
【0001】
【発明の属する技術分野】
本発明は、特にタッチパネル用に適した、透明導電膜付き化学強化ガラス基板、およびその製造方法に関する。
【0002】
【従来の技術】
ガラス基板上に酸化スズ、酸化インジウムスズ(ITO)などの透明導電膜が形成された透明導電膜付きガラス基板は、タッチパネル、ディスプレイ、太陽電池用カバーガラス、帯電防止用コピー機天板ガラス、冷凍用ショーケースなど様々な分野に利用されている。その中で、タッチパネルに関しては、IT化、モバイル化が進むにつれ、情報携帯端末(PDA)、電子手帳、携帯電話、デジタルカメラ、FA機器、カーナビゲーションなどへの搭載が急速に増えてきている。
【0003】
タッチパネルの基本構成を図1に示す。図1においては、入力側のフィルム1上にフィルム用導電膜2を有する上部電極3とガラス基板5上に透明導電膜4を有する下部電極6とがドットスペーサ7を挟み込んで対向し、指や入力ペン8などで入力する際の圧力により上部電極3が撓んで、下部電極6と接することにより、その位置を電気的に検出するものである。
【0004】
近年、モバイル機器への用途に対しては、ますます小型・軽量・薄型化が要求されており、ガラス基板5の厚さも1.1mmから、0.5〜0.7mm程度まで薄くなってきている。しかし、ガラス基板5の厚さを薄くしていくと、強度が低下し、使用中または携帯中の落下などにより割れるという不具合があった。
【0005】
上記問題を解決するために、ガラス基板の強度を高める方法として、ガラス基板表面に圧縮応力層を形成させる方法が一般的に知られている。前記ガラス基板表面に圧縮応力層を形成させる方法としては、軟化点付近まで加熱したガラス基板表面を風冷などにより急速に冷却する風冷強化法と、ガラス転移点以下の温度でイオン交換によりガラス基板表面にイオン半径のより大きいアルカリイオンを導入する化学強化法が代表的である。前述したように、ガラス基板の厚さが薄くなる場合、風冷強化法では、風冷過程において表面と内部の温度差がつきにくく目的の強度が得られにくい。そのため、後者の化学強化法による強化が通常行われている。
【0006】
一方、ガラス基板上に形成される透明導電膜には、ITO膜や酸化スズ膜が広く使われている。酸化スズ膜は、ITO膜と比べて、真空プロセスを使わない常圧CVD法で成膜できるため、量産性、コスト的に優れているとともに、性能的にも耐磨耗性や熱的・化学的耐久性に優れた特徴をもっている。
【0007】
しかし、常圧CVD法により酸化スズ膜を成膜する場合、生産性や膜性能を考慮すると成膜温度を高くする必要がある。その場合、一般的に使用されているソーダライムガラスをガラス基板として用いた場合、強度向上の目的であらかじめ化学強化されていたとしても、成膜工程で高温にさらされることによって表面の圧縮応力層が緩和され、せっかく向上させた強度が低下する問題があった。つまり、酸化スズ膜の生産性や膜性能とガラス基板の強度とを両立させることが困難であった。
【0008】
上記課題に対しては、酸化スズ膜を形成した後に化学強化する方法が開示されている(例えば、特許文献1、および特許文献2参照。)。この方法であれば、化学強化した後には高温の成膜プロセスを通らないため、ガラス基板の強度低下は起こりにくい。しかし、必然的に膜を介して化学強化するため、ガラス単体の場合と比べてイオン交換が困難になることが予想される。また、イオン交換が可能であったとしても、膜中にもアルカリイオンが含まれるため、膜の性能面での信頼性が劣ることが予想される。
【0009】
また、ソーダライムガラス以外のガラスをタッチパネルのガラス基板に適用した例が開示されている(例えば、特許文献3参照。)。しかし、強度向上目的ではないため化学強化処理は施されていない。
【0010】
【特許文献1】特開平9−59043号公報
【特許文献2】特開平10−231147号公報
【特許文献3】特開平8−119674号公報
【発明が解決しようとする課題】
本発明は、前述の課題を解消しようとするものであり、常圧CVD法などの高温で成膜される工程においても、化学強化されたガラス基板の強度を損なうことなく、ガラス基板の厚さを薄くしたとしても、タッチパネルの実用強度を十分満足できる透明導電膜付き化学強化ガラス基板とその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、ガラス基板を化学強化することにより化学強化ガラス基板が形成され、前記化学強化ガラス基板上に透明導電膜が形成されてなる透明導電膜付き化学強化ガラス基板であって、前記透明導電膜付き化学強化ガラス基板は、質量%表示で2〜7%のNa2Oおよび0〜3%のLi2Oを含有し、歪点が550℃以上であり、かつ表面圧縮応力が200〜800MPaである透明導電膜付き化学強化ガラス基板を提供する。
【0012】
また、本発明は、ガラス基板を化学強化することにより化学強化ガラス基板を形成し、前記化学強化ガラス基板上に、常圧CVD法により透明導電膜を形成することを特徴とする透明導電膜付き化学強化ガラス基板の製造方法であって、前記透明導電膜付き化学強化ガラス基板は質量%表示で2〜7%のNa2Oおよび0〜3%のLi2Oを含有し、歪点が550℃以上であり、かつ表面圧縮応力が200〜800MPaであることを特徴とする透明導電膜付き化学強化ガラス基板の製造方法を提供する。
【0013】
【発明の実施の形態】
本発明の透明導電膜付き化学強化ガラス基板は、ガラス基板を化学強化する、例えば加熱された硝酸カリウム溶融塩にガラス基板を浸漬して、ガラス基板表層中のナトリウムイオンおよびリチウムイオンと溶融塩中のカリウムイオンとをイオン交換する、ことにより化学強化ガラス基板とした後、前記化学強化ガラス基板上に透明導電膜を成膜して得られる。好ましい成膜法は常圧CVD法である。
【0014】
前記ガラス基板の厚さは、0.2〜1.1mmであることが好ましい。ガラス基板の厚さを上記範囲とすることにより、タッチパネル等の製品の軽量化に寄与きる。また、風冷強化では形成することができない厚さの圧縮応力層を化学強化により形成させることができる。0.2mm未満では、化学強化しても実用強度の観点から満足できなくなるおそれがある。また、前記ガラス基板の厚さが0.2〜0.7mmといった薄板に、特に化学強化が有効である。
【0015】
なお、未強化ガラス基板の厚さは、それが化学強化された化学強化ガラス基板の厚さと同じであり、さらにその上に透明導電膜が形成された透明導電膜付き化学強化ガラス基板の厚さとも同じである。同様にして、密度、歪点といった物性も三者間で同じである。また、未強化ガラス基板と化学強化ガラス基板とではごく薄い表層において微視的に化学組成が異なるが、ガラス基板全体としての化学組成は実質的に変化しない。また、化学強化ガラス基板と透明導電膜付きガラス基板とでは、ごく薄い透明導電膜の有無の点で微視的に化学組成が異なるが、ガラス基板全体としての化学組成は実質的に変化しない。すなわち、Na2O含有量、K2O含有量をはじめとするガラス基板の化学組成は、前記三者間で同じである。
【0016】
透明導電膜付き化学強化ガラス基板の表面圧縮応力は、200〜800MPaであることが、タッチパネル等の実用強度の観点から必須であり、好ましくは300〜600MPaである。また、透明導電膜形成後も表面圧縮応力を上記範囲とするためには、透明導電膜形成前の化学強化ガラス基板そのものの表面圧縮応力は、200〜800MPaであることが好ましく、さらに好ましくは300〜600MPaである。化学強化ガラス基板上に常圧CVD法で透明導電膜を形成する場合、成膜中にガラス基板が高温となるため、応力緩和が起こりやすくなり、化学強化処理で得られた強度を維持できなくなるおそれがある。よって、後述するように、ガラス基板の歪点を550℃以上とすることにより、成膜後であっても、表面圧縮応力を上記範囲とすることが可能となる。
【0017】
透明導電膜付き化学強化ガラス基板の圧縮応力層の深さは、15μm未満であると十分な化学強化の効果が得られないが、120μm超ではさらなる強度向上の効果が望めず、経済的でない。さらに、生産効率の観点から、大きいサイズの透明導電膜付き化学強化ガラス基板を後工程にて所望のサイズに切断することが行われているが、圧縮応力層の深さが120μmを越えると切断しにくくなる。強化性能と切断性とを考慮すると、透明導電膜付き化学強化ガラス基板の圧縮応力層の深さは、好ましくは30〜100μm、さらに好ましくは30〜70μmであり、特に好ましくは30〜50μmである。圧縮応力層の深さは、高温での成膜によって実質的に変化しない。
【0018】
また、透明導電膜付き化学強化ガラス基板に用いられるガラス基板の歪点は、550℃以上である。550℃未満であると、常圧CVD法での成膜中にガラス基板が高温となる際に応力緩和が起こりやすくなり、化学強化工程で得られた強度が低下するおそれがある。なお、ガラス基板の歪点とは、成膜前かつ化学強化前における歪点を意味しており、化学強化後かつ成膜後であっても実質的にほとんど変化しない。
【0019】
本発明の透明導電膜付き化学強化ガラス基板が製品の軽量化に寄与するためには、ガラス基板の密度は低い方が好ましく、具体的には、2.4〜2.6g/cm3であることが好ましい。
【0020】
以下に本発明のガラス基板の化学組成について詳しく説明する。なお、以下における成分割合は、質量%表示である。
【0021】
Na2Oは、イオン交換により表面圧縮応力層を形成させるための必須成分である。また、ガラスの溶融性を著しく向上させる成分でもある。2%より少ないと、イオン交換が困難となり所望の表面圧縮応力層が得られない。7%より多いと、歪点が低くなるだけでなく、ガラス基板の耐候性が低下する。
【0022】
Li2Oは、必須成分ではないが、Na2Oと同じように、イオン交換により表面圧縮応力層を形成させるための成分である。また、ガラスの溶融性を著しく向上させる成分でもある。3%より多いと、歪点が低下するおそれがある。
【0023】
K2Oは、溶融性を向上させる成分であるとともに、化学強化におけるイオン交換速度を向上させ、所望の表面圧縮応力と圧縮応力層の深さを得るために必要な成分である。4%より少ないと、溶融性が悪化するとともにイオン交換速度が低下し好ましくない。13%より多いと、歪点が低くなるおそれがある。
【0024】
SiO2は、ガラスの骨格を構成する成分である。45%より少ないと、歪点が低くなるとともに、耐候性が悪化する傾向がある。70%より多いと、ガラスの粘性が増大し溶融性が著しく悪化する。
【0025】
Al2O3は、歪点を高くする成分であるとともに、イオン交換速度を向上させる成分である。2%より少ないと歪点が低くなり、イオン交換速度向上の効果も得られなくなり好ましくない。20%より多いと、ガラスの粘性が高くなるため、均質な溶融が困難になる。
【0026】
B2O3は、必須成分ではないが、添加することにより溶融性が向上するので6%まで含有させることができる。6%より多いと、溶融時の揮散が激しくなるとともに、歪点が低下するおそれがあるので好ましくない。
【0027】
ZrO2は、必須成分ではないが、歪点を高める成分であるとともにイオン交換速度を向上させる成分である。6%より多いと、さらなるイオン交換速度向上の効果は得られないとともに、密度が増大し、溶融性も悪化し、未溶融物としてガラス中に残るので好ましくない。
