【0001】[0001]
【発明の属する技術分野】本発明は、入力ディスク及び
出力ディスクのトラクション面とパワーローラとが転接
する転接部の押し付け力をローディングカム機構によっ
て発生させるトロイダル無段変速機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toroidal continuously variable transmission in which a loading cam mechanism generates a pressing force at a rolling contact portion at which a traction surface of an input disc and an output disc rolls against a power roller.
【0002】[0002]
【従来の技術】トロイダル無段変速機51は、図4に示
すように入力ディスク52及び出力ディスク53とパワ
ーローラ54を備えている。入力ディスク52と出力デ
ィスク53は、互いに向合うトラクション面52a,5
3aを備えている。パワーローラ54は、トラクション
面52a,53aのそれぞれに転接し、かつ、このトラ
クション面52a,53aに沿って揺動することで入力
ディスク52及び出力ディスク53との転接部52b,
53bを変化させる。これにより、入力ディスク52と
出力ディスク53の転接部52b、53bの回転半径が
変わり、入力ディスク52と出力ディスク53の回転速
度比が変化する。2. Description of the Related Art A toroidal continuously variable transmission 51 includes an input disk 52, an output disk 53 and a power roller 54, as shown in FIG. The input disk 52 and the output disk 53 have traction surfaces 52a, 5 facing each other.
3a. The power roller 54 rolls on each of the traction surfaces 52a and 53a and swings along the traction surfaces 52a and 53a, so that a rolling contact portion 52b between the input disk 52 and the output disk 53 is formed.
53b is changed. As a result, the turning radii of the rolling contact portions 52b and 53b of the input disk 52 and the output disk 53 change, and the rotation speed ratio of the input disk 52 and the output disk 53 changes.
【0003】また、パワーローラ54と各ディスク5
2,53とが転接している転接部52b,53bにおけ
る摩擦力は、駆動トルクに応じて変化させることが好ま
しい。この摩擦力は、転接部52b,53bにおける押
し付け力によって決まる。そこで、この押付け力の発生
には、駆動トルクに応じて押し付け力を変化させるロー
ディングカム機構55が好適に採用されている。Further, the power roller 54 and each disk 5
It is preferable that the frictional force at the rolling contact portions 52b and 53b, which are rollingly contacted with 2 and 53, be changed according to the driving torque. This frictional force is determined by the pressing force on the rolling contact portions 52b and 53b. Therefore, for the generation of this pressing force, the loading cam mechanism 55 that changes the pressing force according to the drive torque is preferably adopted.
【0004】このローディングカム機構55は、対面す
る一対のカム面55a,55bと、その間でそれぞれの
カム面55a,55bに転接するカムローラ55cとに
よって構成されている。通常、一方のカム面55aが、
入力ディスク52のトラクション面52aと反対の面
(背面)に一体に形成され、これに対向する他方のカム面
55bがカムディスク56に形成されている。カムディ
スク56は、入力ディスク52がボールスプライン機構
57で嵌合している入力軸58の端部58aとアンギュ
ラ玉軸受構造で係合している。カムディスク56のカム
面55bと反対の面には、駆動軸59の爪59aと係合
する溝56aが設けられている。駆動軸59の爪59a
及びカムディスク56の溝56aからなる爪係合部は、
周方向に等配で複数か所設けられており、この爪59a
と溝56aの回転方向に互いに当接する側面59b,5
6bによって駆動トルクの伝達を行っている。The loading cam mechanism 55 is composed of a pair of cam surfaces 55a and 55b facing each other and a cam roller 55c rollingly contacting the respective cam surfaces 55a and 55b therebetween. Normally, one cam surface 55a is
A surface opposite to the traction surface 52a of the input disk 52
The other cam surface 55b, which is integrally formed on the (rear surface) and faces this, is formed on the cam disk 56. The cam disc 56 is engaged with the end portion 58a of the input shaft 58, into which the input disc 52 is fitted by the ball spline mechanism 57, by an angular ball bearing structure. A groove 56a that engages with a claw 59a of the drive shaft 59 is provided on the surface of the cam disk 56 opposite to the cam surface 55b. Claw 59a of drive shaft 59
And the claw engaging portion composed of the groove 56a of the cam disk 56,
The nails 59a are provided at a plurality of locations evenly distributed in the circumferential direction.
And side surfaces 59b, 5 that abut each other in the rotation direction of the groove 56a.
The drive torque is transmitted by 6b.
【0005】この爪係合部を介してカムディスク56に
駆動軸59から駆動トルクが加わると、カム面55a,
55bの間に挟まれたカムローラ55cは、カム面55
a,55bの間で転動し、これらのカム面55a,55
bに回転方向の位相差を生じさせるとともに、カム面5
5a,55b間距離(カムディスク56と入力ディスク
52の相対距離)を押し広げる。出力ディスク53は、
図示しない軸受あるいは鏡対称に配置された他の出力デ
ィスクによってパワーローラ54から離れる方向に係止
されている。When a driving torque is applied to the cam disk 56 from the driving shaft 59 via the claw engaging portion, the cam surface 55a,
The cam roller 55c sandwiched between the 55b and the cam surface 55
rolling between a and 55b, these cam surfaces 55a, 55b
b causes a phase difference in the rotation direction, and the cam surface 5
The distance between 5a and 55b (the relative distance between the cam disk 56 and the input disk 52) is expanded. The output disk 53 is
It is locked in a direction away from the power roller 54 by a bearing (not shown) or another output disk arranged in mirror symmetry.
