【発明の詳細な説明】【0001】【発明の属する技術分野】この発明は、超音波振動する
先端処置部を生体組織に接触して患部等を処置する超音
波処置具に関する。【0002】【従来の技術】従来、例えば、特開平4−212338
号公報、特開2000−254136号公報に示すよう
に、超音波振動する先端処置部を生体組織に接触して患
部等を処置する超音波処置具が知られている。【0003】特開平4−212338号公報に示す超音
波処置具は、超音波振動を伝達するプローブの先端部が
平板状に加工されるとともに凹部(フック部)が形成さ
れている。特開2000−254136号公報は、超音
波処置だけでなく、さらに高周波通電による処置も可能
に構成されている。【0004】また、USP5,013,312ではバイ
ポーラ電極の手元側に超音波変換器を有し、電極を超音
波振動させて組織を切開し、バイポーラ通電して凝固す
るものが示されている。効果として、超音波振動するこ
とにより組織が電極に焦げ付くのを防止する点が挙げら
れている。【0005】また、WO99/65406では加熱手段
(厚膜ヒーターパターン)により組織を凝固可能な処置
具が示されている。【0006】さらに、超音波エネルギーを利用して、生
体組織の切開や凝固などの処置を行う超音波処置装置と
して、例えば、特開2000−296135号公報や特
願2000−283294号は、生体組織を把持しなが
ら超音波振動によって処置する装置が開示されている。
特願2000−283294号ではさらに可動する把持
部に発熱体を設けたものが開示されている。【0007】一方、従来の外科用切除器具として、特開
平5−220157号公報や特開平6−311988号
公報のように関節腔の処置を目的として、外管の中で回
転する切除刃により半月板や軟骨の切除を行うものが知
られている。しかし、この器具は、生体組織の切除時に
毛細血管からの出血があり、特開平6−311988号
公報では高周波を切除刃に通電して防止していた。ま
た、特願2001−48583号のように細長い挿入部
の先端部に発熱部があり、鼻内のアレルギー治療に使う
器具が知られている。【0008】【発明が解決しようとする課題】しかしながら、前述し
た特開平4−212338号公報、特開2000−25
4136号公報、USP5,013,312では超音波
によって処置するものであり、組織の止血凝固には時間
がかかるという問題があった。【0009】また、WO99/65406では超音波振
動子が無いために生体組織の焦げ付きを防止する手段と
して、フッ素樹脂のコーティングを行っていたが、耐久
性が低いという問題があった。【0010】また、特開2000−296135号公報
も超音波処置しかできないため、凝固に時間が掛かる、
あるいは凝固と同時に切開作用も働くので凝固のみを行
う場合に、操作性が悪いという問題があった。【0011】そのため、特願2000−283294号
では可動する把持部に発熱体を設けて、凝固能を高めて
いた。しかし、可動する把持部に発熱体を設けていたた
め、超音波振動子への通電手段とは別に通電手段が必要
となり、構造が複雑になるという問題があった。【0012】また、特開平6−311988号公報では
高周波電流の通電のためモータの駆動回路などにノイズ
が混入しやすく、対策の必要があり、構造が複雑になる
という問題があった。さらに、特願2001−4858
3号は鼻内のアレルギー治療を行うものであり、軟骨な
どの組織を切除できなかった。【0013】この発明は、前記事情に着目してなされた
もので、その目的とするところは、超音波処置に加え
て、生体組織に通電せずに凝固処置を効率よく行うこと
ができる超音波処置具を提供することにある。【0014】【課題を解決するための手段】この発明は、前記目的を
達成するために、超音波振動を発生する振動子と、この
振動子で発生した超音波振動を伝達するプローブと、こ
のプローブの先端に設けられ、かつ生体組織と接触して
超音波処置を行う先端処置部とを備えた超音波処置具に
おいて、前記プローブの先端処置部に通電により発熱す
る発熱手段を設けたことを特徴とする。【0015】前記構成によれば、超音波処置具によって
生体組織の切開時にはプローブを超音波振動させて行
う。また、生体組織の凝固時には、電源から発熱手段と
しての発熱部に通電され、発熱部が電気抵抗により発熱
して先端処置部が加熱される。従って、超音波と発熱の
各エネルギーによる生体組織の凝固・切開等を選択的に
行うことができる。【0016】【発明の実施の形態】以下、この発明の各実施の形態を
図面に基づいて説明する。【0017】図1〜図3は第1の実施形態を示し、図1
は超音波処置具の側面図、図2(a)は超音波処置具の
要部断面図、(b)は振幅と波長の関係を示す図、
(c)はフレキシブル基板の展開図、(d)はフレキシ
ブル基板の断面図、図3(a)は先端処置部の平面図、
(b)は先端処置部の側面図である。【0018】図1〜図3において、超音波処置具1は通
電によって超音波振動する振動子2と、この振動子2で
発生した超音波振動を伝達するプローブ3と、このプロ
ーブ3の先端処置部位外を覆うシース4とから構成され
ている。また、振動子2の後端からは電流を供給するた
めの電源本体に接続されるコード5が延びているととも
に、プローブ3の表面の後述する発熱部に通電するため
の接続コードが取り付け可能な接続ピン6が突設されて
いる。この接続ピン6には互いに絶縁された接続電極6
a,6bが設けられている。【0019】また、振動子2の先端に固定されているホ
ーン7は発生した超音波振動を伝達し断面積を減少させ
ることで振幅を拡大するようになっており、このホーン
7の先端にはプローブ3を接続する雌ねじ部8が設けら
れている。プローブ3には雌ねじ部8に着脱可能な雄ね
じ部9が設けられている。また、プローブ3をホーン7
にねじ込む際に工具を係合させる、切り欠き部10が設
けられている。【0020】プローブ3はその長さが振動周波数の半波
長λ/2(λは波長)の整数倍に設定されており、先端
処置部11がちょうど振動の腹に位置する。【0021】また、プローブ3の先端には生体組織を切
開・凝固するための先端処置部11か設けられている。
また、先端処置部11に一番近い節の位置にはシース4
の内面に対してプローブ3を位置決めする電気伝導性の
弾性部材からなるリング15a,15bが取付けられて
いる。プローブ3の外側には先端処置部11の後端部か
ら振動子2に至ってシース4が被覆されている。【0022】シース4は体腔内に挿入される電気絶縁性
の挿入部16と術者が保持する電気絶縁性の保持部17
とからなる。また、挿入部16と保持部17とは互いに
接続固定されている。さらに、挿入部16の先端にはそ
の外径が絞られていて、先端部材20,21が接続され
ている。【0023】また、挿入部16の内側にはフレキシブル
基板23が設けられている。図2(c)はフレキシブル
基板23を展開した図で、実際には円筒状に配置されて
いる。フレキシブル基板23は、図2(d)において、
ポリイミドなどの樹脂シートからなる補強板23a及び
カバー板23d、接着剤23b、接着剤23cの積層の
中に、銅箔からなる導体23e,23fが設けられてい
る。【0024】フレキシブル基板の先端側にはスルーホー
ル23gが開けられ、ニッケル、金などの導通性のよい
貴金属からなる電極ランド24a,24bが設けられて
いる。また、手元側にも同様に電極ランド25a,25
bが設けられている。【0025】電極ランド24aと25a、及び24bと
25bは、積層の中で導体23e,23fから延長され
た配線パターン22(表面には露出しない)によって接
続されている。電極ランド24a,24bはシース4内
でリング15a,15bと接するとともに電気的に接続
される。また、電極ランド25a,25bも保持部17
内の例えばリード線等の通電手段(図示しない)を介し
て接続電極6a,6bに電気的に接続されている。【0026】また、図3に示すように、先端処置部11
はその両側の側面が互いに同じ側に比較的大きな曲率半
径で湾曲する曲面12,13として形成されている。ま
た先端処置部11には曲面12,13の縁の片側に切り
欠きを設けることによってフック部14が形成されてい
る。なお、フック部14を形成する切り欠きは、フック
部14の凹部の底面から先端処置部11の根元側に向か
う緩やかな傾斜を持って設けられている。また、発熱部
26がスパッタリングなどの薄膜形成技術、印刷法など
の厚膜形成技術で電気抵抗体パターンとして曲面13に
設けられている。【0027】薄膜の電気抵抗体の材質としてはモリブデ
ン、タングステンなどが一般的で、曲面13及び外界と
の電気絶縁層としてSi3N4等からなる薄膜が必要で
ある。また、厚膜の電気抵抗体の材質としては銀が一般
的で、曲面13及び外界と電気絶縁層としてSiO2が
必要である。発熱部26の端部27、28はプローブ3
の表面上に設けられた配線部29(これも絶縁層で覆わ
れている)を介してリング15a,15bに電気的に接
続されている。なお、リング15a,15bは振動の節
に設けられているため、振幅が小さく、電気的接続に都
合がよい。【0028】次に、第1の実施形態の作用について説明
する。【0029】超音波処置具によって生体組織の切開時に
はプローブ3を超音波振動させて行う。また、生体組織
の凝固時には、電源から接続電極6aと6bの間に電圧
をかけると、電極ランド25a/25b→配線パターン
22→電極ランド24a/24b→リング15a、15
b→発熱部26に通電され、結果として発熱部26が電
気抵抗により発熱し、先端処置部11の曲面13が加熱
される。出血時や凝固が必要な時には発熱部26に通電
を行い、先端処置部11の曲面13を加熱して、凝固を
行う。【0030】従って、本実施形態においては、超音波と
発熱の各エネルギーによる生体組織の凝固・切開等を選
択的に行うことができ、それぞれの利点を生かした効果
的な治療が可能である。【0031】さらに凝固時に生体組織に電流が流れな
い。また、凝固後に超音波振動させることで生体組織が
焦げ付くのを防止できる。また、先端処置部11の曲面
13が生体組織に当たりやすい形状となっているので、
凝固が容易にできる。【0032】図4は第2の実施形態を示し、図4(a)
は先端処置部の平面図、(b)は側面図、(c)は前面
図、(d)は下面図である。【0033】第2の実施形態は、第1の実施形態とフッ
クの形状を変え、発熱部26の位置を変えたものであ
る。先端処置部11はフック部32の両側に平行な平面
部33a、33bが設けられている。また曲面部34が
設けられている。曲面部34に発熱部26が設けられて
いる。このような形態でフック部32をヘラとして利用
でき、主にさく状組織の切開に有効である。また曲面部
34で組織の凝固も可能である。作用は第1の実施形態
と同じである。【0034】図5及び図6は第3の実施形態を示し、図
5は超音波処置具の縦断側面図、図6は先端処置部の断
面図である。【0035】超音波処置具41は通電によって超音波振
動する振動子42と、この振動子42で発生した超音波
振動を伝達するプローブ43と、プローブ43を覆うシ
ース44が設けられている。振動子42の後端から振動
子42に通電するためのコード45が延びている。振動
子42とプローブ43は中空構造となっており、図6の
ようにプローブ43では先端処置部46の近くまで穴4
7が設けられている。穴47の終端部には円筒状のヒー
ター48が設けられている。またヒーター48には通電
するための2本のリード線49がコード45より振動子
42の穴47を通って延びている。円筒状のヒーター4
8としては内部にコイル状のニクロム線を有するカート
リッヂヒーターや円筒状のセラミックヒーターが望まし
い。【0036】本実施形態によれば、生体組織の切開時に
はプローブ43を超音波振動させて行う。生体組織の凝
固時にはヒーター48に通電して、ヒーター48の発熱
を先端処置部46に伝熱させ、先端処置部46を加熱す
る。【0037】従って、ヒーター48にリード線49で直
接通電するため途中の通電ロスが少なく、第1、2の実
施形態に比べて効率がよい。【0038】前述した実施形態によれば、次のような構
成が得られる。【0039】(付記1)超音波振動を発生する振動子
と、この振動子で発生した超音波振動を伝達するプロー
ブと、このプローブの先端に設けられ、かつ生体組織と
接触して超音波処置を行う先端処置部とを備えた超音波
処置具において、前記プローブの先端処置部に通電によ
り発熱する発熱手段を設けたことを特徴とする超音波処
置具。【0040】(付記2)付記1において、前記発熱手段