MgO+CaO+SrO+BaO、すなわちMgOとCaOとSrOとBaOとの合計の含有量は10〜25%であることが好ましい。MgO、CaO、SrOおよびBaOは、溶融性を向上させる成分であるとともに、歪点の調節に有効な成分である。これらの合量が10%より少ないと溶融性が悪化するので好ましくない。これらの合量が25%より多いと、失透しやすくなるうえ、歪点が低下するおそれがある。さらにイオン交換速度が低下するおそれもある。また密度を下げるためにはSrOは3%以下、BaOは2%以下であることが好ましい。
【0028】
上記成分以外の任意の成分として、本発明の目的を損なわない範囲で、ガラスの溶融の際の清澄剤として、SO3、Sb2O3、As2O3、塩化物、フッ化物などを適宜含有してもよい。ただし、タッチパネルの視認性を上げるため、可視域に吸収をもつFe2O3、NiO、Cr2O3などの原料中の不純物として混入するような成分はできるだけ減らすことが好ましく、各々0.15%以下、特に0.05%以下であることが好ましい。
【0029】
先に触れたとおり、Na2OおよびLi2Oは、化学強化を行うことにより、K2Oへとイオン交換される。イオン交換後の化学強化ガラス基板の表面のごく薄い領域では、K2Oの成分が多くなっているが、化学強化ガラス基板全体の組成としては実質的に変化することはない。
【0030】
本発明に用いられる化学強化前(すなわち未処理)のガラス基板の製造方法は特に限定されないが、例えば、種々の原料を適量調合し、約1500〜1600℃に加熱し溶融した後、脱泡、攪拌などにより均質化し、周知のフロート法、ダウンドロー法、プレス法などによって板状に成形する。徐冷後、必要に応じて所望のサイズに切断、研磨加工を施し、ガラス基板が得られる。
【0031】
さらに所定の化学強化の方法により、ガラス基板に化学強化を施す。前記化学強化の方法としては、ガラス基板表層内のNa2OおよびLi2OとK2Oとをイオン交換することができれば特に限定されないが、具体的には、加熱された硝酸カリウム溶融塩にガラス基板を浸漬することにより、ガラス中のNa2OおよびLi2Oと溶融塩中のK2Oとをイオン交換する方法が挙げられる。ガラス基板に所望の表面圧縮応力を有する化学強化層を設けるためには、ガラス基板の厚さによっても変動するが、400〜550℃の硝酸カリウム溶液に2〜10時間ガラス基板を浸漬させることが好ましい。
【0032】
ガラス基板を化学強化することにより化学強化ガラス基板を形成した後、前記化学強化ガラス基板上に透明導電膜を形成する。透明導電膜を形成する方法としては、常圧CVD法が好ましく用いられる。透明導電膜の材料として酸化スズを用い、酸化スズ膜を化学強化ガラス基板上に常圧CVD法を用いて形成する場合は、以下のような方法が用いられる。まず、化学強化ガラス基板を、ベルト式加熱炉に投入し、キャリアガスとともに原料ガスをインジェクタから噴霧することにより化学強化ガラス基板上に酸化スズ膜を成膜する。原料ガスとして用いられる酸化スズ原料は特に限定されず、四塩化スズなどのスズ塩化物、アルキル化スズなどを用いることができる。また、膜抵抗の調整のため、フッ素、アンチモンなどの微量成分を添加することができる。前記常圧CVD法における化学強化ガラス基板の温度は500〜550℃であることが好ましい。
【0033】
透明導電膜としては、耐磨耗性や熱的・化学的耐久性に優れた酸化スズ膜が好ましく用いられる。前記透明導電膜の厚さは、タッチパネルとして用いる場合、10〜20nmであることが透過率の点で好ましい。
【0034】
さらに、ガラス基板から酸化スズ膜などの透明導電膜へのアルカリマイグレーションを防止するため、酸化ケイ素などのアルカリバリア層をガラス基板と透明導電膜との間に設けてもよい。この場合、例えば、別のインジェクタから、モノシランと酸素とからなるガスを噴霧することで同時に成膜することができる。前記酸化ケイ素のアルカリバリア層の膜厚は、タッチパネルとして用いる場合、40〜60nmであることが光学特性の点で好ましい。
【0035】
本発明の透明導電膜付き化学強化ガラス基板は、タッチパネル、ディスプレイ、太陽電池用カバーガラス、帯電防止用コピー機天板ガラス、冷凍用ショーケースなどの種々の用途に使用することができる。
【0036】
また、本発明の透明導電膜付き化学強化ガラス基板のシート抵抗値は、タッチパネルとして用いる場合、300〜2000Ω/□であることが好ましい。また、本発明の透明導電膜付き化学強化ガラス基板の可視光線での最高透過率(裏面コートのない条件において、400〜700nmの範囲における透過率のうち、最も高い透過率を意味する。)は、タッチパネルとして用いる場合、87〜95%であることが視認性の点で好ましい。
【0037】
【実施例】
以下に実施例(例1〜6)および比較例(例7〜10)を挙げて、本発明を詳細に説明する。ただし、本発明はこれに限定されない。
【0038】
表1の組成(単位:質量%)になるように、酸化物、水酸化物、炭酸塩、硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして2kgとなるように秤量および混合した。ついで、白金製るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、5時間溶融し、脱泡、均質化した後、型材に流し込み、所定の温度で徐冷し、ガラスブロックを得た。このガラスブロックからサイズが55×55mm×厚み0.7mmになるように切断、研削し、最後に両面を鏡面に加工し、ガラス基板を得た。このとき、例1〜10の可視光線での最高透過率は、91〜92%であった。可視光線での最高透過率は、分光光度計UV1600(島津製作所製)を用いて測定した。
【0039】
【表1】
【0040】
前記ガラス基板の密度および歪点を測定した。密度は約20gの塊をアルキメデス法によって測定した。歪点は繊維引き伸ばし法(JIS R3103−2)によって測定した。その結果を表2に示す。
【0041】
ついで、前記ガラス基板を、例1〜6および例9、10については、500℃に加熱保持した硝酸カリウム溶融塩中に5時間浸漬して化学強化処理を施し、化学強化ガラス基板を得た。例7、8については、450℃に加熱保持した硝酸カリウム溶融塩中に5時間浸漬して化学強化処理を施し、化学強化ガラス基板を得た。次にベルト炉に化学強化ガラス基板を投入し、530℃に加熱した成膜ゾーンで、常圧CVD法によって、四塩化スズ、水、メタノールとフッ化水素を噴霧し、化学ガラス強化基板上に酸化スズ膜を成膜し、酸化スズ膜付き化学強化ガラス基板を得た。
【0042】
例1〜10において、得られた酸化スズ膜付き化学強化ガラス基板について、シート抵抗値および可視光線での最高透過率を測定した。シート抵抗値は、ロレスタMCP−T250(三菱化学社製)により四探針法を用いて測定した。また、可視光線での最高透過率は、分光光度計UV1600(島津製作所製)を用いて、裏面コートがない条件において測定した。
【0043】
その結果、例1〜10における酸化スズ膜付き化学強化ガラス基板の可視光線での最高透過率は、例1〜10において90%以上であり、シート抵抗値は800〜1200Ω/□であり、タッチパネルの下部電極として充分な性能が得られていることを確認した。
【0044】
ついで、例1〜10における酸化スズ膜付き化学強化ガラス基板について、表面圧縮応力および圧縮応力層の深さを測定し、あらかじめ成膜前に測定した表面圧縮応力と成膜後の表面圧縮応力との比(成膜後の表面圧縮応力/成膜前の表面圧縮応力。以下、圧縮応力比という。)を求めた。表面圧縮応力および圧縮応力層の深さの測定は、切り出した薄片の一部を用いて表面応力計FSM−60−V(折原製作所製)にて行った。その結果を表2に示す。
【0045】
さらに、得られた例1〜10の酸化スズ膜付き化学強化ガラス基板の破壊応力を同心円曲げ試験法にて測定した。すなわち、直径46mmの支持リング上に酸化スズ膜付き化学強化ガラス基板を配置し、直径19mmのリングを用いて膜面側に1mm/minのクロスヘッドスピードにて負荷をかけ破壊したときの破壊応力を求めた。なお、破壊応力は各10枚ずつ酸化スズ膜付き化学強化ガラス基板を試験し平均値を求めた。破壊応力は、実用上、350MPa以上であることが好ましい。その結果を表2に示す。
【0046】
【表2】
【0047】
表2に示すように、例1〜6は、ガラス基板の歪点が550℃以上であるため、圧縮応力比がほぼ1に近く成膜プロセスを通しても表面圧縮応力の低下は起こっておらず、応力が緩和されていなかった。その結果、破壊応力も高くなり、実用上十分な強度であることが示された。さらに圧縮応力層の深さが好適な範囲となっているため、例1〜6の透明導電膜付き化学強化ガラス基板をホイールカッタにて切断したところ、化学強化前のガラス基板のみで通常切断できているホイール圧に対して1.2〜1.5倍のホイール圧にて問題なく切断できた。
【0048】
これに対し、ガラス基板がソーダライムガラスである例7は、歪点が510℃であるため、圧縮応力比が低く、成膜プロセスを通すと表面圧縮応力の低下が起こり、成膜中に応力が緩和されていることが示された。その結果、破壊応力も低かった。例8は、圧縮応力層がかなり深いが、ガラス基板の歪点が480℃であるために、例7と同様に応力緩和により成膜後の表面圧縮応力は低くなり、破壊応力も低かった。また、透明導電膜付き化学強化ガラス基板をホイールカッタにて切断したところ、圧縮応力層が深いために切り線が入りにくく、ホイール圧を上げてもうまく切断できなかった。例9は、母ガラスの歪点が570℃と高いが、K2Oが少ないため、イオン交換速度が遅く充分な強度が得られなかった。例10は、Na2O含有量が小さいため、化学強化処理しても圧縮応力層が判別できるほど形成されていなく、破壊応力もかなり低かった。
【0049】
【発明の効果】
本発明の透明導電膜付き化学強化ガラス基板は、ガラス基板の歪点が550℃以上のため、成膜中に応力緩和が起こりにくく、化学強化処理で得られた表面圧縮応力を維持できるので、ガラス基板の厚さを薄くしても実用上十分な強度を有する。よって、本発明の透明導電膜付き化学強化ガラス基板は、タッチパネル用部材として好適である。また、従来より高温で成膜できる可能性が広がることにより、生産性向上が期待できる。また、透明導電膜以外の膜、例えば、アルカリバリア膜、反射防止膜、絶縁膜等の成膜温度範囲も広がる。さらに化学強化も同様に高温処理が可能となる。
【図面の簡単な説明】
【図1】タッチパネルの構成を説明する図
【符号の説明】
1:フィルム
2:フィルム用導電膜
3:上部電極
4:透明導電膜
5:ガラス基板
6:下部電極
7:ドットスペーサ
8:入力ペン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemically strengthened glass substrate with a transparent conductive film, particularly suitable for touch panels, and a method for producing the same.
