【0001】[0001]
【発明の属する技術分野】本発明は、発光素子および発
光材料に関し、特に低分子系の有機発光素子およびその
製造方法に関する。TECHNICAL FIELD The present invention relates to a light emitting device and a light emitting material, and more particularly to a low molecular weight organic light emitting device and a manufacturing method thereof.
【0002】[0002]
【従来の技術】低分子系有機発光素子用の材料として
は、電子輸送材料もしくはホールブロック材料として化
1で示されるバソフェナントロリンや、化2で示される
バソクプロインが知られている。2. Description of the Related Art As materials for low molecular weight organic light-emitting devices, bathophenanthroline represented by Chemical formula 1 and bathocuproine represented by Chemical formula 2 are known as electron transport materials or hole blocking materials.
【0003】[0003]
【化1】[Chemical 1]
【0004】[0004]
【化2】[Chemical 2]
【0005】特に、バソフェナントロリンは、電子の移
動度が高いことが知られている(Shigeki Naka et al.,
Applied Physics Letters, vol.76, No.2, p197-199.
特開平5−331459)。また、電子輸送材料にセシ
ウム(Cs)をドーピングすることにより、低電圧化、
高効率化が可能なことが、例えば山形大学、株式会社ア
イメス、松下電工株式会社から報告されている(Junji
Kido et al., AppliedPhysics Letters, vol.73, No.2
0, p2866-2868; 岸上他.高分子討論会 Vol.49, No.11
(2000) p3385-3386)。In particular, bathophenanthroline is known to have high electron mobility (Shigeki Naka et al.,
Applied Physics Letters, vol.76, No.2, p197-199.
JP-A-5-331459). Further, by doping the electron transport material with cesium (Cs), the voltage can be lowered,
It has been reported by Yamagata University, Ames Co., Ltd., and Matsushita Electric Works, Ltd. that high efficiency can be achieved (Junji
Kido et al., Applied Physics Letters, vol.73, No.2
0, p2866-2868; Kishigami et al. Macromolecules Discussion Group Vol.49, No.11
(2000) p3385-3386).
【0006】さらに、バソクプロインは、リン光材料を
利用した素子のホールブロック材料としても注目されて
いる。Further, bathocuproine has been attracting attention as a hole blocking material for a device using a phosphorescent material.
【0007】上記のいずれの材料においても、エネルギ
ーレベルのHOMO(最高占有分子軌道)レベルが大き
く、バンドギャップが大きいことが特徴である。Each of the above materials is characterized by a large energy level HOMO (highest occupied molecular orbital) level and a large band gap.
【0008】しかしながら、上記のいずれの材料も耐熱
性が乏しく、例えば一般的な保存温度範囲(−40℃か
ら85℃)においてさえ、結晶化による素子特性の劣化
が発生する。However, any of the above materials is poor in heat resistance and, for example, deterioration of device characteristics due to crystallization occurs even in a general storage temperature range (-40 ° C. to 85 ° C.).
【0009】[0009]
【発明が解決しようとする課題】本発明は、耐熱性に優
れた低分子系有機発光素子を提供することを目的とす
る。加えて、耐熱性に優れた低分子系有機発光素子の製
造方法を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a low molecular weight organic light emitting device having excellent heat resistance. In addition, it aims at providing the manufacturing method of the low molecular weight organic light emitting element excellent in heat resistance.
【0010】[0010]
【課題を解決するための手段】本発明の一観点によれ
ば、(i) 第1電極と、(ii)前記第1電極に対向する第2
電極と、(iii) 前記第1電極と前記第2電極との間に形
成される積層構造であって、前記第1電極側から順番
に、正孔輸送層と、有機化合物により形成される発光層
と、フェナントロリン2量体及びフェナントロリン3量
体並びにそれらの誘導体のうちのいずれかから選択され
る材料により形成される電荷制御層とを含む積層構造と
を含む有機発光素子が提供される。According to one aspect of the present invention, (i) a first electrode and (ii) a second electrode facing the first electrode.
An electrode; and (iii) a laminated structure formed between the first electrode and the second electrode, wherein the hole transport layer and the organic compound emit light in order from the first electrode side. An organic light emitting device is provided that includes a layer and a stacked structure including a charge control layer formed of a material selected from a phenanthroline dimer, a phenanthroline trimer, and a derivative thereof.
【0011】本発明の他の観点によれば、(A)基板を
準備する工程と、(B)前記基板上に、(i) 第1電極
と、(ii)前記第1電極に対向する第2電極と、(iii) 前
記第1電極と前記第2電極との間に形成される積層構造
であって、前記第1電極側から順番に、正孔輸送層と、
有機化合物により形成される発光層と、フェナントロリ
ン2量体及びフェナントロリン3量体並びにそれらの誘
導体のうちのいずれかから選択される材料により形成さ
れる電荷制御層とを含む積層構造とを形成する工程とを
含む有機発光素子の製造方法が提供される。According to another aspect of the present invention, (A) a step of preparing a substrate, (B) a first electrode on the substrate, and (ii) a first electrode facing the first electrode. A second electrode, and (iii) a laminated structure formed between the first electrode and the second electrode, wherein a hole transport layer is formed in order from the first electrode side,
A step of forming a laminated structure including a light emitting layer formed of an organic compound and a charge control layer formed of a material selected from phenanthroline dimer and phenanthroline trimer and derivatives thereof. There is provided a method for manufacturing an organic light emitting device including:
【0012】上記有機発光素子においては、フェナント
ロリン2量体及びフェナントロリン3量体並びにそれら
の誘導体のうちのいずれかから選択される材料を用いて
電荷制御層を形成する。この電荷制御層は、電子輸送層
またはホールブロック層として利用することができ、素
子の性能向上に寄与する。しかも、耐熱性が良好であ
る。耐熱性に優れ、性能も高い有機発光素子を得ること
が容易になる。In the above organic light emitting device, the charge control layer is formed using a material selected from phenanthroline dimer, phenanthroline trimer and derivatives thereof. This charge control layer can be used as an electron transport layer or a hole blocking layer and contributes to improving the performance of the device. Moreover, it has good heat resistance. It becomes easy to obtain an organic light emitting device having excellent heat resistance and high performance.
