Movatterモバイル変換


[0]ホーム

URL:


JP2004079784A - Silica glass plate for fluid distribution and manufacturing method thereof - Google Patents

Silica glass plate for fluid distribution and manufacturing method thereof
Download PDF

Info

Publication number
JP2004079784A
JP2004079784AJP2002238094AJP2002238094AJP2004079784AJP 2004079784 AJP2004079784 AJP 2004079784AJP 2002238094 AJP2002238094 AJP 2002238094AJP 2002238094 AJP2002238094 AJP 2002238094AJP 2004079784 AJP2004079784 AJP 2004079784A
Authority
JP
Japan
Prior art keywords
silica glass
fluid circulation
glass plate
plasma etching
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238094A
Other languages
Japanese (ja)
Inventor
Takafumi Kawamura
川村 孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co LtdfiledCriticalToshiba Ceramics Co Ltd
Priority to JP2002238094ApriorityCriticalpatent/JP2004079784A/en
Publication of JP2004079784ApublicationCriticalpatent/JP2004079784A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromJapanese

【課題】特に、プラズマエッチング装置において、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板及びその製造方法を提供する。
【解決手段】流体流通用シリカガラス板は、平板状のシリカガラス基板に多数の流体流通孔を有し、この流体流通孔は、その両端に、外方にいくに従って拡径する拡径部が設けられている。また、その製造方法である。
【選択図】 図1
In particular, in a plasma etching apparatus, a silica glass plate for fluid circulation with good reaction efficiency such as plasma etching, a built-in apparatus such as a plasma etching apparatus can be miniaturized, and drilling can be easily performed, and a method for manufacturing the same. I will provide a.
A silica glass plate for fluid circulation has a large number of fluid circulation holes in a flat silica glass substrate, and the fluid circulation holes have diameter-expanded portions that increase in diameter toward the outside at both ends. Is provided. Moreover, it is the manufacturing method.
[Selection] Figure 1