【0006】したがって、駆動トルクが加わると、ロー
ディングカム機構55によって、入力ディスク52から
離れる方向に付勢されたカムディスク56が入力軸58
を軸方向に引っ張る。そのため、図示しない他端が入力
ディスク52と鏡対称に配置された他の入力ディスク、
あるいは軸受によって軸方向の移動が阻止されている入
力軸58は、軸方向に弾性変形する。Therefore, when a driving torque is applied, the cam disk 56 urged by the loading cam mechanism 55 in the direction away from the input disk 52 causes the input shaft 58 to move.
Pull in the axial direction. Therefore, the other input disk whose other end (not shown) is arranged in mirror symmetry with the input disk 52,
Alternatively, the input shaft 58, which is prevented from moving in the axial direction by the bearing, elastically deforms in the axial direction.
【0007】すなわち、入力軸59の張力によって、入
力ディスク52がパワーローラ54の方向に付勢され、
入力ディスク52とパワーローラ54の転接部52b、
及びパワーローラ54と出力ディスク53の転接部53
bの押し付け力が発生している。そして、入力軸58が
伸びた分だけカムディスク56が入力ディスク52から
離れる方向に移動するので、溝56aが爪59aと深く
係合する。また、入力ディスク52及びカムディスク5
6は、カムローラ55cに押圧されてわずかに撓む。That is, the input disk 52 is urged toward the power roller 54 by the tension of the input shaft 59,
A rolling contact portion 52b between the input disk 52 and the power roller 54,
And a rolling contact portion 53 between the power roller 54 and the output disk 53.
The pressing force of b is generated. Then, since the cam disk 56 moves in the direction away from the input disk 52 by the amount of extension of the input shaft 58, the groove 56a is deeply engaged with the claw 59a. Also, the input disk 52 and the cam disk 5
6 is pressed by the cam roller 55c and is slightly bent.
【0008】一定の駆動トルクがかかった状態では、カ
ムディスク56と入力ディスク52は、回転方向の位相
差が一定に保たれた状態でともに回転し、入力ディスク
52から出力ディスク53へパワーローラ54を介して
駆動トルクが伝達される。When a constant drive torque is applied, the cam disk 56 and the input disk 52 rotate together with the phase difference in the rotational direction kept constant, and the power roller 54 moves from the input disk 52 to the output disk 53. The drive torque is transmitted via.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、図5に
示すように入力ディスク52の外径寄りの位置にパワー
ローラ54が転接する場合、入力ディスク52は、カム
ローラ55cによってパワーローラ54の方向に付勢さ
れるとともに、この反力をパワーローラ54との転接部
52bから受ける。そのため、入力ディスク52は、カ
ムローラ55cの位置で矢印A方向に撓むとともに、パ
ワーローラ54の位置で矢印B方向に撓む。However, as shown in FIG. 5, when the power roller 54 rolls in a position near the outer diameter of the input disk 52, the input disk 52 is attached in the direction of the power roller 54 by the cam roller 55c. While being urged, the reaction force is received from the rolling contact portion 52b with the power roller 54. Therefore, the input disk 52 bends in the direction of arrow A at the position of the cam roller 55c and bends in the direction of arrow B at the position of the power roller 54.
【0010】また、カムローラ55cは、入力ディスク
52をパワーローラ54の方向に付勢した状態で入力デ
ィスク52とカムディスク56とともに回転する。そし
て、カムローラ55cが入力ディスク52を挟んでパワ
ーローラ54と反対側の位置に来たとき、パワーローラ
54は、出力ディスク53の内径寄りの位置と転接して
いるので、カムローラ55cに付勢されて撓んでいた入
力ディスク52を押し戻す。したがって、カムディスク
56は、もともとカムローラ55cがある位置で入力デ
ィスク52と反対の方向に撓んでいるが、この入力ディ
スク52がパワーローラ54によって押し戻されること
により、カムローラ55cを介して付勢されてさらに撓
むこととなる。また、ローディングカム機構55は、パ
ワーローラ54から反力を受けた状態となり、駆動トル
クに対して反対方向のトルクをカムディスク56に伝達
する。The cam roller 55c rotates together with the input disk 52 and the cam disk 56 with the input disk 52 biased toward the power roller 54. Then, when the cam roller 55c comes to a position opposite to the power roller 54 with the input disc 52 interposed therebetween, the power roller 54 is urged by the cam roller 55c because it is in rolling contact with the position closer to the inner diameter of the output disc 53. The input disk 52 that has been bent by bending is pushed back. Therefore, the cam disk 56 is originally bent in the direction opposite to the input disk 52 at the position where the cam roller 55c exists, but when the input disk 52 is pushed back by the power roller 54, it is biased via the cam roller 55c. It will bend further. The loading cam mechanism 55 is in a state of receiving a reaction force from the power roller 54, and transmits a torque in the opposite direction to the driving torque to the cam disk 56.
