【0001】[0001]
【発明の属する技術分野】本発明は、食品、化粧品、医
薬品、化学品等に極めて有用な、食味、食感、乳化性、
保水性、配合性に優れ、且つ生体調節機能性を併せ持つ
タンパク質・βグルカン複合組成物に関する。TECHNICAL FIELD The present invention relates to a taste, a texture, an emulsifying property, which is extremely useful for foods, cosmetics, pharmaceuticals, chemicals and the like.
 The present invention relates to a protein / β-glucan composite composition which has excellent water retention and blending properties and also has bioregulatory functionality.
【0002】[0002]
【従来の技術】タンパク質に糖質を複合化することで、
タンパク質の諸機能を向上させることができる。例え
ば、タンパク質を多糖類やオリゴ糖等と共に50〜70℃、
相対湿度60〜80%程度の雰囲気下で2日から6週間程度保
持することにより、アミノカルボニル反応(メイラード
反応)によってタンパク質とこれらの糖質との複合化物
が得られる。その結果、得られた複合化物は、タンパク
質単独の場合に比較して乳化性、溶解性、熱安定性、プ
ロテアーゼ消化耐性等の機能が向上することや、リゾチ
ームの抗菌スペクトルが拡大することが知られている
(Agric. Biol. Chem.,54,107-112(1990)、Biosci. Bio
tech. Biochem.,56,567-571(1992)、日本食品科学工業
会第46回大会講演集(2A−p7)、特開平3-215498
号公報、特開平4-304887号公報、特開平6-277056号公
報、特開平7-258292号公報、特開平9-107886号公報
等)。2. Description of the Related Art By conjugating a carbohydrate to a protein,
 It is possible to improve various functions of proteins. For example, proteins together with polysaccharides and oligosaccharides at 50-70 ° C,
 By keeping it in an atmosphere with relative humidity of about 60 to 80% for about 2 days to 6 weeks, a complexed product of a protein and these sugars can be obtained by an aminocarbonyl reaction (Maillard reaction). As a result, it is known that the obtained complex compound has improved functions such as emulsifying property, solubility, heat stability, and resistance to protease digestion, and that the antibacterial spectrum of lysozyme is expanded as compared with the case of using the protein alone. (Agric. Biol. Chem.,54 , 107-112 (1990), Biosci. Bio
 tech. Biochem.,56 , 567-571 (1992), Japan Society for Food Science and Technology 46th Annual Meeting Lecture (2A-p7), JP-A-3-215498
 JP-A-4-304887, JP-A-6-277056, JP-A-7-258292, JP-A-9-107886, etc.).
【0003】以上のことは、タンパク質と糖質を複合化
することによって、それら単独の場合に比較してそれら
分子が本来持つ機能が向上したり、あるいは、予想しな
い新たな機能が発現する可能性を秘めていることを示唆
するものである。天然には多数のタンパク質と多種多様
な糖質が存在しており、それらの複合化の組み合わせは
無数である。これまでにも種々のタンパク質と糖質の組
合せが検討されているが、タンパク質、多糖の種類の豊
富さに比べれば一部が検討されたに過ぎず、機能性が非
常に優れた組合せが存在する可能性が秘められており、
この点では充分な検討がされているとは言えない。As described above, by complexing a protein and a carbohydrate, the functions originally possessed by those molecules may be improved, or an unexpected new function may be expressed, as compared with the case where they are used alone. It suggests that the secret is hidden. There are numerous proteins and a wide variety of carbohydrates in nature, and there are countless combinations of their conjugation. Various combinations of proteins and carbohydrates have been studied so far, but only a part of them have been examined compared to the abundance of types of proteins and polysaccharides, and there are combinations with extremely excellent functionality. Has the potential to
 It cannot be said that sufficient consideration has been made in this respect.
【0004】また、上記の複合体を得る方法は粉体のま
ま気相中で長時間加熱するため生産効率が低く、複合体
を効率よく得るための製造方法について種々検討が行わ
れている。特開平5-339298号公報にはエクストルーダー
を用いることで、特開平5-339299号公報には高圧処理を
することで、特開平5-339300号公報にはマイクロ波照射
をすることでそれぞれ水溶液系で効率的に複合体を得る
方法が開示されている。またタンパク質と糖質の混合水
溶液あるいは混合分散液から加熱しながら水分を蒸発さ
せ、濃縮もしくは乾燥させることにより複合組成物を得
る方法(特願平12-114164号)や水分存在下でタンパク
質と糖質をこれらが溶解しないアルコール類や油脂類に
分散した状態で加熱・攪拌することにより複合組成物を
得る方法(特願平12-114165号)等が検討されている。
しかし、これらの方法は装置の工夫を中心に主に物理化
学的な側面からの検討が中心であり、実用的な見地から
すればさらに効率よく複合体を得るための工夫が望まれ
ていた。以上のように、機能性の高い複合体を効率よく
得るための工夫の一つとしてタンパク質、糖質の組み合
わせからのアプローチが考えられる。Further, in the method for obtaining the above composite, since the powder is heated in the gas phase for a long time, the production efficiency is low, and various studies have been conducted on the production method for efficiently obtaining the composite. JP-A-5-339298 uses an extruder, JP-A-5-339299 discloses a high-pressure treatment, and JP-A-5-339300 discloses a microwave irradiation to form an aqueous solution. A method of efficiently obtaining the complex in a system is disclosed. In addition, a method for obtaining a composite composition by evaporating water from a mixed aqueous solution or mixed dispersion of protein and sugar while heating and concentrating or drying (Japanese Patent Application No. 12-114164) or protein and sugar in the presence of water A method (Japanese Patent Application No. 12-114165) for obtaining a composite composition by heating and stirring the material in a state in which these are dissolved in alcohols or fats and oils in which these materials are insoluble is being studied.
 However, these methods mainly focus on physicochemical aspects, focusing on devising the device, and from a practical point of view, devising to more efficiently obtain a complex has been desired. As described above, an approach from the combination of protein and carbohydrate can be considered as one of the measures for efficiently obtaining a highly functional complex.
【0005】一方、糖質(多糖類)素材としてβグルカ
ンは、近年その優れた生体調節機能性、例えば、脂質代
謝改善作用、整腸作用、血糖値上昇抑制等が解析され、
利用が注目されている素材である。このような素材を加
工食品に広く利用することは、食品の機能性増強(高付
加価値化)に寄与するのみならず、広く国民の健康維持
への貢献が期待され、極めて有用である。On the other hand, β-glucan as a sugar (polysaccharide) material has recently been analyzed for its excellent bioregulatory functionality, for example, lipid metabolism improving action, intestinal regulating action, and blood sugar level increase suppressing effect.
 It is a material that is drawing attention. Widespread use of such materials in processed foods is extremely useful, as it is expected to contribute not only to enhancing the functionality of foods (increasing added value) but also to widely maintaining the health of the people.
【0006】しかし、βグルカンは親水性が高いため、
疎水性の油脂類とは完全には馴染みにくい面があり、ま
たβグルカンを含有する油脂組成物を、例えば乳化食品
のような加工食品に用いる際、水相成分と混合する場合
に十分攪拌しながら加えないと部分的にダマが生じるこ
ともあり得た。そこで、βグルカンに疎水性を付与する
ことで、油脂又あるいは油脂組成物中に分散・混合しや
すくなり、配合性、作業性も向上し、さらには疎水性を
付与したβグルカン自体が乳化機能を持つように改変さ
れることが望まれていた。However, since β-glucan is highly hydrophilic,
 There is a surface that is not completely compatible with hydrophobic oils and fats, and when an oil or fat composition containing β-glucan is used in a processed food such as an emulsified food, it is sufficiently stirred when mixed with an aqueous phase component. However, if it is not added, it is possible that some damage will occur. Therefore, by imparting hydrophobicity to β-glucan, it becomes easier to disperse and mix in fats and oils or fat compositions, and the blending property and workability are improved. Furthermore, β-glucan imparting hydrophobicity itself has an emulsifying function. It was desired to be modified to have.
【0007】[0007]
【発明が解決しようとする課題】従って、本発明の目的
は、食品、化粧品、医薬品、化学品等に極めて有用な、
食味、食感、呈味性、乳化性、保水性 、配合性に優
れ、且つ脂質代謝改善作用、整腸作用、血糖値上昇抑制
等の生体調節機能を有するタンパク質・βグルカン複合
組成物を提供することにある。Therefore, the object of the present invention is extremely useful for foods, cosmetics, pharmaceuticals, chemicals, etc.
 Provide a protein / β-glucan complex composition having excellent taste, texture, taste, emulsifying property, water retention property, and mixability, and having bioregulatory functions such as lipid metabolism improving action, intestinal regulating action, and suppression of blood glucose increase To do.
【0008】[0008]
【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、タンパク質の種類によらず、タンパク質
とイネ科植物から抽出されたβグルカンを複合化するこ
とで、他の多糖素材を用いた場合に比較して短時間で複
合組成物を得ることができ、且つ食味、食感等を損なう
ことなく、効率よくタンパク質及びβグルカンの機能の
向上や新規機能を付与できることを見出し、本発明を完
成させるに至った。Means for Solving the Problems As a result of intensive studies, the present inventors have made it possible to combine other polysaccharides by complexing the protein with β-glucan extracted from the grass family, regardless of the type of the protein. It was found that a composite composition can be obtained in a short time compared to the case of using a material, and the protein and β-glucan can be efficiently improved in function or a new function can be imparted without impairing taste, texture and the like. The present invention has been completed.
【0009】すなわち本発明は、タンパク質とイネ科植
物から抽出されたβグルカンとを複合化させたタンパク
質・βグルカン複合組成物を提供するものである。That is, the present invention provides a protein / β-glucan complex composition in which a protein and β-glucan extracted from a grass family are complexed.
【0010】また本発明は、上記βグルカンが、1−2
−β−D−グルコピラノース結合、1−3−β−D−グ
ルコピラノース結合、1−4−β−D−グルコピラノー
ス結合及び1−6−β−D−グルコピラノース結合のう
ちの少なくとも2種類以上の結合を有する上記タンパク
質・βグルカン複合組成物を提供するものである。In the present invention, the above β-glucan is 1-2
 At least two types of -β-D-glucopyranose bond, 1-3-β-D-glucopyranose bond, 1-4-β-D-glucopyranose bond and 1-6-β-D-glucopyranose bond The above-mentioned protein / β-glucan complex composition having the above-mentioned bonds is provided.
【0011】また本発明は、上記βグルカンが、1−3
−β−D−グルコピラノース結合及び1−4−β−D−
グルコピラノース結合を有するものである上記タンパク
質・βグルカン複合組成物を提供するものである。In the present invention, the β-glucan is 1-3
 -Β-D-glucopyranose bond and 1-4-β-D-
 The above-mentioned protein / β-glucan complex composition having a glucopyranose bond is provided.
【0012】また本発明は、イネ科植物が、大麦又はオ
ーツ麦である上記タンパク質・βグルカン複合組成物を
提供するものである。The present invention also provides the above-mentioned protein / β-glucan complex composition, wherein the gramineous plant is barley or oats.
【0013】また本発明は、食品改質剤、乳化剤、保湿
剤、油脂代替物、低カロリー食品素材として使用される
上記タンパク質・βグルカン複合組成物を提供するもの
である。The present invention also provides the above protein / β-glucan complex composition used as a food modifier, an emulsifier, a moisturizer, an oil and fat substitute, and a low-calorie food material.
【0014】また本発明は、上記タンパク質・βグルカ
ン複合組成物を含有する食品、化粧品、化学品又は医薬
品を提供するものである。The present invention also provides foods, cosmetics, chemicals or pharmaceuticals containing the above protein / β-glucan complex composition.
【0015】[0015]
【発明の実施の形態】以下、本発明について詳述する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
【0016】本発明に用いるタンパク質としてはその起
源は特に限定されず、動物、植物、微生物由来のもの、
すなわち乳タンパク質、卵タンパク質、小麦タンパク
質、大豆タンパク質、畜肉・魚肉タンパク質等が挙げら
れ、具体的にはカゼイン、β−ラクトグロブリン、α−
ラクトアルブミン、オボアルブミン、オボムコイド、リ
ゾチーム、ホスビチン、リポタンパク質、グルテン、グ
リアジン、グルテニン、コングリシニン、アクチン、ミ
オシン、トロポニン、グロビン、コラーゲン、ゼラチン
等、あるいは各種酵素タンパク質等が挙げられ、これら
の加水分解物やトランスグルタミナーゼ等で修飾したタ
ンパク質、人工的に合成してなるポリペプチド、オリゴ
ペプチド、アミノ酸等も含まれる。さらに、これらタン
パク質やペプチド、アミノ酸の塩類も利用でき、これら
二種類以上からなるタンパク質の混合物でも利用でき
る。以降、特に記載無き場合はこれらを総称してタンパ
ク質と呼ぶ。The origin of the protein used in the present invention is not particularly limited, and those derived from animals, plants, microorganisms,
 That is, milk protein, egg protein, wheat protein, soybean protein, meat / fish meat protein and the like can be mentioned, and specifically, casein, β-lactoglobulin, α-
 Examples include lactalbumin, ovalbumin, ovomucoid, lysozyme, phosvitin, lipoprotein, gluten, gliadin, glutenin, conglycinin, actin, myosin, troponin, globin, collagen, gelatin, and various enzyme proteins. And proteins modified with transglutaminase and the like, artificially synthesized polypeptides, oligopeptides, amino acids and the like are also included. Furthermore, salts of these proteins, peptides and amino acids can also be used, and a mixture of proteins consisting of two or more of these can also be used. Hereinafter, unless otherwise specified, these are collectively referred to as proteins.