[0002]
[Prior art]
A glass substrate with a transparent conductive film in which a transparent conductive film such as tin oxide or indium tin oxide (ITO) is formed on a glass substrate is a touch panel, a display, a cover glass for solar cells, an antistatic copying machine top glass, for freezing It is used in various fields such as showcases. Among these, as the touch panel becomes more IT-enabled and mobile, the use of information in personal digital assistants (PDAs), electronic notebooks, mobile phones, digital cameras, FA devices, car navigation, etc., has been rapidly increasing.
[0003]
A basic configuration of the touch panel is shown in FIG. In FIG. 1, an
[0004]
In recent years, there has been an increasing demand for smaller, lighter, and thinner applications for mobile devices, and the thickness of the
[0005]
In order to solve the above problems, a method of forming a compressive stress layer on the surface of the glass substrate is generally known as a method for increasing the strength of the glass substrate. As a method for forming a compressive stress layer on the glass substrate surface, there are an air cooling strengthening method in which the glass substrate surface heated to near the softening point is rapidly cooled by air cooling or the like, and glass by ion exchange at a temperature below the glass transition point. A chemical strengthening method in which alkali ions having a larger ion radius are introduced into the substrate surface is typical. As described above, when the thickness of the glass substrate is reduced, in the air cooling strengthening method, the temperature difference between the surface and the interior is difficult to be obtained in the air cooling process, and it is difficult to obtain the desired strength. Therefore, reinforcement by the latter chemical strengthening method is usually performed.
[0006]
On the other hand, ITO films and tin oxide films are widely used as transparent conductive films formed on glass substrates. Compared to ITO film, tin oxide film can be deposited by atmospheric pressure CVD method without using vacuum process, so it is excellent in mass production and cost, and in terms of performance, it has wear resistance, thermal and chemical properties. It has a characteristic that is excellent in mechanical durability.
[0007]
However, when forming a tin oxide film by the atmospheric pressure CVD method, it is necessary to increase the film formation temperature in consideration of productivity and film performance. In that case, when a commonly used soda lime glass is used as a glass substrate, even if it is chemically strengthened in advance for the purpose of improving the strength, it is exposed to a high temperature in the film forming process, so that the surface compressive stress layer Is relaxed, and there is a problem that the improved strength is lowered. That is, it is difficult to achieve both the productivity and film performance of the tin oxide film and the strength of the glass substrate.
[0008]
A method of chemically strengthening the tin oxide film after forming the tin oxide film has been disclosed (for example, refer to Patent Document 1 and Patent Document 2). With this method, after chemical strengthening, the glass substrate does not pass through a high-temperature film forming process, so that the strength of the glass substrate is hardly lowered. However, since chemical strengthening is inevitably performed through the membrane, it is expected that ion exchange becomes difficult as compared with the case of a single glass. Moreover, even if ion exchange is possible, since alkali ions are also contained in the membrane, it is expected that the reliability in terms of membrane performance will be inferior.
[0009]
Moreover, the example which applied glass other than soda-lime glass to the glass substrate of a touch panel is disclosed (for example, refer patent document 3). However, the chemical strengthening treatment is not performed because the purpose is not to improve the strength.
[0010]
[Patent Document 1] JP-A-9-59043 [Patent Document 2] JP-A-10-231147 [Patent Document 3] JP-A-8-119674 [Problem to be Solved by the Invention]
The present invention is intended to solve the above-mentioned problems, and the thickness of the glass substrate can be obtained without damaging the strength of the chemically strengthened glass substrate even in a process of forming a film at a high temperature such as atmospheric pressure CVD. An object of the present invention is to provide a chemically tempered glass substrate with a transparent conductive film that can sufficiently satisfy the practical strength of a touch panel even if it is made thin, and a method for producing the same.
[0011]
[Means for Solving the Problems]
The present invention is a chemically strengthened glass substrate with a transparent conductive film in which a chemically strengthened glass substrate is formed by chemically strengthening a glass substrate, and a transparent conductive film is formed on the chemically strengthened glass substrate. The chemically strengthened glass substrate with a film contains2 to 7% Na2 O and 0 to 3% Li2 O in mass%, has a strain point of 550 ° C. or higher, and has a surface compressive stress of 200 to 800 MPa. A chemically strengthened glass substrate with a transparent conductive film is provided.
[0012]
Further, the present invention provides a chemically tempered glass substrate by chemically strengthening the glass substrate, and a transparent conductive film is formed on the chemically tempered glass substrate by an atmospheric pressure CVD method. a method of manufacturing a chemically strengthened glass substrate, the transparent conductive film with a chemically strengthened glass substrate contains 2-7% of Na2 O and 0-3% of Li2 O represented by mass%, the strain point is 550 Provided is a method for producing a chemically strengthened glass substrate with a transparent conductive film, characterized in that the temperature is not lower than ° C and the surface compressive stress is 200 to 800 MPa.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The chemically strengthened glass substrate with a transparent conductive film of the present invention chemically strengthens a glass substrate, for example, a glass substrate is immersed in a heated potassium nitrate molten salt, and sodium ions and lithium ions in the surface layer of the glass substrate and a molten salt in the molten salt After obtaining a chemically strengthened glass substrate by ion exchange with potassium ions, a transparent conductive film is formed on the chemically strengthened glass substrate. A preferred film forming method is an atmospheric pressure CVD method.
[0014]
The thickness of the glass substrate is preferably 0.2 to 1.1 mm. By making the thickness of the glass substrate within the above range, it can contribute to weight reduction of products such as touch panels. In addition, a compressive stress layer having a thickness that cannot be formed by air cooling strengthening can be formed by chemical strengthening. If it is less than 0.2 mm, even if it is chemically strengthened, it may not be satisfactory from the viewpoint of practical strength. Further, chemical strengthening is particularly effective for a thin plate having a glass substrate thickness of 0.2 to 0.7 mm.
[0015]
The thickness of the unstrengthened glass substrate is the same as the thickness of the chemically strengthened chemically strengthened glass substrate, and the thickness of the chemically strengthened glass substrate with a transparent conductive film on which a transparent conductive film is formed. Is the same. Similarly, physical properties such as density and strain point are the same among the three parties. Further, although the chemical composition is microscopically different in the very thin surface layer between the unstrengthened glass substrate and the chemically strengthened glass substrate, the chemical composition as a whole glass substrate is not substantially changed. The chemically strengthened glass substrate and the glass substrate with a transparent conductive film differ microscopically in chemical composition in terms of the presence or absence of a very thin transparent conductive film, but the chemical composition as a whole glass substrate does not change substantially. That is, the chemical composition of the glass substrate including the Na2 O content and the K2 O content is the same among the three parties.
[0016]
The surface compressive stress of the chemically strengthened glass substrate with a transparent conductive film is essential to be 200 to 800 MPa from the viewpoint of practical strength such as a touch panel, and preferably 300 to 600 MPa. In order to keep the surface compressive stress within the above range even after forming the transparent conductive film, the surface compressive stress of the chemically strengthened glass substrate itself before forming the transparent conductive film is preferably 200 to 800 MPa, more preferably 300. ~ 600 MPa. When a transparent conductive film is formed on a chemically strengthened glass substrate by atmospheric pressure CVD, the glass substrate becomes high temperature during film formation, so stress relaxation is likely to occur and the strength obtained by the chemical strengthening process cannot be maintained. There is a fear. Therefore, as will be described later, by setting the strain point of the glass substrate to 550 ° C. or higher, the surface compressive stress can be within the above range even after film formation.
[0017]
If the depth of the compressive stress layer of the chemically tempered glass substrate with a transparent conductive film is less than 15 μm, a sufficient chemical strengthening effect cannot be obtained, but if it exceeds 120 μm, a further strength improvement effect cannot be expected, which is not economical. Furthermore, from the viewpoint of production efficiency, a chemically tempered glass substrate with a transparent conductive film having a large size is cut into a desired size in a subsequent process, but when the depth of the compressive stress layer exceeds 120 μm, the cutting is performed. It becomes difficult to do. Considering the strengthening performance and the cutting property, the depth of the compressive stress layer of the chemically strengthened glass substrate with a transparent conductive film is preferably 30 to 100 μm, more preferably 30 to 70 μm, and particularly preferably 30 to 50 μm. . The depth of the compressive stress layer is not substantially changed by film formation at a high temperature.