【0011】また、駆動トルクの大きさによってカムロ
ーラ55cの列の位置は、回転方向に変化する。そのた
め、カムローラ55cの列の位置(位相)が、カムディ
スク56のカム面55bと反対の面に設けられた溝56
aの位置(位相)と一致した場合、カムローラ55cの
列がパワーローラ54の位置に一致する。この場合に
は、カムローラ55cが転接している部分のカムディス
ク56がパワーローラ54と反対の方向(矢印C)に撓
むことで、溝56aが歪むとともに、駆動トルクに対し
て反対方向のトルクが加わり、溝56aと爪59aの爪
係合部に過大負荷がかかる。The position of the row of cam rollers 55c changes in the rotational direction depending on the magnitude of the driving torque. Therefore, the position (phase) of the row of the cam rollers 55c is the groove 56 provided on the surface of the cam disk 56 opposite to the cam surface 55b.
When the position (phase) of a matches, the row of the cam rollers 55c matches the position of the power roller 54. In this case, the cam disk 56 at the portion where the cam roller 55c is in rolling contact is deflected in the direction opposite to the power roller 54 (arrow C), so that the groove 56a is distorted and the torque in the direction opposite to the drive torque is generated. As a result, an excessive load is applied to the groove 56a and the claw engaging portion of the claw 59a.
【0012】例えば、図6に示すようにカムローラ55
cの列が4列、溝が6か所回転方向に等配で設けられ、
駆動トルクによってカムディスク56と入力ディスク5
2とが相対的に回動してカムローラ55cの列の位相と
溝56aの位相が回転軸58に対して点対称となる2か
所で一致する場合、この2か所がパワーローラ54の位
置と一致すると(D,E)、カムディスク56が撓むこ
とでこの2か所の溝56aが歪む。For example, as shown in FIG. 6, a cam roller 55
4 rows of c, 6 grooves are provided at equal locations in the direction of rotation,
Depending on the driving torque, the cam disk 56 and the input disk 5
2 and the phase of the row of the cam roller 55c and the phase of the groove 56a coincide with each other at two points which are point-symmetrical with respect to the rotation shaft 58, these two points are located at the position of the power roller 54. (D, E), the cam disc 56 bends, and the two grooves 56a are distorted.
【0013】溝56aの形状に歪が生じると、図5に示
す各爪59aの側面59bと各溝56aの側面56bと
がそれぞれ均等に当接しなくなる。このとき同時に爪係
合部に過大負荷がかかると、爪59または溝56が磨
耗、変形、あるいは疲労破壊する恐れがある。そして、
この磨耗や変形、あるいは疲労破壊により、爪59また
は溝56にかかる負荷が不均一になることで、駆動軸5
9からカムディスク56に駆動トルクが伝わり難くな
る。その結果、ローディングカム機構55によって入力
ディスク52とパワーローラ54の適切な押付け力が得
られなくなり、トラクション面52a,53aにすべり
が生じる恐れがある。When the shape of the groove 56a is distorted, the side surface 59b of each claw 59a and the side surface 56b of each groove 56a shown in FIG. At this time, if an excessive load is applied to the claw engaging portion at the same time, the claw 59 or the groove 56 may be worn, deformed, or broken by fatigue. And
Due to the wear, deformation, or fatigue damage, the load applied to the claw 59 or the groove 56 becomes non-uniform, so that the drive shaft 5
It becomes difficult for the drive torque to be transmitted from 9 to the cam disk 56. As a result, the loading cam mechanism 55 cannot obtain an appropriate pressing force between the input disk 52 and the power roller 54, and slippage may occur on the traction surfaces 52a and 53a.
【0014】そこで、本発明は、駆動軸とカムディスク
の爪係合部の耐久性に優れるトロイダル無段変速機を提
供することを目的とする。Therefore, it is an object of the present invention to provide a toroidal continuously variable transmission which is excellent in durability of a drive shaft and a claw engaging portion of a cam disk.
【0015】[0015]
【課題を解決するための手段】そこで、本発明は、入力
ディスクと、出力ディスクと、これらディスクに形成さ
れたトラクション面のそれぞれに転接するp個のパワー
ローラと、前記入力ディスクと同じ回転軸を中心に回転
するq列のカム転子の列と、このカム転子を入力ディス
クとの間に挟んで設けられたカムディスクと、このカム
ディスクとこのディスクに駆動トルクを入力する駆動軸
とを接続するrか所の爪係合部とを備えたトロイダル無
段変速機を前提とする。そして、p個のパワーローラと
q列のカム転子の列とrか所の爪係合部のそれぞれを、
回転軸の軸方向に見て2か所以上が同時に同じ回転位置
にこないように配置したトロイダル無段変速機とする。SUMMARY OF THE INVENTION Therefore, according to the present invention, an input disk, an output disk, p power rollers rolling on each of the traction surfaces formed on these disks, and the same rotary shaft as the input disk are provided. A row of q-row cam rotors that rotate around the center, a cam disc that is provided by sandwiching this cam rotor between an input disc, the cam disc, and a drive shaft that inputs a drive torque to the disc. It is premised on a toroidal continuously variable transmission provided with r claw engaging portions for connecting with each other. Then, each of the p power rollers, the row of the q-row cam rotors, and the r-shaped claw engaging portions is
The toroidal continuously variable transmission is arranged so that two or more locations in the axial direction of the rotary shaft do not come into the same rotational position at the same time.