【0017】また、本発明に用いられるイネ科植物から
抽出されたβグルカンは、その抽出方法に特に制限はな
く、抽出原料となるイネ科植物に、抽出溶媒を添加し抽
出すればよい。また、固液分離された場合の抽出液その
もの、あるいは、抽出液より公知の方法で抽出されたβ
グルカンを濃縮した液体や固体状のもの、あるいは、抽
出液より公知の方法で精製し純度を上げた液体や固体状
のもの等、いずれの製造方法で得たものでも、いずれの
形態のものでも、いずれの純度のものでも使用可能であ
る。もちろんβグルカン以外の抽出された成分が混合し
ていても何ら問題はない。本発明では、これらを全てイ
ネ科植物から抽出されたβグルカンという。The β-glucan extracted from the Gramineae plant used in the present invention is not particularly limited in its extraction method and may be extracted by adding an extraction solvent to the Gramineae plant which is an extraction raw material. Further, the extract itself in the case of solid-liquid separation, or β extracted from the extract by a known method
 Liquids or solids in which glucan is concentrated, or liquids or solids that are purified from an extract by a known method to increase the purity, and those obtained by any manufacturing method, in any form Any purity can be used. Of course, there is no problem even if the extracted components other than β-glucan are mixed. In the present invention, all of them are referred to as β-glucan extracted from grasses.
【0018】イネ科植物の例としては、米類、小麦類、
トウモロコシ類、モロコシ類、ヒエ類、アワ類、キビ
類、大麦類、オーツ麦類(カラス麦類)、ライ麦類等の
穀類を挙げることができる。抽出には、植物全体を原料
とできるが、βグルカンの含有量の比較的高い種子を用
いるのが好ましい。全体を粉砕したもの(全粒粉)を始
め、穀類の精製工程で得られる糠、フスマ、麦芽、胚
芽、胚乳部位、ビール、麦焼酎あるいはその他の発酵か
ら得られた発酵処理大麦等のいずれを用いてもよい。好
ましくは大麦類やオーツ麦類の全粒粉や、穀粒を外周部
よりと搗精した胚乳部分やその際発生する糠、米糠、小
麦やトウモロコシ類のフスマや胚芽等であり、更に好ま
しくは大麦類やオーツ麦類の全粒粉や、穀粒を外周部よ
り搗精した胚乳部分やその際発生する糠である。Examples of grasses include rice, wheat,
 Grains such as corn, sorghum, millet, millet, millet, barley, oats (crown) and rye can be mentioned. Although the whole plant can be used as a raw material for extraction, it is preferable to use seeds having a relatively high β-glucan content. Starting with crushed whole (whole grain flour), any of bran, bran, malt, germ, endosperm, beer, barley shochu or other fermented barley obtained from fermentation, etc. Good. Preferably whole grains and barley and oats, and the endosperm portion of the grain from the outer peripheral portion and bran generated at that time, rice bran, wheat and corn bran or germ, etc., and more preferably barley or It is the whole-grain flour of oats, the endosperm portion obtained by polishing the grain from the outer periphery, and the bran generated at that time.
【0019】また、本発明のイネ科植物から抽出された
βグルカンは、1−2−β−D−グルコピラノース結
合、1−3−β−D−グルコピラノース結合、1−4−
β−D−グルコピラノース結合、1−6−β−D−グル
コピラノース結合を少なくとも2種類以上有するβグル
カンが好ましく、1−3−β−D−グルコピラノース結
合及び1−4−β−D−グルコピラノース結合を有する
βグルカンを含有することが好ましい。Further, β-glucan extracted from the Gramineae plant of the present invention includes 1-2-β-D-glucopyranose bond, 1-3-β-D-glucopyranose bond, 1-4-
 β-glucans having at least two types of β-D-glucopyranose bonds and 1-6-β-D-glucopyranose bonds are preferable, and 1-3-β-D-glucopyranose bonds and 1-4-β-D- It is preferable to contain β-glucan having a glucopyranose bond.
【0020】更に、本発明に係るβグルカンのイネ科植
物からの抽出方法を説明すると、本発明に係るβグルカ
ンは、水溶性高分子として用い、水溶液として溶解させ
ることができ、例えばイネ科植物の穀類粉末に水、温
水、熱水あるいは塩溶液、更には酸、アルカリ性の水溶
液、有機溶媒等を用いて、対粉2〜100倍量の溶媒に
て任意の時間、任意の温度で抽出することができる。更
に抽出液を固液分離してβグルカンを得ることができ
る。これらの中でも、水、温水又は熱水で抽出されたβ
グルカンが好ましく、温度80℃以下4℃以上の温水で
抽出されたβグルカンがより好ましい。更に抽出時に抽
出促進剤等を加えてもよい。Further, the method for extracting β-glucan of the present invention from grasses will be explained. The β-glucan of the present invention can be used as a water-soluble polymer and dissolved as an aqueous solution. Using water, hot water, hot water or salt solution, and further acid, alkaline aqueous solution, organic solvent, etc. to the cereal powder of No. 1, with a solvent in an amount of 2 to 100 times the amount of the powder at any temperature for any time be able to. Furthermore, β-glucan can be obtained by solid-liquid separation of the extract. Among these, β extracted with water, hot water or hot water
 Glucan is preferable, and β-glucan extracted with warm water having a temperature of 80 ° C. or lower and 4 ° C. or higher is more preferable. Further, an extraction accelerator or the like may be added at the time of extraction.
【0021】具体的には、大麦から高分子量のβグルカ
ンを得る方法としては、例えば、多ろう質大麦を原料と
し、水抽出により製造する方法(特公平4−11197
号公報)、あるいは、大麦、オーツ麦を原料として、ア
ルカリ抽出、中和、アルコール沈殿により、重量平均分
子量10万〜100万のβグルカンを得る方法(特公平
6−83652号公報)、搗精歩留まり82%以下の大
麦糠類を原料として、80〜90℃の熱水にてβグルカ
ンを抽出する方法(特開平11−225706号公報)
等で得られたβグルカン、またこれらの製造方法で得ら
れたβグルカンを更に公知の方法で低分子化βグルカン
としたもの。例えば低分子化の方法としては、公知であ
る多糖類の加水分解反応のいずれもが利用可能である。
例えば、水溶性多糖類は、酸存在下に加圧加熱により加
水分解することが知られており、これを利用して低分子
化することができる。また、酵素による加水分解反応を
利用した低分子化も有効で、酵素としては、1, 3−
βグルカナーゼ等を用いることができる。更にまた、W
O98/13056号公報、特願2000−28792
0号等の方法により、原料穀物から直接抽出して得たβ
グルカンも用いることができる。また、特願2000−
295660号に記載の抽出促進剤等を使用してもよ
い。[0021] Specifically, as a method for obtaining a high molecular weight β-glucan from barley, for example, a method of using waxy barley as a raw material and extracting by water (Japanese Patent Publication No. 4-11197).
 Gazette), or a method of obtaining β-glucan having a weight average molecular weight of 100,000 to 1,000,000 by alkali extraction, neutralization and alcohol precipitation using barley or oat as a raw material (Japanese Patent Publication No. 6-83652), and yield of luster. A method of extracting β-glucan with hot water of 80 to 90 ° C. using barley bran of 82% or less as a raw material (JP-A-11-225706)
 The β-glucan obtained by the above method, or the β-glucan obtained by the production method thereof is further reduced to a low-molecular β-glucan by a known method. For example, as a method for lowering the molecular weight, any known hydrolysis reaction of polysaccharides can be used.
 For example, it is known that a water-soluble polysaccharide is hydrolyzed by heating under pressure in the presence of an acid, and this can be utilized to lower the molecular weight. In addition, it is also effective to lower the molecular weight by utilizing the hydrolysis reaction by an enzyme.
 β-glucanase or the like can be used. Furthermore, W
 O98 / 13056, Japanese Patent Application No. 2000-28792
 Β obtained by directly extracting from raw material grains by a method such as No. 0
 Glucans can also be used. In addition, Japanese Patent Application 2000-
 You may use the extraction promoter etc. which are described in 295660.
【0022】本発明に用いられるイネ科植物から抽出さ
れたβグルカンは、高分子体で、いずれの平均重量分子
量を持つβグルカンも使用可能であるが、使用目的に応
じて分子量を調節することができる。分子量の低下と共
に食品、化粧品等の中への配合性がよくなるため、分子
量300万以下、好ましくは50万以下、更に好ましく
は10万以下のものがよい。抽出されたβグルカンは、
公知の方法で低分子化してもよく、直接低分子量のβグ
ルカンを抽出してもよい。The β-glucan extracted from the Gramineae plant used in the present invention is a polymer, and any β-glucan having an average weight molecular weight can be used, but the molecular weight should be adjusted according to the purpose of use. You can Since the compounding property in foods, cosmetics and the like improves as the molecular weight decreases, the molecular weight is preferably 3,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less. The extracted β-glucan is
 The molecular weight may be reduced by a known method, or low molecular weight β-glucan may be directly extracted.
【0023】なお、イネ科植物から抽出し精製を行わ
ず、抽出液をそのまま、あるいは粉体化、固体化処理の
みを行なったものをそのまま使用する場合、成分中のβ
グルカンの純度は、高純度であればある程良いが、1〜
100%、好ましくは10〜100%、更に好ましくは
20〜100%がよい。When the extract is not extracted and purified from the Gramineae plant and the extract is used as it is or after being subjected to only powdering and solidification, it is used as a β component.
 The higher the purity of glucan, the better.
 100%, preferably 10 to 100%, more preferably 20 to 100%.
【0024】複合化におけるタンパク質とβグルカンの
配合比率はモル比で5:1〜1:5、好ましくは2:1
〜1:2とし、これらの範囲外では複合化効率が劣るた
め好ましくない。なお、部分的にタンパク質あるいはβ
グルカンを改質する目的がある場合はこの限りではな
い。The compounding ratio of the protein and β-glucan in the complexation is 5: 1 to 1: 5, preferably 2: 1 in molar ratio.
 It is not preferable because the compounding efficiency is inferior when it is out of these ranges. Note that the protein or β
 This does not apply if the purpose is to modify glucan.
【0025】複合化の方法は従来知られている、タンパ
ク質とβグルカンを50〜70℃、相対湿度60〜80
%程度の雰囲気下で2日から6週間程度保持するアミノ
カルボニル反応(メイラード反応)の方法や、特開平5
−339298号公報、特開平5−339299号公
報、特開平5−339300号公報等に記載の方法を利
用することができる。The method of conjugation is conventionally known. Protein and β-glucan are mixed at 50 to 70 ° C. and relative humidity of 60 to 80.
 %, A method of an aminocarbonyl reaction (Maillard reaction) which is held for about 2 days to 6 weeks in an atmosphere of
 The methods described in JP-A-339298, JP-A-5-339299, JP-A-5-339300 and the like can be used.
【0026】特に、本出願人が先に出願した特願200
0−114164号や特願2000−114165号に
記載の方法は、タンパク質・βグルカン複合組成物を得
るのに好ましい方法である。例えば、タンパク質及びβ
グルカンを水に均一に溶解させ、タンパク質とβグルカ
ンの混合水溶液を得、該水溶液を40〜100℃に加温
し、水分を蒸発させ、濃縮もしくは乾燥させれば複合組
成物を得ることができる。このとき水と共沸する溶媒を
添加してもよい。さらに複合方法を挙げると、水分存在
下、タンパク質とβグルカンを、これらが溶解しないア
ルコール類や食用油脂等の溶媒に分散した状態で、加
熱、攪拌することで複合組成物を得ることができる。In particular, Japanese Patent Application No. 200 previously filed by the applicant.