[0018]
Moreover, the strain point of the glass substrate used for a chemically strengthened glass substrate with a transparent conductive film is 550 degreeC or more. When the temperature is lower than 550 ° C., stress relaxation tends to occur when the glass substrate becomes high temperature during film formation by the atmospheric pressure CVD method, and the strength obtained in the chemical strengthening step may be reduced. The strain point of the glass substrate means a strain point before film formation and before chemical strengthening, and substantially does not change even after chemical strengthening and after film formation.
[0019]
In order for the chemically strengthened glass substrate with a transparent conductive film of the present invention to contribute to weight reduction of the product, the density of the glass substrate is preferably low, specifically 2.4 to 2.6 g / cm3 . It is preferable.
[0020]
The chemical composition of the glass substrate of the present invention will be described in detail below. In addition, the component ratio in the following is the mass% display.
[0021]
Na2 O is an essential component for forming a surface compressive stress layer by ion exchange. It is also a component that significantly improves the meltability of glass. If it is less than 2%, ion exchange becomes difficult and a desired surface compressive stress layer cannot be obtained. If it exceeds 7%, not only the strain point is lowered, but also the weather resistance of the glass substrate is lowered.
[0022]
Li2 O is not an essential component, but is a component for forming a surface compressive stress layer by ion exchange in the same manner as Na2 O. It is also a component that significantly improves the meltability of glass. If it exceeds 3%, the strain point may be lowered.
[0023]
K2 O is a component that improves the meltability, and is a component that is necessary for improving the ion exchange rate in chemical strengthening and obtaining a desired surface compressive stress and compressive stress layer depth. If it is less than 4%, the meltability deteriorates and the ion exchange rate decreases, which is not preferable. If it exceeds 13%, the strain point may be lowered.
[0024]
SiO2 is a component constituting the skeleton of glass. If it is less than 45%, the strain point tends to be low and the weather resistance tends to deteriorate. If it exceeds 70%, the viscosity of the glass increases and the meltability deteriorates significantly.
[0025]
Al2 O3 is a component that increases the strain point and improves the ion exchange rate. If it is less than 2%, the strain point is lowered, and the effect of improving the ion exchange rate cannot be obtained, which is not preferable. If it exceeds 20%, the viscosity of the glass becomes high, so that homogeneous melting becomes difficult.
[0026]
Although B2 O3 is not an essential component, it can be contained up to 6% because the meltability is improved by adding B2 O3 . If it exceeds 6%, volatilization at the time of melting becomes violent, and the strain point may be lowered.
[0027]
ZrO2 is not an essential component, but is a component that increases the strain point and improves the ion exchange rate. If it exceeds 6%, the effect of further improving the ion exchange rate cannot be obtained, the density increases, the meltability deteriorates, and it remains in the glass as an unmelted material, which is not preferable.
MgO + CaO + SrO + BaO, that is, the total content of MgO, CaO, SrO and BaO is preferably 10 to 25%. MgO, CaO, SrO, and BaO are components that improve the meltability and are effective components for adjusting the strain point. If the total amount is less than 10%, the meltability deteriorates, which is not preferable. If the total amount is more than 25%, devitrification tends to occur and the strain point may be lowered. Further, the ion exchange rate may be reduced. In order to lower the density, SrO is preferably 3% or less and BaO is preferably 2% or less.
[0028]
As optional components other than the above components, SO3 , Sb2 O3 , As2 O3 , chlorides, fluorides, etc. are appropriately used as fining agents in melting the glass within a range not impairing the object of the present invention. You may contain. However, in order to increase the visibility of the touch panel, it is preferable to reduce as much as possible the components that are mixed as impurities in the raw materials such as Fe2 O3 , NiO, and Cr2 O3 that absorb in the visible region, and each 0.15 % Or less, particularly preferably 0.05% or less.
[0029]
As mentioned above, Na2 O and Li2 O are ion-exchanged into K2 O by performing chemical strengthening. In a very thin region of the surface of the chemically strengthened glass substrate after ion exchange, the component of K2 O increases, but the composition of the entire chemically strengthened glass substrate does not change substantially.
[0030]
The method for producing a glass substrate before chemical strengthening (that is, untreated) used in the present invention is not particularly limited. For example, a suitable amount of various raw materials are prepared, heated to about 1500 to 1600 ° C., melted, defoamed, It is homogenized by stirring or the like, and formed into a plate shape by a known float method, down draw method, press method or the like. After slow cooling, the glass substrate is obtained by cutting and polishing to a desired size as necessary.
[0031]
Further, the glass substrate is chemically strengthened by a predetermined chemical strengthening method. The chemical strengthening method is not particularly limited as long as Na2 O and Li2 O and K2 O in the surface layer of the glass substrate can be ion-exchanged. Specifically, the heated potassium nitrate molten salt is made of glass. by immersing the substrate, a and
[0032]
After a chemically strengthened glass substrate is formed by chemically strengthening the glass substrate, a transparent conductive film is formed on the chemically strengthened glass substrate. As a method for forming the transparent conductive film, an atmospheric pressure CVD method is preferably used. When tin oxide is used as the material of the transparent conductive film and the tin oxide film is formed on the chemically strengthened glass substrate by using the atmospheric pressure CVD method, the following method is used. First, a chemically strengthened glass substrate is put into a belt-type heating furnace, and a raw material gas is sprayed from an injector together with a carrier gas to form a tin oxide film on the chemically strengthened glass substrate. The tin oxide raw material used as the raw material gas is not particularly limited, and tin chloride such as tin tetrachloride, alkylated tin, and the like can be used. In addition, trace components such as fluorine and antimony can be added to adjust the film resistance. The temperature of the chemically strengthened glass substrate in the atmospheric pressure CVD method is preferably 500 to 550 ° C.
[0033]
As the transparent conductive film, a tin oxide film excellent in wear resistance and thermal / chemical durability is preferably used. When using as a touch panel, the thickness of the transparent conductive film is preferably 10 to 20 nm from the viewpoint of transmittance.
[0034]
Furthermore, in order to prevent alkali migration from the glass substrate to the transparent conductive film such as a tin oxide film, an alkali barrier layer such as silicon oxide may be provided between the glass substrate and the transparent conductive film. In this case, for example, the film can be simultaneously formed by spraying a gas composed of monosilane and oxygen from another injector. The film thickness of the alkali barrier layer of silicon oxide is preferably 40 to 60 nm from the viewpoint of optical characteristics when used as a touch panel.
[0035]
The chemically tempered glass substrate with a transparent conductive film of the present invention can be used for various applications such as a touch panel, a display, a cover glass for solar cells, a top plate glass for an antistatic copy machine, and a freezer showcase.
[0036]
Moreover, when using as a touch panel, the sheet resistance value of the chemically strengthened glass substrate with a transparent conductive film of the present invention is preferably 300 to 2000Ω / □. Moreover, the highest transmittance | permeability in the visible light of the chemically strengthened glass substrate with a transparent conductive film of this invention (it means the highest transmittance | permeability in the range of 400-700 nm in the conditions without a back surface coat). When used as a touch panel, it is preferably 87 to 95% from the viewpoint of visibility.
[0037]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples (Examples 1 to 6) and Comparative Examples (Examples 7 to 10). However, the present invention is not limited to this.
[0038]
Commonly used glass raw materials such as oxides, hydroxides, carbonates, nitrates and the like are appropriately selected so as to have the composition shown in Table 1 (unit: mass%), and weighed and mixed so as to be 2 kg as glass. . Next, it was put into a platinum crucible, put into a resistance heating electric furnace at 1600 ° C., melted for 5 hours, defoamed and homogenized, poured into a mold material, and slowly cooled at a predetermined temperature to obtain a glass block. . The glass block was cut and ground to a size of 55 × 55 mm × thickness 0.7 mm, and finally both surfaces were processed into mirror surfaces to obtain a glass substrate. At this time, the maximum transmittance | permeability in visible light of Examples 1-10 was 91-92%. The maximum transmittance with visible light was measured using a spectrophotometer UV1600 (manufactured by Shimadzu Corporation).
[0039]
[Table 1]
[0040]
The density and strain point of the glass substrate were measured. The density was measured by an Archimedes method for a mass of about 20 g. The strain point was measured by a fiber drawing method (JIS R3103-2). The results are shown in Table 2.
[0041]
Next, for Examples 1 to 6 and Examples 9 and 10, the glass substrate was immersed in a potassium nitrate molten salt heated to 500 ° C. for 5 hours to perform chemical strengthening treatment to obtain a chemically strengthened glass substrate. In Examples 7 and 8, chemical strengthening treatment was performed by immersing in molten potassium nitrate maintained at 450 ° C. for 5 hours to obtain a chemically strengthened glass substrate. Next, a chemically tempered glass substrate is placed in a belt furnace, and tin tetrachloride, water, methanol and hydrogen fluoride are sprayed on the chemical glass reinforced substrate by atmospheric pressure CVD in a film formation zone heated to 530 ° C. A tin oxide film was formed to obtain a chemically strengthened glass substrate with a tin oxide film.
[0042]
In Examples 1-10, about the obtained chemically strengthened glass substrate with a tin oxide film | membrane, the sheet resistance value and the maximum transmittance | permeability in visible light were measured. The sheet resistance value was measured using a four probe method with Loresta MCP-T250 (Mitsubishi Chemical Corporation). In addition, the maximum transmittance with visible light was measured using a spectrophotometer UV1600 (manufactured by Shimadzu Corporation) under conditions where there was no back coat.
[0043]
As a result, the maximum transmittance with visible light of the chemically strengthened glass substrate with a tin oxide film in Examples 1 to 10 is 90% or more in Examples 1 to 10, the sheet resistance value is 800 to 1200 Ω / □, and the touch panel It was confirmed that sufficient performance was obtained as the lower electrode.
[0044]
Next, for the chemically strengthened glass substrate with tin oxide film in Examples 1 to 10, the surface compressive stress and the depth of the compressive stress layer were measured, and the surface compressive stress measured before film formation and the surface compressive stress after film formation were (Surface compressive stress after film formation / surface compressive stress before film formation; hereinafter referred to as compressive stress ratio). The surface compressive stress and the depth of the compressive stress layer were measured with a surface stress meter FSM-60-V (manufactured by Orihara Seisakusho) using a part of the sliced slice. The results are shown in Table 2.