【0013】[0013]
【発明の実施の形態】発明者は、鋭意研究を行った結
果、以下の材料を用いると、耐熱性に優れた有機発光素
子(以下、「有機LED」ということがある。)が形成
可能であることを発見した。DETAILED DESCRIPTION OF THE INVENTION As a result of earnest studies, the inventor of the present invention can form an organic light emitting device (hereinafter, also referred to as “organic LED”) having excellent heat resistance by using the following materials. I found that.
【0014】例えば、有機LED用の電子輸送材料又は
ホールブロック材料として、化3から化5に示されるフ
ェナントロリン2量体、化6に示されるフェナントロリ
ン3量体又は化7から化10までに示されるフェナント
ロリン誘導体を用いることができる。必要に応じて、こ
れらの材料にCs等のアルカリ金属をドーピングするこ
とができる。For example, as an electron-transporting material or hole blocking material for an organic LED, a phenanthroline dimer shown in Chemical formulas 3 to 5, a phenanthroline trimer shown in Chemical formula 6 or a chemical formula 7 to Chemical formula 10 is shown. Phenanthroline derivatives can be used. If necessary, these materials can be doped with an alkali metal such as Cs.
【0015】[0015]
【化3】[Chemical 3]
【0016】[0016]
【化4】[Chemical 4]
【0017】[0017]
【化5】[Chemical 5]
【0018】[0018]
【化6】[Chemical 6]
【0019】[0019]
【化7】[Chemical 7]
【0020】[0020]
【化8】[Chemical 8]
【0021】[0021]
【化9】[Chemical 9]
【0022】[0022]
【化10】[Chemical 10]
【0023】化3に示される化合物は、4,4'−ジ
(1,10−フェナントロリン−2イル)ビフェニル
(DPBi)である。化4に示される化合物は、1,4
−ジ(1,10−フェナントロリン−2イル)ベンゼン
(DPB)である。化5に示される化合物は、1,5−
ジ(1,10−フェナントロリン−2イル)アントラセ
ンである。以上がフェナントロリンの2量体である。化
6に示される化合物は、1,3,5−トリ(1,10−
フェナントロリン−2イル)ベンゼンであり、フェナン
トロリンの3量体ある。化7から化10までに示される
化合物は、フェナントロリンの2量体の誘導体である。The compound shown in Chemical formula 3 is 4,4'-di (1,10-phenanthroline-2yl) biphenyl (DPBi). The compound shown in Chemical formula 4 is 1,4
-Di (1,10-phenanthroline-2yl) benzene (DPB). The compound shown in Chemical formula 5 is 1,5-
It is di (1,10-phenanthroline-2yl) anthracene. The above is the dimer of phenanthroline. The compound shown in Chemical formula 6 is 1,3,5-tri (1,10-
Phenanthroline-2yl) benzene, which is a trimer of phenanthroline. The compounds shown in Chemical formulas 7 to 10 are dimeric derivatives of phenanthroline.
【0024】上記の有機LED用材料を用いて実際に有
機LEDを製造した実施例について以下に説明する。An example in which an organic LED is actually manufactured using the above organic LED material will be described below.
【0025】まず、本発明の第1実施例による有機LE
Dについて、図1を参照して説明する。First, the organic LE according to the first embodiment of the present invention.
D will be described with reference to FIG.
【0026】ガラス基板1上に、ITO(Indium
Tin Oxide)透明導電膜3を、例えば厚さ2
00nm成膜する。透明導電膜3を所定のパターンに加
工する。この状態において、界面活性剤にて超音波洗浄
し、純水を用いてリンスを行った。ITO (Indium) is formed on the glass substrate 1.
Tin Oxide) The transparent conductive film 3 has a thickness of, for example, 2
The film is formed to a thickness of 00 nm. The transparent conductive film 3 is processed into a predetermined pattern. In this state, ultrasonic cleaning was performed with a surfactant, and rinse was performed using pure water.
【0027】次いで、イソプロピルアルコールを用いた
超音波洗浄工程により脱脂洗浄処理を行った。さらに、
ガラス基板1に対して紫外線を照射し、UVオゾン洗浄
を行った。その後、ガラス基板1を真空チャンバ内に取
り付け、1.33×10-4Pa(1×10-6Torr)
まで排気する。真空チャンバ内には、有機材料を充填し
たタンタル製の蒸着ボートと、所定のパターンで成膜す
るための金属製薄板マスクを設置しておく。蒸着ボート
に電流を流すことにより有機材料を加熱し蒸着・成膜を
行った。Next, a degreasing cleaning process was performed by an ultrasonic cleaning process using isopropyl alcohol. further,
The glass substrate 1 was irradiated with ultraviolet rays to perform UV ozone cleaning. Then, the glass substrate 1 was mounted in a vacuum chamber, and the glass substrate 1 was 1.33 × 10−4 Pa (1 × 10−6 Torr).
Exhaust to. In the vacuum chamber, a tantalum vapor deposition boat filled with an organic material and a metal thin plate mask for forming a film in a predetermined pattern are installed. The organic material was heated by passing an electric current through the vapor deposition boat to perform vapor deposition and film formation.
【0028】まず、水晶振動子で厚さをモニターしなが
ら、銅フタロシアニン(CuPc)を22nm成膜し、
ホール注入層5を形成した。次に、N,N'−ジ(α−
ナフチル)−N,N'−ジフェニル−1,1'−ビフェニ
ル−4,4'−ジアミン(αNPD)を34nmの厚さ
成膜してホール輸送層7を形成し、4,4'−ビス
(2,2'−ジフェニルビニル)ビフェニル(DPVB
i)を23nmの厚さ成膜して青色発光層11を形成し
た。First, while monitoring the thickness with a crystal oscillator, copper phthalocyanine (CuPc) is deposited to a thickness of 22 nm,
The hole injection layer 5 was formed. Next, N, N'-di (α-
Naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (αNPD) is deposited to a thickness of 34 nm to form the hole transport layer 7, and 4,4′-bis ( 2,2'-diphenylvinyl) biphenyl (DPVB
The blue light emitting layer 11 was formed by depositing i) to a thickness of 23 nm.
【0029】尚、DPVBiに代えてトリス(8−キノ
リノラト)アルミニウム錯体(Alq3 )を発光層用の
材料として用いると、緑色発光層を形成することができ
る。When a tris (8-quinolinolato) aluminum complex (Alq3 ) is used as a material for the light emitting layer instead of DPVBi, a green light emitting layer can be formed.