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は液体もしくはガス等の流体流通用シリカガラス板及びその製造方法に係わり、特に流体流通孔の形状を改良した流体流通用シリカガラス板及びその製造方法に関する。
【0002】
【従来の技術】
一般に被処理基板に被膜を形成して液晶基板や半導体基板を製造するにはプラズマエッチング装置が用いられているが、図6に示すように、従来のプラズマエッチング装置31は、チャンバー32の上部に高周波電極33及びシャワープレート34を有し、チャンバー32の下部にはシャワープレート34に対向して被処理基板Wが載置されるサセプタ電極35を有している。また、高周波電極33とシャワープレート34間には空間36が形成され、この空間36内に反応ガスを導入するためのガス導入管37が連通されている。このガス導入管37を通じてこの空間36内に導入された反応ガスは、シャワープレート34の多数の流通孔38からチャンバー32内に供給されるようになっている。
【0003】
しかしながら、図7に示すように、従来の上記シャワープレート34は、シリカガラス基板に等間隔に多数の流通孔38が穿設されて形成されており、この流通孔38は、その流入口38a、連通孔38b及び流出口38cが1mm以下の同一直径を有する細い円筒形状の長孔からなっている。
【0004】
また、厚さが5〜10mmのシリカガラス基板に、直径1mm以下の孔明けは、レーザ孔明けによっても孔明け作業効率が悪かった。さらに、図8に示すように、従来のシャワープレート34を用いたプラズマエッチング時、流通孔38の流入口38aは、その開口面積が小さく、作用ガス(プラズマ)を流入口38aから十分に取り入れることができないため、プラズマエッチングの効率が十分でない。また、流出口38cが細孔のままであるため、作用ガスは十分拡散されず、被処理基板Wに均一にシャワーするには、シャワープレート34と被処理基板Wとの離間距離Lを十分に大きくする必要があり、プラズマエッチング装置が大型になる傾向があった。
【0005】
そこで、図8に示す従来のシャワープレート34の問題点を解消するため、図9に示すように、流通孔42の流入口42aに、外方にいくに従って拡径する拡径部が設けられたシャワープレート44の検討を行った。しかしながら、このように流入口42aに拡径部が設けられたシャワープレート41は、作用ガスを流入口42aから十分取り入れることができるが、流出口42cが細孔のままであるため作用ガスを十分拡散できず、被処理基板Wに均一にシャワーするには、シャワープレート41と被処理基板Wとの離間距離Lを十分に大きくする必要があり、プラズマエッチング装置が大型になる傾向は残されたままである。
【0006】
また、図8に示す従来のシャワープレート34を用いたプラズマエッチング装置の大型化の問題を解消するために、図10に示すように、流通孔52の流出口52cに、外方にいくに従って拡径する拡径部が設けられたシャワープレート54の検討を行った。しかしながら、このように流出口52cに拡径部が設けられたシャワープレート54は、このシャワープレート54と被熱処理基板Wとの離間距離Lを従来の離間距離Lに比べて小さくすることができ、さらに、作用ガスは被処理基板Wに均一にシャワーできるが、流入口52aが細孔のままであるため作用ガスを十分に取り入れることができず、プラズマエッチングの効率がよくない。
【0007】
また、純度及び耐プラズマ性の観点からシャワープレートにシリカガラス基板を用いる場合、上述のように、従来形状の流通孔の構造では、その孔明け加工が困難であった。
【0008】
【発明が解決しようとする課題】
そこで、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明加工が容易なガス流通用シリカガラス板が要望されていた。
【0009】
また、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板の製造方法が要望されていた。
【0010】
本発明は上述した事情を考慮してなされたもので、特に、プラズマエッチング装置において、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板(特にはガス流通用シリカガラス板)を提供することを目的とする。
【0011】
また、特に、プラズマエッチング装置において、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板(特にはガス流通用シリカガラス板)の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、平板状のシリカガラス基板に多数の流体流通孔が設けられた流体流通用シリカガラス板において、前記流体流通孔は、その両端に、外方にいくに従って拡径する拡径部が設けられていることを特徴とする流体流通用シリカガラス板が提供される。これにより、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板が実現される。
【0013】
好適な一例では、上記流体流通孔は、砂時計形状である。これにより、プラズマエッチング等の反応効率がよく、また、流体流通用シリカガラス板は表裏の区別なく使用可能となる。
【0014】
また、本発明の他の態様によれば、平板状のシリカガラス基板を用意し、レーザ加工によって、その一面に多数の円錐形状孔を設け、さらに、他面における前記多数の円錐形状孔に対向する位置に円錐形状孔を設け、しかる後に、両円錐形状孔を連通する連通孔を穿設することを特徴とする流体流通用シリカガラス板の製造方法が提供される。これにより、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板の製造方法が実現される。
【0015】
好適な一例では、上記連通孔の穿設後に、レーザ光の出力を下げて流体流通孔をアニールする。これにより、より正確な形状の連通孔が形成され、さらに、孔面からのパーティクルの発生が抑制される。
【0016】
【発明の実施の形態】
以下、本発明に係わる流体流通用シリカガラス板の実施形態について添付図面を参照して説明する。
【0017】
図1は本発明に係わる流体流通用シリカガラス板の縦断面図である。
【0018】
図1に示すように、本発明に係わる流体流通用シリカガラス板1は、平板状のシリカガラス基板2に多数の流体流通孔3が設けられており、この流体流通孔3は、図2に拡大して示すように、その流入口3a及び流出口3cには外方にいくに従って拡径する截頭円錐形状の拡径部が設けられ、流入口3a及び流出口3cは断面が小円形の連通孔3bによって連通されている。従って、流体流通孔3はほぼ砂時計形状に形成される。
【0019】
例えば、上記シリカガラス基板2の板厚tは5〜10mmが好ましく、連通孔3bはその長さlが0.5〜5mm、その内径dは0.1〜0.5mmであるのが好ましく、流入口3a及び流出口3cの各表面での内径dは0.3〜1mmであるのが好ましい。
【0020】
次に本発明に係わる流体流通用シリカガラス板の製造方法について説明する。
【0021】
図3は流体流通用シリカガラス板の製造工程の概念図である。
【0022】
図3(a)に示すように、平板状のシリカガラス基板2を用意し、レーザ加工装置Lzによって、その一面2sに多数の円錐形状孔3aを設ける。さらに、図3(b)に示すように、他面2rにおける上記多数の円錐形状孔3aに対向する位置に円錐形状孔3cを設ける。しかる後、レーザ光の焦点を変えて、図3(c)及び図2に示すように、両円錐形状孔3a、3cを連通する連通孔3bを穿設する。さらに、孔明け直後レーザ光の出力を下げて、流体流通孔3をアニールする。このようにして流体流通用シリカガラス板1を製造する。孔明け直後アニールにより、流体流通孔3はより正確な砂時計形状となる。
【0023】
また、レーザ光を用いて孔明けを行い、アニールを行うため、流体流通孔3の内面状態は石英ガラスが溶けた状態で透明、高平坦(JIS B060−1994 算術平均粗さRa0.05μm以下)となり、孔面からのパーティクルの発生を抑制できる。
【0024】
また、本発明に係わる流体流通用シリカガラス板の一実施形態としてのガス流通用シリカガラス板を組込んだプラズマエッチング装置を用いた半導体基板の製造方法について説明する。
【0025】
図4に示すように、本実施形態のガス流通用シリカガラス板1が組込まれて用いられるプラズマエッチング装置11は、チャンバー12の上部に高周波電極13及びシャワープレートとして組込まれた本実施形態のガス流通用シリカガラス板1を有し、チャンバー12の下部には、ガス流通用シリカガラス板1に対向して被処理基板Wが載置され、サセプタシールド14が設けられたサセプタ電極15を有している。高周波電極13及びサセプタ電極15は、高周波電源16に接続され、高周波電極13側で接地されている。また、高周波電極13とガス流通用シリカガラス板1間には、空間17が形成され、空間17内に反応ガスを導入するためのガス導入管18が連通されている。このガス導入管18を通じて、空間17内に導入された反応ガスは、ガス流通用シリカガラス板1の多数の流通孔3からチャンバー12内に供給されるようになっている。また、高周波電極13及びガス導入管18はハウジング19に収納されている。
【0026】
従って、図5に示すように、このようなプラズマエッチング装置11を用いたエッチング工程において、空間17でプラズマ化された作用ガスは、ガス流通用シリカガラス板1に多数設けられたガス流通孔3を通過して、被処理基板Wにシャワーされるが、ガス流通孔3には、外方にいくに従って拡径する截頭円錐形状の拡径部が設けられた流入口3aが形成されているので、作用ガスを流入口3aから十分取り入れることができる。また、同様に、ガス流通孔3には、外方にいくに従って拡径する截頭円錐形状の拡径部が設けられた流出口3cが形成されているので、作用ガスは被処理基板Wに均一にシャワーされる。さらに、拡径部が設けられた流出口3cにより、作用ガスが分散されるので、ガス流通用シリカガラス板1と被熱処理基板Wとの離間距離Lを、従来に比べて小さくしても、作用ガスが被処理基板Wに均一にシャワーされるため、プラズマエッチング装置11を小型にすることができる。また、ガス流通孔3は砂時計形状であるため、ガス流通用シリカガラス板1を表裏の区別なく使用できる。