[0045]
Furthermore, the fracture stress of the obtained chemically strengthened glass substrate with a tin oxide film in Examples 1 to 10 was measured by a concentric bending test method. That is, fracture stress when a chemically strengthened glass substrate with a tin oxide film is placed on a support ring having a diameter of 46 mm and the film surface side is broken by applying a load at a crosshead speed of 1 mm / min using a ring having a diameter of 19 mm. Asked. In addition, the breaking stress tested the chemically strengthened glass substrate with a tin oxide film | membrane 10 sheets each, and calculated | required the average value. The fracture stress is preferably 350 MPa or more for practical use. The results are shown in Table 2.
[0046]
[Table 2]
[0047]
As shown in Table 2, in Examples 1 to 6, since the strain point of the glass substrate is 550 ° C. or higher, the compressive stress ratio is close to 1, and the surface compression stress does not decrease even through the film forming process. The stress was not relaxed. As a result, the fracture stress also increased, indicating that the strength was practically sufficient. Furthermore, since the depth of the compressive stress layer is in a suitable range, when the chemically tempered glass substrate with a transparent conductive film of Examples 1 to 6 is cut with a wheel cutter, it can be usually cut only with the glass substrate before chemical tempering. It was able to cut without a problem at a wheel pressure 1.2 to 1.5 times the wheel pressure.
[0048]
On the other hand, in Example 7 in which the glass substrate is soda lime glass, since the strain point is 510 ° C., the compressive stress ratio is low. Was shown to be relaxed. As a result, the fracture stress was also low. In Example 8, the compressive stress layer was considerably deep, but the strain point of the glass substrate was 480 ° C., so that the surface compressive stress after film formation was reduced by stress relaxation as in Example 7, and the fracture stress was also low. Further, when the chemically tempered glass substrate with a transparent conductive film was cut with a wheel cutter, the cut line was difficult to enter due to the deep compressive stress layer and could not be cut well even when the wheel pressure was increased. In Example 9, the strain point of the mother glass was as high as 570 ° C., but since K2 O was small, the ion exchange rate was slow and sufficient strength could not be obtained. In Example 10, since the Na2 O content was small, the compressive stress layer was not formed enough to be discriminated even after the chemical strengthening treatment, and the fracture stress was considerably low.
[0049]
【The invention's effect】
The chemically strengthened glass substrate with a transparent conductive film of the present invention has a strain point of the glass substrate of 550 ° C. or higher, so stress relaxation is unlikely to occur during film formation, and the surface compressive stress obtained by the chemical strengthening treatment can be maintained. Even if the thickness of the glass substrate is reduced, it has sufficient strength for practical use. Therefore, the chemically strengthened glass substrate with a transparent conductive film of the present invention is suitable as a member for a touch panel. In addition, the possibility of film formation at a higher temperature than in the past is expected to improve productivity. In addition, the film forming temperature range of films other than the transparent conductive film, for example, an alkali barrier film, an antireflection film, an insulating film, and the like is expanded. Furthermore, chemical strengthening can be similarly performed at high temperature.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the configuration of a touch panel.
1: Film 2: Film conductive film 3: Upper electrode 4: Transparent conductive film 5: Glass substrate 6: Lower electrode 7: Dot spacer 8: Input pen
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002295730AJP2004131314A (en) | 2002-10-09 | 2002-10-09 | Chemically tempered glass substrate with transparent conductive film and method for producing the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002295730AJP2004131314A (en) | 2002-10-09 | 2002-10-09 | Chemically tempered glass substrate with transparent conductive film and method for producing the same |
| Publication Number | Publication Date |
|---|---|
| JP2004131314Atrue JP2004131314A (en) | 2004-04-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002295730APendingJP2004131314A (en) | 2002-10-09 | 2002-10-09 | Chemically tempered glass substrate with transparent conductive film and method for producing the same |
| Country | Link |
|---|---|
| JP (1) | JP2004131314A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006080292A1 (en)* | 2005-01-25 | 2006-08-03 | Central Glass Company, Limited | Substrate glass for display |
| JP2007099557A (en)* | 2005-10-04 | 2007-04-19 | Nippon Electric Glass Co Ltd | Tempered glass article and method for producing the same |
| JP2007509835A (en)* | 2003-10-29 | 2007-04-19 | サン−ゴバン グラス フランス | Reinforced pane for insulation |
| JP2008083154A (en)* | 2006-09-26 | 2008-04-10 | Casio Comput Co Ltd | Method for thinning glass substrate, method for producing liquid crystal display element, and method for producing liquid crystal display device |
| JP2008115071A (en)* | 2006-10-10 | 2008-05-22 | Nippon Electric Glass Co Ltd | Reinforced glass substrate |
| JP2008115072A (en)* | 2006-10-10 | 2008-05-22 | Nippon Electric Glass Co Ltd | Reinforced glass substrate |
| JP2008195602A (en)* | 2007-01-16 | 2008-08-28 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
| WO2009019965A1 (en)* | 2007-08-03 | 2009-02-12 | Nippon Electric Glass Co., Ltd. | Hardened glass substrate and method for manufacturing the same |
| WO2010016928A2 (en) | 2008-08-08 | 2010-02-11 | Corning Incorporated | Strengthened glass articles and methods of making |
| JP2010030876A (en)* | 2008-06-27 | 2010-02-12 | Nippon Electric Glass Co Ltd | Tempered glass and manufacturing method for the same |
| JP2010059038A (en)* | 2008-08-04 | 2010-03-18 | Nippon Electric Glass Co Ltd | Reinforced glass and method of manufacturing the same |
| JP2010070445A (en)* | 2008-08-18 | 2010-04-02 | Nippon Electric Glass Co Ltd | Method for manufacturing glass for touch panel |
| JP2010180076A (en)* | 2009-02-03 | 2010-08-19 | Nippon Electric Glass Co Ltd | Tempered glass |
| JP2010527892A (en)* | 2007-05-18 | 2010-08-19 | コーニング インコーポレイテッド | Chemically reinforced glass for cover plates that can be manufactured by the downdraw method |
| WO2010138698A3 (en)* | 2009-05-29 | 2011-01-20 | Corning Incorporated | Fusion formable sodium containing glass |
| WO2011011667A1 (en)* | 2009-07-24 | 2011-01-27 | Corning Incorporated | Fusion formable silica and sodium containing glasses |
| JP2011505323A (en)* | 2007-11-29 | 2011-02-24 | コーニング インコーポレイテッド | Glass with improved toughness and scratch resistance |
| JP2011510903A (en)* | 2008-02-08 | 2011-04-07 | コーニング インコーポレイテッド | Damage resistant chemically reinforced protective cover glass |
| JP2011510904A (en)* | 2008-02-05 | 2011-04-07 | コーニング インコーポレイテッド | Damage-resistant glass articles for use as cover plates for electronic devices |
| WO2011049146A1 (en)* | 2009-10-20 | 2011-04-28 | 旭硝子株式会社 | Glass sheet for cu-in-ga-se solar cells, and solar cells using same |
| JP2011513171A (en)* | 2008-02-26 | 2011-04-28 | コーニング インコーポレイテッド | Refining agent for silicate glass |
| EP2277839A4 (en)* | 2008-04-21 | 2011-07-13 | Asahi Glass Co Ltd | GLASS PLATE FOR DISPLAY PANEL, METHOD FOR MANUFACTURING SAME, AND METHOD FOR MANUFACTURING TFT PANEL |
| JP2011136855A (en)* | 2009-12-28 | 2011-07-14 | Optrex Corp | Method for producing glass substrate |
| JP2011527661A (en)* | 2008-07-11 | 2011-11-04 | コーニング インコーポレイテッド | Glass with compression surface for consumer use |
| CN102243546A (en)* | 2010-05-13 | 2011-11-16 | 永恒科技有限公司 | Touch panel and manufacturing method thereof |
| JP2012500177A (en)* | 2008-08-21 | 2012-01-05 | コーニング インコーポレイテッド | Durable glass housing / enclosure for electronic devices |
| WO2011104035A3 (en)* | 2010-02-26 | 2012-01-05 | Schott Ag | Chemically tempered glass |
| JP2012025661A (en)* | 2007-03-02 | 2012-02-09 | Nippon Electric Glass Co Ltd | Reinforced plate glass and method for producing the same |
| JP2012214356A (en)* | 2010-12-29 | 2012-11-08 | Avanstrate Inc | Cover glass and method for producing the same |
| JP2012236737A (en)* | 2011-05-11 | 2012-12-06 | Asahi Glass Co Ltd | Glass manufacturing method, and glass |
| JP2013014516A (en)* | 2009-01-21 | 2013-01-24 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass, and method for manufacturing glass for reinforcement |
| JP2013504514A (en)* | 2009-09-15 | 2013-02-07 | コーニング インコーポレイテッド | Antiglare glass and display |
| JP2013040095A (en)* | 2012-09-25 | 2013-02-28 | Nippon Electric Glass Co Ltd | Tempered glass, glass for tempering, and method for manufacturing tempered glass |
| JP2013043795A (en)* | 2011-08-23 | 2013-03-04 | Nippon Electric Glass Co Ltd | Tempered glass and method of manufacturing the same |
| JP2013520385A (en)* | 2010-02-26 | 2013-06-06 | ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド | Thin lithium aluminosilicate glass for 3D precision molding |
| JP2013121912A (en)* | 2012-12-25 | 2013-06-20 | Nippon Electric Glass Co Ltd | Reinforced glass substrate and manufacturing method of reinforced glass substrate |
| US8551898B2 (en) | 2011-10-25 | 2013-10-08 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| WO2013183716A1 (en)* | 2012-06-08 | 2013-12-12 | 日本電気硝子株式会社 | Tempered glass, tempered glass plate, and glass for tempering |