【0030】次いで、フェナントロリンの2量体によ
り、電荷制御層を形成する。フェナントロリンの2量体
として化4で示される1,4'−ジ(1,10−フェナ
ントロリン−2イル)ベンゼン(DPB)を47nm成
膜し、電荷制御層15を形成した。フェナントロリンの
2量体としては、例えば、化3又は化5で示す化合物を
用いることもできる。Next, a charge control layer is formed from a dimer of phenanthroline. As the dimer of phenanthroline, 1,4′-di (1,10-phenanthroline-2yl) benzene (DPB) represented by Chemical Formula 4 was formed into a 47 nm film to form the charge control layer 15. As the dimer of phenanthroline, for example, the compound shown in Chemical formula 3 or Chemical formula 5 can also be used.
【0031】フェナントロリンの3量体としては、例え
ば、化6で示す化合物を用いることができる。その他、
フェナントロリンの2量体の誘導体、例えば化7から化
10で示される化合物を用いることもできる。As the trimer of phenanthroline, for example, the compound shown in Chemical formula 6 can be used. Other,
It is also possible to use a dimer derivative of phenanthroline, for example, compounds represented by Chemical formulas 7 to 10.
【0032】次に、陰極を成膜する。上記の真空チャン
バから基板を取り出し、金属成膜用チャンバに基板を取
り付けた。成膜した有機材料の劣化を防止するため、大
気に触れることなく真空一貫工程により基板を移動させ
た。金属成膜用チャンバには、陰極用材料と陰極パター
ン用の金属製薄板マスクとを設置した。すなわち、基板
上に電極の形状に合わせた開口を有するマスクを設け、
その上から陰極材料を蒸着した。有機材料と同様に、1
×10-6Torr(1.33×10-4Pa)の真空度に
おいて成膜を行った。金属製のチャンバ内において、フ
ッ化リチウム(LiF)層17を0.1nm成膜した。
次いでアルミニウム(Al)層19を100nm成膜
し、陰極21を形成した。Liは電極の安定化のために
用いられ、Alと共蒸着しても良い。Next, a cathode is formed. The substrate was taken out of the vacuum chamber and attached to the metal film forming chamber. In order to prevent the deterioration of the formed organic material, the substrate was moved by a vacuum integrated process without exposure to the atmosphere. A cathode material and a thin metal plate mask for the cathode pattern were installed in the metal film forming chamber. That is, a mask having an opening matching the shape of the electrode is provided on the substrate,
The cathode material was vapor-deposited on it. Like organic materials, 1
Film formation was performed at a vacuum degree of × 10-6 Torr (1.33 × 10-4 Pa). A lithium fluoride (LiF) layer 17 was deposited to a thickness of 0.1 nm in a metal chamber.
Next, an aluminum (Al) layer 19 having a thickness of 100 nm was formed to form a cathode 21. Li is used for stabilizing the electrode, and may be co-deposited with Al.
【0033】有機LEDは水分の影響を受けやすいの
で、その影響を避けるため、成膜後のガラス基板1を不
活性なガス、例えばN2 ガスで満たされたグローブボッ
クスに移動した。有機LEDと別のガラス板とを紫外線
硬化型接着材を用いて接着し、パッケージを形成した。Since the organic LED is easily affected by moisture, the glass substrate 1 after film formation was moved to a glove box filled with an inert gas such as N2 gas in order to avoid the influence. The organic LED and another glass plate were adhered to each other using an ultraviolet curable adhesive to form a package.
【0034】ガラス板を張り合わせた有機LEDの陽極
3と陰極21とにDC電源23を接続した。A DC power source 23 was connected to the anode 3 and the cathode 21 of the organic LED having glass plates stuck together.
【0035】上記の工程により形成した有機LED A
にDC電源23により電流を流すと、ガラス基板1側か
らの発光が観測された。より詳細には、陰極21から注
入された電子が電荷制御層15内を通り青色発光層11
に向かう。一方、陽極3から注入された正孔がホール輸
送層5とホール注入層7を通り青色発光層11に向か
う。青色発光層11内において、電子と正孔とが会合し
て励起子が発生する。励起子から青色の波長を有する発
光が観測される。発光は、ガラス基板1の正面側(積層
構造を設けていない側)から観測される。尚、電荷制御
層15としてイオン化ポテンシャルが高い材料を選択す
ると、正孔のブロック機能が高くなり、ホールブロック
材料として機能する。第1実施例においては、電荷制御
層15は、電子輸送機能とホールブロック機能とを有し
ている。Organic LED A formed by the above process
When a current was applied by the DC power supply 23, light emission from the glass substrate 1 side was observed. More specifically, the electrons injected from the cathode 21 pass through the charge control layer 15 and the blue light emitting layer 11
Head to. On the other hand, the holes injected from the anode 3 pass through the hole transport layer 5 and the hole injection layer 7 toward the blue light emitting layer 11. In the blue light emitting layer 11, the electrons and holes associate with each other to generate excitons. Emission having a blue wavelength is observed from the excitons. Light emission is observed from the front side of the glass substrate 1 (the side on which the laminated structure is not provided). If a material having a high ionization potential is selected for the charge control layer 15, the hole blocking function is enhanced and the hole blocking material functions. In the first embodiment, the charge control layer 15 has an electron transport function and a hole blocking function.
【0036】上記の工程により製造した有機LED A
に関して、正面方向(ガラス基板1の表面の法線方向)
から測定した輝度を、ミノルタカメラ社製の輝度測定装
置CS−100を用いて測定した。電流値と電圧値とか
ら初期効率を計算した。Organic LED A produced by the above process
With respect to the front direction (direction normal to the surface of the glass substrate 1)
The luminance measured from 1. was measured using a luminance measuring device CS-100 manufactured by Minolta Camera. The initial efficiency was calculated from the current value and the voltage value.
【0037】次に、本発明の第2実施例による有機LE
Dについて説明する。基板の種類と基板洗浄法に関して
は、第1実施例の場合と同じである。ホール注入層とし
て銅フタロシアニン(CuPc)を22nm成膜した。
次に、ホール輸送層としてαNPDを34nm成膜し
た。青色発光層としてDPVBiを23nm成膜した。
次いで、電荷制御層として、化3に示すDPBiを47
nm成膜した。第2実施例においても、電荷制御層は電
子輸送機能とホールブロック機能とを有している。陰極
を成膜した後のパッケージ工程は、第1実施例と同様の
工程を適用した。測定手段および測定方法も同じであ
る。Next, the organic LE according to the second embodiment of the present invention.