【0027】
なお、上述した実施形態では、本発明に係わるガス流通用シリカガラス板をプラズマエッチング装置に組込んで使用する例で説明したが、プラズマエッチング装置に限らず、種々の装置に組込んで使用できるのは勿論であり、本発明に係わる流体流通用シリカガラス板は、例えば、半導体製造用の液体(洗浄液)拡散板としても用いることができ、これによれば、洗浄液の拡散効率がよく、装置の小型化が図れる。
【0028】
【実施例】
本発明に係わるガス流通用シリカガラス板の製造方法によりCO2レーザ光を用いて、孔明けを行ったところ、5〜10mm厚さのシリカガラス板に流入口径0.3〜1mm、連通孔径0.1〜0.5mm、流出口径0.1〜1mmの砂時計形状の孔明けが、15秒/孔以内で可能であった。孔明け条件としては、出力300W以下、焦点位置10mm以下で双方を加工途中に可変させ、孔明け完了直後、50W以下のレーザ光によるアニーリングにより、正確な砂時計形状の形成が可能となった。これにより、半導体ウェーハのエッチング及びエッチングプロセスにおいて、ガスの流れを半導体ウェーハに対し均一に制御することが可能となり、プラズマエッチング装置の性能を向上させ得ることがわかった。さらに、レーザ光で孔明けを行っているため、連通孔の内面状態はシリカガラスが溶けた状態で透明(Ra0.05μm以下)となり、連通孔内面からのパーティクルを抑制できることがわかった。
【0029】
【発明の効果】
本発明に係わる流体流通用シリカガラス板によれば、特に、プラズマエッチング装置において、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板(特にはガス流通用シリカガラス板)を提供することができる。
【0030】
また、本発明に係わる流体流通用シリカガラス板の製造方法によれば、特に、プラズマエッチング装置において、プラズマエッチング等の反応効率がよく、プラズマエッチング装置等の組込み装置の小型化が図れ、かつ、孔明け加工が容易な流体流通用シリカガラス板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる流体流通用シリカガラス板の縦断面図。
【図2】図1の流体流通用シリカガラス板の流体流通孔の部分を拡大して示す概念図。
【図3】本発明に係わる流体流通用シリカガラス板の製造工程の概念図。
【図4】本発明に係わるガス流通用シリカガラスが組込まれたプラズマエッチング装置の概念図。
【図5】本発明に係わるガス流通用シリカガラスの使用状態を示す概念図。
【図6】本発明に係わるガス流通用シリカガラス板の縦断面図。
【図7】従来のガス流通用シリカガラスが組込まれたプラズマエッチング装置の概念図。
【図8】従来のガス流通用シリカガラスの使用状態を示す概念図。
【図9】従来のガス流通用シリカガラスの使用状態を示す概念図。
【図10】従来のガス流通用シリカガラスの使用状態を示す概念図。
【符号の説明】
1 流体流通用シリカガラス板
2 シリカガラス基板
3 流体流通孔
3a 流入口
3c 流出口
3b 連通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silica glass plate for fluid circulation such as liquid or gas and a method for producing the same, and more particularly to a silica glass plate for fluid circulation having an improved shape of fluid circulation holes and a method for producing the same.
[0002]
[Prior art]
In general, a plasma etching apparatus is used to manufacture a liquid crystal substrate or a semiconductor substrate by forming a coating film on a substrate to be processed. However, as shown in FIG. A high-frequency electrode 33 and ashower plate 34 are provided, and asusceptor electrode 35 on which a substrate to be processed W0 is placed is placed below thechamber 32 so as to face theshower plate 34. Aspace 36 is formed between the high-frequency electrode 33 and theshower plate 34, and agas introduction pipe 37 for introducing a reaction gas is communicated with thespace 36. The reaction gas introduced into thespace 36 through thegas introduction pipe 37 is supplied into thechamber 32 through a number offlow holes 38 of theshower plate 34.
[0003]
However, as shown in FIG. 7, theconventional shower plate 34 is formed by drilling a number offlow holes 38 at equal intervals in a silica glass substrate. Thecommunication hole 38b and theoutflow port 38c are formed of a thin cylindrical long hole having the same diameter of 1 mm or less.
[0004]
Further, drilling with a diameter of 1 mm or less on a silica glass substrate having a thickness of 5 to 10 mm was poor in drilling work efficiency even by laser drilling. Further, as shown in FIG. 8, at the time of plasma etching using theconventional shower plate 34, theinlet 38a of theflow hole 38 has a small opening area, and the working gas (plasma) is sufficiently taken in from theinlet 38a. Therefore, the efficiency of plasma etching is not sufficient. Moreover, since theoutlet 38c remains pores, working gas is not sufficiently diffused, to uniformly shower target substrate W0 is the distance L0 between theshower plate 34 and the substrate to be processed W0 Therefore, the plasma etching apparatus tends to be large.
[0005]
Therefore, in order to solve the problems of theconventional shower plate 34 shown in FIG. 8, a diameter-enlarged portion that increases in diameter toward the outside is provided at the inlet 42a of thecirculation hole 42 as shown in FIG. Theshower plate 44 was examined. However, the shower plate 41 having the enlarged diameter portion at the inlet 42a as described above can sufficiently take in the working gas from the inlet 42a. However, since theoutlet 42c remains in the pores, the working gas is sufficient. In order to make it impossible to diffuse and to shower uniformly on the substrate W1 to be processed, it is necessary to sufficiently increase the separation distance L1 between the shower plate 41 and the substrate W1 to be processed. It remains.
[0006]