| WO2014002932A1 (en)* | 2012-06-25 | 2014-01-03 | 日本電気硝子株式会社 | Glass substrate for organic el device and manufacturing method therefor |
| WO2014010533A1 (en)* | 2012-07-09 | 2014-01-16 | 日本電気硝子株式会社 | Tempered glass and tempered glass sheet |
| WO2014044985A1 (en)* | 2012-09-21 | 2014-03-27 | Saint-Gobain Glass France | Sheet of glass and device including said sheet of glass |
| US8715829B2 (en) | 2008-05-30 | 2014-05-06 | Asahi Glass Company, Limited | Glass plate for display devices |
| WO2014104303A1 (en)* | 2012-12-27 | 2014-07-03 | 旭硝子株式会社 | Method for manufacturing glass plate with which warping during chemical strengthening is reduced and glass plate |
| WO2014119538A1 (en)* | 2013-01-29 | 2014-08-07 | オーエムジー株式会社 | Glass composition and glass product |
| US9145329B2 (en) | 2011-10-25 | 2015-09-29 | Corning Incorporated | Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability |
| US9186295B2 (en) | 2011-10-25 | 2015-11-17 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9298322B2 (en) | 2010-05-04 | 2016-03-29 | Winsky Technology Limited | Touch panel and method for fabricating the same |
| US9517966B2 (en) | 2011-10-25 | 2016-12-13 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US9603775B2 (en) | 2013-04-24 | 2017-03-28 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9670088B2 (en) | 2014-05-20 | 2017-06-06 | Corning Incorporated | Scratch resistant glass and method of making |
| US9700485B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9701567B2 (en) | 2013-04-29 | 2017-07-11 | Corning Incorporated | Photovoltaic module package |
| US9700486B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9707155B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9707154B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9707153B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9713572B2 (en) | 2013-04-24 | 2017-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9714193B2 (en) | 2012-12-27 | 2017-07-25 | Asahi Glass Company, Limited | Float glass for chemical strengthening |
| US9717648B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9717649B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9839579B2 (en) | 2013-04-24 | 2017-12-12 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9849066B2 (en) | 2013-04-24 | 2017-12-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| JPWO2017126605A1 (en)* | 2016-01-21 | 2018-11-08 | Agc株式会社 | Chemically tempered glass and method for producing chemically tempered glass |
| KR20190022707A (en)* | 2016-06-27 | 2019-03-06 | 에이쥐씨 글래스 유럽 | Chemically temperable glass plate |
| US10273048B2 (en) | 2012-06-07 | 2019-04-30 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
| US10350139B2 (en) | 2011-10-25 | 2019-07-16 | Corning Incorporated | Pharmaceutical glass packaging assuring pharmaceutical sterility |
| US10370287B2 (en) | 2016-01-21 | 2019-08-06 | AGC Inc. | Chemically strengthened glass, and glass for chemical strengthening |
| JPWO2018074335A1 (en)* | 2016-10-18 | 2019-08-08 | Agc株式会社 | Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass |
| JP2020514219A (en)* | 2016-12-22 | 2020-05-21 | ショット アクチエンゲゼルシャフトSchott AG | Thin glass substrate, manufacturing method and manufacturing apparatus thereof |
| US10900123B2 (en) | 2003-06-27 | 2021-01-26 | Spts Technologies Limited | Apparatus and method for controlled application of reactive vapors to produce thin films and coatings |
| WO2023286668A1 (en)* | 2021-07-13 | 2023-01-19 | 日本電気硝子株式会社 | Glass plate for tempering, and tempered glass plate |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10900123B2 (en) | 2003-06-27 | 2021-01-26 | Spts Technologies Limited | Apparatus and method for controlled application of reactive vapors to produce thin films and coatings |
| JP2007509835A (en)* | 2003-10-29 | 2007-04-19 | サン−ゴバン グラス フランス | Reinforced pane for insulation |
| US8166778B2 (en) | 2003-10-29 | 2012-05-01 | Saint-Gobain Glass France | Tempered glass for thermal insulation |
| WO2006080292A1 (en)* | 2005-01-25 | 2006-08-03 | Central Glass Company, Limited | Substrate glass for display |
| JP2007099557A (en)* | 2005-10-04 | 2007-04-19 | Nippon Electric Glass Co Ltd | Tempered glass article and method for producing the same |
| JP2008083154A (en)* | 2006-09-26 | 2008-04-10 | Casio Comput Co Ltd | Method for thinning glass substrate, method for producing liquid crystal display element, and method for producing liquid crystal display device |
| JP2008115071A (en)* | 2006-10-10 | 2008-05-22 | Nippon Electric Glass Co Ltd | Reinforced glass substrate |
| JP2008115072A (en)* | 2006-10-10 | 2008-05-22 | Nippon Electric Glass Co Ltd | Reinforced glass substrate |
| JP2008195602A (en)* | 2007-01-16 | 2008-08-28 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
| JP2014040370A (en)* | 2007-01-16 | 2014-03-06 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
| JP2012036092A (en)* | 2007-01-16 | 2012-02-23 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
| JP2014205610A (en)* | 2007-03-02 | 2014-10-30 | 日本電気硝子株式会社 | Tempered sheet glass and method for producing the same |
| JP2012025661A (en)* | 2007-03-02 | 2012-02-09 | Nippon Electric Glass Co Ltd | Reinforced plate glass and method for producing the same |
| US9102566B2 (en) | 2007-03-02 | 2015-08-11 | Nippon Electric Glass Co., Ltd. | Reinforced plate glass and method for manufacturing the same |
| JP2010527892A (en)* | 2007-05-18 | 2010-08-19 | コーニング インコーポレイテッド | Chemically reinforced glass for cover plates that can be manufactured by the downdraw method |
| TWI386398B (en)* | 2007-08-03 | 2013-02-21 | Nippon Electric Glass Co | Strengthened glass substrate and manufacturing method thereof |
| JP2013234121A (en)* | 2007-08-03 | 2013-11-21 | Nippon Electric Glass Co Ltd | Tempered glass substrate, and method for producing the same |
| EP2474509B1 (en)* | 2007-08-03 | 2016-06-29 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| JP2013018703A (en)* | 2007-08-03 | 2013-01-31 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method of producing the same |
| JP2013032277A (en)* | 2007-08-03 | 2013-02-14 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for producing the same |
| JP2012236760A (en)* | 2007-08-03 | 2012-12-06 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for manufacturing the same |
| TWI547462B (en)* | 2007-08-03 | 2016-09-01 | 日本電氣硝子股份有限公司 | Strengthened glass substrate and manufacturing method thereof |
| US8679631B2 (en) | 2007-08-03 | 2014-03-25 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| WO2009019965A1 (en)* | 2007-08-03 | 2009-02-12 | Nippon Electric Glass Co., Ltd. | Hardened glass substrate and method for manufacturing the same |
| CN102320741B (en)* | 2007-08-03 | 2015-08-19 | 日本电气硝子株式会社 | Hardened glass substrate and manufacture method thereof |
| JP2011190174A (en)* | 2007-08-03 | 2011-09-29 | Nippon Electric Glass Co Ltd | Tempered glass substrate, and method for producing the same |
| JP2011195449A (en)* | 2007-08-03 | 2011-10-06 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for producing the same |
| JP2011195445A (en)* | 2007-08-03 | 2011-10-06 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for producing the same |
| JP2011195443A (en)* | 2007-08-03 | 2011-10-06 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for producing the same |
| JP2014040365A (en)* | 2007-08-03 | 2014-03-06 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method for manufacturing the same |
| KR101391677B1 (en)* | 2007-08-03 | 2014-05-07 | 니폰 덴키 가라스 가부시키가이샤 | Hardened glass substrate and method for manufacturing the same |
| JP2014097928A (en)* | 2007-08-03 | 2014-05-29 | Nippon Electric Glass Co Ltd | Reinforced glass substrate and its manufacturing method |
| US9034469B2 (en) | 2007-08-03 | 2015-05-19 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| TWI386397B (en)* | 2007-08-03 | 2013-02-21 | Nippon Electric Glass Co | Strengthened glass substrate and manufacturing method thereof |
| CN102424524B (en)* | 2007-08-03 | 2014-10-01 | 日本电气硝子株式会社 | Strengthened glass substrate, glass for strengthening, and method for manufacturing strengthened glass substrate |
| CN102320741A (en)* | 2007-08-03 | 2012-01-18 | 日本电气硝子株式会社 | Hardened glass substrate and method of manufacture thereof |
| CN102320740A (en)* | 2007-08-03 | 2012-01-18 | 日本电气硝子株式会社 | Tempered glass substrate and method of producing the same |
| TWI401227B (en)* | 2007-08-03 | 2013-07-11 | Nippon Electric Glass Co | Strengthened glass substrate and manufacturing method thereof |
| US9299869B2 (en) | 2007-08-03 | 2016-03-29 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| JP2014139129A (en)* | 2007-08-03 | 2014-07-31 | Nippon Electric Glass Co Ltd | Tempered glass substrate and method of manufacturing the same |
| KR101113108B1 (en) | 2007-08-03 | 2012-03-13 | 니폰 덴키 가라스 가부시키가이샤 | Hardened glass substrate and method for manufacturing the same |
| CN102424524A (en)* | 2007-08-03 | 2012-04-25 | 日本电气硝子株式会社 | Tempered glass substrate and method of producing the same |
| JP2009057271A (en)* | 2007-08-03 | 2009-03-19 | Nippon Electric Glass Co Ltd | Tempered glass substrate and manufacturing method thereof |
| US8168295B2 (en) | 2007-08-03 | 2012-05-01 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| KR101156983B1 (en) | 2007-08-03 | 2012-06-20 | 니폰 덴키 가라스 가부시키가이샤 | Hardened glass substrate and method for manufacturing the same |
| CN102515517A (en)* | 2007-08-03 | 2012-06-27 | 日本电气硝子株式会社 | Tempered glass substrate and method of producing the same |
| EP2474510A1 (en)* | 2007-08-03 | 2012-07-11 | Nippon Electric Glass Co., Ltd. | Tempered glass substrate and method of producing the same |