D will be described. The type of substrate and the substrate cleaning method are the same as in the first embodiment. Copper phthalocyanine (CuPc) having a thickness of 22 nm was formed as a hole injection layer.
Next, αNPD was deposited to a thickness of 34 nm as a hole transport layer. DPVBi was deposited in a thickness of 23 nm as a blue light emitting layer.
Next, DPBi shown in Chemical formula 3 is used as a charge control layer.
nm film was formed. Also in the second embodiment, the charge control layer has an electron transporting function and a hole blocking function. As the packaging process after forming the cathode film, the same process as in the first embodiment was applied. The measuring means and the measuring method are also the same.
【0038】次に、上記第1実施例および第2実施例に
よる有機LEDとの比較のために、電荷制御層として化
1に示すバソフェナントロリン(Bphen)を47n
m成膜した(第1比較例)。陰極を成膜した後のパッケ
ージ工程は、第1および第2実施例と同様の工程を適用
した。測定手段および測定方法も同じである。Next, for comparison with the organic LEDs according to the first and second embodiments, 47 n of bathophenanthroline (Bphen) shown in Chemical formula 1 was used as a charge control layer.
m film was formed (first comparative example). As the packaging process after forming the cathode film, the same process as in the first and second embodiments was applied. The measuring means and the measuring method are also the same.
【0039】第1および第2実施例による有機LED
は、電荷制御層用の材料として、いずれもフェナントロ
リンの2量体又は3量体を用いている。化7から化10
までに示す誘導体を用いても良い。Organic LEDs according to the first and second embodiments
Uses a dimer or trimer of phenanthroline as a material for the charge control layer. Chemical formula 7 to chemical formula 10
You may use the derivative shown to it.
【0040】図2から図4までに、第1実施例および第
2実施例による有機LEDの初期特性を示す。併せて、
第1比較例による有機LEDの初期特性も示す。図2
は、有機LEDの電流密度の印加電圧依存性を示す図で
ある。図3は、有機LEDの輝度の印加電圧依存性を示
す図である。図4は、有機LEDの効率の印加電圧依存
性を示す図である。2 to 4 show the initial characteristics of the organic LEDs according to the first and second embodiments. together,
The initial characteristics of the organic LED according to the first comparative example are also shown. Figure 2
FIG. 4 is a diagram showing applied voltage dependency of current density of an organic LED. FIG. 3 is a diagram showing the applied voltage dependence of the brightness of the organic LED. FIG. 4 is a diagram showing the applied voltage dependence of the efficiency of the organic LED.
【0041】図2に示すように、第1および第2実施例
による有機LEDの電流密度は、第1比較例による有機
LEDと同様に、印加電圧2.5V付近から急激に立ち
上がっていることがわかる。第1実施例および第2実施
例による有機LEDと、第1比較例による有機LEDの
特性とに大きな違いはない。As shown in FIG. 2, the current densities of the organic LEDs according to the first and second examples rise sharply from the applied voltage of around 2.5 V, as in the organic LEDs according to the first comparative example. Recognize. There is no significant difference between the characteristics of the organic LED according to the first embodiment and the second embodiment and the characteristics of the organic LED according to the first comparative example.
【0042】図3に示すように、第1および第2実施例
による有機LEDの輝度は、第1比較例による有機LE
Dと同様に印加電圧2.5V付近から急激に立ち上がっ
ていることがわかる。第1実施例および第2実施例の有
機LEDと第1比較例による有機LEDとの間に特性
上、さほどの違いはない。As shown in FIG. 3, the brightness of the organic LEDs according to the first and second embodiments is the same as that of the organic LE according to the first comparative example.
It can be seen that similar to D, the voltage rises sharply from around 2.5V. There is no significant difference in characteristics between the organic LEDs of the first and second embodiments and the organic LED of the first comparative example.
【0043】図4に示すように、第1および第2実施例
による有機LEDの効率は、印加電圧2.5V付近から
急激に大きくなることがわかる。印加電圧が3Vから4
Vまでの間においては3.5から4程度の高い効率を維
持している。印加電圧が3Vから4Vまでの間において
は、第1比較例による有機LEDの効率が最も高く、第
2実施例による有機LED、第1実施例による有機LE
Dの順となっている。As shown in FIG. 4, it can be seen that the efficiency of the organic LEDs according to the first and second embodiments rapidly increases from around the applied voltage of 2.5V. Applied voltage is 3V to 4
Up to V, high efficiency of 3.5 to 4 is maintained. When the applied voltage is between 3 V and 4 V, the efficiency of the organic LED according to the first comparative example is the highest, and the organic LED according to the second example and the organic LE according to the first example are the same.
The order is D.
【0044】表1は、図2から図4までから求められた
有機LEDの電気光学特性をまとめた表である。Table 1 is a table summarizing the electro-optical characteristics of the organic LEDs obtained from FIGS. 2 to 4.
【0045】[0045]
【表1】[Table 1]
【0046】表1に示すように、第1実施例および第2
実施例による有機LEDの発光開始電圧(輝度が1cd
/m2 における電圧として規定した。)は、第1比較例
と同様に2.7Vである。輝度が300cd/m2 とな
る電流密度は、第1比較例による有機LEDにおいては
7.6mA/cm2 であり、その時の電圧は3.4Vで
ある。効率は4cd/Aである。第1実施例による有機
LEDにおいては輝度が300cd/m2 となる電流密
度は8.2mA/cm2 であり、その時の電圧は3.8
Vである。効率は4cd/Aである。第2実施例による
有機LEDにおいては輝度が300cd/m2 となる電
流密度は7.7mA/cm2 であり、その時の電圧は
3.5Vである。効率は4cd/Aである。As shown in Table 1, the first embodiment and the second embodiment
The emission start voltage of the organic LED according to the embodiment (luminance is 1 cd
/ M2 It was defined as the voltage. ) Is 2.7V as in the first comparative example. The current density at which the brightness becomes 300 cd / m2 is 7.6 mA / cm2 in the organic LED according to the first comparative example, and the voltage at that time is 3.4 V. The efficiency is 4 cd / A. In the organic LED according to the first embodiment, the current density at which the brightness becomes 300 cd / m2 is 8.2 mA / cm2 , and the voltage at that time is 3.8.