は先端処置部の表面に設けられた薄膜抵抗体であること
を特徴とする超音波処置具。【0041】(付記3)付記1において、前記発熱手段
は先端処置部の表面に設けられた厚膜抵抗体であること
を特徴とする超音波処置具。【0042】(付記4)付記1において、前記発熱手段
はプローブの先端部内部に設けられたカートリッヂヒー
ターであることを特徴とする超音波処置具。【0043】(付記5)付記1において、前記発熱手段
はプローブの先端部内部に設けられたセラミックヒータ
ーであることを特徴とする超音波処置具。【0044】図7〜図9は第4の実施形態を示し、図7
は超音波凝固切開装置の側面図、図8は超音波凝固切開
装置の分解時の側面図及びプローブの部分断面図、図9
はプローブの先端部の断面図である。【0045】図7に示すように、ハンドピース51は、
ハンドルユニット52とプローブユニット53及び振動
子ユニット54とから構成されている。ハンドルユニッ
ト52には振動子保持部55を有した操作部本体56
と、操作部本体56に固定された前側の固定ハンドル5
7と、回動する後ろ側の可動ハンドル58とが設けられ
ている。ここで可動ハンドル58は操作部本体56に軸
ピン59で軸支されている。【0046】さらに、操作部本体56の前端には細長い
挿入シース部60の基端部が回転ノブ61を介して連結
されている。ここで、挿入シース部60と回転ノブ61
は操作部本体56に対して同軸的に回転可能に取付けら
れている。【0047】また、図8に示すように振動子ユニット5
4には円筒状のカバー62内に超音波振動発生部として
の超音波振動子65が配置されている。超音波振動子6
5は電気信号を機械的振動に変換する素子を含む。超音
波振動子65の前方にホーン66があり、断面積を減少
させることで振幅を拡大する。超音波振動子65には電
源装置64に繋がるコード63が電気的に接続されてい
る。【0048】プローブユニット53には超音波振動を伝
達する振動伝達部材としての棒状のプローブ67が設け
られている。プローブ67の材質としてはチタン材やア
ルミ材が適当である。またプローブ67の先端は生体組
織に接触するための処置部68が設けられ、処置部68
は振幅を拡大するため断面積が絞られている。【0049】ここで、図7のように各ユニットを組み立
てた状態で、挿入シース部60の先端部から処置部68
が外部に突出する。そして、挿入シース部60の先端部
にはこの処置部68との間で生体組織を把持可能に支持
されている把持部材としてのジョー71が設けられてい
る。ジョー71の基端部は支点ピン72で挿入シース部
60の先端に軸支されている。【0050】さらに、挿入シース部70の内部にはジョ
ー71を操作する図示しないワイヤ状の駆動軸が配置さ
れている。そして、駆動軸の先端部にはジョー71の基
端部が連結されている。この駆動軸の基端部は可動ハン
ドル58に連結されている。そして、この可動ハンドル
58の操作に連動して駆動軸が進退操作されることによ
りジョー71が支点ピン72を中心に回動し、処置部6
8に対して開閉操作される。これにより、ジョー71が
処置部68との間で生体組織を把持可能に支持する。【0051】さらに、図8のように、超音波振動子6
5、ホーン66、プローブ67は中空構造で穴69が貫
通している。さらに処置部68の内側には円筒状のヒー
ター73が設けられている。ヒーター73には2本のリ
ード線74がコード63より穴69を通って延びてい
る。ヒーター73としては円筒状のセラミックヒーター
や内部にコイル状のニクロム線を有するカートリッヂヒ
ーターが適当である。【0052】次に、第4の実施形態の作用について説明
する。【0053】超音波凝固切開時には生体組織をジョー7
1で把持して、プローブ67及び処置部68を超音波振
動させて、摩擦熱が発生し、生体組織を凝固切開する。
また生体組織の出血時などに凝固だけを行いたい時はヒ
ーター73に通電することで、ヒーター73の発熱が処
置部68に伝熱され、処置部68を組織に接触させるこ
とで、処置部68の発熱により凝固が可能である。さら
に超音波凝固切開時にもヒーター73を発熱させること
も可能である。【0054】本実施形態によれば、ヒーターを発熱させ
ることにより凝固のみを確実に行うことができる。ま
た、超音波処置とヒーターによる加熱処置を併用するこ
とで処置速度を大幅に向上させることが可能である。さ
らにヒーターへの通電手段を振動子への通電手段の一部
と共通化できるので構造が簡単になる。【0055】図10は第5の実施形態を示し、図10は
プローブユニット53及び振動子ユニット54の縦断側
面図であり、第4の実施形態と同一構成部分は同一番号
を付して説明を省略する。【0056】振動子ユニット54には充電可能な電池手
段75が設けられており、この電池手段75としてはニ
ッカド電池、リチウムイオン電池が考えられる。また電
池手段75には充電用の端子76が設けられている。ま
た電池手段75は図示しないスイッチ手段によりON/
OFFする。ただし、電池手段75では出力の設定が行
いにくい点があるため、ヒーター73への通電のみを電
池手段75で行うことも考えられる。【0057】本実施形態によれば、電池手段を備えてい
るため、コードがなくなるため、操作性が向上する。【0058】前記実施形態によれば、次のような構成が
得られる。【0059】(付記6)超音波振動を発生する超音波振
動子と、この振動子で発生した超音波振動を伝達するプ
ローブと、このプローブが挿通されるシースと、前記振
動子への電流を供給する通電手段と、前記シースの先端
に回動可能に取付けられ、シースの先端から突出するプ
ローブの先端部との間で組織を把持する把持部材と、把
持部材を開閉操作する操作手段とを有する超音波処置装
置において、前記プローブの先端部内部に前記通電手段
により発熱する発熱手段を設けたことを特徴とする超音
波処置装置。【0060】(付記7)付記6において、前記発熱手段
はカートリッヂヒーターであることを特徴とする超音波
処置装置。【0061】(付記8)付記6において、前記発熱手段
はセラミックヒーターであることを特徴とする超音波処
置装置。【0062】(付記9)超音波振動を発生する超音波振
動子と、この振動子で発生した超音波振動を伝達するプ
ローブと、このプローブが挿通されるシースと、このシ
ースの先端に回動可能に取付けられ、シースの先端から
突出するプローブの先端部との間で組織を把持する把持
部材と、この把持部材を開閉操作する操作手段とを有す
る超音波処置装置において、前記プローブの先端部内部
に振動子内部の電池手段により発熱する発熱手段を設け
たことを特徴とする超音波処置装置。【0063】図11〜図13に第6の実施形態を示し、
図11は手術用切除器具の全体構成図、図12(a)は
内管と外管を分解した図、(b)はハンドピース本体の
断面図、(c)は切除器具の先端断面図、図13は内管
の側面図である。【0064】図11に示すように、切除器具81はハン
ドピース82と挿入部83とを備えている。ハンドピー
ス82内にはモータ84が内蔵され、このモータ84は
ケーブル86を介してコントロールユニット85に接続
されている。挿入部83に設けられた吸引路は吸引チュ
ーブ89を介して吸引圧を発生させる吸引装置88に接
続されている。そしてコントロールユニット85にはフ
ットスイッチ90が接続されている。【0065】図12及び図13に示すように、挿入部8
3は外管91と内管92の2重管構造となっている。内
管92はステンレスなどの金属からなり、手元側にはハ
ンドピース82に着脱自在に接続できる接続部93が設
けられている。この接続部93には舌縁104が設けら
れ、ハンドピース82内のモータ84と係合して回転す
るようになっている。また、接続部93には吸引口95
が形成され、この吸引口95は内管92の先端部の側面
に形成された開口94と、内管92の全長にわたり形成
された吸引路87と連通し、さらにハンドピース82内
に設けられた吸引路99と、外部の吸引装置88とに連
通している。【0066】また、吸引口95の手元側には水密のため
のOリング105が設けられている。また、Oリング1
05の手元側には全周にわたり電極106、107が設
けられている。ここで開口94の周りには発熱体108
がスパッタリングなどの薄膜形成技術あるいは印刷法な
どの厚膜形成技術で電気抵抗体パターンとして設けられ
ている。【0067】薄膜の電気抵抗体の材質としてはモリブデ
ン、タングステンなどが一般的で、内管92及び外界と
の電気絶縁層としてSi3N4等からなる薄膜が必要で
ある。(図13は開口の周りの電気絶縁層をはずした状
態を示しており、通常は電気絶縁層のために発熱体94
は外からは見えにくくなっている。)また、厚膜の電気
抵抗体の材質としては銀が一般的で、内管92及び外界
との電気絶縁層として、SiO2が一般的である。前記
発熱体108は手元側に延長された配線体109によっ
て、電極106,107と電気的に接続されている。【0068】図12に示すように、外管91の先端は安
全性を高めるために球状に形成され、外管91の側面に
は内管92の開口94と長手方向の同位置に開口96が
形成されている。外管91の開口96及び内管92の開
口94には、それらの縁部に各々刃が形成され、内管9
2の回転運動によってこれらの刃が協働して、開口9
4,96に吸引して取り込んだ組織97を小さな組織片
に切断するように構成されている。【0069】さらに、外管91と内管92の略全長に亘
って灌流液を流す環状の隙間が形成され、この隙間が送
水路98を形成している。また外管91の手元側には連
結部材99が設けられ、内管92が外管91に対して水
密状態で回転可能となるように連結されている。この連
結部材99には送水口102が設けられ、送水口102
は送水チューブ101を介して外部の送水ボトル100
(図11参照)に接続され、送水ボトル100内に収容
された灌流液が送水チューブ101、送水口102、送
水路98を介して挿入部83の先端に供給される。【0070】また、図12(c)に示すように外管91
の内孔先端と内管92の先端は軸方向にXだけ離れてお
り、外管91と内管92の接触を防止し、内管92を滑
らかに回転させるとともに送水路98を流れる灌流液が
常時吸引路87に流れ込むように流路103が形成され
ている。【0071】また、図12(b)に示すように、ハンド
ピース82には外管91の連結部材99と着脱自在に係
合する接続部110が設けられている。また、モータ8
4には内腔113に突出した出力軸111が設けられ、
出力軸111の先端側には舌縁104と着脱可能に係合
する接続軸112が設けられている。また、ブラシ11
4,115が内腔113に突出しており、ブラシ11
4,115はケーブル86から分岐した配線116,1
17によって通電される。【0072】内管92が外管91とともにハンドピース
82に係合された時、電極106,107がブラシ11
4,115と接触して電気的に接続される。また、内腔
113の内壁がOリング105と係合し、Oリング10
5の手元側には液体が侵入しない構造となっている。【0073】次に、第6の実施形態の作用について説明
する。【0074】使用時にはハンドピース82に外管91、
内管92を連結すると、モータ84と内管92も連結さ
れる。フットスイッチ90によってモータ84を駆動す
ると、モータ84の回転が内管92に伝達される。そし
て、開口94,96から切除すべき組織を吸引装置88
の作動による吸引によって取り込まれると、内管92の
回転によって開口94,96に設けられた刃によって組
織が切断される。切断された組織片は吸引路87、吸引
口95、吸引チューブ89を経て外部の吸引装置88に
吸引・除去される。【0075】組織の切除と同時に送水ボトル100内の
灌流液は送水チューブ101、送水口102を経て送水
路98に流入し、さらに流路103を経て吸引路87に
吸引ンされる。従って吸引路87内に吸引される灌流液
の流れに乗って、切断された組織片が確実に吸引され
る。【0076】ここで、さらに組織切断時の出血を防止す
るため、フットスイッチ90を操作してコントロールユ
ニット85から配線116,117、ブラシ114,1
15、電極106,107を介して、発熱体108に通
電を行う。発熱体108は通電による抵抗発熱を起こ
し、切除時に同時に組織を加熱することで止血凝固す
る。【0077】本実施形態によれば、高周波のノイズ遮断
などの防止をすることなく、切断時の出血を防止でき
る。【0078】図14に第6の実施形態の変形例1を示
し、外管91の開口96の周りに発熱体108を設けた