Further, in order to solve the problem of an increase in the size of the plasma etching apparatus using theconventional shower plate 34 shown in FIG. 8, as shown in FIG. Examination of theshower plate 54 provided with the diameter-expanded part was performed. However, theshower plate 54 of the enlarged diameter portion is provided on theway outlet 52c is be made smaller than the distance L2 between theshower plate 54 and be thermally substrate W2 in the conventional distance L1 Furthermore, although the working gas can be uniformly showered on the substrate W2 to be processed, the working gas cannot be sufficiently taken in because theinflow port 52a remains in the pores, and the efficiency of plasma etching is not good.
[0007]
In addition, when a silica glass substrate is used for the shower plate from the viewpoint of purity and plasma resistance, as described above, it is difficult to make a hole in the conventional shape of the through hole structure.
[0008]
[Problems to be solved by the invention]
Accordingly, there has been a demand for a silica glass plate for gas distribution that has good reaction efficiency such as plasma etching, can be made compact in an embedded device such as a plasma etching device, and can be easily perforated.
[0009]
In addition, there has been a demand for a method for producing a silica glass plate for fluid circulation, which has good reaction efficiency such as plasma etching, can reduce the size of a built-in apparatus such as a plasma etching apparatus, and is easy to drill.
[0010]
The present invention has been made in consideration of the above-described circumstances, and in particular, in a plasma etching apparatus, the reaction efficiency of plasma etching and the like is good, the size of an embedded apparatus such as a plasma etching apparatus can be reduced, and drilling is performed. It is an object to provide an easy silica glass plate for fluid circulation (particularly, a silica glass plate for gas circulation).
[0011]
In particular, in a plasma etching apparatus, a silica glass plate for fluid circulation (especially gas circulation) that has good reaction efficiency such as plasma etching, can be made compact in an embedded apparatus such as a plasma etching apparatus, and is easy to drill. An object of the present invention is to provide a method for producing a silica glass plate.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, in a silica glass plate for fluid circulation in which a plate-like silica glass substrate is provided with a large number of fluid circulation holes, the fluid circulation holes are formed at both ends thereof. There is provided a silica glass plate for fluid circulation, characterized in that a diameter-expanding portion that increases in diameter as it goes outward is provided. As a result, a silica glass plate for fluid circulation that has good reaction efficiency such as plasma etching, can be miniaturized in a built-in apparatus such as a plasma etching apparatus, and can be easily drilled is realized.
[0013]
In a preferred example, the fluid flow hole has an hourglass shape. Thereby, the reaction efficiency of plasma etching or the like is good, and the silica glass plate for fluid circulation can be used without distinction between the front and the back.
[0014]
According to another aspect of the present invention, a flat silica glass substrate is prepared, a plurality of conical holes are provided on one surface thereof by laser processing, and the conical holes on the other surface are opposed to the conical holes. There is provided a method for producing a silica glass plate for fluid circulation, characterized in that a conical hole is provided at a position where the conical hole is formed, and then a communicating hole is formed to communicate the two conical holes. As a result, a manufacturing method of a silica glass plate for fluid circulation that achieves high reaction efficiency such as plasma etching, can reduce the size of a built-in apparatus such as a plasma etching apparatus, and can be easily perforated is realized.
[0015]
In a preferred example, after the communication hole is drilled, the laser beam output is lowered to anneal the fluid circulation hole. Thereby, a communication hole having a more accurate shape is formed, and generation of particles from the hole surface is further suppressed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a silica glass plate for fluid circulation according to the present invention will be described below with reference to the accompanying drawings.
[0017]
FIG. 1 is a longitudinal sectional view of a silica glass plate for fluid circulation according to the present invention.
[0018]