 The methods described in 0-114164 and Japanese Patent Application No. 2000-114165 are preferred methods for obtaining a protein / β-glucan complex composition. For example, protein and β
 Glucan is uniformly dissolved in water to obtain a mixed aqueous solution of protein and β-glucan, and the aqueous solution is heated to 40 to 100 ° C. to evaporate water and then concentrated or dried to obtain a composite composition. . At this time, a solvent that is azeotropic with water may be added. As a further complex method, a complex composition can be obtained by heating and stirring the protein and β-glucan in the presence of water in a state where they are dispersed in a solvent such as alcohols or edible oils and fats in which they are insoluble.
【0027】本発明のタンパク質・βグルカン複合組成
物は、食品中への配合性が良く、脂質代謝改善作用、整
腸作用、血糖値上昇抑制等の生体調節機能を有し、且つ
優れた乳化作用、食味、呈味性を有するので、これらの
機能を生かし、乳化剤、食品改質剤、添加剤、保湿剤、
油脂代替物、低カロリー食品素材として食品、化粧品、
化学品、医薬品への使用が好ましい。食品としては特に
限定されるものではないが、例えばマーガリン、ショー
トニング等の加工油脂製品、クッキー、ビスケット、ク
ラッカー、パン類、ケーキ等のベーカリー製品や麺類等
の小麦粉製品、煎餅、ビーフン等の米加工品、豆乳、豆
腐、油揚げ等の豆類加工製品、アイスクリーム、コーヒ
ーホワイトナー、ホイップクリーム等の乳製品、カスタ
ードクリーム、チョコレート、マヨネーズ、ドレッシン
グ、調味料・ソース類、畜肉・魚肉練製品、冷凍食品、
レトルト食品等へ用いることができる。また、化粧品と
しては特に限定されるものではないが、例えば洗顔クリ
ーム、クレンジングクリーム、マッサージクリーム、コ
ールドクリーム、モイスチャークリーム、乳液、パック
剤、美白剤、ローション等、皮膚用化粧品に用いるのが
好ましい。医薬品としては、本発明を整腸剤、コレステ
ロール低下剤等の医薬品に用いる以外にも軟膏の基材、
錠剤、顆粒、粉末製剤用の賦形剤、内服用、液体の分散
剤としても有用である。The protein / β-glucan complex composition of the present invention has good mixability in foods, has lipid metabolism-improving action, intestinal regulating action, and bioregulatory function such as suppressing blood sugar level elevation, and has excellent emulsification. Since it has action, taste, and taste, it is possible to use these functions to emulsifier, food modifier, additive, moisturizer,
 Oil and fat substitutes, low-calorie food materials, foods, cosmetics,
 It is preferably used for chemicals and pharmaceuticals. The food is not particularly limited, for example, processed oil and fat products such as margarine and shortening, bakery products such as cookies, biscuits, crackers, breads and cakes, flour products such as noodles, rice crackers, rice noodles such as rice noodles. Products, soy milk, tofu, fried products such as fried foods, dairy products such as ice cream, coffee whitener, whipped cream, custard cream, chocolate, mayonnaise, dressings, seasonings and sauces, meat and fish paste products, frozen foods ,
 It can be used for retort foods and the like. The cosmetics are not particularly limited, but are preferably used for skin cosmetics such as facial cleansing creams, cleansing creams, massage creams, cold creams, moisturizing creams, emulsions, packs, whitening agents and lotions. As a drug, an ointment base other than using the present invention for a drug such as an intestinal regulator and a cholesterol lowering agent,
 It is also useful as an excipient for tablets, granules, powder formulations, for internal use, and as a liquid dispersant.
【0028】食品へ配合する場合は、その目的に応じて
配合量を決めればよいが、例えば食品の全体量に対し
て、80〜0.01重量%、好ましくは5〜0.5重量
%配合することが好ましい。When blended into food, the blending amount may be determined according to the purpose. For example, 80 to 0.01 wt%, preferably 5 to 0.5 wt% is blended with respect to the total amount of food. Preferably.
【0029】化粧品へ配合する場合は、その目的に応じ
て配合量を決めればよいが、例えば化粧品の全体量に対
して、100〜0.01重量%、好ましくは50〜0.
01重量%配合することが好ましい。When blending into cosmetics, the blending amount may be determined according to the purpose, for example, 100 to 0.01% by weight, preferably 50 to 0.
 It is preferable to add 01% by weight.
【0030】医薬品へ配合する場合は、その目的に応じ
て配合量を決めればよいが、例えば医薬品の全体量に対
して、100〜0.01重量%、好ましくは80〜0.
1重量%配合することが好ましい。When compounded into a drug, the compounding amount may be determined according to the purpose. For example, 100 to 0.01% by weight, preferably 80 to 0.
 It is preferable to add 1% by weight.
【0031】食品、化粧品、医薬品等へ配合する場合、
本発明の効果を損なわない範囲で従来公知の乳化剤、食
品改質剤、添加剤、その他配合成分等と併用して配合し
てもかまわない。When blended into foods, cosmetics, pharmaceuticals, etc.,
 You may mix | blend with a conventionally well-known emulsifier, a food modifier, an additive, other compounding ingredients, etc. in the range which does not impair the effect of this invention.
【0032】[0032]
【実施例】以下、実施例によって本発明を更に具体的に
説明するが、これらの実施例は本発明を限定するもので
はない。なお、「部」は特記しない限り全て「重量部」
を、「%」は「重量%」を意味する。EXAMPLES The present invention will be described in more detail with reference to examples below, but these examples do not limit the present invention. All "parts" are "parts by weight" unless otherwise specified.
 "%" Means "% by weight".
【0033】〔試験例1〕(βグルカン含有量の測定)βグルカンの分析は、メガ
ザイム社のβグルカン測定キットを用いて、McCle
ary法(酵素法)にて行った。まず、測定サンプルが
粉体の場合、500μm(30メッシュ)の篩にかけ、
水分含量を測定し、その100mgを17mlチューブ
に取り、50%エタノール溶液を200μl加え、分散
させた。次に、4mlの20mMリン酸緩衝液(pH
6.5)を加え、よく混合した後、煮沸した湯浴中にて
1分間加温した。よく混合し、更に2分間、湯浴中で加
熱した。50℃に冷却後、5分間放置してから、各チュ
ーブにリケナーゼ酵素溶液(キットに付属するバイアル
を20mlの20mMリン酸緩衝液で希釈、残量は凍結
保存)の200μl(10U)を加え、1時間、50℃
にて反応させた。チューブに200mM酢酸緩衝液(p
H4.0)を、5ml加えて、静かに混合した。室温に
5分間放置し、遠心分離にて上清を得た。100μlを
3本のチューブに取り、1本には100μlの50mM
酢酸緩衝液(pH4.0)を、他の2本には100μl
(0.2U)のβグルコシターゼ溶液(キットに付属す
るバイアルを20mlの50mM酢酸緩衝液で希釈、残
量は凍結保存)を加え、50℃にて10分間、反応させ
た。3mlのグルコースオキシターゼ/ベルオキシター
ゼ溶液を加えて、50℃にて20分間反応させ、各サン
プルの510nmにおける吸光度(EA)を測定した。
βグルカン含有量は、次式により求めた。[Test Example 1] (Measurement of β-glucan content) β-glucan was analyzed using a β-glucan measurement kit manufactured by Megazyme, Inc.
 The ary method (enzymatic method) was used. First, when the measurement sample is a powder, it is passed through a 500 μm (30 mesh) sieve,
 The water content was measured, 100 mg of the water content was taken into a 17 ml tube, and 200 μl of a 50% ethanol solution was added and dispersed. Next, 4 ml of 20 mM phosphate buffer (pH
 6.5) was added and mixed well, and then heated in a boiling water bath for 1 minute. Mix well and heat for another 2 minutes in a hot water bath. After cooling to 50 ° C. and leaving for 5 minutes, 200 μl (10 U) of lichenase enzyme solution (the vial attached to the kit was diluted with 20 ml of 20 mM phosphate buffer, the remaining amount was frozen and stored) was added to each tube, 1 hour, 50 ° C
 It was made to react with. 200 mM acetate buffer (p
 H4.0) was added and mixed gently. The mixture was left at room temperature for 5 minutes and centrifuged to obtain a supernatant. Take 100 μl in 3 tubes and 100 μl of 50 mM
 Acetate buffer (pH 4.0), 100 μl for the other two
 (0.2 U) β-glucosidase solution (a vial attached to the kit was diluted with 20 ml of 50 mM acetate buffer, and the remaining amount was stored frozen), and reacted at 50 ° C. for 10 minutes. 3 ml of glucose oxidase / bell oxidase solution was added and reacted at 50 ° C. for 20 minutes, and the absorbance (EA) at 510 nm of each sample was measured.
 The β-glucan content was calculated by the following formula.
【0034】βglucan(%,W/W)=(EA)
×(F/W)×8.46F=(100)/(グルコース100μgの吸光度)W=算出された無水物重量(mg)Βglucan (%, W / W) = (EA)
 × (F / W) × 8.46 F = (100) / (absorbance of glucose 100 μg) W = calculated anhydrate weight (mg)
【0035】〔試験例2〕(βグルカン含有量の分子量測定)抽出物の分子量測定
は、以下の通りとした。すなわち、抽出物の5mgをチ
ューブに取り、0.5mlの蒸留水を加えて、沸騰水中
で溶解させた。0.22μmのフィルターを通してHP
LC用のサンプルとした。分離にはHPLCゲル濾過カ
ラムであるShodexのパックドカラムKS−805
(昭和電工社製)を用い、流速0.6ml/min.、
温度50℃、検出にはRI検出器、分離溶媒は水で実施
した。分子量マーカーとしてはShodexプルラン標
準液P−82(昭和電工社製)を用いて測定した。[Test Example 2] (Measurement of molecular weight of β-glucan content) The molecular weight of the extract was measured as follows. That is, 5 mg of the extract was placed in a tube, 0.5 ml of distilled water was added, and the extract was dissolved in boiling water. HP through a 0.22 μm filter
 The sample was used for LC. For separation, Shodex packed column KS-805 which is an HPLC gel filtration column.
 (Showa Denko KK) using a flow rate of 0.6 ml / min. ,
 The temperature was 50 ° C., the RI detector was used for detection, and the separation solvent was water. As the molecular weight marker, Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used for measurement.
【0036】〔βグルカン抽出例〕もち性裸大麦を研削
式搗精機により削り、歩留まり82%まで精麦した。こ
のとき発生した糠を糠―1とした。歩留まり82%まで
精麦した大麦は、更に研削式搗精機により削り、歩留ま
り55%まで精麦した。このとき発生した糠を粉砕物−
1とした。容器(50L)に水道水20Lを加え、攪拌
しながら、15℃に調温した。これに糠―1の6kgを
加え、2時間攪拌抽出し、連続遠心機にて固液分離後、
上清を凍結乾燥し、抽出促進剤450gを得た。[Example of β-Glucan Extraction] The sticky bare barley was ground with a grinding type polishing machine, and the barley was refined to a yield of 82%. The bran generated at this time was designated as bran-1. The barley that had been refined to a yield of 82% was further ground with a grinding type polishing machine to refine the barley to a yield of 55%. The bran generated at this time was crushed-
 It was set to 1. 20 L of tap water was added to the container (50 L), and the temperature was adjusted to 15 ° C while stirring. 6 kg of bran-1 was added to this, and the mixture was extracted with stirring for 2 hours, and after solid-liquid separation with a continuous centrifugal machine,
 The supernatant was freeze-dried to obtain 450 g of an extraction promoter.
【0037】次に、容器(70L)に水道水30Lを加
え、攪拌しながら、抽出促進剤を150g加え、溶解
後、粉砕物―1の7.5kgを加えた。2時間、50℃
で攪拌抽出してから連続遠心機にて固液分離後、上清を
得た。得られた上清を煮沸し、冷却後に15Lのわずか
に粘調なβグルカン液を得た。さらに、得られたβグル
カン液に2倍量のエタノールを加えて沈殿を回収、乾燥
させてβグルカン抽出物460gを得た。試験例1に従
い分析の結果、βグルカンの純度は91%であった。ま
た抽出したβグルカンは、1−3−β−D−グルコビラ
ノース結合及び1−4−β−D−グルコビラノース結合
を有していた。試験例2に従い分析の結果、抽出物は分
子量20万〜1万に検出され、最大ピークは分子量4万
であった。なお、試験例1の方法で最大ピークがβグル
カンであることを確認した。以降の実施例では、本法で
得られた大麦βグルカンを使用し、単にβグルカンと表
記した。Next, 30 L of tap water was added to the container (70 L), 150 g of the extraction accelerator was added with stirring, and after dissolution, 7.5 kg of pulverized product-1 was added. 2 hours, 50 ° C
 After stirring and extracting with, the mixture was subjected to solid-liquid separation with a continuous centrifuge and the supernatant was obtained. The obtained supernatant was boiled and 15 L of a slightly viscous β-glucan solution was obtained after cooling. Further, twice the amount of ethanol was added to the obtained β-glucan solution, and the precipitate was collected and dried to obtain 460 g of β-glucan extract. As a result of analysis according to Test Example 1, the β-glucan purity was 91%. In addition, the extracted β-glucan had a 1-3-β-D-glucopyranose bond and a 1-4-β-D-glucopyranose bond. As a result of analysis according to Test Example 2, the extract was detected at a molecular weight of 200,000 to 10,000, and the maximum peak was at a molecular weight of 40,000. It was confirmed by the method of Test Example 1 that the maximum peak was β-glucan. In the following Examples, the barley β-glucan obtained by this method was used and simply referred to as β-glucan.