ものである。発熱体108は配線109によってプラグ
118に接続され、プラグ118には図示しない通電ケ
ーブルによって通電される。本実施形態によれば、第6
の実施形態よりさらに構造が簡便である。【0079】図15は第6の実施形態の変形例2を示
し、外管91の開口96の先端側に発熱体108を設け
たものである。【0080】前記実施形態によれば、次のような構成が
得られる。【0081】(付記10)モータを内蔵した本体と、こ
の本体に接続された外管および外管の中で回転自在な内
管からなる挿入部と、この挿入部の先端部に設けられた
切除部を有する外科用切除器具において、切除部に通電
により発熱する発熱手段が設けられていることを特徴と
する切除器具。【0082】(付記11)付記10において、切除部と
して外管が開口を有し、発熱手段は開口の周囲に設けた
ことを特徴とする切除器具。【0083】(付記12)付記10において、切除部と
して内管が開口を有し、発熱手段は開口の周囲に設けた
ことを特徴とする切除器具。【0084】(付記13)付記10において、切除部と
して外管が開口を有し、発熱手段は開口の先端側に設け
らたことを特徴とする切除器具。【0085】(付記14)付記10において、前記発熱
手段は薄膜抵抗体であることを特徴とする切除器具。【0086】(付記15)付記10において、前記発熱
手段は厚膜抵抗体であることを特徴とする切除器具。【0087】前述した構成によれば、球状の先端部で止
血を行うことができ、狭い範囲の加熱治療をするととも
に軟骨などの組織を切除でき、関節だけでなく鼻内のア
レルギー治療に用いると非常に使いやすく効果がある。【0088】図16〜図20は第7の実施形態を示し、
図16はトルクレンチの側面図、図17は同平面図、図
18は同縦断側面図、図19は図18のA−A線に沿う
断面図、図20は作用を示す縦断側面図である。【0089】トルクレンチ125は、超音波処置装置の
プローブユニット121における振動伝達部材122の
基端部の取付けねじ122aを振動子ユニット123に
おけるホーン124のねじ穴部124aにねじ込み固定
するためのものである。【0090】トルクレンチ125には図16に示すよう
に操作アーム126と、この操作アーム126の先端部
に回動支点である回動ピン127を介して回動自在に連
結されたヘッド部128とが設けられている。ここで、
操作アーム126の先端部には図17に示すように軸方
向に延設されたスリット126aが形成されている。そ
して、このスリット126aの両側にヘッド部128を
挟持する二股状の挟持部126b,126cが形成され
ている。また、操作アーム126の後端部にはトルクレ
ンチ125を操作する際、手で保持するためのグリップ
部129が一体的に取付けられている。グリップ部12
9の外周には手で保持する際のグリップ力を向上させる
目的で小さな凹凸が形成されている。【0091】また、図18に示すようにヘッド部128
には回動ピン127との連結端部とは反対側の端部に略
矩形状のワーク係合凹部128aが形成されている。そ
して、トルクレンチ125の使用時には、このワーク係
合凹部128aに振動伝達部材122のスパナ掛け部1
22bが挿入されて係合されるようになっている。【0092】さらに、ヘッド部128には回動ピン12
7との連結端部とワーク係合凹部128aとの間に長穴
状のスロット128bが形成されている。このスロット
128bは回動ピン127を中心とする円弧にそって延
設されている。【0093】また、操作アーム126の先端部には案内
棒130と、ストッパ131とが装着されている。ここ
で、案内棒130には操作アーム126の一側部に配置
される第1の案内棒構成部材132と、操作アーム12
6の他側部に配置される第2の案内棒構成部材133と
が設けられている。さらに、第1の案内棒構成部材13
2には操作アーム126の挟持部126b、126c間
にそれぞれ嵌挿されるとともに、ヘッド部128のスロ
ット128bに挿入される雄ねじ部132aが形成され
ている。また、第2の案内棒構成部材133にはねじ穴
部133aが形成されている。そして、このねじ穴部1
33aに雄ねじ部132aが螺着されて第1の案内棒構
成部材132と第2の案内棒構成部材133とが操作ア
ーム126の先端部に固定されている。【0094】さらに、ストッパ131は操作アーム12
6のスリット126aの後方側に配置されている。この
ストッパ131には操作アーム126の一側部に配置さ
れる第1のストッパ構成部材134と、操作アーム12
6の他側部に配置される第2のストッパ構成部材135
とが設けられている。各ストッパ構成部材134、13
5の外側部には外側フランジ136及び内側フランジ1
37がそれぞれ形成されている。【0095】また、案内棒130にはダブルトーション
形のねじりコイルばね138が装着されている。このね
じりコイルばね138には第1の案内棒構成部材132
に巻装される第1コイル138aと、第2の案内棒構成
部材133に巻装される第2コイル138bと、第1コ
イル138aと第2コイル138bとの内端部間に配設
された略U字状のヘッド押圧部138cと、第1コイル
138aの外端部から延出された略直線状の第1コイル
固定端部138dと、第2コイル138bの外端部から
延出された略直線状の第2コイル固定端部138eとが
設けられている。また、ヘッド押圧部138cには、パ
イプ状のコロ139がヘッド押圧部138cに対して回
動自在に取付けられている。【0096】そして、ねじりコイルばね138のヘッド
押圧部138cはコロ139を介してヘッド部128の
下縁部に当接されている。さらに、ねじりコイルばね1
38の第1コイル固定端部138dは第1のストッパ構
成部材134の外側フランジ136と内側フランジ13
7との間に挿入された状態で係止されている。同様に、
第2コイル固定端部138eは第2のストッパ構成部材
135の外側フランジ136と内側フランジ137との
間に挿入された状態で係止されている。これにより、ね
じりコイルばね138の第1コイル固定端部138dお
よび第2コイル固定低端部138eはそれぞれ外側フラ
ンジ136と内側フランジ137との間で横移動が規制
される状態で係止されている。【0097】さらに、ねじりコイルばね138のヘッド
押圧部138cがコロ139を介して当接されたヘッド
部128の下縁部には滑らかな曲面の一部にクリック感
を出すための段差を設けた段差部140が形成されてい
る。【0098】次に、第7の実施形態の作用について説明
する。【0099】トルクレンチ125は自然状態ではねじり
コイルばね138のばね力によって図18に示す初期位
置で保持されている。そして、ヘッド部128のワーク
係合凹部128aに振動伝達部材122のスパナ掛け部
122bが挿入されて係合されたセット状態で、時計回
り方向のトルクをグリップ部129を操作して加えるこ
とにより、このトルクレンチ125を使用して振動伝達
部材122の基端部の取付けねじ122aを振動子ユニ
ット123におけるホーン124のねじ穴部124aに
ねじ込み固定する締め付け作業が行われる。【0100】このとき、トルクレンチ125に加えられ
るトルクが予め設定された所定の設置値を超えるとねじ
コイルばね138が収縮し、図20に示すように操作ア
ーム126に対して回動ピン127を中心にヘッド部1
28が回動される。これにより、トルクレンチ125を
使用して振動伝達部材122の基端部の取付けねじ12
2aを振動子ユニット123におけるホーン124のね
じ穴部124aにねじ込み固定する締め付け作業時に振
動伝達部材122の取付けねじ122aの締め付けトル
クを一定にすることができる。【0101】また、操作アーム126に対して回動ピン
127を中心にヘッド部128が回動される動作時には
ねじりコイルばね138のヘッド押圧部138cがコロ
139を介してヘッド部128の下縁部の滑らかな曲面
に沿って移動する。このとき、ねじりコイルばね138
のヘッド押圧部138cがコロ139を介してヘッド部
128の下縁部の段差部140を乗り越える際に急激に
振動伝達部材122の締め付けトルクを変化(低下)さ
せることができるので、クリック感を出すことができ
る。また、このとき、コロ139はヘッド押圧部138
cに対して回動しながらヘッド部128の下縁部と摺動
するため、作動は常に良好に保たれる。【0102】なお、トルクレンチ125に加えられるト
ルクを緩めると図20の回動状態から図18の初期状態
に戻る。【0103】また、ホーン124のねじ穴部124aか
ら振動伝達部材122の取付けねじ122aを外す際に
は反時計回り方向にトルクを加える。このとき、図18
に示すように雄ねじ部132aがスロット128bの終
端部に突き当てられた状態で保持される。そのため、振
動伝達部材122を取り外すための十分なトルクを加え
ることができる。【0104】本実施の形態のトルクレンチ125では、
振動伝達部材122の基端部の取付けねじ122aを振
動子ユニット123におけるホーン124のねじ穴部1
24aにねじ込み固定する締め付け作業時に振動伝達部
材122の取付けねじ122aの締め付けトルクを一定
にすることができる。そのため、振動伝達部材122の
取付けねじ122aの締め付け作業時に締め付けトルク
のばらつきを防止できるので、振動伝達部材122の取
付けねじ122aの締め付けが強すぎてホーン124の
ねじ穴部124aから振動伝達部材122の取付けねじ
122aを取り外すことができなくなることを防止する
ことができる。さらに、振動伝達部材122の取付けね
じ122aの締め付けが緩すぎて超音波振動の伝達効率
が低下することを防止することができる。【0105】また、本実施の形態のトルクレンチ125
では案内棒130に装着されているダブルトーション形
のねじりコイルばね138が外部に露出された状態で配
置されているので、一般の工業用トルクレンチのように
トルクレンチ本体内にばねや、トルク調整機構を組み込
んだものに比べて構成を簡素化することができ、安価と
なる。【0106】また、本実施の形態のトルクレンチ125
は一般の工業用トルクレンチに比べて洗滌性が高い。そ
のため、特に手術中に滅菌室内で振動伝達部材122の
交換作業などを行い、使用後に洗滌作業が必要になる場
合に本実施の形態のトルクレンチ125を有効に使用す
ることもできる効果がある。【0107】図21は第7の実施形態の変形例を示し、
第7の実施形態と異なるコロの部分についてのみ説明す
る。図21(a)に示すようなパイプの一部を切り欠い
たC形断面形状のコロ141を用いている。C形断面の
コロ141をねじりコイルばね138のヘッド押圧部1
38cに装着後、図21(b)に示すようにコロの両端
部141a,141bが互いに重なるように塑性変形さ
せる。これにより第7の実施形態のコロ139と同様の
機能を果たす。【0108】【発明の効果】以上説明したように、この発明によれ
ば、プローブの先端処置部に通電により発熱する発熱手
段を設けたことにより、超音波処置に加えて、生体組織
の凝固処置を効率よく行うことができるという効果があ
る。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention
Ultra sound that treats the affected part by contacting the distal treatment part with living tissue
The present invention relates to a wave treatment device. 2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. Hei 4-212338
No. JP-A-2000-254136
The distal treatment section, which vibrates ultrasonically,
An ultrasonic treatment device for treating a part or the like is known. [0003] Japanese Patent Laid-Open Publication No. 4-212338 discloses a supersonic
The tip of the probe that transmits ultrasonic vibration
It is processed into a flat plate and a concave part (hook part) is formed.