As shown in FIG. 1, thesilica glass plate 1 for fluid circulation according to the present invention is provided with a large number offluid circulation holes 3 in a flatsilica glass substrate 2, and thefluid circulation holes 3 are shown in FIG. As shown in an enlarged manner, theinlet 3a and theoutlet 3c are provided with a frustoconical diameter-expanded portion that increases in diameter toward the outside, and theinlet 3a and theoutlet 3c have a small circular cross section. It communicates with thecommunication hole 3b. Accordingly, thefluid circulation hole 3 is formed in an approximately hourglass shape.
[0019]
For example, the thickness t of thesilica glass substrate 2 is preferably 5 to 10 mm, that thecommunication hole 3b is its length l is 0.5 to 5 mm, an inner diameterd 1 is 0.1~0.5mm preferably , the inner diameterd 2 of each surface of theinlet 3a and theoutlet 3c is preferably 0.3 to 1 mm.
[0020]
Next, the manufacturing method of the silica glass plate for fluid distribution concerning this invention is demonstrated.
[0021]
FIG. 3 is a conceptual diagram of a manufacturing process of a silica glass plate for fluid circulation.
[0022]
As shown in FIG. 3 (a), providing a plate-likesilica glass substrate 2, the laser processing apparatus Lz, provided a large number of cone-shapedholes 3a1 on onesurface 2s. Furthermore, as shown in FIG. 3 (b), providedconical hole 3c1 at a position facing the a large number of cone-shapedholes 3a1 in theother surface 2r. Thereafter, by changing the focus of the laser beam, as shown in FIG. 3 (c) and 2, both theconical hole3a 1, 3c1 is bored a throughhole 3b1 communicating. Further, the output of the laser beam is lowered immediately after drilling, and thefluid circulation hole 3 is annealed. In this way, thesilica glass plate 1 for fluid circulation is manufactured. Thefluid flow hole 3 becomes a more accurate hourglass shape by annealing immediately after drilling.
[0023]
In addition, since the laser flow is used for drilling and annealing, the inner surface of thefluid circulation hole 3 is transparent and flat with the quartz glass melted (JIS B060-1994 arithmetic average roughness Ra 0.05 μm or less) Thus, generation of particles from the hole surface can be suppressed.
[0024]
A method for manufacturing a semiconductor substrate using a plasma etching apparatus incorporating a silica glass plate for gas flow as an embodiment of the silica glass plate for fluid flow according to the present invention will be described.
[0025]
As shown in FIG. 4, theplasma etching apparatus 11 used by incorporating the silica glass plate forgas circulation 1 of this embodiment is used as a high-frequency electrode 13 and a shower plate in the upper part of achamber 12. It has asilica glass plate 1 for distribution, and asusceptor electrode 15 on which a substrate W to be processed is placed facing thesilica glass plate 1 for gas distribution and asusceptor shield 14 is provided at the bottom of thechamber 12. ing. Thehigh frequency electrode 13 and thesusceptor electrode 15 are connected to a highfrequency power supply 16 and are grounded on thehigh frequency electrode 13 side. Aspace 17 is formed between the high-frequency electrode 13 and thesilica glass plate 1 for gas circulation, and agas introduction pipe 18 for introducing a reaction gas into thespace 17 is communicated. The reaction gas introduced into thespace 17 through thegas introduction pipe 18 is supplied into thechamber 12 from a number offlow holes 3 of thesilica glass plate 1 for gas flow. Thehigh frequency electrode 13 and thegas introduction pipe 18 are accommodated in ahousing 19.
[0026]
Therefore, as shown in FIG. 5, in the etching process using such aplasma etching apparatus 11, the working gas that has been converted into plasma in thespace 17 has a large number of gas flow holes 3 provided in thesilica glass plate 1 for gas flow. Thegas flow hole 3 is formed with aninlet 3a provided with a frustoconical diameter-enlarged portion that increases in diameter toward the outside. Therefore, the working gas can be sufficiently taken in from theinflow port 3a. Similarly, thegas flow hole 3 is formed with anoutlet 3c provided with a frustoconical diameter-expanded portion that expands toward the outside, so that the working gas flows into the substrate W to be processed. Showered uniformly. Furthermore, since the working gas is dispersed by theoutlet 3c provided with the enlarged diameter portion, even if the separation distance L between thesilica glass plate 1 for gas flow and the substrate to be heat treated W is smaller than the conventional one, Since the working gas is uniformly showered on the substrate to be processed W, theplasma etching apparatus 11 can be reduced in size. Moreover, since thegas distribution hole 3 has an hourglass shape, thesilica glass plate 1 for gas distribution can be used without distinction between the front and back sides.