V. The efficiency is 4 cd / A. In the organic LED according to the second embodiment, the current density at which the brightness becomes 300 cd / m2 is 7.7 mA / cm2 , and the voltage at that time is 3.5V. The efficiency is 4 cd / A.
【0047】これらの値に関しても、実施例と比較例と
の差はほとんどない。Also regarding these values, there is almost no difference between the example and the comparative example.
【0048】次に、第1および第2実施例による有機L
EDと第1比較例による有機LEDとの耐熱性について
図5から図7までを参照して説明する。Next, the organic L according to the first and second embodiments is used.
The heat resistance between the ED and the organic LED according to the first comparative example will be described with reference to FIGS. 5 to 7.
【0049】第1および第2実施例による有機LED
と、第1比較例による有機LEDとを85℃の恒温槽中
に入れ、耐熱性試験を行った。Organic LEDs according to the first and second embodiments
Then, the organic LED according to the first comparative example was put in a constant temperature bath at 85 ° C., and a heat resistance test was performed.
【0050】図5に示すように、第1比較例による有機
LEDにおいては、85℃の耐熱性試験を開始してから
24時間後には初期の試料に比べて同じ電圧における輝
度と効率とが大幅に低下した。すなわち、同じ輝度が得
られる電圧は高くなった。As shown in FIG. 5, in the organic LED according to the first comparative example, 24 hours after the heat resistance test at 85 ° C. was started, the brightness and efficiency at the same voltage were significantly higher than those of the initial sample. Fell to. That is, the voltage at which the same brightness was obtained became higher.
【0051】図6に示すように、第1実施例による有機
LEDにおいては、85℃における耐熱性試験を開始し
てから313時間経過後であっても、輝度の変化はわず
かであった。すなわち、同じ輝度を得るのに必要な印加
電圧の増加率は、第1比較例の場合よりも小さかった。
効率も低下はしたが、第1比較例による有機LEDの場
合に比べると低下の割合は小さい。As shown in FIG. 6, in the organic LED according to the first example, the change in luminance was slight even after 313 hours had elapsed from the start of the heat resistance test at 85 ° C. That is, the increase rate of the applied voltage required to obtain the same brightness was smaller than that in the first comparative example.
Although the efficiency was also reduced, the rate of reduction is small compared to the case of the organic LED according to the first comparative example.
【0052】図7に示すように、第2実施例による有機
LEDにおいては、85℃における耐熱性試験を開始し
てから313時間経過後であっても、輝度と効率の変化
の度合いは非常にわずかであった。すなわち、第2実施
例による有機LEDでは、電圧の上昇、効率の低下もほ
とんどなく、初期の特性を維持することがわかる。As shown in FIG. 7, in the organic LED according to the second embodiment, even after 313 hours have passed since the start of the heat resistance test at 85 ° C., the degree of change in brightness and efficiency is very high. It was a little. That is, it can be seen that the organic LED according to the second embodiment maintains the initial characteristics with almost no increase in voltage and decrease in efficiency.
【0053】Bphen、DPBおよびDPBiのそれ
ぞれを電荷制御層材料(電子輸送層材料)として用いた
場合の初期特性(電流密度、輝度および効率)にそれほ
ど大きな差はない。これに対して、耐熱性試験を行った
場合には、熱による特性の変化の度合いは、Bphen
を用いた比較例の有機LEDが最も大きく、DPBiを
用いた有機LEDが最も小さいことがわかる。There is no great difference in initial characteristics (current density, brightness and efficiency) when Bphen, DPB and DPBi are used as charge control layer materials (electron transport layer materials). On the other hand, when the heat resistance test is performed, the degree of change in the characteristics due to heat is Bphen.
It can be seen that the organic LED of the comparative example using is the largest and the organic LED using DPBi is the smallest.
【0054】以上、説明したように、電荷制御層として
一般的なBphenを用いた場合と、DPB又はDPB
iを用いた場合とでは、初期特性にはほとんど差がでな
いが、耐熱性については、DPB又はDPBiを用いた
場合の方がBphenを用いた場合よりも優れているこ
とがわかる。As described above, the case of using general Bphen as the charge control layer, the case of DPB or DPB
Although there is almost no difference in the initial characteristics between the case of using i and the case of using i, it can be seen that the heat resistance is better when DPB or DPBi is used than when Bphen is used.
【0055】次に、上記第1比較例ならびに第1および
第2実施例において用いたBphen、DPB、および
DPBiのそれぞれと、セシウム(Cs)とを共蒸着さ
せた層を電荷制御層として用いた例を、第2比較例なら
びに第3および第4実施例として説明する。Next, a layer in which cesium (Cs) was co-deposited with each of Bphen, DPB, and DPBi used in the first comparative example and the first and second examples was used as a charge control layer. Examples will be described as a second comparative example and third and fourth examples.
【0056】本発明での第2比較例による有機LEDで
は、電荷制御層としてバソフェナントリン(Bphe
n)とアルカリ金属のセシウム(Cs)とを共蒸着して
47nmの厚さの層を形成した。Csの量は、Bphe
nに対してモル比としてBphen:Cs=3:1とし
た。また、陰極としては厚さ100nmのAl層を用い
た。In the organic LED according to the second comparative example of the present invention, bathophenanthrin (Bphe) is used as the charge control layer.
n) and cesium (Cs) of alkali metal were co-evaporated to form a layer having a thickness of 47 nm. The amount of Cs is Bphe
The molar ratio of Bphen: Cs was 3: 1 with respect to n. An Al layer having a thickness of 100 nm was used as the cathode.
【0057】共蒸着法は、真空容器内で複数の蒸着源を
個々に加熱蒸発させ、基板上に成長させる方法である。
この方法を用いると、蒸着源ごとに蒸着速度を決定する
ことができ、組成制御が容易に行える。The co-evaporation method is a method in which a plurality of vapor deposition sources are individually heated and vaporized in a vacuum container to grow on a substrate.
When this method is used, the vapor deposition rate can be determined for each vapor deposition source, and composition control can be performed easily.