Have been. Japanese Patent Application Laid-Open No. 2000-254136 discloses a supersonic
Not only wave treatment but also treatment by high frequency power supply is possible
Is configured. In US Pat. No. 5,013,312, bi-directional
Ultrasonic transducer near the polar electrode
The tissue is dissected by wave vibration and coagulated by applying bipolar current.
Are shown. As an effect, ultrasonic vibration
To prevent tissue from sticking to the electrodes.
Have been. [0005] In WO99 / 65406, heating means is used.
(Thick film heater pattern) treatment that can coagulate tissue
The fixture is shown. [0006] Furthermore, using ultrasonic energy,
An ultrasonic treatment device that performs procedures such as incision and coagulation of body tissue
For example, Japanese Patent Application Laid-Open No. 2000-296135
Japanese Patent Application No. 2000-283294 discloses that while grasping a living tissue,
Discloses an apparatus for performing treatment by ultrasonic vibration.
Japanese Patent Application No. 2000-283294 discloses a movable grip.
An arrangement in which a heating element is provided in a portion is disclosed. On the other hand, as a conventional surgical excision instrument,
JP-A-5-220157 and JP-A-6-311988
As described in the publication, for the purpose of treating the joint cavity,
It is known that resection of meniscus and cartilage is performed using a resection blade that rotates.
Have been. However, this instrument can
Hemorrhage from the capillaries, see JP-A-6-311988
In the gazette, a high frequency was supplied to the cutting blade to prevent it. Ma
An elongated insertion portion as disclosed in Japanese Patent Application No. 2001-48583.
There is a fever at the tip of the nose, used to treat nasal allergies
Instruments are known. SUMMARY OF THE INVENTION However, as described above,
JP-A-4-212338, JP-A-2000-25
No. 4136, US Pat.
The time required for hemostasis and coagulation of tissue
There was a problem that it took. In WO99 / 65406, ultrasonic vibration
Means to prevent scorching of living tissue due to the absence of moving elements
And was coated with fluororesin, but durable
There was a problem that the property is low. [0010] Japanese Patent Application Laid-Open No. 2000-296135
Coagulation takes time because only ultrasonic treatment is possible,
Alternatively, the incision acts simultaneously with coagulation, so only coagulation is performed.
In this case, there is a problem that operability is poor. [0011] Therefore, Japanese Patent Application No. 2000-283294.
Now, a heating element is provided on the movable grip to increase the solidification ability.
Was. However, a heating element was provided on the movable gripping part.
Therefore, an energizing unit is required separately from the energizing unit for the ultrasonic vibrator.
And there is a problem that the structure becomes complicated. Japanese Patent Application Laid-Open No. 6-311988 describes
Noise in motor drive circuits due to high-frequency current
Is easy to be mixed in, requires measures, and the structure becomes complicated
There was a problem. Further, Japanese Patent Application No. 2001-4858.
No. 3 is for the treatment of allergy in the nose,
None of the tissues could be removed. The present invention has been made in view of the above circumstances.
The purpose of the
To efficiently perform coagulation treatment without energizing living tissue
It is an object of the present invention to provide an ultrasonic treatment device that can perform the above-described operations. [0014] The present invention provides the above object.
To achieve this, a transducer that generates ultrasonic vibration and this
A probe that transmits the ultrasonic vibration generated by the transducer,
Provided at the tip of the probe, and in contact with living tissue
Ultrasound treatment tool with a tip treatment unit that performs ultrasonic treatment
Heat is generated by energizing the treatment section at the distal end of the probe.
The heat generating means is provided. According to the above configuration, the ultrasonic treatment instrument
When incising living tissue, the probe is ultrasonically vibrated.
U. In addition, when coagulating living tissue, a heat source is connected to the power source.
The heating section is energized, and the heating section generates heat due to electrical resistance.
Then, the distal treatment section is heated. Therefore, ultrasonic and fever
Selective coagulation and incision of living tissue by each energy
It can be carried out. The embodiments of the present invention will be described below.
This will be described with reference to the drawings. 1 to 3 show a first embodiment, and FIG.
Is a side view of the ultrasonic treatment instrument, and FIG.
Main part sectional view, (b) is a diagram showing the relationship between amplitude and wavelength,
(C) is a development view of a flexible substrate, and (d) is a flexi.
FIG. 3A is a plan view of a distal treatment section,
(B) is a side view of the distal treatment section. In FIG. 1 to FIG.
The vibrator 2 which is ultrasonically vibrated by electricity, and the vibrator 2
A probe 3 for transmitting the generated ultrasonic vibration,
And a sheath 4 for covering the outside of the distal treatment site of the probe 3.
ing. A current is supplied from the rear end of the vibrator 2.
The cord 5 connected to the power supply body is extended
In order to energize a heating portion described later on the surface of the probe 3,
The connection pin 6 to which the connection cord of
I have. The connection pins 6 have connection electrodes 6 insulated from each other.
a, 6b are provided. Further, a boss fixed to the tip of the vibrator 2
7 transmits the generated ultrasonic vibration to reduce the cross-sectional area.
The horn expands the amplitude.
At the tip of 7, a female screw portion 8 for connecting the probe 3 is provided.
Have been. The probe 3 has a male thread that can be attached to and detached from the female thread 8.
A binding portion 9 is provided. Probe 3 is connected to horn 7
Notch 10 is provided for engaging the tool when screwing
Have been killed. The length of the probe 3 is a half wave of the vibration frequency.
The length is set to an integral multiple of λ / 2 (λ is the wavelength).
The treatment section 11 is located exactly on the antinode of the vibration. At the tip of the probe 3, a living tissue is cut.
A distal treatment section 11 for opening and coagulating is provided.
The sheath 4 is located at the position of the node closest to the distal treatment section 11.
Electric conductivity for positioning the probe 3 with respect to the inner surface of the
Rings 15a and 15b made of elastic members are attached
I have. Outside the probe 3 is the rear end of the distal treatment section 11
To the vibrator 2 and the sheath 4 is covered. The sheath 4 is electrically insulating and inserted into the body cavity.
Insertion section 16 and electrically insulating holding section 17 held by the operator
Consists of Further, the insertion portion 16 and the holding portion 17 are mutually
Connection is fixed. Further, the tip of the insertion portion 16 is
Are narrowed, and the tip members 20 and 21 are connected.
ing. The inside of the insertion portion 16 is flexible.
A substrate 23 is provided. Fig. 2 (c) is flexible
This is an expanded view of the substrate 23, which is actually arranged in a cylindrical shape.
I have. The flexible substrate 23 is, as shown in FIG.
A reinforcing plate 23a made of a resin sheet such as polyimide;
Lamination of the cover plate 23d, the adhesive 23b, and the adhesive 23c
Inside, conductors 23e and 23f made of copper foil are provided.
You. A through hoe is provided at the tip end of the flexible substrate.
23g open, good conductivity of nickel, gold etc.
The electrode lands 24a and 24b made of a noble metal are provided.
I have. Similarly, the electrode lands 25a and 25
b is provided. The electrode lands 24a and 25a and 24b
25b extends from the conductors 23e and 23f in the stack
Wiring pattern 22 (not exposed on the surface)
Has been continued. The electrode lands 24a and 24b are inside the sheath 4.
Contacts and electrically connects to rings 15a and 15b
Is done. Also, the electrode lands 25a and 25b are
For example, through a conducting means (not shown) such as a lead wire
And are electrically connected to the connection electrodes 6a and 6b. Further, as shown in FIG.
Has a relatively large curvature half on both sides on the same side
They are formed as curved surfaces 12 and 13 that are curved by diameter. Ma
Cut into one side of the edge of the curved surfaces 12 and 13
The hook portion 14 is formed by providing a notch.
You. The notch forming the hook portion 14 is a hook.
From the bottom surface of the concave portion of the portion 14 to the root side of the distal treatment section 11
It is provided with a gentle slope. Also, the heating section
26 is thin film forming technology such as sputtering, printing method, etc.
On the curved surface 13 as an electric resistor pattern by the thick film forming technology
Is provided. Molybdenum is used as the material of the thin-film electric resistor.
, Tungsten, etc. are common, and
Si as an electrical insulating layer of3 N4 Need a thin film consisting of
is there. In addition, silver is generally used as the material of the thick-film electric resistor.
SiO2 as an electrically insulating layer with the curved surface 13 and the outside world2 But
is necessary. The ends 27 and 28 of the heating section 26 are the probe 3
Wiring portion 29 (also covered with an insulating layer)
Electrically connected to the rings 15a, 15b
Has been continued. The rings 15a and 15b are nodes of vibration.
Because of its small amplitude, it is convenient for electrical connection.
Good. Next, the operation of the first embodiment will be described.
I do. At the time of incision of the living tissue with the ultrasonic treatment instrument
Is performed by ultrasonically oscillating the probe 3. Also, living tissue
During coagulation, a voltage is applied from the power source to the connection electrodes 6a and 6b.