[0027]
In the above-described embodiment, the example of using the silica glass plate for gas distribution according to the present invention incorporated in a plasma etching apparatus has been described. However, the present invention is not limited to the plasma etching apparatus and can be incorporated in various apparatuses. Of course, the silica glass plate for fluid circulation according to the present invention can also be used as, for example, a liquid (cleaning liquid) diffusion plate for semiconductor manufacturing. According to this, the diffusion efficiency of the cleaning liquid is good, and the apparatus Can be miniaturized.
[0028]
【Example】
When CO2 laser light was used to make a hole by the method for producing a silica glass plate for gas distribution according to the present invention, an inlet diameter of 0.3 to 1 mm and a communication hole diameter of 0. Hourglass-shaped drilling of 1 to 0.5 mm and an outlet diameter of 0.1 to 1 mm was possible within 15 seconds / hole. As the drilling conditions, both an output of 300 W or less and a focal position of 10 mm or less were varied during machining, and immediately after drilling was completed, annealing with a laser beam of 50 W or less made it possible to form an accurate hourglass shape. As a result, it has been found that in the etching and etching process of the semiconductor wafer, the gas flow can be uniformly controlled with respect to the semiconductor wafer, and the performance of the plasma etching apparatus can be improved. Furthermore, since the drilling was performed with laser light, the inner surface of the communication hole became transparent (Ra 0.05 μm or less) when the silica glass was melted, and it was found that particles from the inner surface of the communication hole could be suppressed.
[0029]
【The invention's effect】
According to the silica glass plate for fluid circulation according to the present invention, particularly in a plasma etching apparatus, the reaction efficiency of plasma etching and the like is good, the built-in apparatus such as the plasma etching apparatus can be downsized, and drilling is easy. A silica glass plate for fluid distribution (particularly, a silica glass plate for gas distribution) can be provided.
[0030]
In addition, according to the method for producing a silica glass plate for fluid circulation according to the present invention, particularly in the plasma etching apparatus, the reaction efficiency of plasma etching and the like is good, the size of the built-in apparatus such as the plasma etching apparatus can be reduced, and It is possible to provide a method for producing a silica glass plate for fluid circulation that can be easily perforated.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a silica glass plate for fluid circulation according to the present invention.
2 is an enlarged conceptual view of a fluid circulation hole portion of the fluid circulation silica glass plate of FIG. 1;
FIG. 3 is a conceptual diagram of a process for producing a silica glass plate for fluid circulation according to the present invention.
FIG. 4 is a conceptual diagram of a plasma etching apparatus in which silica glass for gas distribution according to the present invention is incorporated.
FIG. 5 is a conceptual diagram showing a use state of a silica glass for gas circulation according to the present invention.
FIG. 6 is a longitudinal sectional view of a silica glass plate for gas flow according to the present invention.
FIG. 7 is a conceptual diagram of a plasma etching apparatus incorporating a conventional silica glass for gas distribution.
FIG. 8 is a conceptual diagram showing a usage state of a conventional silica glass for gas distribution.
FIG. 9 is a conceptual diagram showing a usage state of a conventional silica glass for gas distribution.
FIG. 10 is a conceptual diagram showing a usage state of a conventional silica glass for gas distribution.
[Explanation of symbols]
DESCRIPTION OFSYMBOLS 1 Silica glass board forfluid distribution 2Silica glass substrate 3Fluid distributionhole 3aInlet 3c Outlet 3b Communication hole