【0038】〔試験例3〕(複合化効率の測定)タンパク質・βグルカンの複合化
による機能の向上を乳化安定性を指標にして測定した。
複合化は次に示す方法で行った。各種タンパク質及び多
糖類をタンパク質:多糖がモル比で1:1、1:2、
1:5となるように水に溶解もしくは分散した後、凍結
乾燥・粉末化し、その1gをシャーレに入れ、60℃、
相対湿度80%に保った恒温恒湿槽内で12時間及び2
4時間インキュベートし、各種タンパク質・多糖類複合
組成物を得た。本サンプルのタンパク質量換算で0.2
5%水溶液を調製し、このサンプル溶液6mlに液状油
2mlを加え、ホモジナイザー(POLYTRON  P
T−3100、KINEMATICA  AG製)を用い
て40℃にて、回転数25,000r.p.m.で3分
間ホモジナズした。室温に放置し、分離した水層が1m
lに達する時間を観察し、この時間が遅いほど乳化安定
性が高いと判定した。なお、対照として、各タンパク
質、あるいは多糖類のみを単独でインキュベートした系
も実施した。この際、タンパク質は同様に0.25%水
溶液を乳化試験の水相とし、多糖類は複合化系のモル比
1:5の場合に系に添加される多糖の量に合わせて水相
を調製した。これらの結果を表1及び2に示した。[Test Example 3] (Measurement of Complexation Efficiency) The improvement in function due to complexation of protein / β-glucan was measured using the emulsion stability as an index.
 The compounding was performed by the following method. Various proteins and polysaccharides are used in a protein: polysaccharide molar ratio of 1: 1, 1: 2,
 After dissolving or dispersing in water to become 1: 5, lyophilize and powderize, put 1 g of it in a petri dish,
 12 hours and 2 in a constant temperature and humidity chamber kept at 80% relative humidity
 After incubating for 4 hours, various protein / polysaccharide complex compositions were obtained. 0.2 in protein amount conversion of this sample
 Prepare a 5% aqueous solution, add 2 ml of liquid oil to 6 ml of this sample solution, and add a homogenizer (POLYTRON P
 T-3100, manufactured by KINEMATICA AG) at 40 ° C. and a rotation speed of 25,000 r.p.m. p. m. And homogenized for 3 minutes. Leave at room temperature and separate water layer is 1m
 The time to reach 1 was observed, and the slower this time was, the higher the emulsion stability was judged to be. As a control, a system in which each protein or polysaccharide alone was incubated was also carried out. At this time, similarly, for the protein, a 0.25% aqueous solution was used as the aqueous phase of the emulsification test, and for the polysaccharide, the aqueous phase was prepared according to the amount of the polysaccharide added to the system when the molar ratio of the complexing system was 1: 5. did. The results are shown in Tables 1 and 2.
【0039】表1及び2の結果から、他の多糖類と比
べ、βグルカンは短いインキュベート時間で高い乳化安
定性が発揮されることが明らかになった。なお、使用し
たタンパク質、多糖類の平均分子量はそれぞれ、カゼイ
ン(カリウム塩):23000、ミルクホエータンパク
質:18000、卵白タンパク質:45000、小麦グ
リアジンタンパク質:40000、バイタルグルテン:
60000、グアーガム加水分解物(ガラクトマンナ
ン):20000、カードラン:70000、タマリン
ドガム加水分解物(キシログルカン):650000、
デキストラン:40000、カラギーナン:60000
0、ペクチン:200000として計算した。From the results shown in Tables 1 and 2, it was revealed that β-glucan exhibits high emulsion stability in a short incubation time as compared with other polysaccharides. The average molecular weights of the proteins and polysaccharides used were casein (potassium salt): 23000, milk whey protein: 18000, egg white protein: 45000, wheat gliadin protein: 40000, vital gluten:
 60000, guar gum hydrolyzate (galactomannan): 20000, curdlan: 70000, tamarind gum hydrolyzate (xyloglucan): 650,000,
 Dextran: 40000, Carrageenan: 60000
 Calculated as 0, pectin: 200,000.
【0040】[0040]
【表1】[Table 1]
【0041】[0041]
【表2】[Table 2]
【0042】本試験例の結果から、βグルカンは他の多
糖類に比べ短時間のインキュベートによって乳化安定性
の向上が認められ、タンパク質の改質に優れていること
が確認された。From the results of this test example, it was confirmed that β-glucan was improved in emulsion stability by incubation for a shorter time than other polysaccharides, and was excellent in protein modification.
【0043】〔実施例1〕(複合組成物の調製例)ニーダー(PN−1型、(株)
入江商会製)にパーム核オレイン硬化油(融点35℃)
200gを入れ70℃に調温し、小麦グリアジン画分1
50g及び、βグルカン150gを混合し、充分攪拌し
た後、水を60g加え、70℃に加温し6時間攪拌し
た。その後、サンプルを50℃の0.02Nアンモニア
水3Lに溶解し、噴霧乾燥し小麦グリアジン・βグルカ
ン複合組成物を得た。[Example 1] (Preparation example of composite composition) Kneader (PN-1 type, manufactured by Co., Ltd.)
 Irie Shokai Co., Ltd.) Palm kernel olein hydrogenated oil (melting point 35 ° C)
 Add 200 g and adjust the temperature to 70 ℃, wheat gliadin fraction 1
 After mixing 50 g and 150 g of β-glucan and thoroughly stirring, 60 g of water was added, and the mixture was heated to 70 ° C. and stirred for 6 hours. Then, the sample was dissolved in 3 L of 0.02N ammonia water at 50 ° C. and spray-dried to obtain a wheat gliadin / β-glucan composite composition.
【0044】〔実施例2〕(複合組成物の調製例)ミルクホエータンパク質0.7
kg及び、βグルカン1.4kg、エタノール76kg
を加え、羽根式ミキサー(ポータブルミキサーA520
V型、佐竹機械製作所(株)製)により、十分に原料を
分散させた後、攪拌したまま水を4kg加え、50℃に
て回転数400r.p.m.で24時間攪拌した。エタ
ノールを減圧留去後、サンプルを凍結乾燥し、ミルクホ
エータンパク質・βグルカン複合組成物を得た。Example 2 (Preparation example of composite composition) 0.7 milk whey protein
 kg and β-glucan 1.4 kg, ethanol 76 kg
 Blade mixer (portable mixer A520
 V type, manufactured by Satake Machinery Mfg. Co., Ltd., after sufficiently dispersing the raw materials, 4 kg of water was added with stirring, and the rotation speed was 400 r. p. m. It was stirred for 24 hours. After the ethanol was distilled off under reduced pressure, the sample was freeze-dried to obtain a milk whey protein / β-glucan complex composition.
【0045】〔実施例3〕(複合組成物の調製例)10%加塩チルド卵黄20k
g、βグルカン6kg、綿実サラダ油35kgをレオニ
ーダー(KQ−SV06L型、梶原工業(株)製)を用
い、60℃で4時間混合攪拌を行い、卵黄タンパク質・
βグルカン複合組成物含有綿実油を得た。Example 3 (Preparation example of composite composition) 10% salted chilled egg yolk 20k
 g, β-glucan 6 kg, cottonseed salad oil 35 kg were mixed and stirred for 4 hours at 60 ° C. using a Leonider (KQ-SV06L type, manufactured by Kajiwara Kogyo Co., Ltd.), and egg yolk protein /
 A cottonseed oil containing a β-glucan complex composition was obtained.
【0046】〔実施例4〕(複合組成物の調製例)ニーダー(PN−1型、(株)
入江商会製)にパーム油180gを入れ70℃に調温し
て溶解した後、カゼインカリウム塩100g及びβグル
カン50gを混合し、充分攪拌した後、水を60g加
え、70℃に加温し7時間攪拌した。サンプルを水3L
に溶解し、噴霧乾燥してカゼイン・βグルカン複合組成
物を得た。Example 4 (Preparation example of composite composition) Kneader (PN-1 type, manufactured by Co., Ltd.)
 180 g of palm oil was added to Irie Shokai Co., Ltd., and the temperature was adjusted to 70 ° C. to dissolve it, 100 g of casein potassium salt and 50 g of β-glucan were mixed, and after sufficiently stirring, 60 g of water was added and heated to 70 ° C. Stir for hours. Sample 3L of water
 And was spray-dried to obtain a casein / β-glucan complex composition.
【0047】〔実施例5〕(複合組成物の調製例)ニーダー(PN−5型、(株)
入江商会製)に大豆硬化油(融点36℃)800gを入
れた後、水溶性ペプチド(カゼインホスホペプチドCP
P−III、明治製菓(株)製)250g及びβグルカン
1200gを加え充分攪拌し、さらに水を200g加え
80℃に加温して4時間攪拌した。サンプルを80℃の
温水3Lに溶解し、噴霧乾燥してカゼインホスホペプチ
ド・βグルカン複合組成物を得た。Example 5 (Preparation example of composite composition) Kneader (PN-5 type, manufactured by Co., Ltd.)
 After putting 800 g of soybean hydrogenated oil (melting point 36 ° C) into Irie Shokai, water-soluble peptide (casein phosphopeptide CP
 P-III, manufactured by Meiji Seika Co., Ltd. (250 g) and β-glucan (1200 g) were added, and the mixture was sufficiently stirred, 200 g of water was further added, and the mixture was heated to 80 ° C. and stirred for 4 hours. The sample was dissolved in 3 L of warm water at 80 ° C. and spray-dried to obtain a casein phosphopeptide / β-glucan complex composition.
【0048】〔実施例6〕(複合組成物の調製例)分離大豆タンパク質50kg、
βグルカン25kg、水18kgをニーダー(レオニー
ダーKQ−8E型、梶原工業(株)製)中で回転速度3
0r.p.m.、80℃で混合し、加熱したまま10分
間放置した。その後、回転速度20r.p.m.で攪拌
しながらエタノール600Lを加え、80℃でエタノー
ル及び水を除去し、ボールミルで粉砕し分離大豆タンパ
ク質・βグルカン複合組成物を得た。Example 6 Preparation Example of Composite Composition 50 kg of isolated soy protein,
 Rotation speed 3 in a kneader (Leonider KQ-8E type, manufactured by Kajiwara Kogyo Co., Ltd.) containing 25 kg of β-glucan and 18 kg of water.
 0r. p. m. , Mixed at 80 ° C., and left for 10 minutes while heating. Then, the rotation speed is 20 r. p. m. 600 L of ethanol was added while stirring at 80 ° C., ethanol and water were removed at 80 ° C., and the mixture was ground with a ball mill to obtain a separated soybean protein / β-glucan composite composition.
【0049】〔実施例7〕(複合組成物の調製例)小麦バイタルグルテン88g及
びβグルカン140gを混合し、ニーダー(PN−1
型、(株)入江商会製)中で攪拌しながらエタノール4
20mlに分散させた後、0.5%酢酸ナトリウム水溶
液200mlを加え、40℃に加温しながら回転数40
r.p.m.で23時間加熱攪拌した。その後、70℃
に加熱すると同時に減圧しながらさらに1時間攪拌を継
続し、エタノールを除去することにより、ペースト状の
バイタルグルテン・βグルカン複合組成物(水分含量2
5%)を得た。[Example 7] (Preparation example of composite composition) 88 g of wheat vital gluten and 140 g of β-glucan were mixed and kneader (PN-1) was added.
 Type 4, ethanol 4 with stirring in Irie Shokai Co., Ltd.
 After dispersing in 20 ml, 200 ml of 0.5% aqueous sodium acetate solution was added, and the rotation speed was 40 while heating to 40 ° C.
 r. p. m. The mixture was heated and stirred for 23 hours. After that, 70 ℃
 The mixture was heated to 50 ° C. and stirred at the same time for 1 hour under reduced pressure, and ethanol was removed to obtain a paste-like vital gluten / β-glucan composite composition (water content: 2
 5%) was obtained.