Is applied, the electrode land 25a / 25b → wiring pattern
22 → electrode land 24a / 24b → rings 15a, 15
b → Electricity is supplied to the heat generating part 26, and as a result, the heat
Heat is generated by air resistance, and the curved surface 13 of the distal treatment section 11 is heated.
Is done. When bleeding or coagulation is required, heat is applied to the heating part 26
Is performed, and the curved surface 13 of the distal treatment section 11 is heated to coagulate.
Do. Therefore, in this embodiment, the ultrasonic wave
Selects coagulation and incision of living tissue by each energy of heat generation
Effects that can be performed selectively, taking advantage of each advantage
Treatment is possible. Further, no current flows through the living tissue during coagulation.
No. In addition, by vibrating ultrasonically after coagulation,
It can prevent scorching. The curved surface of the distal treatment section 11
Since 13 has a shape that easily hits the living tissue,
Coagulation is easy. FIG. 4 shows a second embodiment, and FIG.
Is a plan view of the distal treatment section, (b) is a side view, and (c) is a front view.
FIG. 3D is a bottom view. The second embodiment is different from the first embodiment in footage.
The shape of the heat is changed and the position of the heat generating part 26 is changed.
You. The distal treatment section 11 is a plane parallel to both sides of the hook 32.
Parts 33a and 33b are provided. Also, the curved surface portion 34
Is provided. The heating portion 26 is provided on the curved surface portion 34
I have. Use hook 32 as a spatula in this manner
It is effective mainly for incision of frangible tissue. Also the curved surface
At 34, coagulation of the tissue is also possible. The operation is the first embodiment.
Is the same as FIGS. 5 and 6 show a third embodiment.
5 is a longitudinal side view of the ultrasonic treatment instrument, and FIG.
FIG. The ultrasonic treatment tool 41 is driven by the ultrasonic vibration
Moving vibrator 42 and ultrasonic waves generated by vibrator 42
A probe 43 for transmitting vibration and a cover for covering the probe 43;
A base 44 is provided. Vibration from the rear end of vibrator 42
A cord 45 for energizing the child 42 extends. vibration
The probe 42 and the probe 43 have a hollow structure.
As shown in FIG.
7 are provided. At the end of the hole 47, a cylindrical heat
A monitor 48 is provided. The heater 48 is energized
Lead wires 49 are connected to the cord 45 by the vibrator.
It extends through 42 holes 47. Cylindrical heater 4
8 is a cart with a coiled nichrome wire inside
Ridge heaters and cylindrical ceramic heaters are desirable.
No. According to the present embodiment, when incising the living tissue,
Is performed by ultrasonically vibrating the probe 43. Coagulation of living tissue
In the fixed state, the heater 48 is energized to generate heat.
Is transferred to the distal treatment section 46 and the distal treatment section 46 is heated.
You. Therefore, the heater 48 is directly connected to the lead wire 49.
Because of the energizing contact, there is little energizing loss on the way.
It is more efficient than the embodiment. According to the above-described embodiment, the following structure is used.
Is obtained. (Supplementary Note 1) Transducer that Generates Ultrasonic Vibration
And a probe that transmits the ultrasonic vibration generated by this transducer
And a probe provided at the tip of the probe, and
Ultrasound provided with a distal treatment section for performing ultrasonic treatment by contact
In the treatment tool, the power is supplied to the distal treatment section of the probe.
An ultrasonic treatment device provided with a heating means for generating heat.
Fixture. (Supplementary note 2) In the supplementary note 1, the heat generating means
Is a thin film resistor provided on the surface of the distal treatment section
An ultrasonic treatment tool characterized by the above-mentioned. (Supplementary note 3) In the supplementary note 1, the heat generating means
Is a thick film resistor provided on the surface of the distal treatment section
An ultrasonic treatment tool characterized by the above-mentioned. (Supplementary note 4) In the supplementary note 1, the heat generating means
Is the cartridge located inside the tip of the probe.
An ultrasonic treatment device, characterized in that the device is an ultrasonic treatment device. (Supplementary Note 5) In the supplementary note 1, the heat generating means
Is a ceramic heater provided inside the tip of the probe
An ultrasonic treatment instrument characterized by the fact that: 7 to 9 show a fourth embodiment.
Is a side view of the ultrasonic coagulation and incision apparatus, and FIG. 8 is an ultrasonic coagulation and incision.
FIG. 9 is a side view and a partial cross-sectional view of the probe when the device is disassembled.
Is a cross-sectional view of the tip of the probe. As shown in FIG. 7, the handpiece 51
Handle unit 52 and probe unit 53 and vibration
And a slave unit 54. Handle unit
An operation unit main body 56 having a vibrator holder 55
And a front fixed handle 5 fixed to the operation section main body 56.
7 and a rotatable rear movable handle 58 are provided.
ing. Here, the movable handle 58 is pivotally connected to the operation unit body 56.
It is supported by a pin 59. Further, the front end of the operation section main body 56 is elongated.
The base end of the insertion sheath portion 60 is connected via the rotation knob 61
Have been. Here, the insertion sheath portion 60 and the rotation knob 61
Is mounted so as to be rotatable coaxially with respect to the operation section body 56.
Have been. Further, as shown in FIG.
4 has an ultrasonic vibration generator in a cylindrical cover 62.
Of ultrasonic transducers 65 are disposed. Ultrasonic transducer 6
5 includes an element for converting an electric signal into a mechanical vibration. Super sound
Horn 66 in front of wave oscillator 65 reduces cross-sectional area
To expand the amplitude. The ultrasonic vibrator 65
The cord 63 connected to the source device 64 is electrically connected.
You. The ultrasonic vibration is transmitted to the probe unit 53.
A bar-shaped probe 67 is provided as a vibration transmitting member to be reached.
Have been. The material of the probe 67 may be titanium or aluminum.
Luminous wood is suitable. The tip of the probe 67 is a living body
A treatment section 68 for contacting the weave is provided.
Has a narrower cross-sectional area to increase the amplitude. Here, the units are assembled as shown in FIG.
In a state in which the treatment section 68 is
Project outside. Then, the distal end portion of the insertion sheath portion 60
Supports the living tissue so that it can be gripped with the treatment section 68
Jaws 71 are provided as gripping members.
You. The base end of the jaw 71 is inserted by a fulcrum pin 72 into a sheath portion.
60 is supported at the tip. Further, the inside of the insertion sheath 70 is
-71 is provided with a wire-shaped drive shaft (not shown) for operating
Have been. The base of the jaw 71 is located at the tip of the drive shaft.
The ends are connected. The base end of this drive shaft is movable
It is connected to the dollar 58. And this movable handle
When the drive shaft is moved forward and backward in conjunction with the operation of
The jaw 71 rotates about the fulcrum pin 72 and the treatment section 6
8 is opened and closed. As a result, the jaw 71
The living tissue is supported so as to be grippable with the treatment section 68. Further, as shown in FIG.
5. The horn 66 and the probe 67 have a hollow structure with a hole 69
Through. Further, inside the treatment section 68, a cylindrical heater is provided.
A heater 73 is provided. The heater 73 has two screws.
The wire 74 extends from the cord 63 through the hole 69.
You. A cylindrical ceramic heater as the heater 73
And cartridges with coiled nichrome wires inside
Is appropriate. Next, the operation of the fourth embodiment will be described.
I do. At the time of ultrasonic coagulation incision, the living tissue is
1, the probe 67 and the treatment section 68 are ultrasonically vibrated.
When it is moved, frictional heat is generated, and the living tissue is coagulated and incised.
In addition, when only coagulation is required, such as when bleeding from living tissue,
When the heater 73 is energized, the heat generated by the heater 73 is removed.
The heat is transferred to the placement section 68, and the treatment section 68 is brought into contact with the tissue.
Thus, coagulation is possible due to the heat generated by the treatment section 68. Further
The heater 73 during the ultrasonic coagulation incision
Is also possible. According to this embodiment, the heater is caused to generate heat.
By doing so, only coagulation can be reliably performed. Ma
Also, use both ultrasonic treatment and heating treatment with a heater.
Thus, the treatment speed can be greatly improved. Sa
In addition, the means for energizing the heater is part of the means for energizing the vibrator.
The structure can be simplified because it can be used in common. FIG. 10 shows a fifth embodiment, and FIG.
Longitudinal side of probe unit 53 and transducer unit 54
FIG. 14 is a front view, and the same components as those of the fourth embodiment are denoted by the same reference numerals.
And the description is omitted. The vibrator unit 54 has a rechargeable battery hand.
A step 75 is provided.
Cad batteries and lithium ion batteries are conceivable. In addition,
The pond means 75 is provided with a charging terminal 76. Ma
The battery means 75 is turned ON / OFF by switch means (not shown).
Turn off. However, the output is set in the battery means 75.
Because there are some difficult points, only electricity to heater 73 is
It is also conceivable to use the pond means 75. According to the present embodiment, a battery means is provided.
Therefore, the code is eliminated, and the operability is improved. According to the above embodiment, the following configuration is provided.
can get. (Supplementary Note 6) Ultrasonic vibration generating ultrasonic vibration
A transducer for transmitting the ultrasonic vibration generated by the vibrator.
A lobe, a sheath through which the probe is inserted, and the
Energizing means for supplying a current to the rotor, and a tip of the sheath
To the end of the sheath.
A grasping member for grasping tissue between the lobe tip and a grasping member;
Operating means for opening and closing the holding member
Wherein the current applying means is provided inside the tip of the probe.
Super sound characterized by providing a heat generating means for generating heat by means of
Wave treatment device. (Supplementary note 7) In the supplementary note 6, the heat generating means
Is an ultrasonic wave characterized by being a cartridge heater
Treatment device. (Supplementary Note 8) In the supplementary note 6, the heat generating means
Is an ultrasonic treatment characterized by being a ceramic heater
Device. (Supplementary Note 9) Ultrasonic vibration generating ultrasonic vibration
A transducer for transmitting the ultrasonic vibration generated by the vibrator.
Lobe, sheath through which the probe is inserted, and
Rotatably attached to the tip of the sheath, from the tip of the sheath
A grip that grips tissue between the protruding probe tip
A member and operating means for opening and closing the gripping member.
In the ultrasonic treatment apparatus, the inside of the tip of the probe
Heating means for generating heat by the battery means inside the vibrator
Ultrasonic treatment apparatus characterized by the above-mentioned. FIGS. 11 to 13 show a sixth embodiment.
FIG. 11 is an overall configuration diagram of a surgical resection instrument, and FIG.
The inner tube and the outer tube are disassembled.
FIG. 13C is a sectional view of the distal end of the cutting instrument, and FIG.
FIG. As shown in FIG. 11, the cutting instrument 81 is
A dope 82 and an insertion portion 83 are provided. Hand pea
A motor 84 is built in the motor 82, and the motor 84
Connected to control unit 85 via cable 86
Have been. The suction path provided in the insertion section 83 is a suction tube.