【0016】また、確実にパワーローラ、カムローラま
たはカムボール、係合部のそれぞれ2か所が同時に同じ
回転位置とならないようにするために、パワーローラの
個数p、カム転子の列数q、及び爪係合部の数rが、2
以上の公約数を持たない数の組合せとする。もしくは、
パワーローラの個数p、カム転子の列数q、及び爪係合
部の数rのうちの少なくともいずれか1つが奇数である
数の組合せとするか、パワーローラの数pとカム転子の
列数qの内の少なくともいずれか一方を偶数であるとき
に爪係合部の数rが奇数である数の組合せとするか、爪
係合部の数rがカム転子の列数qの整数倍を除く数の組
合せとする。Further, in order to ensure that each of the power roller, the cam roller or the cam ball, and the engaging portion is not in the same rotational position at the same time, the number p of power rollers, the number q of rows of cam rollers, and The number r of claw engaging parts is 2
A combination of numbers that do not have the above common divisors. Or
At least one of the number p of power rollers, the number q of rows of cam rollers, and the number r of claw engaging portions is an odd number, or a combination of the number p of power rollers and the number of cam rollers is used. When at least one of the number of rows q is an even number, the number r of claw engaging portions is an odd number, or the number r of claw engaging portions is equal to the number q of rows of the cam rotor. A combination of numbers excluding integer multiples.
【0017】[0017]
【発明の実施の形態】本発明の一実施形態について、図
1から図3を参照して説明する。図1に示すトロイダル
無段変速機1は、入力ディスク2と出力ディスク3を2
組備えている。これらのディスク2,3は、トロイダル
面状に対向して形成されたトラクション面2a,3aを
備えている。入力ディスク2と出力ディスク3の間に
は、両方のトラクション面2a,3aにそれぞれ転接す
るパワーローラ4が2個ずつ配置されている。このパワ
ーローラ4は、トラクション面2a,3aに沿って転接
しつつ揺動する。これにより、入力ディスク2に対する
出力ディスク3の回転速度比が無段階に変化する。入力
ディスク2は、入力軸5の両端にボールスプライン機構
6で嵌合しており、入力軸5の軸線に沿う方向に移動可
能である。また、一方の入力ディスク2のパワーローラ
4と反対側には、ローディングカム機構7が設けられて
いる。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. The toroidal continuously variable transmission 1 shown in FIG. 1 has two input disks 2 and two output disks 3.
Have a set. These disks 2 and 3 are provided with traction surfaces 2a and 3a formed to face each other in a toroidal surface shape. Between the input disk 2 and the output disk 3, two power rollers 4 are provided which are in rolling contact with both traction surfaces 2a and 3a. The power roller 4 swings while rolling along the traction surfaces 2a and 3a. As a result, the rotation speed ratio of the output disk 3 to the input disk 2 changes steplessly. The input disc 2 is fitted to both ends of the input shaft 5 by the ball spline mechanism 6, and is movable in the direction along the axis of the input shaft 5. A loading cam mechanism 7 is provided on the side of the one input disk 2 opposite to the power roller 4.
【0018】ローディングカム機構7は、対向するカム
面7a,7bと、これらカム面7a,7bにそれぞれ転
接するカムローラ8(カム転子)を備えている。なお、
カム転子には、カムボールを用いることもできる。一方
のカム面7aは、入力ディスク2と一体に形成されてい
る。他方のカム面7bは、カムディスク9に形成されて
いる。このカムディスク9は、入力軸5の基端部5aと
の間に設けられたアンギュラ玉軸受部10で入力ディス
ク2から離れる方向の移動が阻止されている。The loading cam mechanism 7 is provided with facing cam surfaces 7a and 7b, and a cam roller 8 (cam roller) rollingly contacting the cam surfaces 7a and 7b. In addition,
A cam ball can also be used for the cam trochanter. One cam surface 7a is formed integrally with the input disk 2. The other cam surface 7b is formed on the cam disk 9. The cam disc 9 is prevented from moving in a direction away from the input disc 2 by an angular ball bearing portion 10 provided between the cam disc 9 and the base end portion 5a of the input shaft 5.