【0058】その他の工程は、第1実施例の場合と同様
である。The other steps are the same as in the case of the first embodiment.
【0059】第3実施例および第4実施例による技術
は、それぞれ第1実施例と第2実施例とに対応してい
る。第3実施例および第4実施例による技術と第1およ
び第2実施例による技術との相違点は、第3実施例およ
び第4実施例による技術では、電荷制御層としてバソフ
ェナントリン(Bphen)とアルカリ金属のセシウム
(Cs)とを共蒸着して47nmの厚さの層を形成して
いる点である。Csの量は、Bphenに対してモル比
としてBphen:Cs=3:1とした。The techniques according to the third and fourth embodiments correspond to the first and second embodiments, respectively. The difference between the technique according to the third and fourth embodiments and the technique according to the first and second embodiments is that in the technique according to the third and fourth embodiments, bathophenanthrin (Bphen) is used as the charge control layer. ) And alkali metal cesium (Cs) are co-evaporated to form a layer having a thickness of 47 nm. The amount of Cs was Bphen: Cs = 3: 1 as a molar ratio with respect to Bphen.
【0060】表2に、第3及び第4実施例と第2比較例
とによる有機LEDについての電気光学特性を示す。表
2は表1に対応する表である。Table 2 shows the electro-optical characteristics of the organic LEDs according to the third and fourth examples and the second comparative example. Table 2 is a table corresponding to Table 1.
【0061】[0061]
【表2】[Table 2]
【0062】表1と表2とを比較すると、電荷制御層に
Csをドーピングした場合でも、Csをドーピングして
いないものとほぼ同様の電気光学特性を得ることができ
る。Comparing Tables 1 and 2, even when the charge control layer is doped with Cs, almost the same electro-optical characteristics as those not doped with Cs can be obtained.
【0063】より詳細には、発光開始電圧(輝度が1c
d/cm2 になる電圧)は、2.6から2.7Vであ
り、表1の値とほぼ同じであった。300cd/cm2
における電流密度は、第3実施例および第4実施例によ
る有機LEDの方が、第1実施例および第2実施例によ
る有機LEDよりも高い電流密度を有する。特に第4実
施例による有機LEDにおいて、電流密度が高い値を示
すことがわかる。More specifically, the light emission start voltage (luminance is 1c
The voltage at which d / cm2 was reached was 2.6 to 2.7 V, which was almost the same as the value in Table 1. 300 cd / cm2
The current densities of the organic LEDs according to the third and fourth examples have higher current densities than those of the organic LEDs according to the first and second examples. In particular, it can be seen that the organic LED according to the fourth example has a high current density.
【0064】一方、300cd/cm2 を得ることがで
きる印加電圧は、第3実施例および第4実施例による有
機LEDの方が、第1実施例および第2実施例による有
機LEDよりも低い値を示す。効率は第3実施例および
第4実施例による有機LEDの方が、第1実施例および
第2実施例による有機LEDよりも低い。On the other hand, the applied voltage capable of obtaining 300 cd / cm2 is lower in the organic LEDs according to the third and fourth embodiments than in the organic LEDs according to the first and second embodiments. Indicates. The efficiency is lower in the organic LEDs according to the third and fourth examples than in the organic LEDs according to the first and second examples.
【0065】アルカリ金属のセシウム(Cs)をドーピ
ングした電荷制御層を用いることにより、有機LEDの
低電圧動作が可能になることがわかった。It has been found that the use of the charge control layer doped with the alkali metal cesium (Cs) enables the organic LED to operate at a low voltage.
【0066】次に、本発明の第5実施例による有機LE
Dについて、図8を参照して説明する。Next, an organic LE according to a fifth embodiment of the present invention
D will be described with reference to FIG.
【0067】図8に示す有機LED B は、電荷制御層
15とは別にAlq3 を用いで電子輸送層を形成した場
合を例示している。この場合には、図1に示す構造に加
えて、例えば、ホールブロック層として機能する厚さ1
0nmの電荷制御層15と陰極21との間に、厚さ40
nmの電子輸送層25が形成された構造を有している。
電荷制御層15としては、例えばフェナントロリンの2
量体や3量体を用いることができる。The organic LED B shown in FIG. 8 exemplifies a case where the electron transport layer is formed by using Alq3 separately from the charge control layer 15. In this case, in addition to the structure shown in FIG.
A thickness of 40 nm is provided between the 0 nm charge control layer 15 and the cathode 21.
nm electron transport layer 25 is formed.
The charge control layer 15 is, for example, 2 of phenanthroline.
A trimer or a trimer can be used.
【0068】上記構造を用いると、電子輸送層と電荷制
御層(ホールブロック層)とを別個に設けるので、所望
の特性を得るための素子構造を設計する際の自由度が増
すという利点がある。When the above structure is used, the electron transport layer and the charge control layer (hole block layer) are provided separately, so that there is an advantage that the degree of freedom in designing an element structure for obtaining desired characteristics is increased. .
【0069】以上に説明したように、有機LEDにおい
て電子輸送層又はホールブロック層として機能する電荷
制御層の材料として、フェナントロリンの2量体もしく
は3量体又はこれらの誘導体を用いると、有機LEDの
耐熱性を向上させることができる。従って、有機LED
の信頼性が向上する。さらに、フェナントロリンの2量
体又は3量体を用いた電荷制御層にアルカリ金属をドー
ピングすることにより、低い印加電圧でも発光させるこ
とができる。As described above, when a dimer or trimer of phenanthroline or a derivative thereof is used as the material of the charge control layer functioning as the electron transport layer or the hole blocking layer in the organic LED, The heat resistance can be improved. Therefore, the organic LED
Improves reliability. Furthermore, by doping the charge control layer using a dimer or trimer of phenanthroline with an alkali metal, light can be emitted even at a low applied voltage.