A suction device 88 for generating a suction pressure via a valve 89;
Has been continued. The control unit 85
Switch 90 is connected. As shown in FIG. 12 and FIG.
Reference numeral 3 denotes a double pipe structure of an outer pipe 91 and an inner pipe 92. Inside
The pipe 92 is made of metal such as stainless steel,
A connection portion 93 that can be detachably connected to the
Have been killed. The connecting portion 93 is provided with a tongue edge 104.
And engages with a motor 84 in the handpiece 82 to rotate.
It has become so. In addition, the connection portion 93 has a suction port 95.
Is formed, and the suction port 95 is formed at the side of the tip of the inner tube 92.
And the entire length of the inner tube 92
The suction path 87 communicates with the
And a suction path 99 provided in the
Through. Also, the water side is near the suction port 95 due to watertightness.
O-ring 105 is provided. O-ring 1
The electrodes 106 and 107 are provided on the hand side of the
Have been killed. Here, a heating element 108 is provided around the opening 94.
Are thin film forming technologies such as sputtering or printing methods.
Which thick film forming technology is provided as an electrical resistor pattern
ing. Molybdenum is used as the material of the thin-film electric resistor.
, Tungsten, etc. are common, with the inner tube 92 and the outside world.
Si as an electrical insulating layer of3 N4 Need a thin film consisting of
is there. (Fig. 13 shows a state where the electrical insulation layer around the opening is removed.
The heating element 94 is normally used for the electrical insulation layer.
Is hard to see from the outside. Also, thick film electricity
Silver is generally used as the material of the resistor, and the inner tube 92 and the outer
As an electrical insulating layer with2 Is common. Said
The heating element 108 is provided by a wiring body 109 extended to the near side.
And are electrically connected to the electrodes 106 and 107. As shown in FIG. 12, the tip of the outer tube 91 is secure.
It is formed in a spherical shape to enhance the integrity, and
Has an opening 96 at the same position in the longitudinal direction as the opening 94 of the inner tube 92.
Is formed. Opening 96 of outer tube 91 and opening of inner tube 92
In the mouth 94, a blade is formed at each of their edges, and the inner pipe 9 is formed.
2, the blades cooperate to form the opening 9
Tissue 97 sucked into 4,96 and taken into small tissue pieces
It is configured to cut into pieces. Further, over substantially the entire length of the outer pipe 91 and the inner pipe 92,
As a result, an annular gap through which the perfusate flows is formed.
A water channel 98 is formed. In addition, there is a
A binding member 99 is provided, and the inner pipe 92 is
They are connected so as to be rotatable in a dense state. This ream
A water outlet 102 is provided in the binding member 99, and the water outlet 102
Is an external water supply bottle 100 via a water supply tube 101.
(See FIG. 11) and housed in water bottle 100
The perfusate is supplied to the water supply tube 101, water supply port 102,
The water is supplied to the distal end of the insertion portion 83 via the water channel 98. Further, as shown in FIG.
The tip of the inner hole and the tip of the inner tube 92 are separated by X in the axial direction.
To prevent contact between the outer pipe 91 and the inner pipe 92, and to slide the inner pipe 92.
The perfusate flowing through the water supply channel 98 while rotating it easily
The flow path 103 is formed so as to always flow into the suction path 87.
ing. Further, as shown in FIG.
The piece 82 is detachably connected to the connecting member 99 of the outer tube 91.
A connecting portion 110 is provided. The motor 8
4 is provided with an output shaft 111 projecting into the lumen 113,
Removably engages with the tongue rim 104 on the tip side of the output shaft 111
Connection shaft 112 is provided. Also, brush 11
4 and 115 project into the lumen 113, and the brush 11
4, 115 are wirings 116, 1 branched from the cable 86.
It is energized by 17. The inner tube 92 and the outer tube 91 are handpieces
82, the electrodes 106, 107
4, 115 and is electrically connected. Also the lumen
The inner wall of 113 engages with the O-ring 105 and the O-ring 10
5 has a structure in which liquid does not enter the near side. Next, the operation of the sixth embodiment will be described.
I do. When used, the outer tube 91 is attached to the handpiece 82,
When the inner pipe 92 is connected, the motor 84 and the inner pipe 92 are also connected.
It is. The motor 84 is driven by the foot switch 90
Then, the rotation of the motor 84 is transmitted to the inner pipe 92. Soshi
Then, the tissue to be resected from the openings 94 and 96 is sucked by the suction device 88.
Of the inner tube 92
The blades provided in the openings 94 and 96 are rotated to form a set.
The weave is cut. The cut tissue piece is suctioned by the suction path 87
To the external suction device 88 via the port 95 and the suction tube 89
It is sucked and removed. At the same time as the tissue is excised,
The perfusate is sent through the water supply tube 101 and water supply port 102
Flows into the passage 98, and further passes through the passage 103 to the suction passage 87.
It is sucked. Therefore, the perfusate sucked into the suction passage 87
The cut tissue piece is sucked
You. Here, bleeding during tissue cutting is further prevented.
Operating the foot switch 90 to control the
From the knit 85, the wiring 116, 117, the brush 114, 1
15, through the heating element 108 through the electrodes 106 and 107.
Perform electricity. The heating element 108 generates resistance heat by energization.
And heat the tissue at the same time as the excision to achieve hemostasis and coagulation.
You. According to the present embodiment, high-frequency noise cutoff
Bleeding during cutting can be prevented without preventing
You. FIG. 14 shows a first modification of the sixth embodiment.
The heating element 108 was provided around the opening 96 of the outer tube 91.
Things. Heating element 108 is plugged by wiring 109
118, and a plug 118 (not shown)
Cable. According to the present embodiment, the sixth
The structure is simpler than that of the embodiment. FIG. 15 shows a second modification of the sixth embodiment.
A heating element 108 is provided on the distal end side of the opening 96 of the outer tube 91.
It is a thing. According to the above embodiment, the following configuration is provided.
can get. (Supplementary Note 10) A main body with a built-in motor
The outer tube connected to the main body of the
An insertion portion formed of a tube, and provided at a distal end portion of the insertion portion.
For surgical resection instruments with resection, energization of resection
Characterized in that heat generating means for generating heat is provided.
Resecting instrument. (Supplementary Note 11) In the supplementary note 10, the resection part
The outer tube has an opening, and the heating means is provided around the opening
An excision device characterized by the fact that: (Supplementary Note 12) In the supplementary note 10, the resection part
The inner tube has an opening, and the heating means is provided around the opening
An excision device characterized by the fact that: (Supplementary Note 13) In Supplementary note 10, the resection part
The outer tube has an opening, and the heating means is provided on the tip side of the opening
An excision instrument characterized by the fact that (Supplementary Note 14) In the supplementary note 10, the heat generation
An excision instrument characterized in that the means is a thin film resistor. (Supplementary Note 15) In the supplementary note 10, the heat generation
An excision instrument characterized in that the means is a thick film resistor. According to the configuration described above, the stop at the spherical tip portion is performed.
It can do blood and do heat treatment in a narrow area
Tissue such as cartilage can be resected at the
It is very easy to use and effective when used for allergy treatment. FIGS. 16 to 20 show a seventh embodiment.
FIG. 16 is a side view of the torque wrench, and FIG.
18 is the same longitudinal side view, and FIG. 19 is along the line AA in FIG.
FIG. 20 is a longitudinal sectional side view showing the operation. The torque wrench 125 is used for the ultrasonic treatment device.
Of the vibration transmitting member 122 in the probe unit 121
Attach the mounting screw 122a at the base end to the vibrator unit 123
Into the screw hole 124a of the horn 124
It is for doing. As shown in FIG.
Operating arm 126 and a distal end of the operating arm 126
Rotatably connected via a pivot pin 127 which is a pivot point.
A connected head unit 128 is provided. here,
As shown in FIG.
A slit 126a extending in the direction is formed. So
Then, a head portion 128 is provided on both sides of the slit 126a.
Bifurcated holding portions 126b and 126c for holding are formed.
ing. In addition, the rear end of the operation arm 126 is
Grip to hold by hand when operating the punch 125
The part 129 is integrally attached. Grip part 12
Improve the grip when holding by hand on the outer circumference of 9
Small irregularities are formed for the purpose. Also, as shown in FIG.
At the end opposite to the end connected to the pivot pin 127
A rectangular work engaging recess 128a is formed. So
When using the torque wrench 125,
Spanner hook 1 of vibration transmitting member 122 in mating recess 128a
22b is inserted and engaged. Further, the rotating pin 12 is
7 between the connection end with the workpiece 7 and the work engaging recess 128a.
Slot 128b is formed. This slot
128b extends along an arc centered on the pivot pin 127.
Is established. Further, a guide is provided at the tip of the operation arm 126.
A bar 130 and a stopper 131 are mounted. here
The guide rod 130 is arranged on one side of the operation arm 126.
The first guide rod constituent member 132 to be operated and the operation arm 12
6, a second guide rod constituent member 133 arranged on the other side portion;
Is provided. Further, the first guide rod component 13
2 is between the holding portions 126b and 126c of the operation arm 126;
And the slot of the head part 128 is inserted.
A male screw portion 132a to be inserted into the socket 128b is formed.
ing. The second guide rod component 133 has a screw hole.
A portion 133a is formed. And this screw hole 1
An external thread portion 132a is screwed to the first guide rod structure 33a.
The operating member 132 and the second guide rod constituent member 133
It is fixed to the tip of the arm 126. Further, the stopper 131 is connected to the operation arm 12.
6 are disposed behind the sixth slit 126a. this
The stopper 131 is disposed on one side of the operation arm 126.
The first stopper component 134 to be operated and the operation arm 12
6 second stopper component 135 disposed on the other side
Are provided. Each stopper constituent member 134, 13
5 has an outer flange 136 and an inner flange 1
37 are formed respectively. The guide rod 130 has a double torsion.
Shaped torsion coil spring 138 is mounted. This one
The first guide rod constituent member 132 is attached to the torsion coil spring 138.
First coil 138a wound around and second guide rod configuration
The second coil 138b wound around the member 133 and the first coil
Disposed between the inner ends of the coil 138a and the second coil 138b
Substantially U-shaped head pressing portion 138c and the first coil
138a, a substantially linear first coil extending from the outer end of the first coil
From the fixed end 138d and the outer end of the second coil 138b
The extended substantially linear second coil fixed end 138e is
Is provided. The head pressing portion 138c has a
The roller 139 is rotated around the head pressing portion 138c.
It is movably mounted. The head of the torsion coil spring 138
The pressing portion 138c is provided on the head portion 128 via the roller 139.
It is in contact with the lower edge. Furthermore, the torsion coil spring 1
38, the first coil fixed end 138d is a first stopper structure.
Outer flange 136 and inner flange 13 of component 134
7 and locked. Similarly,
The second coil fixed end 138e is a second stopper constituent member.
135 between the outer flange 136 and the inner flange 137
It is locked in a state inserted between them. By this,
The first coil fixed end 138d of the torsion coil spring 138 and
And the lower end 138e of the second coil fixed portion are respectively outer flanges.