【0019】また、図2に示すようにローディングカム
機構7のカムローラ8は、カムディスク9の半径方向に
複数個(本実施形態では3個)が一列に並べて設けら
れ、かつ、その列が保持器11で周方向に4か所等配で
配置されている。カムディスク9のカム面7bと反対側
の面の中心寄りの位置には、カムディスク9の回転軸を
中心とする同心円上に凸部12が形成されている。ま
た、凸部12には、この凸部12を横切る半径方向に溝
13が複数箇所、具体的には3か所等配に形成されてい
る。それぞれの溝13は、動力源の駆動トルクを伝達す
る駆動軸14に設けられた爪15と係合し、駆動軸14
の回転方向に互いに当接する側面13a,15aで駆動
トルクを伝達する。Further, as shown in FIG. 2, a plurality of cam rollers 8 of the loading cam mechanism 7 (three in this embodiment) are arranged in a row in the radial direction of the cam disk 9, and the row is held. The container 11 is arranged at four equal positions in the circumferential direction. At a position near the center of the surface of the cam disk 9 opposite to the cam surface 7b, a convex portion 12 is formed on a concentric circle centered on the rotation axis of the cam disk 9. Further, in the convex portion 12, the grooves 13 are formed in a plurality of positions in the radial direction crossing the convex portion 12, specifically, in three equal positions. Each groove 13 engages with a claw 15 provided on the drive shaft 14 that transmits the drive torque of the power source,
The driving torque is transmitted by the side surfaces 13a and 15a that abut each other in the rotation direction of.
【0020】このように構成されたトロイダル無段変速
機1は、駆動軸14の爪15とカムディスク9の溝13
とによる爪係合部を介して駆動軸14から駆動トルクが
カムディスク9に伝達されると、この駆動トルクによっ
てカムディスク9が入力ディスク2に対して相対的に回
動する。これにより、カム面7a,7bに挟まれたカム
ローラ8が転動し、カム面7a,7b同士、すなわち、
カムディスク9と入力ディスク2との間を相対的に広げ
る。The toroidal continuously variable transmission 1 constructed as described above is provided with the claw 15 of the drive shaft 14 and the groove 13 of the cam disk 9.
When the drive torque is transmitted from the drive shaft 14 to the cam disc 9 via the claw engaging portion of the, the cam disc 9 is rotated relative to the input disc 2 by this drive torque. As a result, the cam roller 8 sandwiched between the cam surfaces 7a and 7b rolls, and the cam surfaces 7a and 7b, that is,
The space between the cam disk 9 and the input disk 2 is relatively widened.
【0021】このとき、カムディスク9が、入力軸5の
基端部5aでパワーローラ4から離れる方向の動きを阻
止されているとともに、入力軸5の先端側に設けられた
入力ディスク2が軸線に沿って離れる方向の移動がナッ
ト16によって阻止されている。したがって、カムディ
スク9と入力ディスク2がローディングカム機構7によ
って互いに離れる方向にそれぞれ押圧されると、入力デ
ィスク2がパワーローラ4の方向に押圧され、入力ディ
スク2とパワーローラ4の転接部2bでの押付け力が発
生する。そして、駆動トルクが一定の場合、カムローラ
8の列は、カムディスク9との相対的回転位置(位相)
を維持した状態でカムディスク9とともに回転する。な
お、パワーローラ4と出力ディスク3との押付け力もこ
のとき同時に発生する。At this time, the cam disk 9 is prevented from moving in the direction away from the power roller 4 at the base end portion 5a of the input shaft 5, and the input disk 2 provided on the tip end side of the input shaft 5 is an axis line. Movement away along the is blocked by the nut 16. Therefore, when the cam disk 9 and the input disk 2 are pressed by the loading cam mechanism 7 in the directions away from each other, the input disk 2 is pressed in the direction of the power roller 4, and the rolling contact portion 2b between the input disk 2 and the power roller 4 is pressed. The pressing force is generated. Then, when the drive torque is constant, the row of cam rollers 8 moves relative to the cam disk 9 in relative rotational position (phase).
It rotates together with the cam disk 9 while maintaining the above condition. The pressing force between the power roller 4 and the output disc 3 is also generated at this time.
【0022】パワーローラ4が、トラクション面2a,
3aに沿って揺動し、特に、パワーローラ4が、入力デ
ィスク2の外径寄りのトラクション面2a、及び出力デ
ィスク3の内径寄りのトラクション面3aにそれぞれ転
接している場合、入力ディスク2は、カムローラ8によ
ってパワーローラ4の方向に押圧されているとともに、
パワーローラ4によって押し返されることで外径寄りの
部分がわずかに撓む。そして、図3に示すように入力デ
ィスク2がカムローラ8とともに回転し、カムローラ8
の列が入力ディスク2を挟んでパワーローラ4と反対の
位置に来ると、カムローラ8とパワーローラ4とが互い
に入力ディスク2を挟んで押し合う。The power roller 4 has a traction surface 2a,
When the power roller 4 rolls along the traction surface 2a of the input disk 2 and the traction surface 3a of the output disk 3 near the inner diameter of the input disk 2, the input disk 2 swings along the shaft 3a. While being pressed in the direction of the power roller 4 by the cam roller 8,
By being pushed back by the power roller 4, the portion near the outer diameter bends slightly. Then, as shown in FIG. 3, the input disk 2 rotates together with the cam roller 8, and the cam roller 8
When the row of is located at a position opposite to the power roller 4 with the input disk 2 sandwiched therebetween, the cam roller 8 and the power roller 4 sandwich the input disk 2 and press each other.