Claims (4)

Translated fromJapanese
平板状のシリカガラス基板に多数の流体流通孔が設けられた流体流通用シリカガラス板において、前記流体流通孔は、その両端に、外方にいくに従って拡径する拡径部が設けられていることを特徴とする流体流通用シリカガラス板。In a silica glass plate for fluid circulation in which a plate-like silica glass substrate is provided with a large number of fluid circulation holes, the fluid circulation holes are provided at both ends thereof with diameter-expanding portions that increase in diameter toward the outside. A silica glass plate for fluid circulation characterized by the above.請求項1に記載の流体流通用シリカガラス板において、上記流体流通孔は、砂時計形状であることを特徴とする流体流通用シリカガラス板。The silica glass plate for fluid circulation according to claim 1, wherein the fluid circulation hole has an hourglass shape.平板状のシリカガラス基板を用意し、レーザ加工によって、その一面に多数の円錐形状孔を設け、さらに、他面における前記多数の円錐形状孔に対向する位置に円錐形状孔を設け、しかる後に、両円錐形状孔を連通する連通孔を穿設することを特徴とする流体流通用シリカガラス板の製造方法。A flat silica glass substrate is prepared, and by laser processing, a large number of conical holes are provided on one surface thereof, and further, a conical hole is provided at a position opposite to the large number of conical holes on the other surface. A method for producing a silica glass plate for fluid circulation, wherein a communication hole for communicating both conical holes is formed.請求項3に記載の流体流通用シリカガラス板の製造方法において、上記連通孔の穿設後に、レーザ光の出力を下げて流体流通孔をアニールすることを特徴とする流体流通用シリカガラス板の製造方法。4. The method for producing a silica glass plate for fluid circulation according to claim 3, wherein the fluid circulation hole is annealed by lowering the output of laser light after the communication hole is formed. Production method.
JP2002238094A2002-08-192002-08-19 Silica glass plate for fluid distribution and manufacturing method thereofPendingJP2004079784A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2002238094AJP2004079784A (en)2002-08-192002-08-19 Silica glass plate for fluid distribution and manufacturing method thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2002238094AJP2004079784A (en)2002-08-192002-08-19 Silica glass plate for fluid distribution and manufacturing method thereof