【0070】以上、各実施例に沿って本発明を説明した
が、本発明はこれらに制限されるものではない。その
他、種々の変更、改良、組み合わせ等が可能なことは当
業者には自明あろう。Although the present invention has been described with reference to each embodiment, the present invention is not limited to these. In addition, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
【0071】[0071]
【発明の効果】有機LEDにおいて電子輸送層又はホー
ルブロック層として機能する電荷制御層の材料として、
フェナントロリンの2量体もしくは3量体又はこれらの
誘導体を用いると、有機LEDの耐熱性が向上する。従
って、有機LEDの信頼性も向上する。さらに、フェナ
ントロリンの2量体もしくは3量体またはこれらの誘導
体を用いた電荷制御層にアルカリ金属をドーピングする
ことにより、低い印加電圧でも発光させることができ
る。As a material of the charge control layer which functions as an electron transport layer or a hole blocking layer in an organic LED,
When a dimer or trimer of phenanthroline or a derivative thereof is used, the heat resistance of the organic LED is improved. Therefore, the reliability of the organic LED is also improved. Further, by doping the charge control layer using a dimer or trimer of phenanthroline or a derivative thereof with an alkali metal, light can be emitted even at a low applied voltage.
【図1】 本発明の第1実施例から第4実施例までによ
る有機LEDの構造を示す断面図である。FIG. 1 is a sectional view showing a structure of an organic LED according to a first embodiment to a fourth embodiment of the present invention.
【図2】 本発明の第1及び第2実施例と第1比較例に
よる有機LEDの電流密度の印加電圧依存性を示す図で
ある。FIG. 2 is a diagram showing applied voltage dependence of current density of organic LEDs according to first and second embodiments of the present invention and a first comparative example.
【図3】 本発明の第1及び第2実施例と第1比較例に
よる有機LEDの輝度の印加電圧依存性を示す図であ
る。FIG. 3 is a diagram showing applied voltage dependence of luminance of organic LEDs according to first and second embodiments of the present invention and a first comparative example.
【図4】 本発明の第1及び第2実施例と第1比較例に
よる有機LEDの効率の印加電圧依存性を示す図であ
る。FIG. 4 is a diagram showing applied voltage dependence of efficiency of organic LEDs according to first and second embodiments of the present invention and a first comparative example.
【図5】 本発明の第1比較例による有機LEDの輝度
と効率との印加電圧依存性を、熱処理前と熱処理後で比
較した図である。FIG. 5 is a diagram comparing applied voltage dependence of luminance and efficiency of an organic LED according to a first comparative example of the present invention before and after heat treatment.
【図6】 本発明の第1実施例による有機LEDの輝度
と効率との印加電圧依存性を、熱処理前と熱処理後で比
較した図である。FIG. 6 is a diagram comparing the applied voltage dependence of the brightness and efficiency of the organic LED according to the first embodiment of the present invention before and after the heat treatment.
【図7】 本発明の第2実施例による有機LEDの輝度
と効率との印加電圧依存性を、熱処理前と熱処理後で比
較した図である。FIG. 7 is a diagram comparing the applied voltage dependence of luminance and efficiency of an organic LED according to a second embodiment of the present invention before and after heat treatment.
【図8】 本発明の第5実施例による有機LEDの構造
を示す断面図である。FIG. 8 is a sectional view showing a structure of an organic LED according to a fifth embodiment of the present invention.
1 ガラス基板3 透明導電膜(陽極)5 ホール注入層7 ホール輸送層11 青色発光層15 電荷制御層17 フッ化リチウム(LiF)層19 アルミニウム層21 陰極23 DC電源25 電子輸送層1 glass substrate3 Transparent conductive film (anode)5 hole injection layer7-hole transport layer11 Blue light emitting layer15 Charge control layer17 Lithium fluoride (LiF) layer19 Aluminum layer21 cathode23 DC power supply25 electron transport layer
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001308786AJP2003115387A (en) | 2001-10-04 | 2001-10-04 | Organic light emitting element and its manufacturing method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001308786AJP2003115387A (en) | 2001-10-04 | 2001-10-04 | Organic light emitting element and its manufacturing method |
| Publication Number | Publication Date |
|---|---|
| JP2003115387Atrue JP2003115387A (en) | 2003-04-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001308786APendingJP2003115387A (en) | 2001-10-04 | 2001-10-04 | Organic light emitting element and its manufacturing method |
| Country | Link |
|---|---|
| JP (1) | JP2003115387A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004281390A (en)* | 2003-02-25 | 2004-10-07 | Toray Ind Inc | Material for light emitting element, and light emitting element using the same |
| US20070252522A1 (en)* | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
| EP1928040A2 (en) | 2006-11-29 | 2008-06-04 | Yamagata Promotional Organization for Industrial Technology | Patterning method of organic electroluminescent device |
| JP2008522413A (en)* | 2004-11-24 | 2008-06-26 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photosensitive optoelectronic devices with phenanthroline exciton blocking layers |
| US7553558B2 (en) | 2005-11-30 | 2009-06-30 | Eastman Kodak Company | Electroluminescent device containing an anthracene derivative |
| WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
| WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
| US7931975B2 (en) | 2008-11-07 | 2011-04-26 | Global Oled Technology Llc | Electroluminescent device containing a flouranthene compound |
| WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
| WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
| WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
| WO2011091946A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent Gmbh | Organic electroluminescent device comprising an integrated layer for colour conversion |
| WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
| WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
| JP2011192916A (en)* | 2010-03-16 | 2011-09-29 | Mitsubishi Chemicals Corp | Photoelectric conversion element and method of manufacturing the same |
| WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
| US8076009B2 (en) | 2007-10-26 | 2011-12-13 | Global Oled Technology, Llc. | OLED device with fluoranthene electron transport materials |
| US8088500B2 (en) | 2008-11-12 | 2012-01-03 | Global Oled Technology Llc | OLED device with fluoranthene electron injection materials |
| WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
| WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
| WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
| WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
| WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
| WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
| WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
| WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
| US8420229B2 (en) | 2007-10-26 | 2013-04-16 | Global OLED Technologies LLC | OLED device with certain fluoranthene light-emitting dopants |
| US8431242B2 (en) | 2007-10-26 | 2013-04-30 | Global Oled Technology, Llc. | OLED device with certain fluoranthene host |
| DE102011117422A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, process for their preparation and their use in electronic devices |
| US8795855B2 (en) | 2007-01-30 | 2014-08-05 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
| WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
| WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
| WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
| WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
| WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
| WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
| WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
| WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
| WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| DE102016003104A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Container comprising a formulation containing at least one organic semiconductor |
| WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
| WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
| WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
| WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
| WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
| WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
| WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
| WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
| WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
| WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
| WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
| WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2025032039A1 (en) | 2023-08-07 | 2025-02-13 | Merck Patent Gmbh | Process for the preparation of an electronic device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004281390A (en)* | 2003-02-25 | 2004-10-07 | Toray Ind Inc | Material for light emitting element, and light emitting element using the same |