【0050】〔実施例8〕(複合組成物の調製例)ニーダー(PN−5型、(株)
入江商会製)にグリセリン800gを入れた後、乾燥卵
白粉末、βグルカンをそれぞれ800gを加え、充分攪
拌した後、水を350g加え、50℃に加温して12時
間攪拌し、ペースト状の卵白タンパク質・βグルカン複
合組成物を得た。Example 8 (Preparation example of composite composition) Kneader (PN-5 type, manufactured by Co., Ltd.)
 (Irie Shokai Co., Ltd.) after adding 800 g of glycerin, 800 g of dry egg white powder and 800 g of β-glucan, respectively, and thoroughly stirred, then 350 g of water was added, and the mixture was heated to 50 ° C. and stirred for 12 hours to prepare paste egg white. A composite protein / β-glucan composition was obtained.
【0051】〔比較例1〕70℃で6時間攪拌せず、水
を加え均一に混和後直ちに次の操作に移ったこと以外
は、実施例1と同じ操作をし、小麦グリアジン・βグル
カン混合組成物を得た。[Comparative Example 1] Wheat gliadin / β-glucan was mixed in the same manner as in Example 1 except that water was added to the mixture at 70 ° C. for 6 hours without stirring, and the mixture was mixed homogeneously and immediately followed by the next operation. A composition was obtained.
【0052】〔比較例2〕ミルクホエータンパク質0.
7kg、βグルカン1.4kgを粉末のまま充分に混合
し、ミルクホエータンパク質・βグルカン混合組成物を
得た。Comparative Example 2 Milk whey protein 0.
 7 kg and 1.4 kg of β-glucan were sufficiently mixed as powder to obtain a milk whey protein / β-glucan mixed composition.
【0053】〔比較例3〕60℃で4時間混合攪拌する
ことなく、常温(20℃)で混合しただけにしたこと以
外は、実施例3と同様の操作をし、卵黄タンパク質・β
グルカン混合組成物含有綿実油を得た。[Comparative Example 3] Egg yolk protein / β was prepared in the same manner as in Example 3 except that mixing was carried out at room temperature (20 ° C) without mixing and stirring at 60 ° C for 4 hours.
 A cottonseed oil containing a glucan mixed composition was obtained.
【0054】〔比較例4〕70℃で7時間攪拌せず、水
を加え均一に混和後直ちに次の操作に移ったこと以外
は、実施例4と同じ操作をし、カゼイン・βグルカン混
合組成物を得た。Comparative Example 4 A casein / β-glucan mixed composition was prepared in the same manner as in Example 4, except that water was added to the mixture at 70 ° C. for 7 hours without stirring, and the mixture was mixed homogeneously and immediately followed by the next operation. I got a thing.
【0055】〔比較例5〕80℃の温水3Lに大豆硬化
油(融点36℃)800g、カゼインホスホペプチド2
50g、βグルカン1200gを加え均一に分散するよ
う攪拌しながら噴霧乾燥してカゼインホスホペプチド・
βグルカン混合組成物を得た。Comparative Example 5 800 g of hydrogenated soybean oil (melting point: 36 ° C.) and casein phosphopeptide 2 were added to 3 L of hot water at 80 ° C.
 Add 50g and 1200g β-glucan and spray dry with stirring to evenly disperse casein phosphopeptide
 A β-glucan mixed composition was obtained.
【0056】〔比較例6〕分離大豆タンパク質50k
g、βグルカン25kgを粉末のまま充分に混合し、分
離大豆タンパク質・βグルカン混合組成物を得た。Comparative Example 6 Soy protein isolate 50 k
 g and 25 kg of β-glucan were sufficiently mixed as a powder to obtain a separated soybean protein / β-glucan mixed composition.
【0057】〔比較例7〕小麦バイタルグルテン88g
及びβグルカン140gを混合し、ニーダー中で攪拌し
ながら0.5%酢酸ナトリウム水溶液200mlを加
え、70℃に加熱し、減圧しながら水分を除去すること
により、ペースト状のバイタルグルテン・βグルカン混
合組成物(水分含量25%)を得た。Comparative Example 7 88 g of wheat vital gluten
 And 140 g of β-glucan are mixed, 200 ml of 0.5% sodium acetate aqueous solution is added with stirring in a kneader, heated to 70 ° C., and water is removed under reduced pressure to mix paste-like vital gluten / β-glucan. A composition (water content 25%) was obtained.
【0058】〔比較例8〕50℃で12時間攪拌しない
ことを以外は、実施例8と同様の操作を行い、卵白タン
パク質・βグルカン混合組成物を得た。[Comparative Example 8] An egg white protein / β-glucan mixed composition was obtained in the same manner as in Example 8 except that the mixture was not stirred at 50 ° C for 12 hours.
【0059】〔実施例A〕(クッキーの製造例)実施例1で得た小麦グリアジン・
βグルカン複合組成物250部にプロテアーゼによって
加水分解処理した卵黄0.2部を添加し、ミキサーで混
合して、65℃で15分間放置後、室温に冷却してクリ
ーム状になった小麦グリアジン・βグルカン複合組成物
含有油脂組成物(βグルカン含有量27.3%)を得
た。Example A (Production Example of Cookie) The wheat gliadin obtained in Example 1
 To 250 parts of β-glucan complex composition, 0.2 parts of egg yolk hydrolyzed by protease was added, mixed with a mixer, left at 65 ° C. for 15 minutes, and then cooled to room temperature to form a creamy wheat gliadin. A β-glucan composite composition-containing oil / fat composition (β-glucan content 27.3%) was obtained.
【0060】本小麦グリアジン・βグルカン複合組成物
含有油脂組成物50部と上白糖50部をホバートミキサ
ーにて高速6分間クリーミングし、これに全卵(正味)
15部、食塩1部及び炭酸水素アンモニウム0.5部を
合わせたものを添加し、中速で30秒間混合した。更
に、篩にかけた小麦粉100部を添加混合し、低速で3
0秒間混合して、生地を得た。この生地を直径6cmの
筒に詰め、生地を厚み1cmづつ押し出したところでカ
ットし、200℃、13分間焼成して、βグルカン含有
クッキー(βグルカン含有量6.32%)を得た。50 parts of the oil / fat composition containing the present wheat gliadin / β-glucan complex composition and 50 parts of upper sucrose were creamed at high speed for 6 minutes with a Hobart mixer, and then whole eggs (net) were added.
 A mixture of 15 parts, 1 part of salt and 0.5 part of ammonium hydrogen carbonate was added and mixed at a medium speed for 30 seconds. Further, add 100 parts of the sieved wheat flour and mix,
 Mix for 0 seconds to obtain a dough. The dough was packed in a cylinder having a diameter of 6 cm, and the dough was extruded at a thickness of 1 cm, cut, and baked at 200 ° C. for 13 minutes to obtain a β-glucan-containing cookie (β-glucan content 6.32%).
【0061】上記クッキーについて、5人のパネラーに
より口溶け、風味、食感(ショートネス性)の項目につ
いて各5点満点で評価し、その結果について平均値を表
3に示した。また、作業性の指標として、生地調製中の
型等への付着性を評価し、作業性の良い順に◎、○、
△、×で評価した。すなわち付着しやすい場合は作業性
が悪いことを意味し、付着しにくい場合は作業性が良い
ことを意味する。その結果も併せて表3に示した。The above-mentioned cookies were evaluated by 5 panelists on the basis of a score of 5 on the items of melting in mouth, flavor, and texture (shortness), and the average value of the results is shown in Table 3. Also, as an index of workability, the adhesiveness to the mold etc. during dough preparation is evaluated, and ◎, ○,
 It was evaluated by Δ and ×. That is, when it is easy to adhere, it means that workability is poor, and when it is hard to adhere, it means that workability is good. The results are also shown in Table 3.
【0062】〔比較例A1〕(クッキーの製造例)比較例1で得た小麦グリアジン・
βグルカン混合組成物250部にプロテアーゼによって
加水分解処理した卵黄0.2部を添加し、ミキサーで混
合して、65℃で15分間放置後、室温に冷却してクリ
ーム状になった小麦グリアジン・βグルカン混合組成物
含有油脂組成物(βグルカン含有量27.3%)を得
た。Comparative Example A1 (Production Example of Cookie) Wheat gliadin obtained in Comparative Example 1
 To 250 parts of β-glucan mixed composition, 0.2 parts of egg yolk hydrolyzed by protease was added, mixed with a mixer, left at 65 ° C. for 15 minutes, and then cooled to room temperature to form a creamy wheat gliadin. A β-glucan mixed composition-containing oil / fat composition (β-glucan content 27.3%) was obtained.
【0063】以降、実施例Aの小麦グリアジン・βグル
カン複合組成物含有油脂を本小麦グリアジン・βグルカ
ン混合組成物含有油脂組成物に替えたこと以外は、実施
例Aと同様の方法でβグルカン含有クッキー(βグルカ
ン含有量6.32%)を得た。該クッキーについて実施
例Aと同様に評価し、結果を表3に示した。Thereafter, the β-glucan was prepared in the same manner as in Example A, except that the oil / fat containing the wheat gliadin / β-glucan composite composition of Example A was replaced with the oil / fat composition containing the wheat gliadin / β-glucan mixed composition. A contained cookie (β-glucan content 6.32%) was obtained. The cookie was evaluated in the same manner as in Example A, and the results are shown in Table 3.
【0064】〔比較例A2〕(クッキーの製造例)βグルカン75部に、小麦粉75
部、パーム核オレイン硬化油(融点35℃)100部、
プロテアーゼによって加水分解処理した卵黄0.2部を
添加し、ミキサーで混合して、65℃で15分間放置
後、室温に冷却してクリーム状になったβグルカン含有
油脂組成物(βグルカン含有量27.3%)を得た。Comparative Example A2 (Production Example of Cookie) 75 parts of β-glucan and 75 parts of flour
 Part, palm kernel olein hydrogenated oil (melting point 35 ° C.) 100 parts,
 0.2 parts of egg yolk hydrolyzed by protease was added, mixed with a mixer, left at 65 ° C. for 15 minutes, and then cooled to room temperature to give a creamy β-glucan-containing oil / fat composition (β-glucan content 27.3%).
【0065】以降、実施例Aの小麦グリアジン・βグル
カン複合組成物含有油脂を本βグルカン含有油脂組成物
に替えたこと以外は、実施例Aと同様の方法でβグルカ
ン含有クッキー(βグルカン含有量6.32%)を得
た。該クッキーについて実施例Aと同様に評価し、結果
を表3に示した。Thereafter, a β-glucan-containing cookie (containing β-glucan) was prepared in the same manner as in Example A, except that the oil / fat containing the wheat gliadin / β-glucan composite composition of Example A was replaced with this β-glucan-containing oil / fat composition. (6.32%). The cookie was evaluated in the same manner as in Example A, and the results are shown in Table 3.
【0066】[0066]
【表3】[Table 3]
【0067】〔実施例B〕(ソフトチョコレートの製造例)実施例2で得たミルク
ホエータンパク質・βグルカン複合組成物300部に7
0℃に加温して溶解させたパーム油100部及びレシチ
ン1部を添加し、高速ホモミキサーで混合して、50℃
で20分間放置後、室温に冷却してそぼろ状になったミ
ルクホエータンパク質・βグルカン複合組成物含有油脂
組成物(βグルカン含有量45.5%)を得た。[Example B] (Production example of soft chocolate) 7 parts to 300 parts of the milk whey protein / β-glucan composite composition obtained in Example 2
 100 parts of palm oil and 1 part of lecithin heated to 0 ° C. and dissolved were added and mixed with a high-speed homomixer to 50 ° C.
 After leaving it for 20 minutes at room temperature, it was cooled to room temperature to obtain a milk whey protein / β-glucan complex composition-containing fat composition (β-glucan content 45.5%).
【0068】本ミルクホエータンパク質・βグルカン複
合組成物含有油脂組成物15部に、砂糖50部、カカオ
マス5部、全脂粉乳15部、レシチン0.3部及びバニ
リン0.04部からなる配合で、常法に従いロール掛
け、コンチング処理し、βグルカン含有ソフトチョコレ
ート(βグルカン含有量8%)を得た。A composition comprising 50 parts of sugar, 5 parts of cocoa mass, 15 parts of whole milk powder, 0.3 part of lecithin and 0.04 part of vanillin in 15 parts of the oil / fat composition containing the present milk whey protein / β-glucan complex composition. Rolling and conching treatment were carried out according to a conventional method to obtain β-glucan-containing soft chocolate (β-glucan content 8%).