【0023】このとき、パワーローラ4は、出力ディス
ク3の内径寄りの位置と転接して支持されているため、
パワーローラ4の方向に撓んでいた入力ディスク2を押
し戻す。したがって、カムディスク9は、このカムロー
ラ8から入力ディスク2に近寄る方向に押圧されてパワ
ーローラ4と反対の方向に撓むか、駆動軸14の駆動ト
ルクに対して反対のトルクを受ける。At this time, the power roller 4 is supported by rolling contact with the position near the inner diameter of the output disk 3.
The input disk 2 that has been bent in the direction of the power roller 4 is pushed back. Therefore, the cam disk 9 is pressed by the cam roller 8 in the direction approaching the input disk 2 and bent in the direction opposite to the power roller 4, or receives the torque opposite to the drive torque of the drive shaft 14.
【0024】図3に示すようにカムディスク9の溝13
は、パワーローラ4及びカムローラ8の列と2か所以上
で同時に同じ回転位置とならない位置、すなわち、パワ
ーローラ4とカムローラ8の列とカムディスク9の溝1
3が、回転軸を中心として2か所以上で直列に並ばない
位置、具体的には、2個のパワーローラ4、4列のカム
ローラ8の列、3か所のカムディスク9の溝13が、そ
れぞれ等配で配置されている。つまり、カムディスク9
が撓むことによって同じ回転位置にある溝13に歪など
を生じるとともに、駆動トルクと反対方向のトルクを生
じさせるカムローラ8の列は、ある駆動トルクのときに
1箇所発生するに過ぎない。すなわち、カムディスク9
の溝13が2か所以上で同時に歪などを生じないととも
に、駆動トルクに対して反対方向のトルクが2か所以上
で同時に作用しない。したがって、その他の爪係合部で
は駆動軸14の爪15の側面15aとカムディスク9の
溝13の側面13aとが均一に当接するので、駆動軸1
4による駆動トルクが、カムディスク9へ伝わりやす
い。また、駆動トルクと反対方向のトルクは1か所でし
か作用しないので、爪係合部の各爪15及び溝13に過
大な負荷がかかりにくい。また、前記一実施形態でのパ
ワーローラ4とカムローラ8の列とカムディスク9の溝
13のそれぞれの数の組合せは、それぞれの数が少ない
ので、製造性がよい。As shown in FIG. 3, the groove 13 of the cam disk 9 is formed.
Is a position where two or more rows of the power roller 4 and the cam roller 8 do not have the same rotational position at the same time, that is, the rows of the power roller 4 and the cam roller 8 and the groove 1 of the cam disk 9.
Positions where 3 are not aligned in series at two or more points about the rotation axis, specifically, two power rollers 4, four rows of cam rollers 8 and three grooves 13 of the cam disk 9 are provided. , Are arranged equally. That is, the cam disk 9
The bending causes the strain in the groove 13 at the same rotational position, and the row of the cam rollers 8 that produces the torque in the direction opposite to the driving torque is generated at only one position at a certain driving torque. That is, the cam disk 9
The groove 13 does not distort at two or more places at the same time, and the torque in the opposite direction to the driving torque does not act simultaneously at two or more places. Therefore, at the other claw engaging portions, the side surface 15a of the claw 15 of the drive shaft 14 and the side surface 13a of the groove 13 of the cam disk 9 are evenly contacted, so that the drive shaft 1
The drive torque of 4 is easily transmitted to the cam disk 9. Further, since the torque in the direction opposite to the drive torque acts only at one place, it is difficult to apply an excessive load to each claw 15 and the groove 13 of the claw engaging portion. In addition, the number of combinations of the number of rows of the power roller 4, the cam roller 8 and the groove 13 of the cam disk 9 in the above-described embodiment is small, so that the manufacturability is good.
【0025】また、前記構成に代えて、パワーローラ4
の個数をp、カムローラ8の列数をq、係合部(カムデ
ィスクの溝13)の数をrとした場合、p、q、rが2
以上の公約数を持たない数の関係とすると、駆動トルク
に応じてカムローラ8の列の位置が変わっても、パワー
ローラ4の位置とカムローラ8の列の位置とカムディス
ク9の溝13の位置とが、2か所以上で同時に一致する
ことは無い。したがって、カムディスク9のカム面7b
と溝13との位相(相対的な回転位置)を同期させずに
任意に加工できるようになるので、製造時の取り扱いが
容易になるのでよい。Further, instead of the above structure, the power roller 4
Is p, the number of rows of the cam roller 8 is q, and the number of engaging portions (grooves 13 of the cam disc) is r, p, q, and r are 2
Assuming that the numbers do not have the above common divisors, the position of the power roller 4, the position of the row of the cam roller 8 and the position of the groove 13 of the cam disk 9 are changed even if the position of the row of the cam rollers 8 changes according to the driving torque. And do not match in more than one place at the same time. Therefore, the cam surface 7b of the cam disk 9
Since it becomes possible to process arbitrarily without synchronizing the phase (relative rotational position) of the groove 13 with the groove 13, it is easy to handle at the time of manufacturing.