| JP2008522413A (en)* | 2004-11-24 | 2008-06-26 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photosensitive optoelectronic devices with phenanthroline exciton blocking layers |
| US20070252522A1 (en)* | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
| US7553558B2 (en) | 2005-11-30 | 2009-06-30 | Eastman Kodak Company | Electroluminescent device containing an anthracene derivative |
| US9666826B2 (en) | 2005-11-30 | 2017-05-30 | Global Oled Technology Llc | Electroluminescent device including an anthracene derivative |
| US8053176B2 (en) | 2006-11-29 | 2011-11-08 | Yamagata Promotional Organization For Industrial Technology | Patterning method of organic electroluminescent device |
| EP1928040A2 (en) | 2006-11-29 | 2008-06-04 | Yamagata Promotional Organization for Industrial Technology | Patterning method of organic electroluminescent device |
| EP1928040A3 (en)* | 2006-11-29 | 2010-05-05 | Yamagata Promotional Organization for Industrial Technology | Patterning method of organic electroluminescent device |
| US9620721B2 (en) | 2007-01-30 | 2017-04-11 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| US8795855B2 (en) | 2007-01-30 | 2014-08-05 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
| US8420229B2 (en) | 2007-10-26 | 2013-04-16 | Global OLED Technologies LLC | OLED device with certain fluoranthene light-emitting dopants |
| US8076009B2 (en) | 2007-10-26 | 2011-12-13 | Global Oled Technology, Llc. | OLED device with fluoranthene electron transport materials |
| US8431242B2 (en) | 2007-10-26 | 2013-04-30 | Global Oled Technology, Llc. | OLED device with certain fluoranthene host |
| US7931975B2 (en) | 2008-11-07 | 2011-04-26 | Global Oled Technology Llc | Electroluminescent device containing a flouranthene compound |
| US8088500B2 (en) | 2008-11-12 | 2012-01-03 | Global Oled Technology Llc | OLED device with fluoranthene electron injection materials |
| WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
| WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
| WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
| WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
| WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
| DE102010006280A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent GmbH, 64293 | color conversion |
| WO2011091946A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent Gmbh | Organic electroluminescent device comprising an integrated layer for colour conversion |
| WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
| WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
| JP2011192916A (en)* | 2010-03-16 | 2011-09-29 | Mitsubishi Chemicals Corp | Photoelectric conversion element and method of manufacturing the same |
| WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
| EP3309236A1 (en) | 2010-05-27 | 2018-04-18 | Merck Patent GmbH | Compositions comprising quantum dots |
| WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
| WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
| WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
| WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
| WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
| WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
| WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
| WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
| WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
| WO2013060411A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, methods for producing same, and use of same in electronic devices |
| DE102011117422A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, process for their preparation and their use in electronic devices |
| WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
| WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
| WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
| WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
| WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
| EP3581633A1 (en) | 2015-06-12 | 2019-12-18 | Merck Patent GmbH | Esters containing non-aromatic cycles as solvents for oled formulations |
| WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
| WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
| WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
| EP4084109A1 (en) | 2015-12-15 | 2022-11-02 | Merck Patent GmbH | Esters containing aromatic groups as solvents for organic electronic formulations |
| WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
| WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
| WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| DE102016003104A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Container comprising a formulation containing at least one organic semiconductor |
| WO2017157783A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Receptacle comprising a formulation containing at least one organic semiconductor |
| WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
| WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
| WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
| WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
| WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
| WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
| WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
| WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
| WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
| WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
| WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
| WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
| WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
| WO2025032039A1 (en) | 2023-08-07 | 2025-02-13 | Merck Patent Gmbh | Process for the preparation of an electronic device |
| Publication | Publication Date | Title |
|---|---|---|
| JP2003115387A (en) | Organic light emitting element and its manufacturing method | |
| US5922396A (en) | Electron transporting and light emitting layers based on organic free radicals | |
| JP4581355B2 (en) | Organic electroluminescence device | |
| CN100438713C (en) | High efficiency transparent organic light emitting devices | |
| EP1794255B1 (en) | Organic light-emitting device comprising buffer layer and method for fabricating the same | |
| WO2004016575A1 (en) | Oligoarylene derivatives and organic electroluminescent devices made by using the same | |
| US8080937B2 (en) | OLED having a charge transport enhancement layer | |
| JPH11149985A (en) | Organic electroluminescent device having inorganic electron transport layer | |
| JPH04357694A (en) | Thin organic film el element | |
| JP2002100478A (en) | Organic electroluminescent device and method of manufacturing the same | |
| JP2004014511A (en) | Organic light-emitting diode device | |
| JP2003297572A (en) | Light emitting device, method of manufacturing the same, and display device using the same | |
| TW201041440A (en) | Organic EL element having cathode buffer layer | |
| JP2004296224A (en) | Light emitting element | |
| JP2009283787A (en) | Organic el element | |
| JP2004014512A (en) | Organic light emitting diode device | |
| KR100721571B1 (en) | Organic electroluminescent device and manufacturing method thereof | |
| JP3651347B2 (en) | Organic electroluminescence device | |
| TW201123970A (en) | Organic electroluminescent devices and process for production of same | |
| JP4109979B2 (en) | Organic light emitting device | |
| KR20060041910A (en) | Manufacturing method of organic electroluminescent element | |
| KR100787460B1 (en) | Method for manufacturing organic light emitting device and organic light emitting device manufactured thereby | |
| US20020182307A1 (en) | Organic electroluminescent devices with organic layers deposited at elevated substrate temperatures | |
| JP2004031211A (en) | Organic electroluminescent device | |
| JP2003234194A (en) | Organic el element and its manufacturing method |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20040722 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20061219 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20061226 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20070226 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20071016 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20071213 | |
| A911 | Transfer to examiner for re-examination before appeal (zenchi) | Free format text:JAPANESE INTERMEDIATE CODE: A911 Effective date:20080128 | |
| A912 | Re-examination (zenchi) completed and case transferred to appeal board | Free format text:JAPANESE INTERMEDIATE CODE: A912 Effective date:20080516 |