Lateral movement between the flange 136 and the inner flange 137 is restricted.
Locked. Further, the head of the torsion coil spring 138
A head in which the pressing portion 138c is contacted via the roller 139
Click feeling on part of smooth curved surface at lower edge of part 128
A step portion 140 having a step for giving a step is formed.
You. Next, the operation of the seventh embodiment will be described.
I do. The torque wrench 125 is twisted in a natural state.
Due to the spring force of the coil spring 138, the initial position shown in FIG.
Is held in place. And the work of the head part 128
Spanner hook of vibration transmitting member 122 in engagement recess 128a
In the set state in which 122b is inserted and engaged,
Torque by operating the grip 129.
By using this torque wrench 125, vibration is transmitted.
The mounting screw 122a at the base end of the member 122 is
Screw hole 124a of horn 124
Tightening work for screwing and fixing is performed. At this time, the torque wrench 125
If the torque exceeds the preset setting value,
The coil spring 138 contracts, and as shown in FIG.
Head part 1 with respect to the pivot 126
28 is rotated. As a result, the torque wrench 125
Using the mounting screw 12 at the proximal end of the vibration transmitting member 122
2a is the horn 124 of the vibrator unit 123
During the tightening work of screwing and fixing the screw holes 124a
Tightening torque of mounting screw 122a of dynamic transmission member 122
Can be constant. Further, a rotation pin is
When the head unit 128 is rotated around the center 127,
The head pressing portion 138c of the torsion coil spring 138
139 smooth curved surface of the lower edge of the head section 128
Move along. At this time, the torsion coil spring 138
The head pressing portion 138c of the
When climbing over step 140 at the lower edge of 128
The tightening torque of the vibration transmitting member 122 is changed (reduced).
So you can get a click feeling
You. At this time, the roller 139 is moved to the head pressing portion 138.
sliding with the lower edge of the head part 128 while rotating with respect to c.
Operation is always kept good. The torque added to the torque wrench 125
When the torque is loosened, the state shown in FIG.
Return to Also, the screw holes 124a of the horn 124
When removing the mounting screw 122a of the vibration transmission member 122 from the
Applies torque in a counterclockwise direction. At this time, FIG.
As shown in FIG.
It is held in a state of being abutted against the end. Therefore,
Apply enough torque to remove the dynamic transmission member 122
Can be In the torque wrench 125 of this embodiment,
The mounting screw 122a at the base end of the vibration transmitting member 122 is shaken.
Screw hole 1 of horn 124 in rotor unit 123
Vibration transmitting part at the time of tightening work to screw and fix to 24a
Constant tightening torque of mounting screw 122a of material 122
Can be Therefore, the vibration transmission member 122
Tightening torque when tightening the mounting screw 122a
Of the vibration transmitting member 122 can be prevented.
The fastening screw 122a is too tight
Screws for attaching the vibration transmitting member 122 from the screw holes 124a
Prevents removal of 122a
be able to. Further, it is necessary to attach the vibration transmitting member 122.
The transmission efficiency of ultrasonic vibration
Can be prevented from decreasing. The torque wrench 125 according to the present embodiment
In the double torsion type mounted on the guide rod 130
With the torsion coil spring 138 exposed to the outside.
It is located like a general industrial torque wrench
Spring and torque adjustment mechanism built into the torque wrench body
Configuration can be simplified as compared to
Become. The torque wrench 125 according to the present embodiment
Has higher cleaning properties than general industrial torque wrenches. So
For this reason, the vibration transmission member 122 may be
If replacement work is required and cleaning work is required after use
In this case, the torque wrench 125 of the present embodiment is used effectively.
There is also an effect that can be. FIG. 21 shows a modification of the seventh embodiment.
Only the roller portions different from the seventh embodiment will be described.
You. Cut out a part of the pipe as shown in FIG.
A roller 141 having a C-shaped cross section is used. C-shaped section
Roller 141 is torsioned, and head pressing portion 1 of coil spring 138
After mounting on the roller 38c, as shown in FIG.
Parts 141a and 141b are plastically deformed so as to overlap each other.
Let Thereby, it is the same as the roller 139 of the seventh embodiment.
Perform the function. As described above, according to the present invention,
For example, a heating hand that generates heat when energized
With the provision of a step, in addition to ultrasonic treatment,
Coagulation treatment can be performed efficiently.
You.
【図面の簡単な説明】【図1】この発明の第1の実施形態を示す超音波処置具
の側面図。【図2】同実施形態を示し、(a)は超音波処置具の要
部断面図、(b)は振幅と波長の関係を示す図、(c)
はフレキシブル基板の展開図、(d)はフレキシブル基
板の断面図。【図3】同実施形態を示し、(a)は先端処置部の平面
図、(b)は先端処置部の側面図。【図4】この発明の第2の実施形態を示し、(a)は先
端処置部の平面図、(b)は側面図、(c)は前面図、
(d)は下面図。【図5】この発明の第3の実施形態を示す超音波処置具
の縦断側面図。【図6】同実施形態の先端処置部の断面図。【図7】この発明の第4の実施形態を示す超音波凝固切
開装置の側面図。【図8】同実施形態の超音波凝固切開装置の分解時の側
面図及びプローブの部分断面図。【図9】同実施形態のプローブの先端部の断面図。【図10】この発明の第5の実施形態を示し、プローブ
ユニット及び振動子ユニットの縦断側面図。【図11】この発明の第6の実施形態を示し、手術用切
除器具の全体構成図。【図12】同実施形態を示し、(a)は内管と外管を分
解した図、(b)はハンドピース本体の断面図、(c)
は切除器具の先端断面図。【図13】同実施形態を示し、内管の側面図。【図14】この発明の第6の実施形態の変形例1を示す
外管の側面図。【図15】この発明の第6の実施形態の変形例2を示す
外管の側面図。【図16】この発明の第7の実施形態を示すトルクレン
チの側面図。【図17】同実施形態の平面図。【図18】同実施形態の縦断側面図。【図19】図18のA−A線に沿う断面図。【図20】同実施形態の作用を示す縦断側面図。【図21】(a)(b)は同実施形態の変形例を示す縦
断側面図。【符号の説明】2…振動子3…プローブ11…先端処置部26…発熱部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of an ultrasonic treatment device according to a first embodiment of the present invention. FIGS. 2A and 2B show the same embodiment, wherein FIG. 2A is a sectional view of a main part of an ultrasonic treatment instrument, FIG. 2B is a view showing a relationship between amplitude and wavelength, and FIG.
2 is a development view of the flexible board, and FIG. 2D is a cross-sectional view of the flexible board. 3A and 3B show the same embodiment, wherein FIG. 3A is a plan view of a distal treatment section, and FIG. 3B is a side view of the distal treatment section. 4A and 4B show a second embodiment of the present invention, wherein FIG. 4A is a plan view of a distal treatment section, FIG. 4B is a side view, and FIG.
(D) is a bottom view. FIG. 5 is a longitudinal sectional side view of an ultrasonic treatment device according to a third embodiment of the present invention. FIG. 6 is a cross-sectional view of the distal treatment section of the embodiment. FIG. 7 is a side view of an ultrasonic coagulation and incision apparatus showing a fourth embodiment of the present invention. FIG. 8 is a side view and a partial cross-sectional view of the probe when the ultrasonic coagulation and incision apparatus of the embodiment is disassembled. FIG. 9 is a cross-sectional view of the distal end portion of the probe according to the embodiment. FIG. 10 shows the fifth embodiment of the present invention, and is a longitudinal sectional side view of a probe unit and a vibrator unit. FIG. 11 shows the sixth embodiment of the present invention, and is an overall configuration diagram of a surgical resection instrument. 12A and 12B show the same embodiment, wherein FIG. 12A is an exploded view of an inner tube and an outer tube, FIG. 12B is a cross-sectional view of a handpiece body, and FIG.