【0026】また、p、q、rの内の少なくともいずれ
か1つが奇数となるようにそれぞれ設けるか、pとqの
内の少なくともいずれか一方が偶数のときにrが奇数と
なる、すなわち、p×qが偶数のときにrが奇数(例え
ば3)となるようにそれぞれ設けるか、rがqの整数倍
を除く数となるようにそれぞれ設けることでも上記と同
様の効果が得られ、パワーローラ4が入力ディスク2の
外径寄りの位置、及び出力ディスク3の内径寄りの位置
にそれぞれ転接して駆動トルクを伝達する場合、パワー
ローラ4の位置にカムローラ8の列、及びカムディスク
9と駆動軸14との爪係合部であるカムディスク9側の
溝13が、同時に2か所以上で重ならない。つまり、カ
ムディスク9の溝13が2か所以上で同時に歪などを生
じないとともに、駆動トルクに対して反対方向のトルク
が2か所以上で同時に作用しない。したがって、同時に
パワーローラ4とカムローラ8の列とカムディスク9の
溝13とが、同じ回転位置となるのは、高だか1か所で
ある。その結果、その他の係合部では、駆動軸14の爪
15の側面15aとカムディスク9の溝13の側面13
aとが均一に当接するので、駆動軸14による駆動トル
クが、カムディスク9へ伝わりやすい。また、駆動トル
クと反対方向のトルクは、1か所で発生するにしか過ぎ
ないので、爪係合部の各爪15及び溝13に過大な負荷
がかかりにくい。Further, at least one of p, q, and r is provided so as to be an odd number, or r is an odd number when at least one of p and q is an even number, that is, Even if p × q is an even number, r is an odd number (for example, 3), or r is a number other than an integer multiple of q. When the roller 4 rolls to the position near the outer diameter of the input disk 2 and the position near the inner diameter of the output disk 3 to transmit the driving torque, a row of cam rollers 8 and a cam disk 9 are formed at the position of the power roller 4. The grooves 13 on the cam disk 9 side, which are the claw engaging portions with the drive shaft 14, do not overlap at two or more locations at the same time. That is, the groove 13 of the cam disk 9 is not distorted at two or more places at the same time, and the torque in the opposite direction to the driving torque does not act simultaneously at two or more places. Therefore, at the same time, the row of the power roller 4, the row of the cam roller 8 and the groove 13 of the cam disk 9 are at the same rotational position at only one height. As a result, in the other engaging portions, the side surface 15a of the claw 15 of the drive shaft 14 and the side surface 13 of the groove 13 of the cam disk 9 are formed.
Since a and a are uniformly contacted with each other, the driving torque by the driving shaft 14 is easily transmitted to the cam disk 9. Further, since the torque in the direction opposite to the driving torque is generated only at one place, it is difficult to apply an excessive load to each claw 15 and the groove 13 of the claw engaging portion.
【0027】そして、パワーローラ4が2個、カムロー
ラ8が4列、溝13が3か所である本実施形態は、それ
ぞれが2か所以上で同時に同じ回転位置にならない最も
好適な例である。The present embodiment in which the power rollers 4 are two, the cam rollers 8 are in four rows, and the grooves 13 are three places is the most preferable example in which each of the power rollers 4 is two places or more and the same rotational position is not obtained at the same time. .
【0028】[0028]
【発明の効果】本発明のトロイダル無段変速機によれ
ば、カムローラがパワーローラの位置に一致したとき
に、カムディスクが撓んで溝が歪んだり、カムディスク
が駆動トルクに対して反対方向のトルクを受けて係合部
に過大な負荷がかかることを抑制できるので、駆動軸と
カムディスクの爪係合部の耐久性を向上できる。According to the toroidal continuously variable transmission of the present invention, when the cam roller coincides with the position of the power roller, the cam disk bends to distort the groove, or the cam disk moves in a direction opposite to the driving torque. Since it is possible to prevent an excessive load from being applied to the engaging portion due to the torque, it is possible to improve the durability of the drive shaft and the claw engaging portion of the cam disk.
【0029】そして、And,
【図1】本発明の第1の実施形態のトロイダル無段変速
機を示す断面図。FIG. 1 is a sectional view showing a toroidal continuously variable transmission according to a first embodiment of the present invention.
【図2】図1に示すトロイダル無段変速機の一部の分解
斜視図。FIG. 2 is an exploded perspective view of a part of the toroidal continuously variable transmission shown in FIG.
【図3】図2中のF3−F3で示す方向から見たトロイ
ダル無段変速機のパワーローラとカムローラの列とカム
ディスクの溝の位置関係を示す図。FIG. 3 is a diagram showing the positional relationship between the rows of power rollers and cam rollers of the toroidal continuously variable transmission, and the grooves of the cam disc, as viewed from the direction indicated by F3-F3 in FIG.
【図4】従来のトロイダル無段変速機の断面図。FIG. 4 is a sectional view of a conventional toroidal continuously variable transmission.
