimated to be sound and evaluated. Proceeding to the measurement inspection, when the measurement results of the film thickness are “normal” and “thick”, it is estimated that TBC is present and evaluated.
[0026]
Based on the results of the film thickness measurement inspection by the ECT method described above, “TBC soundness”, “TBC peeling (peeling area / gap)” or “TBC wear” is determined, and “continuous use” or “recoating required” is performed. Final evaluation. FIG. 6 illustrates various aspects of the integrity and degradation of the thermal barrier coating.
[0027]
Next, FIG. 7A shows an example of a sensor probe used in a surface element analysis inspection by a fluorescent X-ray method in the thermal barrier coating deterioration diagnosis method of the present invention. That is, the fluorescent
[0028]
In the above description, an example in which the thermal barrier coating deterioration diagnosis method of the present invention is applied to a gas turbine blade is described in detail. However, the present invention is not limited to this, and other gas turbine high-temperature members, for example, a combustor inner cylinder, Of course, the present invention can be applied to a method for diagnosing deterioration of a thermal barrier coating applied to a shroud or the like.
[0029]
【The invention's effect】
As described above, according to the method for diagnosing deterioration of a thermal barrier coating according to the first aspect, in the method for detecting and diagnosing deterioration of a thermal barrier coating applied to a high-temperature member for a gas turbine, an internal peeling of the thermal barrier coating by infrared thermography is provided. Appropriate combination of inspection, elemental analysis of thermal barrier coating by X-ray fluorescence, and film thickness measurement of thermal barrier coating by eddy current flaw detection. In this way, it is possible to detect damage such as peeling and wear at an early stage, and to promptly take measures such as recoating. It should be noted that the nondestructive inspection results obtained by implementing the present invention on a mass-produced wing of an actual machine are generally consistent with the destructive inspection results, and it has been found that the thermal barrier coating can be quantitatively evaluated. Therefore, the present invention greatly contributes to improving the reliability of the gas turbine.
[0030]
In the thermal barrier coating deterioration diagnosis method according to the second aspect, in the thermal barrier coating deterioration diagnostic method according to the first aspect, the inspection is performed before the surface element analysis inspection by the X-ray fluorescence method. By polishing the peeling pattern portion, impurities such as scales adhering to the peeling pattern portion can be removed in advance, and the surface element analysis can be accurately performed.
[0031]
In the thermal barrier coating deterioration diagnosis method according to the third aspect, in the thermal barrier coating degradation diagnostic method according to the first or second aspect, when impurities such as scales are detected by a surface elemental analysis inspection, the inspection is performed. The polished release pattern is polished, and the polished release pattern is again subjected to surface elemental analysis inspection by X-ray fluorescence to remove impurities such as scales remaining after the surface elemental analysis inspection and to perform surface elemental analysis again. The inspection can make the surface elemental analysis inspection more accurate.
[0032]
The thermal barrier coating deterioration diagnosis method according to
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic inspection procedure of the method of the present invention for diagnosing deterioration of a thermal barrier coating applied to a high-temperature component for a gas turbine.
FIG. 2 is a view for explaining an infrared thermography method used for inspecting internal peeling of a thermal barrier coating in the method of the present invention.
FIG. 3 is a view for explaining a fluorescent X-ray method used for analyzing and inspecting surface elements of a thermal barrier coating in the method of the present invention.
FIG. 4 is a view for explaining an eddy current flaw detection method used for measuring and inspecting the thickness of a thermal barrier coating in the method of the present invention.
FIG. 5 is a view showing a specific inspection procedure in which the method of the present invention is applied to a gas turbine blade.
FIG. 6 illustrates various forms of soundness and degradation of the thermal barrier coating.
FIG. 7A is a view showing an example in which a slit is provided in a sensor probe used in a surface elemental analysis test by a fluorescent X-ray method in the method of the present invention, and FIGS. FIG. 3 is a view showing a portion of a gas turbine blade that is preferably inspected by a probe.
FIG. 8 is a sectional view showing an example of a gas turbine blade provided with a thermal barrier coating.
FIG. 9 is a diagram showing an inspection procedure of a conventional method for diagnosing deterioration of a thermal barrier coating applied to a gas turbine blade.