【0069】上記ソフトチョコレートについて、5人の
パネラーにより滑らかさ、口溶け、風味の項目について
各5点満点で評価し、その結果について平均値を表4に
示した。また、ダレやすさを測定するため、該チョコレ
ートを10度に傾斜させたアルミトレイに乗せ、50
℃、30分間放置後の移動距離(mm)を測定した。移
動距離が少ないほどダレ難いことの指標となる。その結
果も併せて表4に示した。The soft chocolates were evaluated by 5 panelists on the points of smoothness, melting in the mouth, and flavor on a scale of 5 points, and the average values are shown in Table 4. Moreover, in order to measure the easiness of sagging, the chocolate was placed on an aluminum tray tilted at 10 degrees, and 50
 The moving distance (mm) after standing for 30 minutes at ℃ was measured. The shorter the distance moved, the more difficult it is to sag. The results are also shown in Table 4.
【0070】〔比較例B1〕(ソフトチョコレートの製造例)比較例2で得たミルク
ホエータンパク質・βグルカン混合組成物300部に7
0℃に加温して溶解させたパーム油100部及びレシチ
ン1部を添加し、高速ホモミキサーで混合して、50℃
で20分間放置後、室温に冷却してそぼろ状になったミ
ルクホエータンパク質・βグルカン混合組成物含有油脂
組成物(βグルカン含有量45.5%)を得た。Comparative Example B1 (Production Example of Soft Chocolate) 7 parts per 300 parts of the milk whey protein / β-glucan mixed composition obtained in Comparative Example 2
 100 parts of palm oil and 1 part of lecithin heated to 0 ° C. and dissolved were added and mixed with a high-speed homomixer to 50 ° C.
 After leaving it for 20 minutes at room temperature, it was cooled to room temperature to obtain a milk whey protein / β-glucan mixed composition-containing fat composition (β-glucan content 45.5%).
【0071】以降、実施例Bのミルクホエータンパク質
・βグルカン複合組成物含有油脂組成物を本ミルクホエ
ータンパク質・βグルカン混合組成物含有油脂組成物に
替えたこと以外は、実施例Bと同様の方法でβグルカン
含有ソフトチョコレート(βグルカン含有量8%)を得
た。該ソフトチョコレートについて実施例Bと同様に評
価し、結果を表4に示した。Thereafter, the same procedure as in Example B was carried out except that the milk whey protein / β-glucan complex composition-containing oil / fat composition of Example B was replaced with the milk whey protein / β-glucan mixed composition-containing oil / fat composition. By the method, β-glucan-containing soft chocolate (β-glucan content 8%) was obtained. The soft chocolate was evaluated in the same manner as in Example B, and the results are shown in Table 4.
【0072】〔比較例B2〕(ソフトチョコレートの製造例)βグルカン200部
に、全脂粉乳100部、70℃に加温して溶解させたパ
ーム油100部及びレシチン1部を添加し、高速ホモミ
キサーで混合して、50℃で20分間放置後、室温に冷
却してそぼろ状になったβグルカン含有油脂組成物(β
グルカン含有量45.5%)を得た。Comparative Example B2 (Production Example of Soft Chocolate) To 200 parts of β-glucan, 100 parts of whole milk powder, 100 parts of palm oil dissolved by heating to 70 ° C. and 1 part of lecithin were added, and high speed was applied. After mixing with a homomixer and leaving it at 50 ° C. for 20 minutes, it was cooled to room temperature to form a β-glucan-containing oil / fat composition (β
 A glucan content of 45.5%) was obtained.
【0073】以降、実施例Bのミルクホエータンパク質
・βグルカン複合組成物含有油脂組成物を本βグルカン
含有油脂組成物に替えたこと以外は、実施例Bと同様の
方法でβグルカン含有ソフトチョコレート(βグルカン
含有量8%)を得た。該ソフトチョコレートについて実
施例Bと同様に評価し、結果を表4に示した。Thereafter, a β-glucan-containing soft chocolate was prepared in the same manner as in Example B, except that the fat / oil composition containing the milk whey protein / β-glucan complex composition of Example B was replaced with the β-glucan-containing fat / oil composition. (Β-glucan content 8%) was obtained. The soft chocolate was evaluated in the same manner as in Example B, and the results are shown in Table 4.
【0074】[0074]
【表4】[Table 4]
【0075】〔実施例C〕(マヨネーズの製造例)実施例3で得られた卵黄タンパ
ク質・βグルカン複合組成物含有綿実油30.5部に水
36部を加え充分に攪拌した後、砂糖8.2部、食塩
1.8部、食酢8部、調味香辛料1部を加え、充分攪拌
した後、菜種油17.5部を加え、攪拌して予備乳化
後、コロイドミルによって仕上げ乳化を行い、卵黄タン
パク質・βグルカン複合組成物含有マヨネーズ(βグル
カン含有量2.65%)を得た。βグルカンは均一に分
散していた。Example C (Production Example of Mayonnaise) 36 parts of water was added to 30.5 parts of the egg yolk protein / β-glucan complex composition-containing cottonseed oil obtained in Example 3 and sufficiently stirred, and then sugar 8. After adding 2 parts, 1.8 parts of salt, 8 parts of vinegar, and 1 part of seasoning spice, and thoroughly stirring, 17.5 parts of rapeseed oil was added, and after preliminarily emulsifying by stirring, finish emulsification with a colloid mill, egg yolk protein A β-glucan composite composition-containing mayonnaise (β-glucan content: 2.65%) was obtained. β-glucan was uniformly dispersed.
【0076】上記マヨネーズについて、5人のパネラー
により滑らかさ、風味の項目について各5点満点で評価
し、その結果について平均値を表5に示した。また、該
マヨネーズの安定性の評価として、50℃の恒温槽に1
週間静置し、水分離の有無を観察し、その結果も併せて
表5に示した。得られたマヨネーズは、1ケ月の保存期
間中に水の分離がなく、また、滑らかで風味も非常に良
好であった。With respect to the above mayonnaise, five panelists evaluated the smoothness and flavor on a scale of 5 points, and the average value is shown in Table 5. In addition, to evaluate the stability of the mayonnaise, 1
 It was allowed to stand for a week, and the presence or absence of water separation was observed. The results are also shown in Table 5. The resulting mayonnaise had no water separation during the storage period of one month, was smooth and had a very good flavor.
【0077】〔比較例C1〕(マヨネーズの製造例)比較例3で得られた卵黄タンパ
ク質・βグルカン混合組成物含有綿実油30.5部に水
36部を加え充分に攪拌した後、砂糖8.2部、食塩
1.8部、食酢8部、調味香辛料1部を加え、充分攪拌
した後、菜種油17.5部を加え、攪拌して予備乳化
後、コロイドミルによって仕上げ乳化を行い、卵黄タン
パク質・βグルカン含有マヨネーズ(βグルカン含有量
2.65%)を得た。該マヨネーズについて実施例Cと
同様に評価し、結果を表5に示した。Comparative Example C1 (Production Example of Mayonnaise) 36 parts of water was added to 30.5 parts of the cottonseed oil containing the egg yolk protein / β-glucan mixed composition obtained in Comparative Example 3 and sufficiently stirred, and then sugar 8. After adding 2 parts, 1.8 parts of salt, 8 parts of vinegar, and 1 part of seasoning spice, and thoroughly stirring, 17.5 parts of rapeseed oil was added, and after preliminarily emulsifying by stirring, finish emulsification with a colloid mill, egg yolk protein・ Β-glucan-containing mayonnaise (β-glucan content: 2.65%) was obtained. The mayonnaise was evaluated in the same manner as in Example C, and the results are shown in Table 5.
【0078】〔比較例C2〕(マヨネーズの製造例)加塩卵黄10部に砂糖8.2
部、食塩1.8部、食酢8部、調味香辛料1部、βグル
カン3部に水36部を加え充分に攪拌後、綿実サラダ油
17.5部、菜種サラダ油17.5部を加え、攪拌して
予備乳化後、コロイドミルによって仕上げ乳化を行い、
βグルカン含有マヨネーズ(βグルカン含有量2.65
%)を得た。該マヨネーズについて実施例Cと同様に評
価し、結果を表5に示した。Comparative Example C2 (Production Example of Mayonnaise) 10 parts of salted egg yolk and 8.2 parts of sugar
 Water, 1.8 parts of salt, 8 parts of vinegar, 1 part of seasoning spice, 3 parts of β-glucan, and 36 parts of water, and after sufficient stirring, 17.5 parts of cottonseed salad oil and 17.5 parts of rapeseed salad oil were added and stirred. After pre-emulsification, finish emulsification with colloid mill,
 Mayonnaise containing β-glucan (β-glucan content 2.65
 %) Was obtained. The mayonnaise was evaluated in the same manner as in Example C, and the results are shown in Table 5.
【0079】[0079]
【表5】[Table 5]
【0080】〔実施例D〕(ホイップクリームの製造例)液糖25部と水20部を
混合し、60℃に調温したものと60℃に調温したパー
ム油20部に実施例4で得られたカゼイン・βグルカン
複合組成物を15部、実施例5で得られたカゼインホス
ホペプチド・βグルカン複合組成物20部を充分に分散
したものを混合攪拌し、予備乳化物を調製した。予備乳
化後5MPaの圧力で均質化した後、VTIS殺菌機で
142℃、4秒間殺菌し、再度5MPaの圧力で均質化
後5℃まで冷却し、ミキサーによってホイップした。そ
の後、冷蔵庫で24時間エージングを行い、βグルカン
含有ホイップクリーム(βグルカン含有量11.5%)
を得た。Example D (Production Example of Whipped Cream) In Example 4, 25 parts of liquid sugar and 20 parts of water were mixed, and the temperature was adjusted to 60 ° C. and 20 parts of palm oil adjusted to 60 ° C. were used. 15 parts of the obtained casein / β-glucan composite composition and 20 parts of the casein phosphopeptide / β-glucan composite composition obtained in Example 5 were sufficiently dispersed and mixed and stirred to prepare a preliminary emulsion. After pre-emulsification, the mixture was homogenized at a pressure of 5 MPa, sterilized by a VTIS sterilizer at 142 ° C. for 4 seconds, homogenized again at a pressure of 5 MPa, cooled to 5 ° C., and whipped by a mixer. After that, aging it in the refrigerator for 24 hours, β-glucan-containing whipped cream (β-glucan content 11.5%)
 Got
【0081】上記ホイップクリームについて、5人のパ
ネラーにより滑らかさ、風味の項目について各5点満点
で評価し、その結果について平均値を表6に示した。ま
た、ホイップ前の乳化物を50℃の恒温槽で1週間放置
した後の水分離の有無を観察した。さらに、該ホイップ
クリームの安定性の評価として、30℃の恒温槽に1日
静置した後のオーバーラン低下率の測定と、保型性の観
察を行った。オーバーラン低下率はホイップ直後のオー
バーラン値に対する30℃放置後のオーバーラン値の割
合で、大きいほどホイップクリームが安定であることを
示す。また、保型性は目視観察により、良い順に◎、
○、△、×とした。これらの結果も併せて表6に示し
た。The above whipped cream was evaluated by 5 panelists on the points of smoothness and flavor on a scale of 5 points, and the average value is shown in Table 6. Further, the emulsion before whipped was allowed to stand for 1 week in a constant temperature bath at 50 ° C., and then the presence or absence of water separation was observed. Further, as an evaluation of the stability of the whipped cream, the rate of reduction in overrun after standing for 1 day in a constant temperature bath at 30 ° C. was measured and the shape retention was observed. The overrun reduction rate is the ratio of the overrun value after standing at 30 ° C. to the overrun value immediately after whipped, and the larger the value, the more stable the whipped cream. Further, the shape retention is ◎, in good order by visual observation.
 ◯, Δ, and ×. The results are also shown in Table 6.
【0082】〔比較例D1〕(ホイップクリームの製造例)液糖25部と水20部を
混合し、60℃に調温したものと60℃に調温したパー
ム油20部に比較例4で得られたカゼイン・βグルカン
混合組成物を15部、比較例5で得られたカゼインホス
ホペプチド・βグルカン混合組成物20部を充分に分散
したものを混合攪拌し、予備乳化物を調製した。その後
は実施例Dと同様に均質化し、ホイップクリーム(βグ
ルカン含有量11.5%)を得た。該ホイップクリーム
について実施例Dと同様に評価し、結果を表6に示し
た。Comparative Example D1 (Production Example of Whipped Cream) In Comparative Example 4, 25 parts of liquid sugar and 20 parts of water were mixed and the temperature was adjusted to 60 ° C. and 20 parts of palm oil adjusted to 60 ° C. were used. 15 parts of the obtained casein / β-glucan mixed composition and 20 parts of the casein phosphopeptide / β-glucan mixed composition obtained in Comparative Example 5 were sufficiently dispersed to mix and stir to prepare a preliminary emulsion. After that, homogenization was performed in the same manner as in Example D to obtain a whipped cream (β-glucan content: 11.5%). The whipped cream was evaluated in the same manner as in Example D, and the results are shown in Table 6.