Fig. 3 is a cross-sectional end view of the resection instrument. FIG. 13 shows the same embodiment, and is a side view of an inner tube. FIG. 14 is a side view of an outer tube showing a first modification of the sixth embodiment of the present invention. FIG. 15 is a side view of an outer tube showing a second modification of the sixth embodiment of the present invention. FIG. 16 is a side view of a torque wrench showing a seventh embodiment of the present invention. FIG. 17 is a plan view of the embodiment. FIG. 18 is a vertical sectional side view of the embodiment. FIG. 19 is a sectional view taken along the line AA in FIG. 18; FIG. 20 is a vertical side view showing the operation of the embodiment. FIGS. 21A and 21B are longitudinal side views showing a modification of the embodiment. [Explanation of Symbols] 2 ... vibrator 3 ... probe 11 ... distal treatment section 26 ... heating section
─────────────────────────────────────────────────────フロントページの続き (72)発明者 村上 栄治 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内(72)発明者 小川 晶久 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内(72)発明者 細田 誠一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内(72)発明者 野田 賢司 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内(72)発明者 中村 剛明 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内(72)発明者 高▲橋▼ 裕之 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内Fターム(参考) 4C060 JJ22 KK47 MM24 ────────────────────────────────────────────────── ───Continuation of front page (72) Inventor Eiji Murakami 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.(72) Inventor Akihisa Ogawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.(72) Inventor Seiichi Hosoda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.(72) Inventor Kenji Noda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.(72) Inventor Takeaki Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.(72) Inventor Takayuki Takahashi Hiroyuki 2-43-2 Hatagaya, Shibuya-ku, Tokyo Ori Inside of Opus Optical Co., Ltd.F term (reference) 4C060 JJ22 KK47 MM24
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001326684AJP2003126110A (en) | 2001-10-24 | 2001-10-24 | Ultrasonic treatment equipment |
| US10/272,127US20030073987A1 (en) | 2001-10-16 | 2002-10-16 | Treating apparatus and treating device for treating living-body tissue |
| US11/011,899US7938779B2 (en) | 2001-10-16 | 2004-12-14 | Treating apparatus and treating device for treating living-body tissue |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001326684AJP2003126110A (en) | 2001-10-24 | 2001-10-24 | Ultrasonic treatment equipment |
| Publication Number | Publication Date |
|---|---|
| JP2003126110Atrue JP2003126110A (en) | 2003-05-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001326684APendingJP2003126110A (en) | 2001-10-16 | 2001-10-24 | Ultrasonic treatment equipment |
| Country | Link |
|---|---|
| JP (1) | JP2003126110A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010522030A (en)* | 2007-03-22 | 2010-07-01 | エシコン・エンド−サージェリィ・インコーポレイテッド | Ultrasonic surgical instrument, and cartilage and osteoplasty blade of ultrasonic surgical instrument |
| US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
| US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
| US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
| US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
| US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
| US8546996B2 (en) | 2008-08-06 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US8546999B2 (en) | 2009-06-24 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Housing arrangements for ultrasonic surgical instruments |
| US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
| US8591536B2 (en) | 2007-11-30 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
| US8623027B2 (en) | 2007-10-05 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
| US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US8704425B2 (en) | 2008-08-06 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
| US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8900259B2 (en) | 2007-03-22 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8951248B2 (en) | 2009-10-09 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
| US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
| US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
| US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
| US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
| US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
| US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
| US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
| US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
| US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
| US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
| US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
| US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| WO2016111031A1 (en)* | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | Treatment instrument and treatment system |
| US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
| US9439669B2 (en) | 2007-07-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
| US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
| US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
| US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
| US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
| US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
| US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
| US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
| US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
| US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
| JPWO2017168515A1 (en)* | 2016-03-28 | 2019-02-07 | オリンパス株式会社 | Ultrasound treatment tool for joint and treatment method thereof |
| US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
| US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
| US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
| US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
| US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
| USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
| US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| JP2019514560A (en)* | 2016-04-28 | 2019-06-06 | 北京水木天蓬医療技術有限公司 | Ultrasonic bone cutter cutter head |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
| US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
| US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
| US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
| US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
| US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
| US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
| US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
| US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
| US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
| US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
| US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
| US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
| US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
| US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
| US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
| US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
| US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
| US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
| US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
| US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
| US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
| US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
| US11730507B2 (en) | 2004-02-27 | 2023-08-22 | Cilag Gmbh International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
| US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
| US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
| US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
| US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
| US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
| US12042168B2 (en) | 2006-01-20 | 2024-07-23 | Cilag Gmbh International | Ultrasound medical instrument having a medical ultrasonic blade |
| US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
| US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
| US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
| US8900259B2 (en) | 2007-03-22 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US9987033B2 (en) | 2007-03-22 | 2018-06-05 | Ethicon Llc | Ultrasonic surgical instruments |
| JP2010522030A (en)* | 2007-03-22 | 2010-07-01 | エシコン・エンド−サージェリィ・インコーポレイテッド | Ultrasonic surgical instrument, and cartilage and osteoplasty blade of ultrasonic surgical instrument |
| US9050124B2 (en) | 2007-03-22 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
| US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
| US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
| US10722261B2 (en) | 2007-03-22 | 2020-07-28 | Ethicon Llc | Surgical instruments |
| US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
| US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
| US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US9642644B2 (en) | 2007-07-27 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical instruments |
| US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
| US12324602B2 (en) | 2007-07-27 | 2025-06-10 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
| US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
| US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
| US9707004B2 (en) | 2007-07-27 | 2017-07-18 | Ethicon Llc | Surgical instruments |
| US10531910B2 (en) | 2007-07-27 | 2020-01-14 | Ethicon Llc | Surgical instruments |
| US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
| US9220527B2 (en) | 2007-07-27 | 2015-12-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
| US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
| US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
| US12220143B2 (en) | 2007-07-31 | 2025-02-11 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
| US12268900B2 (en) | 2007-07-31 | 2025-04-08 | Cilag Gmbh International | Surgical instruments |
| US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
| US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
| US9445832B2 (en) | 2007-07-31 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Surgical instruments |
| US9439669B2 (en) | 2007-07-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
| US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
| US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
| US9486236B2 (en) | 2007-10-05 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Ergonomic surgical instruments |
| US8623027B2 (en) | 2007-10-05 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
| US10828059B2 (en) | 2007-10-05 | 2020-11-10 | Ethicon Llc | Ergonomic surgical instruments |
| US10433866B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
| US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
| US10888347B2 (en) | 2007-11-30 | 2021-01-12 | Ethicon Llc | Ultrasonic surgical blades |
| US10463887B2 (en) | 2007-11-30 | 2019-11-05 | Ethicon Llc | Ultrasonic surgical blades |
| US10045794B2 (en) | 2007-11-30 | 2018-08-14 | Ethicon Llc | Ultrasonic surgical blades |
| US12369939B2 (en) | 2007-11-30 | 2025-07-29 | Cilag Gmbh International | Ultrasonic surgical blades |
| US12383296B2 (en) | 2007-11-30 | 2025-08-12 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
| US11766276B2 (en) | 2007-11-30 | 2023-09-26 | Cilag Gmbh International | Ultrasonic surgical blades |
| US11690643B2 (en) | 2007-11-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical blades |
| US9066747B2 (en) | 2007-11-30 | 2015-06-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
| US8591536B2 (en) | 2007-11-30 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
| US9339289B2 (en) | 2007-11-30 | 2016-05-17 | Ehticon Endo-Surgery, LLC | Ultrasonic surgical instrument blades |
| US10433865B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
| US11266433B2 (en) | 2007-11-30 | 2022-03-08 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
| US10265094B2 (en) | 2007-11-30 | 2019-04-23 | Ethicon Llc | Ultrasonic surgical blades |
| US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
| US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
| US10245065B2 (en) | 2007-11-30 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical blades |
| US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
| US8779648B2 (en) | 2008-08-06 | 2014-07-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
| US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
| US10022567B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US10022568B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US9072539B2 (en) | 2008-08-06 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US8749116B2 (en) | 2008-08-06 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US8704425B2 (en) | 2008-08-06 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
| US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
| US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US8546996B2 (en) | 2008-08-06 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
| US10709906B2 (en) | 2009-05-20 | 2020-07-14 | Ethicon Llc | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
| US8546999B2 (en) | 2009-06-24 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Housing arrangements for ultrasonic surgical instruments |
| US8754570B2 (en) | 2009-06-24 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments comprising transducer arrangements |
| US9498245B2 (en) | 2009-06-24 | 2016-11-22 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
| US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
| US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
| US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
| US8773001B2 (en) | 2009-07-15 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
| US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
| US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US8986302B2 (en) | 2009-10-09 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US8951248B2 (en) | 2009-10-09 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US8956349B2 (en) | 2009-10-09 | 2015-02-17 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US9039695B2 (en) | 2009-10-09 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US9060776B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US9060775B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US12408967B2 (en) | 2009-10-09 | 2025-09-09 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10263171B2 (en) | 2009-10-09 | 2019-04-16 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
| US9107689B2 (en) | 2010-02-11 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
| US9510850B2 (en) | 2010-02-11 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
| US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
| US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
| US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
| US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
| US10117667B2 (en) | 2010-02-11 | 2018-11-06 | Ethicon Llc | Control systems for ultrasonically powered surgical instruments |
| US10835768B2 (en) | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
| US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
| US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
| US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
| US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
| US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
| US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
| US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
| US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
| US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
| US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
| US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
| US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
| US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
| US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
| US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
| US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
| US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
| US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
| US12167866B2 (en) | 2012-04-09 | 2024-12-17 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
| US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
| US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
| US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
| US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
| US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
| US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
| US12268408B2 (en) | 2012-06-29 | 2025-04-08 | Cilag Gmbh International | Haptic feedback devices for surgical robot |
| US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
| US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
| US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
| US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
| US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
| US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
| US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
| US10842580B2 (en) | 2012-06-29 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
| US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
| US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
| US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
| US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
| US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
| US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
| US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
| US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
| US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
| US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
| US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
| US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
| US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
| US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
| US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
| US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
| US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
| US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
| US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
| US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
| US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
| US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| JPWO2016111031A1 (en)* | 2015-01-07 | 2017-04-27 | オリンパス株式会社 | Treatment tool and treatment system |
| WO2016111031A1 (en)* | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | Treatment instrument and treatment system |
| US10617466B2 (en) | 2015-01-07 | 2020-04-14 | Olympus Corporation | Treatment instrument and treatment system |
| US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
| US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
| US12156674B2 (en) | 2015-06-17 | 2024-12-03 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
| US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
| US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
| US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
| US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
| US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
| US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
| US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
| US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
| US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
| US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
| US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
| US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
| US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
| US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
| US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
| US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
| US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
| US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
| US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US12239360B2 (en) | 2016-01-15 | 2025-03-04 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
| US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
| US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US12201339B2 (en) | 2016-01-15 | 2025-01-21 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
| US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
| US12402906B2 (en) | 2016-01-15 | 2025-09-02 | Cilag Gmbh International | Modular battery powered handheld surgical instrument and methods therefor |
| US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
| US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
| US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| JPWO2017168515A1 (en)* | 2016-03-28 | 2019-02-07 | オリンパス株式会社 | Ultrasound treatment tool for joint and treatment method thereof |
| US10702297B2 (en) | 2016-03-28 | 2020-07-07 | Olympus Corporation | Ultrasonic treatment instrument for articulations, and treatment method thereof |
| JP2019514560A (en)* | 2016-04-28 | 2019-06-06 | 北京水木天蓬医療技術有限公司 | Ultrasonic bone cutter cutter head |
| US11207084B2 (en) | 2016-04-28 | 2021-12-28 | Beijing Smtp Technology Co., Ltd. | Tool bit for an ultrasonic osteotome |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
| US11883055B2 (en) | 2016-07-12 | 2024-01-30 | Cilag Gmbh International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
| US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
| US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
| US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
| US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
| US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
| USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
| USD1049376S1 (en) | 2016-08-16 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
| USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
| US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
| US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
| US11925378B2 (en) | 2016-08-25 | 2024-03-12 | Cilag Gmbh International | Ultrasonic transducer for surgical instrument |
| US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
| US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
| US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
| US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| US12349961B2 (en) | 2019-12-30 | 2025-07-08 | Cilag Gmbh International | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
| US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
| Publication | Publication Date | Title |
|---|---|---|
| JP2003126110A (en) | Ultrasonic treatment equipment | |
| US7938779B2 (en) | Treating apparatus and treating device for treating living-body tissue | |
| JP4700715B2 (en) | Energy treatment tool | |
| JP3537387B2 (en) | Ultrasonic treatment tool | |
| JP3686765B2 (en) | Ultrasonic treatment device | |
| JP4402629B2 (en) | Ultrasonic coagulation and incision device | |
| JP3571414B2 (en) | Ultrasonic incision coagulation equipment | |
| JP5322720B2 (en) | Surgical equipment | |
| US20040064151A1 (en) | Ultrasonic forceps | |
| JP2004209042A (en) | Ultrasonic treatment apparatus | |
| JP4253605B2 (en) | Ultrasonic treatment device | |
| CN113631105A (en) | Ultrasonic and multi-energy surgical instruments, systems, and methods for sealing, cutting, and/or sensing tissue | |
| JP3310532B2 (en) | Ultrasonic incision coagulation device | |
| CN112890918A (en) | Energy-based surgical instrument incorporating cooling features | |
| JP3831233B2 (en) | Surgical tools | |
| JP3270415B2 (en) | Ultrasonic coagulation incision device | |
| JP3679497B2 (en) | Ultrasonic coagulation cutting tool | |
| JP2000197640A (en) | Ultrasonic treating implement | |
| JP3826141B2 (en) | Ultrasonic incision coagulator | |
| JP3544642B2 (en) | Ultrasonic treatment tool | |
| JP4059658B2 (en) | Surgical forceps | |
| JP4253513B2 (en) | Ultrasonic treatment device | |
| JP2001087274A (en) | Ultrasonic treating tool | |
| JP4248884B2 (en) | Ultrasonic treatment device | |
| JP2000126198A (en) | Ultrasonic treatment tool |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20040810 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20070821 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20071218 |