Publications (1)

Publication NumberPublication Date
JP2004079784Atrue JP2004079784A (en)2004-03-11

Family

ID=32021614

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2002238094APendingJP2004079784A (en)2002-08-192002-08-19 Silica glass plate for fluid distribution and manufacturing method thereof

Country Status (1)

CountryLink
JP (1)JP2004079784A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005317958A (en)*2004-04-122005-11-10Applied Materials Inc Gas diffusion showerhead design for large area plasma enhanced chemical vapor deposition
JP2007059567A (en)*2005-08-242007-03-08Hitachi High-Technologies Corp Plasma processing equipment
JP2009071303A (en)*2007-09-172009-04-02Asm Internatl Nv A semiconductor processing component with an aperture having a deposited coating and method of forming the same.
JP2009188036A (en)*2008-02-042009-08-20Tokyo Ohka Kogyo Co Ltd Support plate
JP2012119590A (en)*2010-12-022012-06-21Mitsubishi Materials CorpElectrode plate for plasma processing apparatus
CN103848563A (en)*2012-11-282014-06-11均豪精密工业股份有限公司 Brittle material drilling method
JP2017011182A (en)*2015-06-242017-01-12株式会社デンソーSilicon carbide semiconductor epitaxial growth apparatus
JP2019089082A (en)*2017-11-132019-06-13ビアメカニクス株式会社 Laser processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005317958A (en)*2004-04-122005-11-10Applied Materials Inc Gas diffusion showerhead design for large area plasma enhanced chemical vapor deposition
JP2007059567A (en)*2005-08-242007-03-08Hitachi High-Technologies Corp Plasma processing equipment
US8926790B2 (en)2005-08-242015-01-06Hitachi High-Technologies CorporationPlasma processing apparatus
JP2009071303A (en)*2007-09-172009-04-02Asm Internatl Nv A semiconductor processing component with an aperture having a deposited coating and method of forming the same.
JP2009188036A (en)*2008-02-042009-08-20Tokyo Ohka Kogyo Co Ltd Support plate
JP2012119590A (en)*2010-12-022012-06-21Mitsubishi Materials CorpElectrode plate for plasma processing apparatus
CN103848563A (en)*2012-11-282014-06-11均豪精密工业股份有限公司 Brittle material drilling method
JP2017011182A (en)*2015-06-242017-01-12株式会社デンソーSilicon carbide semiconductor epitaxial growth apparatus
JP2019089082A (en)*2017-11-132019-06-13ビアメカニクス株式会社 Laser processing method

Similar Documents

PublicationPublication DateTitle
US10704146B2 (en)Support assembly for substrate backside discoloration control
KR20030071498A (en)Substrate processing apparatus
JP2004079784A (en) Silica glass plate for fluid distribution and manufacturing method thereof
CN105209216B (en)The system and method that multiple minor diameter palladium alloy pipes are soldered to by common substrate with space effective manner
JP2013506292A (en) Method and apparatus for high efficiency gas dissociation in an inductively coupled plasma reactor
JP2003324072A (en)Semiconductor manufacturing equipment
JPWO2005024928A1 (en) Gas processing apparatus and heat dissipation method
WO2009089794A1 (en)Plasma processing equipment and gas distribution apparatus thereof
TW200524045A (en)Substrate processing apparatus and cleaning method therefor
TWI860079B (en) Spray element, semiconductor device and chip processing method
EP1382565A4 (en) DEVICE AND METHOD FOR PRODUCING A SILICON-BASED STRUCTURE
JP2006120872A (en) Gas diffusion plate
CN113622022A (en) In-cavity airflow field adjusting device for MPCVD equipment and using method
JPH0845909A (en)Sample stand
KR20220032883A (en)Apparatus and method for processing substrate using plasma
JP2008311297A (en)Electrode plate for plasma treatment apparatus, manufacturing method thereof, and plasma treatment apparatus
JP2013183025A (en)Electrode plate for plasma processing device
JP6398827B2 (en) Method for manufacturing electrode plate for plasma processing apparatus
JP2005251803A (en) Plasma processing apparatus and design method thereof
JP2012119590A (en)Electrode plate for plasma processing apparatus
JPH04236425A (en)Plasma processing equipment
JPH0437124A (en) plasma processing equipment
JP2001267255A (en)System and method for vapor phase epitaxial growth
CN105200397A (en)Spray head type MOCVD original state stabilizing method, chlorine-resistant double-layer spray head and method for manufacturing chlorine-resistant double-layer spray head
JP7258435B2 (en) Cooling jacket and plasma generator

[8]ページ先頭

©2009-2025 Movatter.jp