| US9054250B2 (en) | 2007-08-03 | 2015-06-09 | Nippon Electric Glass Co., Ltd | Tempered glass substrate and method of producing the same |
| US11370695B2 (en) | 2007-11-29 | 2022-06-28 | Corning Incorporated | Glasses having improved toughness and scratch resistance |
| US9809487B2 (en) | 2007-11-29 | 2017-11-07 | Corning Incorporated | Glasses having improved toughness and scratch resistance |
| US10464839B2 (en) | 2007-11-29 | 2019-11-05 | Corning Incorporated | Glasses having improved toughness and scratch resistance |
| US10364178B2 (en) | 2007-11-29 | 2019-07-30 | Corning Incorporated | Glasses having improved toughness and scratch resistance |
| JP2011505323A (en)* | 2007-11-29 | 2011-02-24 | コーニング インコーポレイテッド | Glass with improved toughness and scratch resistance |
| JP2011510904A (en)* | 2008-02-05 | 2011-04-07 | コーニング インコーポレイテッド | Damage-resistant glass articles for use as cover plates for electronic devices |
| JP2011510903A (en)* | 2008-02-08 | 2011-04-07 | コーニング インコーポレイテッド | Damage resistant chemically reinforced protective cover glass |
| JP2012197226A (en)* | 2008-02-26 | 2012-10-18 | Corning Inc | Fining agent for silicate glass |
| US10626042B2 (en) | 2008-02-26 | 2020-04-21 | Corning Incorporated | Fining agents for silicate glasses |
| KR101606600B1 (en)* | 2008-02-26 | 2016-03-25 | 코닝 인코포레이티드 | Fining agents for silicate glasses |
| US8623776B2 (en) | 2008-02-26 | 2014-01-07 | Corning Incorporated | Silicate glasses having low seed concentration |
| JP2011513171A (en)* | 2008-02-26 | 2011-04-28 | コーニング インコーポレイテッド | Refining agent for silicate glass |
| US9073779B2 (en) | 2008-02-26 | 2015-07-07 | Corning Incorporated | Fining agents for silicate glasses |
| US8431502B2 (en) | 2008-02-26 | 2013-04-30 | Corning Incorporated | Silicate glasses having low seed concentration |
| US10040715B2 (en) | 2008-02-26 | 2018-08-07 | Corning Incorporated | Silicate glasses having low seed concentration |
| EP2277839A4 (en)* | 2008-04-21 | 2011-07-13 | Asahi Glass Co Ltd | GLASS PLATE FOR DISPLAY PANEL, METHOD FOR MANUFACTURING SAME, AND METHOD FOR MANUFACTURING TFT PANEL |
| US8455375B2 (en) | 2008-04-21 | 2013-06-04 | Asahi Glass Company, Limited | Glass plate for display panels, process for producing it, and process for producing TFT panel |
| EP2426094A1 (en)* | 2008-04-21 | 2012-03-07 | Asahi Glass Company, Limited | Glass plate for display panels, process for producing it, and process for producing TFT panel |
| US8715829B2 (en) | 2008-05-30 | 2014-05-06 | Asahi Glass Company, Limited | Glass plate for display devices |
| JP2010030876A (en)* | 2008-06-27 | 2010-02-12 | Nippon Electric Glass Co Ltd | Tempered glass and manufacturing method for the same |
| JP2011527661A (en)* | 2008-07-11 | 2011-11-04 | コーニング インコーポレイテッド | Glass with compression surface for consumer use |
| JP2014062041A (en)* | 2008-08-04 | 2014-04-10 | Nippon Electric Glass Co Ltd | Reinforced glass and method of manufacturing the same |
| JP2010059038A (en)* | 2008-08-04 | 2010-03-18 | Nippon Electric Glass Co Ltd | Reinforced glass and method of manufacturing the same |
| EP2546209A3 (en)* | 2008-08-08 | 2013-02-27 | Corning Incorporated | Strengthened glass articles and methods of making |
| US8415013B2 (en) | 2008-08-08 | 2013-04-09 | Corning Incorporated | Strengthened glass articles and methods of making |
| WO2010016928A3 (en)* | 2008-08-08 | 2010-04-22 | Corning Incorporated | Strengthened glass articles and methods of making |
| CN106977093B (en)* | 2008-08-08 | 2020-12-25 | 康宁股份有限公司 | Strengthened glass articles and methods of making the same |
| JP2011530470A (en)* | 2008-08-08 | 2011-12-22 | コーニング インコーポレイテッド | Tempered glass article and manufacturing method thereof |
| WO2010016928A2 (en) | 2008-08-08 | 2010-02-11 | Corning Incorporated | Strengthened glass articles and methods of making |
| US8075999B2 (en) | 2008-08-08 | 2011-12-13 | Corning Incorporated | Strengthened glass articles and methods of making |
| CN106977093A (en)* | 2008-08-08 | 2017-07-25 | 康宁股份有限公司 | The glassware and its manufacture method of reinforcing |
| JP2015096462A (en)* | 2008-08-18 | 2015-05-21 | 日本電気硝子株式会社 | Manufacturing method of glass for touch panel |
| JP2010070445A (en)* | 2008-08-18 | 2010-04-02 | Nippon Electric Glass Co Ltd | Method for manufacturing glass for touch panel |
| JP2013010686A (en)* | 2008-08-18 | 2013-01-17 | Nippon Electric Glass Co Ltd | Method for manufacturing glass for touch panel |
| JP2012500177A (en)* | 2008-08-21 | 2012-01-05 | コーニング インコーポレイテッド | Durable glass housing / enclosure for electronic devices |
| JP2013014516A (en)* | 2009-01-21 | 2013-01-24 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass, and method for manufacturing glass for reinforcement |
| JP2010180076A (en)* | 2009-02-03 | 2010-08-19 | Nippon Electric Glass Co Ltd | Tempered glass |
| JP2017114762A (en)* | 2009-05-29 | 2017-06-29 | コルサム テクノロジーズ エルエルシーCorsam Technologies Llc | Fusion-formable sodium-containing glass |
| CN109264990A (en)* | 2009-05-29 | 2019-01-25 | 考斯曼技术有限公司 | Fusible forming contains soda-lime glass |
| WO2010138698A3 (en)* | 2009-05-29 | 2011-01-20 | Corning Incorporated | Fusion formable sodium containing glass |
| JP2015171994A (en)* | 2009-05-29 | 2015-10-01 | コルサム テクノロジーズ エルエルシーCorsam Technologies Llc | Fusion formable sodium-containing glass |
| CN102574726A (en)* | 2009-05-29 | 2012-07-11 | 康宁股份有限公司 | Fusible formable sodium-containing glass |
| US20170250296A1 (en)* | 2009-05-29 | 2017-08-31 | Corsam Technologies Llc | Fusion Formable Sodium Containing Glass |
| US9637408B2 (en) | 2009-05-29 | 2017-05-02 | Corsam Technologies Llc | Fusion formable sodium containing glass |
| JP2019006677A (en)* | 2009-05-29 | 2019-01-17 | コルサム テクノロジーズ エルエルシーCorsam Technologies Llc | Fusion moldable sodium-containing glass |
| JP2013500229A (en)* | 2009-07-24 | 2013-01-07 | コーニング インコーポレイテッド | Fusion moldable glass containing silica and sodium |
| US8647995B2 (en) | 2009-07-24 | 2014-02-11 | Corsam Technologies Llc | Fusion formable silica and sodium containing glasses |
| CN102639454A (en)* | 2009-07-24 | 2012-08-15 | 康宁股份有限公司 | Fusible forming glass containing silica and sodium |
| WO2011011667A1 (en)* | 2009-07-24 | 2011-01-27 | Corning Incorporated | Fusion formable silica and sodium containing glasses |
| US9530910B2 (en) | 2009-07-24 | 2016-12-27 | Corsam Technologies Llc | Fusion formable silica and sodium containing glasses |
| KR101739605B1 (en) | 2009-09-15 | 2017-05-24 | 코닝 인코포레이티드 | Glass and display having anti-glare properties |
| JP2013504514A (en)* | 2009-09-15 | 2013-02-07 | コーニング インコーポレイテッド | Antiglare glass and display |
| KR101848219B1 (en) | 2009-09-15 | 2018-05-24 | 코닝 인코포레이티드 | Glass and display having anti-glare properties |
| JPWO2011049146A1 (en)* | 2009-10-20 | 2013-03-14 | 旭硝子株式会社 | Glass plate for Cu-In-Ga-Se solar cell and solar cell using the same |
| WO2011049146A1 (en)* | 2009-10-20 | 2011-04-28 | 旭硝子株式会社 | Glass sheet for cu-in-ga-se solar cells, and solar cells using same |
| JP2011136855A (en)* | 2009-12-28 | 2011-07-14 | Optrex Corp | Method for producing glass substrate |
| WO2011104035A3 (en)* | 2010-02-26 | 2012-01-05 | Schott Ag | Chemically tempered glass |
| US10351471B2 (en) | 2010-02-26 | 2019-07-16 | Schott Ag | Chemically tempered glass |
| JP2013520385A (en)* | 2010-02-26 | 2013-06-06 | ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド | Thin lithium aluminosilicate glass for 3D precision molding |
| US12017952B2 (en) | 2010-02-26 | 2024-06-25 | Schott Ag | Chemically tempered glass |
| KR101506378B1 (en) | 2010-02-26 | 2015-03-26 | 쇼오트 아게 | Chemically tempered glass |
| US9298322B2 (en) | 2010-05-04 | 2016-03-29 | Winsky Technology Limited | Touch panel and method for fabricating the same |
| CN102243546A (en)* | 2010-05-13 | 2011-11-16 | 永恒科技有限公司 | Touch panel and manufacturing method thereof |
| JP2012214356A (en)* | 2010-12-29 | 2012-11-08 | Avanstrate Inc | Cover glass and method for producing the same |
| US8840997B2 (en) | 2010-12-29 | 2014-09-23 | Avanstrate Inc. | Cover glass and method for producing same |
| JP2012236737A (en)* | 2011-05-11 | 2012-12-06 | Asahi Glass Co Ltd | Glass manufacturing method, and glass |
| JP2013043795A (en)* | 2011-08-23 | 2013-03-04 | Nippon Electric Glass Co Ltd | Tempered glass and method of manufacturing the same |
| US9624125B2 (en) | 2011-10-25 | 2017-04-18 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US11707409B2 (en) | 2011-10-25 | 2023-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9474689B2 (en) | 2011-10-25 | 2016-10-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9517966B2 (en) | 2011-10-25 | 2016-12-13 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US9145329B2 (en) | 2011-10-25 | 2015-09-29 | Corning Incorporated | Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability |
| US10350139B2 (en) | 2011-10-25 | 2019-07-16 | Corning Incorporated | Pharmaceutical glass packaging assuring pharmaceutical sterility |
| US12275671B2 (en) | 2011-10-25 | 2025-04-15 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US9617183B2 (en) | 2011-10-25 | 2017-04-11 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US10196298B2 (en) | 2011-10-25 | 2019-02-05 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US10413481B2 (en) | 2011-10-25 | 2019-09-17 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US8980777B2 (en) | 2011-10-25 | 2015-03-17 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US10413483B2 (en) | 2011-10-25 | 2019-09-17 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9186295B2 (en) | 2011-10-25 | 2015-11-17 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9718721B2 (en) | 2011-10-25 | 2017-08-01 | Corning Incorporated | Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability |
| US10413482B2 (en) | 2011-10-25 | 2019-09-17 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US8551898B2 (en) | 2011-10-25 | 2013-10-08 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US11707408B2 (en) | 2011-10-25 | 2023-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US11707410B2 (en) | 2011-10-25 | 2023-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US10441505B2 (en) | 2011-10-25 | 2019-10-15 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US11325855B2 (en) | 2011-10-25 | 2022-05-10 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US11168017B2 (en) | 2011-10-25 | 2021-11-09 | Corning Incorporated | Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability |
| US9340447B2 (en) | 2011-10-25 | 2016-05-17 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US9474688B2 (en) | 2011-10-25 | 2016-10-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9241869B2 (en) | 2011-10-25 | 2016-01-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9198829B2 (en) | 2011-10-25 | 2015-12-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US10597322B2 (en) | 2011-10-25 | 2020-03-24 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US10577274B2 (en) | 2011-10-25 | 2020-03-03 | Corning Incorporated | Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability |
| US8753994B2 (en) | 2011-10-25 | 2014-06-17 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
| US10273048B2 (en) | 2012-06-07 | 2019-04-30 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
| JP2017114760A (en)* | 2012-06-08 | 2017-06-29 | 日本電気硝子株式会社 | Tempered glass, tempered glass plate and tempered glass |
| CN104125935A (en)* | 2012-06-08 | 2014-10-29 | 日本电气硝子株式会社 | Tempered glass, tempered glass sheet, and tempered glass |
| JP2014073952A (en)* | 2012-06-08 | 2014-04-24 | Nippon Electric Glass Co Ltd | Strengthened glass, strengthened glass plate and glass for strengthening |
| WO2013183716A1 (en)* | 2012-06-08 | 2013-12-12 | 日本電気硝子株式会社 | Tempered glass, tempered glass plate, and glass for tempering |
| US10173923B2 (en) | 2012-06-08 | 2019-01-08 | Nippon Electric Glass Co., Ltd. | Tempered glass, tempered glass plate, and glass for tempering |
| WO2014002932A1 (en)* | 2012-06-25 | 2014-01-03 | 日本電気硝子株式会社 | Glass substrate for organic el device and manufacturing method therefor |
| US12391600B2 (en) | 2012-06-28 | 2025-08-19 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
| US10273049B2 (en) | 2012-06-28 | 2019-04-30 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
| JP2014073953A (en)* | 2012-07-09 | 2014-04-24 | Nippon Electric Glass Co Ltd | Strengthened glass and strengthened glass plate |
| WO2014010533A1 (en)* | 2012-07-09 | 2014-01-16 | 日本電気硝子株式会社 | Tempered glass and tempered glass sheet |
| FR2995887A1 (en)* | 2012-09-21 | 2014-03-28 | Saint Gobain | GLASS SHEET AND DEVICE COMPRISING SAID GLASS SHEET |
| WO2014044985A1 (en)* | 2012-09-21 | 2014-03-27 | Saint-Gobain Glass France | Sheet of glass and device including said sheet of glass |
| AU2013320035B2 (en)* | 2012-09-21 | 2017-04-13 | Saint-Gobain Glass France | Sheet of glass and device including said sheet of glass |
| EA030352B1 (en)* | 2012-09-21 | 2018-07-31 | Сэн-Гобэн Гласс Франс | Electronic pocket or portable device |
| US10071930B2 (en) | 2012-09-21 | 2018-09-11 | Saint-Gobain Glass France | Sheet of glass and device including said sheet of glass |
| JP2013040095A (en)* | 2012-09-25 | 2013-02-28 | Nippon Electric Glass Co Ltd | Tempered glass, glass for tempering, and method for manufacturing tempered glass |
| JP2013121912A (en)* | 2012-12-25 | 2013-06-20 | Nippon Electric Glass Co Ltd | Reinforced glass substrate and manufacturing method of reinforced glass substrate |
| CN104884399B (en)* | 2012-12-27 | 2017-12-29 | 旭硝子株式会社 | Method for producing glass plate capable of reducing warpage during chemical strengthening, and glass plate |
| JPWO2014104303A1 (en)* | 2012-12-27 | 2017-01-19 | 旭硝子株式会社 | Glass plate manufacturing method and glass plate capable of reducing warpage during chemical strengthening |
| US9714193B2 (en) | 2012-12-27 | 2017-07-25 | Asahi Glass Company, Limited | Float glass for chemical strengthening |
| WO2014104303A1 (en)* | 2012-12-27 | 2014-07-03 | 旭硝子株式会社 | Method for manufacturing glass plate with which warping during chemical strengthening is reduced and glass plate |
| WO2014119538A1 (en)* | 2013-01-29 | 2014-08-07 | オーエムジー株式会社 | Glass composition and glass product |
| US9707153B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9713572B2 (en) | 2013-04-24 | 2017-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9700485B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9849066B2 (en) | 2013-04-24 | 2017-12-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9839579B2 (en) | 2013-04-24 | 2017-12-12 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9700486B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9603775B2 (en) | 2013-04-24 | 2017-03-28 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9717649B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9717648B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9707155B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US9707154B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
| US10407338B2 (en) | 2013-04-29 | 2019-09-10 | Corning Incorporated | Photovoltaic module package |
| US9701567B2 (en) | 2013-04-29 | 2017-07-11 | Corning Incorporated | Photovoltaic module package |
| US11034611B2 (en) | 2014-05-20 | 2021-06-15 | Corning Incorporated | Scratch resistant glass and method of making |
| US9670088B2 (en) | 2014-05-20 | 2017-06-06 | Corning Incorporated | Scratch resistant glass and method of making |
| US10472272B2 (en) | 2016-01-21 | 2019-11-12 | AGC Inc. | Chemically strengthened glass, and glass for chemical strengthening |
| US10370287B2 (en) | 2016-01-21 | 2019-08-06 | AGC Inc. | Chemically strengthened glass, and glass for chemical strengthening |
| US11767252B2 (en) | 2016-01-21 | 2023-09-26 | AGC Inc. | Chemically strengthened glass, and glass for chemical strengthening |
| JPWO2017126605A1 (en)* | 2016-01-21 | 2018-11-08 | Agc株式会社 | Chemically tempered glass and method for producing chemically tempered glass |
| US11365149B2 (en) | 2016-01-21 | 2022-06-21 | AGC Inc. | Chemically strengthened glass and method for manufacturing chemically strengthened glass |
| US10384974B2 (en) | 2016-01-21 | 2019-08-20 | AGC Inc. | Chemically strengthened glass, and glass for chemical strengthening |
| US11390560B2 (en) | 2016-01-21 | 2022-07-19 | AGC Inc. | Chemically strengthened glass and method for manufacturing chemically strengthened glass |
| JP2019519463A (en)* | 2016-06-27 | 2019-07-11 | エージーシー グラス ユーロップAgc Glass Europe | Chemically tempered glass plate |
| KR20190022707A (en)* | 2016-06-27 | 2019-03-06 | 에이쥐씨 글래스 유럽 | Chemically temperable glass plate |
| KR102593850B1 (en)* | 2016-06-27 | 2023-10-24 | 에이쥐씨 글래스 유럽 | Chemically temperable glass plate |
| US11535548B2 (en) | 2016-10-18 | 2022-12-27 | AGC Inc. | Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass |
| JPWO2018074335A1 (en)* | 2016-10-18 | 2019-08-08 | Agc株式会社 | Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass |
| JP7040456B2 (en) | 2016-10-18 | 2022-03-23 | Agc株式会社 | Manufacturing method of chemically strengthened glass, chemically strengthened glass and chemically strengthened glass |
| JP2020514219A (en)* | 2016-12-22 | 2020-05-21 | ショット アクチエンゲゼルシャフトSchott AG | Thin glass substrate, manufacturing method and manufacturing apparatus thereof |
| US11745459B2 (en) | 2016-12-22 | 2023-09-05 | Schott Ag | Thin glass substrate, in particular a borosilicate glass thin glass substrate, method and apparatus for its production |
| JP7315542B2 (en) | 2016-12-22 | 2023-07-26 | ショット アクチエンゲゼルシャフト | Thin glass substrate, especially borosilicate glass thin glass substrate, manufacturing method and manufacturing apparatus thereof |
| US11890844B2 (en) | 2016-12-22 | 2024-02-06 | Schott Ag | Thin glass substrate, method and apparatus for its production |
| US11993062B2 (en) | 2016-12-22 | 2024-05-28 | Schott Ag | Composite glass pane |
| US12005687B2 (en) | 2016-12-22 | 2024-06-11 | Schott Ag | Thin glass substrate, method and apparatus for its production |
| JP7208141B2 (en) | 2016-12-22 | 2023-01-18 | ショット アクチエンゲゼルシャフト | Thin glass substrate, manufacturing method and manufacturing apparatus thereof |
| JP2020537625A (en)* | 2016-12-22 | 2020-12-24 | ショット アクチエンゲゼルシャフトSchott AG | Thin glass substrate, especially borosilicate glass thin glass substrate, its manufacturing method and manufacturing equipment |
| WO2023286668A1 (en)* | 2021-07-13 | 2023-01-19 | 日本電気硝子株式会社 | Glass plate for tempering, and tempered glass plate |
| Publication | Publication Date | Title |
|---|---|---|
| JP2004131314A (en) | Chemically tempered glass substrate with transparent conductive film and method for producing the same | |
| JP6075661B2 (en) | Method for producing tempered glass plate and method for producing tempered glass plate | |
| TWI488825B (en) | Glass for chemical tempering | |
| EP2177485B1 (en) | Hardened glass substrate and method for manufacturing the same | |
| TWI491571B (en) | Glass plate for display device, plate glass for display device and production process thereof | |
| JP5904426B2 (en) | Tempered glass and method for producing the same | |
| JP5839338B2 (en) | Method for producing tempered glass sheet | |
| US9809486B2 (en) | Tempered glass and glass | |
| JP6597950B2 (en) | Tempered glass and tempered glass | |
| JP2016121067A (en) | Method of producing tempered glass substrate | |
| KR20130135943A (en) | Toughened glass substrate and process for producing same | |
| JP2020015654A (en) | Tempered glass and tempering glass |