【0083】〔比較例D2〕(ホイップクリームの製造例)60℃に調温したパーム
油28部と大豆硬化油7部の混合物にカゼインカリウム
4.3部、カゼインホスホペプチド2.1部、βグルカ
ン12.5部を充分に分散したものと液糖25部と水2
0部を混合し60℃に調温したものを混合攪拌し、予備
乳化物を調製した。その後は実施例Dと同様に均質化
し、ホイップクリーム(βグルカン含有量11.5%)
を得た。該ホイップクリームについて実施例Dと同様に
評価し、結果を表6に示した。Comparative Example D2 (Production Example of Whipped Cream) 4.3 parts of casein potassium, 2.1 parts of casein phosphopeptide, β were added to a mixture of 28 parts of palm oil and 7 parts of soybean hydrogenated oil, the temperature of which was adjusted to 60 ° C. Glucan 12.5 parts well dispersed, liquid sugar 25 parts and water 2
 A pre-emulsion was prepared by mixing 0 parts and adjusting the temperature to 60 ° C. and stirring. After that, homogenize as in Example D, whipped cream (β-glucan content 11.5%)
 Got The whipped cream was evaluated in the same manner as in Example D, and the results are shown in Table 6.
【0084】[0084]
【表6】[Table 6]
【0085】〔実施例E〕(マーガリンの製造例)パーム油:パーム硬化油:菜種油:ソルビタン脂肪酸エ
ステルを、30:50:20:0.3の割合(重量比)
で含有する食用油脂100部を70℃で融解し、実施例
6で得た分離大豆タンパク質・βグルカン複合組成物1
2部を添加し、65℃にて30分間放置した後、ホモミ
キサーで攪拌しながら、70℃に加温した水16部に脱
脂粉乳0.5部及び食塩1部を溶解させた溶液を徐々に
添加、混合した後、急冷可塑化を行い、25℃で一晩調
温後、5℃まで冷却した。このようにして、分離大豆タ
ンパク質・βグルカン複合組成物含有マーガリン(βグ
ルカン含有量2.8%)を得た。Example E (Production Example of Margarine) Palm oil: hydrogenated palm oil: rapeseed oil: sorbitan fatty acid ester in a ratio of 30: 50: 20: 0.3 (weight ratio).
 100 parts of the edible oil / fat contained in 1. was melted at 70 ° C., and the separated soybean protein / β-glucan composite composition 1 obtained in Example 6 was obtained.
 After adding 2 parts and standing at 65 ° C. for 30 minutes, a solution prepared by dissolving 0.5 parts skimmed milk powder and 1 part salt in 16 parts of water heated to 70 ° C. is gradually added while stirring with a homomixer. After the addition and mixing, the mixture was quenched and plasticized, and the temperature was adjusted to 25 ° C. overnight, followed by cooling to 5 ° C. Thus, isolated soybean protein / β-glucan complex composition-containing margarine (β-glucan content 2.8%) was obtained.
【0086】上記マーガリンについて、5人のパネラー
により滑らかさ、風味の項目について各5点満点で評価
し、その結果の平均値を表7に示した。The margarine was evaluated by 5 panelists on the scale of 5 points for smoothness and flavor, and the average value of the results is shown in Table 7.
【0087】〔比較例E1〕(マーガリンの製造例)実施例6で得られたサンプルを
比較例6で得られた分離大豆タンパク質・βグルカン混
合組成物に替えた以外は、実施例Eと同様の操作により
分離大豆タンパク質・βグルカン混合組成物含有マーガ
リン(βグルカン含有量2.8%)を得た。該マーガリ
ンについて実施例Eと同様に評価し、結果を表7に示し
た。Comparative Example E1 (Production Example of Margarine) Same as Example E except that the sample obtained in Example 6 was replaced with the isolated soybean protein / β-glucan mixed composition obtained in Comparative Example 6. By the procedure described above, isolated soybean protein / β-glucan mixed composition-containing margarine (β-glucan content: 2.8%) was obtained. The margarine was evaluated in the same manner as in Example E, and the results are shown in Table 7.
【0088】〔比較例E2〕(マーガリンの製造例)実施例6で得られたサンプルに
替えてβグルカン3.73部を配合した以外は、実施例
Eと同様の操作によりβグルカン含有マーガリン(βグ
ルカン含有量2.8%)を得た。該マーガリンについて
実施例Eと同様に評価し、結果を表7に示した。Comparative Example E2 (Production Example of Margarine) A β-glucan-containing margarine (was prepared in the same manner as in Example E except that 3.73 parts of β-glucan was blended in place of the sample obtained in Example 6. β-glucan content of 2.8%) was obtained. The margarine was evaluated in the same manner as in Example E, and the results are shown in Table 7.
【0089】[0089]
【表7】[Table 7]
【0090】〔実施例F〕(食パンの製造例)小麦粉97部、イースト3部、砂糖
4部、食塩2部、実施例Eで得られたマーガリン6部、
実施例7で得られたバイタルグルテン・βグルカン複合
組成物10部、及び水58部を加え、こね上げ温度28
℃にて、ホッパーミキサーで低速2分、高速4分ミキシ
ングしパン生地を調製した。28℃で60分間発酵さ
せ、450gに分割し、丸め、ねかし(28℃、20
分)工程を経て、シーターに3回通して整形後、ワンロ
ーフタイプの型に挿入した。38℃で相対湿度90%の
条件下、生地が型上縁2cmに達するまで焙炉工程を行
った後、220℃にて23分間焼成し、タンパク質・β
グルカン複合組成物含有パン(βグルカン含有量2.4
%)を得た。Example F (Production Example of Bread) 97 parts of flour, 3 parts of yeast, 4 parts of sugar, 2 parts of salt, 6 parts of margarine obtained in Example E,
 10 parts of the vital gluten / β-glucan composite composition obtained in Example 7 and 58 parts of water were added, and the kneading temperature was 28.
 A dough was prepared by mixing with a hopper mixer at ℃ for 2 minutes at low speed and for 4 minutes at high speed. Fermentation at 28 ℃ for 60 minutes, divide into 450g, round, and leave (28 ℃, 20
 After the (min) step, the sheet was passed through a sheeter 3 times, shaped, and then inserted into a one loaf type mold. Under the conditions of 38 ° C. and 90% relative humidity, a baking process was performed until the dough reached the upper edge of the mold of 2 cm, and then baked at 220 ° C. for 23 minutes to obtain protein / β.
 Bread containing a glucan complex composition (β-glucan content 2.4
 %) Was obtained.
【0091】上記パンについて、比容積を測定し、結果
を表8に示した。さらに5人のパネラーにより硬さ、風
味の項目について各5点満点で評価し、これらの結果の
平均値を表8に示した。The specific volume of the bread was measured, and the results are shown in Table 8. Further, the hardness and flavor of each item were evaluated by 5 panelists on a scale of 5 points, and the average value of these results is shown in Table 8.
【0092】〔比較例F1〕(食パンの製造例)実施例Eで得られたマーガリンを比
較例E1で得られたマーガリンに替えたことと、実施例
7で得られたバイタルグルテン・βグルカン複合組成物
を比較例7で得られたバイタルグルテン・βグルカン混
合組成物に替えた以外は、実施例Fと同様の方法により
タンパク質・βグルカン混合組成物含有パン(βグルカ
ン含有量2.4%)を調製した。該パンについて実施例
Fと同様に評価し、結果を表8に示した。Comparative Example F1 (Production Example of Bread) The margarine obtained in Example E was replaced with the margarine obtained in Comparative Example E1, and the vital gluten / β-glucan complex obtained in Example 7 was used. A protein / β-glucan mixed composition-containing bread (β-glucan content 2.4% was prepared in the same manner as in Example F, except that the composition was changed to the vital gluten / β-glucan mixed composition obtained in Comparative Example 7. ) Was prepared. The bread was evaluated in the same manner as in Example F, and the results are shown in Table 8.
【0093】〔比較例F2〕(食パンの製造例)実施例Eで得られたマーガリンを比
較例E2で得られたマーガリンに替え、実施例7で得ら
れたバイタルグルテン・βグルカン複合組成物に替えて
βグルカン4.6部、バイタルグルテン2.9部とし、
水の配合量を60.5部としたこと以外は、実施例Fと
同様の方法によりβグルカン含有パン(βグルカン含有
量2.4%)を調製した。該パンについて実施例Fと同
様に評価し、結果を表8に示した。Comparative Example F2 (Production Example of Bread) The margarine obtained in Example E was replaced with the margarine obtained in Comparative Example E2 to obtain the vital gluten / β-glucan composite composition obtained in Example 7. Replaced with β-glucan 4.6 parts and vital gluten 2.9 parts,
 A β-glucan-containing bread (β-glucan content 2.4%) was prepared in the same manner as in Example F, except that the amount of water was 60.5 parts. The bread was evaluated in the same manner as in Example F, and the results are shown in Table 8.
【0094】[0094]
【表8】[Table 8]
【0095】〔実施例G〕実施例8で得られた卵白タン
パク質・βグルカン複合組成物50部に水50部を混
合、溶解し、卵白タンパク質・βグルカン複合組成物含
有乳液(βグルカン含量13.2%)とした。[Example G] 50 parts of water was mixed with 50 parts of the egg white protein / β-glucan complex composition obtained in Example 8 and dissolved to obtain an emulsion containing the egg white protein / β-glucan complex composition (β-glucan content 13 0.2%).
【0096】上記乳液5人のパネラーに手及び腕に塗布
してもらい、塗るときの滑らかさとしっとり感が残って
いるかどうかを5点満点で評価し、平均点を表9に示し
た。The emulsion was applied to the hands and arms of five panelists, and the smoothness and moistness of the emulsion were evaluated on a scale of 5 points. The average points are shown in Table 9.
【0097】〔比較例G1〕実施例8で得られた卵白タ
ンパク質・βグルカン複合組成物を比較例8で得られた
卵白タンパク質・βグルカン混合組成物に替えたこと以
外は、実施例Gと同様の方法で乳液を得た。該乳液につ
いて実施例Gと同様に評価し、結果を表9に示した。[Comparative Example G1] Example G1 except that the egg white protein / β-glucan composite composition obtained in Example 8 was replaced with the egg white protein / β-glucan mixed composition obtained in Comparative Example 8. An emulsion was obtained by the same method. The emulsion was evaluated in the same manner as in Example G, and the results are shown in Table 9.
【0098】〔比較例G2〕グリセリンとβグルカンの
等量混合物50部に対し、水122部を加え混合・溶解
し、βグルカン含有乳液(βグルカン含量13.2%)
を得た。該乳液について実施例Gと同様に評価し、結果
を表9に示した。[Comparative Example G2] To 50 parts of an equal mixture of glycerin and β-glucan, 122 parts of water was added and mixed and dissolved to give a β-glucan-containing emulsion (β-glucan content 13.2%).
 Got The emulsion was evaluated in the same manner as in Example G, and the results are shown in Table 9.
【0099】[0099]
【表9】[Table 9]
【0100】〔実施例H〕(ローションの製造例)以下の処方に従い、常法により
ローションを製造した。Example H (Production Example of Lotion) A lotion was produced by a conventional method according to the following formulation.
【0101】 (組成) (重量部) ステアリン酸 2.0 セタノール 1.5 ワセリン 3.0 ラノリンアルコール 2.0 流動パラフィン 9.0 実施例8で得られた卵白タンパク質・βグルカン複合組成物 7.0 香料 0.5 酸化防止剤 適量 防腐剤 適量 プロピレングリコール 4.8 グリセリン 1.0 ヒアルロン酸ナトリウム 0.1 トリエタノールアミン 1.0 精製水 70.0[0101] (Composition) (Parts by weight) Stearic acid 2.0 Cetanol 1.5 Vaseline 3.0 Lanolin alcohol 2.0 Liquid paraffin 9.0 Egg white protein / β-glucan complex composition obtained in Example 8 7.0 Fragrance 0.5 Antioxidant Appropriate amount Preservative Suitable amount Propylene glycol 4.8 Glycerin 1.0 Sodium hyaluronate 0.1 Triethanolamine 1.0 Purified water 70.0
【0102】〔実施例I〕(分散剤)容器100mlの共栓付メスシリンダーに実
施例2で得られたミルクホエータンパク質・βグルカン
複合組成物1g、カーボンブラック10gを入れ、水に
て溶解分散させ100mlに調整した。次に、そのメス
シリンダーを1分間に100回振盪した後、1時間、2
5℃にて静置した。その後、液上面から30cc抜き取
りグラスフィルターにて濾過した後、105℃にて、乾
燥させ、グラスフィルター上の残渣の重量より、次式に
より本発明品の分散性能を測定した。分散性能(%)=
グラスフィルターの残渣重量(g)/3(g)×100
その結果、分散性能は86%であり、良好であった。Example I (Dispersant) 1 g of the milk whey protein / β-glucan composite composition obtained in Example 2 and 10 g of carbon black were placed in a 100-ml graduated cylinder equipped with a stopper, and dissolved and dispersed in water. Was adjusted to 100 ml. Next, after shaking the graduated cylinder 100 times for 1 minute, 2 hours for 2 hours
 It was left still at 5 ° C. Then, after removing 30 cc from the liquid upper surface and filtering with a glass filter, it was dried at 105 ° C., and the dispersion performance of the product of the present invention was measured from the weight of the residue on the glass filter by the following formula. Dispersion performance (%) =
 Glass filter residue weight (g) / 3 (g) x 100
 As a result, the dispersion performance was 86%, which was good.