[Explanation of symbols]
DESCRIPTION OF
24 Peeling part (air)
25
41 Thermal barrier
43 Eddy current 44 Thermal barrier coating (non-conductive)
45 Base material (non-magnetic material)
46 Film thickness (lift-off amount)
47 Undercoat (conductor)
48 magnetic flux
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002319789AJP2004156444A (en) | 2002-11-01 | 2002-11-01 | Thermal barrier coating degradation diagnosing method |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002319789AJP2004156444A (en) | 2002-11-01 | 2002-11-01 | Thermal barrier coating degradation diagnosing method |
Publication Number | Publication Date |
---|---|
JP2004156444Atrue JP2004156444A (en) | 2004-06-03 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002319789APendingJP2004156444A (en) | 2002-11-01 | 2002-11-01 | Thermal barrier coating degradation diagnosing method |
Country | Link |
---|---|
JP (1) | JP2004156444A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008309140A (en)* | 2007-06-18 | 2008-12-25 | Chubu Electric Power Co Inc | Judgment method for coating deterioration of high temperature metal products |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
JP2014092112A (en)* | 2012-11-06 | 2014-05-19 | Hitachi Ltd | Surface inspection method for gas turbine member |
JP2014202476A (en)* | 2013-04-08 | 2014-10-27 | ゼネラル・エレクトリック・カンパニイ | System and method for qualifying usability risk associated with subsurface defects in multilayer coating |
US8988668B2 (en) | 2011-08-30 | 2015-03-24 | Mitsubishi Hitachi Power Systems, Ltd. | Film thickness measurement apparatus and film thickness measurement method |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
JP2022503722A (en)* | 2018-09-20 | 2022-01-12 | シーメンス エナジー インコーポレイテッド | Methods for caring for components with thermal barrier coatings |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US12257371B2 (en) | 2012-07-03 | 2025-03-25 | Sio2 Medical Products, Llc | SiOx barrier for pharmaceutical package and coating process |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008309140A (en)* | 2007-06-18 | 2008-12-25 | Chubu Electric Power Co Inc | Judgment method for coating deterioration of high temperature metal products |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US8834954B2 (en) | 2009-05-13 | 2014-09-16 | Sio2 Medical Products, Inc. | Vessel inspection apparatus and methods |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US8988668B2 (en) | 2011-08-30 | 2015-03-24 | Mitsubishi Hitachi Power Systems, Ltd. | Film thickness measurement apparatus and film thickness measurement method |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10577154B2 (en) | 2011-11-11 | 2020-03-03 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US12257371B2 (en) | 2012-07-03 | 2025-03-25 | Sio2 Medical Products, Llc | SiOx barrier for pharmaceutical package and coating process |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
JP2014092112A (en)* | 2012-11-06 | 2014-05-19 | Hitachi Ltd | Surface inspection method for gas turbine member |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US12239606B2 (en) | 2013-03-11 | 2025-03-04 | Sio2 Medical Products, Llc | PECVD coated pharmaceutical packaging |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
JP2014202476A (en)* | 2013-04-08 | 2014-10-27 | ゼネラル・エレクトリック・カンパニイ | System and method for qualifying usability risk associated with subsurface defects in multilayer coating |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11839951B2 (en) | 2018-09-20 | 2023-12-12 | Siemens Energy, Inc. | Method of cleaning a component having a thermal barrier coating |
JP7361104B2 (en) | 2018-09-20 | 2023-10-13 | シーメンス エナジー インコーポレイテッド | Method for caring for components with thermal barrier coatings |
JP2022503722A (en)* | 2018-09-20 | 2022-01-12 | シーメンス エナジー インコーポレイテッド | Methods for caring for components with thermal barrier coatings |
Publication | Publication Date | Title |
---|---|---|
JP2004156444A (en) | Thermal barrier coating degradation diagnosing method | |
CN104502446B (en) | The method for predicting alloy coating at high temperature duty status based on non-destructive testing technology | |
US7010987B2 (en) | Non-destructive method of detecting defects in braze-repaired cracks | |
JP4753787B2 (en) | Fluorescence spectroscopy internal stress inspection system | |
JP5809255B2 (en) | Measurement of turbine blade thermal barrier damage. | |
Fukuchi et al. | Nondestructive inspection of thermal barrier coating of gas turbine high temperature components | |
JP5205608B2 (en) | Non-contact and non-destructive inspection method for aged thermal barrier coatings | |
Barakat et al. | A one-dimensional approach towards edge crack detection and mapping using eddy current thermography | |
Lakshmi et al. | Overview of NDT methods applied on an aero engine turbine rotor blade | |
Reimche et al. | Non-destructive determination of local damage and material condition in high-performance components: High-frequency eddy current and induction thermography techniques | |
US7175720B2 (en) | Non-destructive testing method of determining the depletion of a coating | |
JPH09113488A (en) | Method and apparatus for evaluating electromagnetic quality | |
US7150798B2 (en) | Non-destructive testing method of determining the service metal temperature of a component | |
Frąckowiak et al. | High frequency eddy-current and induction thermography inspection techniques for turbine components | |
Zilberstein et al. | Validation of multi-frequency eddy current MWM sensors and MWM-Arrays for coating production quality and refurbishment assessment | |
Sun et al. | Thermal property measurement for thermal barrier coatings using pulsed thermal imaging–multilayer analysis method | |
JP2007057346A (en) | Damage evaluation system of heat barrier coating and damage evaluation method | |
JP2003315252A (en) | Life evaluating method for heat shield coating | |
JP4693084B2 (en) | Nondestructive method for estimating the temperature reached by a high-temperature member | |
Weiss et al. | Non-destructive Characterization of Coating and Material Conditions of Heavily Stressed Turbine Components | |
EP1416269A1 (en) | A non-destructive method of detecting defects in braze-repaired cracks | |
Crowther | Non-destructive evaluation of coatings for land-based gas turbines using a multi-frequency eddy current technique | |
JP4843163B2 (en) | Non-destructive inspection method for deterioration due to structural change of coating of structure and non-destructive inspection method for damage to substrate | |
JP3331459B2 (en) | Ceramic coating remaining life evaluation diagnostic system | |
Weiss et al. | of Coating and Material Conditions of Heavily Stressed Turbine Components |
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20051020 | |
A977 | Report on retrieval | Effective date:20070425 Free format text:JAPANESE INTERMEDIATE CODE: A971007 | |
A131 | Notification of reasons for refusal | Effective date:20070501 Free format text:JAPANESE INTERMEDIATE CODE: A131 | |
A02 | Decision of refusal | Effective date:20071002 Free format text:JAPANESE INTERMEDIATE CODE: A02 |