【0103】〔実施例J〕(乳化剤)容量20mlの目盛り付共栓付試験管に、実
施例8で得られた卵白タンパク質・βグルカン複合組成
物0.5%水溶液5mlとケロシン5mlを加え、1分
間に100回振盪した後、1時間、25℃にて静置した
その後、乳化層の容積(ml)を測定し、乳化性を次式
により測定した。乳化性能(%)=乳化層(ml)/10(ml)×10
0その結果、乳化性能は85%であり、良好であった。Example J (Emulsifier) 5 ml of 0.5% aqueous solution of the egg white protein / β-glucan complex composition obtained in Example 8 and 5 ml of kerosene were added to a test tube with a graduated stopper having a volume of 20 ml. After shaking 100 times in 1 minute and standing still at 25 ° C. for 1 hour, the volume (ml) of the emulsified layer was measured, and the emulsifying property was measured by the following formula. Emulsification performance (%) = Emulsion layer (ml) / 10 (ml) x 10
 0 As a result, the emulsification performance was 85%, which was good.
【0104】[0104]
【発明の効果】本発明によれば、食品、化粧品、医薬
品、化学品等に極めて有用な、食味、食感、呈味性、乳
化性、保水性、配合性等の各種機能に優れ、且つ脂質代
謝改善作用、整腸作用、血糖値上昇抑制等の生体調節機
能性を併せ持ったタンパク質・βグルカン複合組成物を
提供することができる。INDUSTRIAL APPLICABILITY According to the present invention, it is extremely useful for foods, cosmetics, pharmaceuticals, chemicals, etc. and is excellent in various functions such as taste, texture, taste, emulsifying property, water retention, and compoundability, and It is possible to provide a protein / β-glucan complex composition which has bioregulatory functions such as lipid metabolism improving action, intestinal regulating action, and suppression of blood glucose elevation.
─────────────────────────────────────────────────────フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A23L 1/308 A61K 7/00 C 4C086 A61K 7/00 F 4H045 M 31/716 31/716 A61P 1/00 38/00 3/06 A61P 1/00 3/10 3/06 C07K 14/465 3/10 14/47 C07K 14/465 A23D 7/00 502 14/47 A61K 37/02 (72)発明者 杉山 宏 東京都荒川区東尾久7丁目2番36号 旭電 化工業株式会社内(72)発明者 東海林 義和 東京都荒川区東尾久7丁目2番36号 旭電 化工業株式会社内Fターム(参考) 4B018 LB01 LB02 LB09 LB10 MD20 MD47 MD49 ME04 ME11 ME14 4B026 DC05 DL03 DL04 DL05 4B035 LC06 LC07 LG15 LG20 LK08 LK13 LK19 4C083 AC012 AC022 AC072 AC122 AC242 AC542 AD211 AD212 AD332 AD411 AD412 AD512 CC04 EE12 4C084 AA01 AA02 CA25 CA41 MA52 NA14 ZA891 ZC331 ZC351 4C086 AA01 AA02 EA21 MA52 NA14 ZA89 ZC33 ZC35 4H045 AA10 AA30 BA53 CA31 CA40 CA43 EA01 EA15 EA20 FA50─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl.7 Identification code FI theme code (reference) A23L 1/308 A61K 7/00 C 4C086 A61K 7/00 F 4H045 M 31/716 31/716 A61P 1/00 38/00 3/06 A61P 1/00 3/10 3/06 C07K 14/465 3/10 14/47 C07K 14/465 A23D 7/00 502 14/47 A61K 37/02 (72) Inventor Hiroshi Sugiyama Tokyo Asahi Denka Kogyo Co., Ltd. 7-36, Higashi-Ohaku, Arakawa-ku, Tokyo (72) Inventor Yoshikazu Tokaibayashi 7- 2-36 Higashi-Ohgu, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. F-term (reference) 4B018 LB01 LB02 LB09 LB10 MD20 MD47 MD49 ME04 ME11 ME14 4B026 DC05 DL03 DL04 DL05 4B035 LC06 LC07 LG15 LG20 LK08 LK13 LK19 4C083 AC012 AC022 AC072 AC122 AC242 AC542 AD211 AD212 AD332 AD411 AD412 AD512 CC04 EE12 4C084 CAAA A A41 MA52 NA14 ZA891 ZC331 ZC351 4C086 AA01 AA02 EA21 MA52 NA14 ZA89 ZC33 ZC35 4H045 AA10 AA30 BA53 CA31 CA40 CA43 EA01 EA15 EA20 FA50
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2001274516AJP4807913B2 (en) | 2001-09-11 | 2001-09-11 | Protein / β-glucan composite composition | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2001274516AJP4807913B2 (en) | 2001-09-11 | 2001-09-11 | Protein / β-glucan composite composition | 
| Publication Number | Publication Date | 
|---|---|
| JP2003081999Atrue JP2003081999A (en) | 2003-03-19 | 
| JP4807913B2 JP4807913B2 (en) | 2011-11-02 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2001274516AExpired - Fee RelatedJP4807913B2 (en) | 2001-09-11 | 2001-09-11 | Protein / β-glucan composite composition | 
| Country | Link | 
|---|---|
| JP (1) | JP4807913B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2005122778A1 (en)* | 2004-06-17 | 2005-12-29 | Pb Promoat Ag | Emulgating agent from cereal grains | 
| JP2015084687A (en)* | 2013-10-29 | 2015-05-07 | 株式会社えんばく生活 | Food composition derived from bran bran and method for producing the same | 
| CN112914105A (en)* | 2021-04-09 | 2021-06-08 | 中国农业科学院农产品加工研究所 | Method for improving emulsibility of yeast soluble beta-glucan | 
| CN117063968A (en)* | 2023-08-10 | 2023-11-17 | 昆明理工大学 | Natural antibacterial material and preparation method and application thereof | 
| CN117770346A (en)* | 2023-11-07 | 2024-03-29 | 成都大学 | Method for improving physicochemical properties of rabbit meat myofibrillar protein and product | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPH03215498A (en)* | 1990-01-12 | 1991-09-20 | Nakano Vinegar Co Ltd | Protein-polysaccharides complex material | 
| JPH04304887A (en)* | 1991-03-29 | 1992-10-28 | Nakano Vinegar Co Ltd | Lysozyme-guar gum enzymic hydrolyzate complex and its production | 
| JPH06219920A (en)* | 1992-10-23 | 1994-08-09 | Rita Corp | Cosmetic composition | 
| JPH06277056A (en)* | 1992-03-03 | 1994-10-04 | Taiyo Kagaku Co Ltd | Complex of yolk protein and enzymatic decomposition product of galactomannan | 
| JPH07258292A (en)* | 1994-03-25 | 1995-10-09 | Dainippon Pharmaceut Co Ltd | Protein-xyloglucan complex | 
| US5458893A (en)* | 1992-03-06 | 1995-10-17 | The Quaker Oats Company | Process for treating water-soluble dietary fiber with beta-glucanase | 
| JPH09107886A (en)* | 1995-10-13 | 1997-04-28 | Taiyo Kagaku Co Ltd | Protein complex | 
| WO2000049052A2 (en)* | 1999-02-17 | 2000-08-24 | Nurture, Inc. | Polysaccharide compositions and uses thereof | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPH03215498A (en)* | 1990-01-12 | 1991-09-20 | Nakano Vinegar Co Ltd | Protein-polysaccharides complex material | 
| JPH04304887A (en)* | 1991-03-29 | 1992-10-28 | Nakano Vinegar Co Ltd | Lysozyme-guar gum enzymic hydrolyzate complex and its production | 
| JPH06277056A (en)* | 1992-03-03 | 1994-10-04 | Taiyo Kagaku Co Ltd | Complex of yolk protein and enzymatic decomposition product of galactomannan | 
| US5458893A (en)* | 1992-03-06 | 1995-10-17 | The Quaker Oats Company | Process for treating water-soluble dietary fiber with beta-glucanase | 
| JPH06219920A (en)* | 1992-10-23 | 1994-08-09 | Rita Corp | Cosmetic composition | 
| JPH07258292A (en)* | 1994-03-25 | 1995-10-09 | Dainippon Pharmaceut Co Ltd | Protein-xyloglucan complex | 
| JPH09107886A (en)* | 1995-10-13 | 1997-04-28 | Taiyo Kagaku Co Ltd | Protein complex | 
| WO2000049052A2 (en)* | 1999-02-17 | 2000-08-24 | Nurture, Inc. | Polysaccharide compositions and uses thereof | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2005122778A1 (en)* | 2004-06-17 | 2005-12-29 | Pb Promoat Ag | Emulgating agent from cereal grains | 
| JP2008502348A (en)* | 2004-06-17 | 2008-01-31 | ペーベー プロモート アクチェンゲゼルシャフト | Emulsifier derived from grain | 
| US7858139B2 (en) | 2004-06-17 | 2010-12-28 | Biovelop Ab | Emulgating agent from cereal grains | 
| JP4916438B2 (en)* | 2004-06-17 | 2012-04-11 | バイオヴェロップ アクチボラゲット | Emulsifier derived from grain | 
| JP2015084687A (en)* | 2013-10-29 | 2015-05-07 | 株式会社えんばく生活 | Food composition derived from bran bran and method for producing the same | 
| CN112914105A (en)* | 2021-04-09 | 2021-06-08 | 中国农业科学院农产品加工研究所 | Method for improving emulsibility of yeast soluble beta-glucan | 
| CN112914105B (en)* | 2021-04-09 | 2022-05-27 | 中国农业科学院农产品加工研究所 | Method for improving the emulsification of yeast soluble beta-glucan | 
| CN117063968A (en)* | 2023-08-10 | 2023-11-17 | 昆明理工大学 | Natural antibacterial material and preparation method and application thereof | 
| CN117770346A (en)* | 2023-11-07 | 2024-03-29 | 成都大学 | Method for improving physicochemical properties of rabbit meat myofibrillar protein and product | 
| Publication number | Publication date | 
|---|---|
| JP4807913B2 (en) | 2011-11-02 | 
| Publication | Publication Date | Title | 
|---|---|---|
| RU2366278C2 (en) | Soluble food fiber of oat and barley grain, production method of fraction enriched with beta-glucan and usage of this fraction in food, pharmaceutical and cosmetics products | |
| EP1361264B1 (en) | PRODUCTS CONTAINING G(b)-GLUCAN | |
| JP5321028B2 (en) | Food properties improver | |
| JP4698038B2 (en) | Bakery products containing oil composition containing β-glucan | |
| JPH11299435A (en) | Composition for emulsion stabilizer and foods | |
| AU757530B2 (en) | Novel protein complexes | |
| US10463606B2 (en) | Use of alternan as texturizing agent in foodstuffs and cosmetics | |
| JP2005082517A (en) | β-glucan protein composite composition | |
| JP4807913B2 (en) | Protein / β-glucan composite composition | |
| JP4274748B2 (en) | Bakery products using oil composition containing β-glucan | |
| JP7461178B2 (en) | Quality improver for noodles | |
| JP3159888B2 (en) | Quality improving agent for noodles and quality improving method | |
| JPS63276450A (en) | Food and drink manufacturing method | |
| JP2021136875A (en) | Dough conditioner for wheat bran-containing bread, bread dough, and bread manufacturing method | |
| JP7496590B2 (en) | Food quality improver and method for producing same | |
| CN115151575B (en) | Galactomannan decomposition product | |
| JP2004242570A (en) | Loosening improver for noodle and noodle processed food using the same | |
| JP2002306064A (en) | β-glucan-containing fat / oil emulsion composition | |
| AU2013202754B2 (en) | Use of alternan as texturizing agent in foodstuffs and cosmetics | |
| JP2007267633A (en) | Method for producing fried confectionery | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20080807 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20110412 | |
| A521 | Written amendment | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20110531 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20110621 | |
| A521 | Written amendment | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20110801 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20110816 | |
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20110816 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20140826 Year of fee payment:3 | |
| R151 | Written notification of patent or utility model registration | Ref document number:4807913 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R151 | |
| LAPS | Cancellation because of no payment of annual fees |