【図5】図4のトロイダル無段変速機の側面図。5 is a side view of the toroidal continuously variable transmission of FIG.
【図6】図4中のF6−F6で示す方向から見たトロイ
ダル無段変速機のパワーローラとカムローラの列とカム
ディスクの溝の位置関係を示す図。FIG. 6 is a diagram showing the positional relationship between the power roller and cam roller rows of the toroidal continuously variable transmission and the grooves of the cam disk when viewed from the direction indicated by F6-F6 in FIG.
1…トロイダル無段変速機2…入力ディスク3…出力ディスク2a,3a…トラクション面4…パワーローラ7b…カム面8…カムローラ9…カムディスク13…溝(爪係合部)14…駆動軸15…爪(爪係合部)1 ... Toroidal continuously variable transmission2 ... Input disc3 ... Output disc2a, 3a ... Traction surface4 ... Power roller7b ... Cam surface8 ... Cam roller9 ... Cam disc13 ... Groove (claw engaging part)14 ... Drive shaft15 ... Claw (claw engaging part)
フロントページの続き (72)発明者 平田 清孝 埼玉県羽生市大沼1丁目1番地 日本精工 株式会社内Fターム(参考) 3J051 AA03 BA03 BE09 CB06 EA06 EB01 EC01 EC02 EC03Continued front page (72) Inventor Kiyotaka Hirata 1-1, Onuma, Hanyu City, Saitama Prefecture NSK Within the corporationF term (reference) 3J051 AA03 BA03 BE09 CB06 EA06 EB01 EC01 EC02 EC03
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001242718AJP2003056662A (en) | 2001-08-09 | 2001-08-09 | Toroidal continuously variable transmission |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001242718AJP2003056662A (en) | 2001-08-09 | 2001-08-09 | Toroidal continuously variable transmission |
| Publication Number | Publication Date |
|---|---|
| JP2003056662Atrue JP2003056662A (en) | 2003-02-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001242718APendingJP2003056662A (en) | 2001-08-09 | 2001-08-09 | Toroidal continuously variable transmission |
| Country | Link |
|---|---|
| JP (1) | JP2003056662A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007255699A (en)* | 2006-02-24 | 2007-10-04 | Mikuni Corp | Planetary roller transmission and power transmission conversion mechanism |
| AU2005294611B2 (en)* | 2004-10-05 | 2011-10-06 | Enviolo B.V. | Continuously variable transmission |
| JP2013514501A (en)* | 2009-12-17 | 2013-04-25 | ダイムラー・アクチェンゲゼルシャフト | Mounting device for driving system of automobile |
| US8845485B2 (en) | 2011-04-04 | 2014-09-30 | Fallbrook Intellectual Property Company Llc | Auxiliary power unit having a continuously variable transmission |
| US8852050B2 (en) | 2008-08-26 | 2014-10-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8870711B2 (en) | 2008-10-14 | 2014-10-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8888643B2 (en) | 2010-11-10 | 2014-11-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8900085B2 (en) | 2007-07-05 | 2014-12-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8996263B2 (en) | 2007-11-16 | 2015-03-31 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
| US9017207B2 (en) | 2006-06-26 | 2015-04-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9022889B2 (en) | 2005-10-28 | 2015-05-05 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
| US9046158B2 (en) | 2003-02-28 | 2015-06-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9074674B2 (en) | 2008-06-23 | 2015-07-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9086145B2 (en) | 2006-11-08 | 2015-07-21 | Fallbrook Intellectual Property Company Llc | Clamping force generator |
| US9121464B2 (en) | 2005-12-09 | 2015-09-01 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9182018B2 (en) | 2008-02-29 | 2015-11-10 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
| US9239099B2 (en) | 2007-02-16 | 2016-01-19 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9249880B2 (en) | 2007-12-21 | 2016-02-02 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
| US9273760B2 (en) | 2007-04-24 | 2016-03-01 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
| US9279482B2 (en) | 2009-04-16 | 2016-03-08 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9328807B2 (en) | 2007-02-01 | 2016-05-03 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US9341246B2 (en) | 2005-11-22 | 2016-05-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9360089B2 (en) | 2010-03-03 | 2016-06-07 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9365203B2 (en) | 2008-08-05 | 2016-06-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US9371894B2 (en) | 2007-02-12 | 2016-06-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
| US9611921B2 (en) | 2012-01-23 | 2017-04-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9618100B2 (en) | 2008-05-07 | 2017-04-11 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
| US9677650B2 (en) | 2013-04-19 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9683638B2 (en) | 2005-12-30 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
| US9683640B2 (en) | 2008-06-06 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9945456B2 (en) | 2007-06-11 | 2018-04-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10047861B2 (en) | 2016-01-15 | 2018-08-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
| US10458526B2 (en) | 2016-03-18 | 2019-10-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, systems and methods |
| US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
| US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
| US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
| US12442434B2 (en) | 2024-06-04 | 2025-10-14 | Enviolo B.V. | Reversible variable drives and systems and methods for control in forward and reverse directions |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9046158B2 (en) | 2003-02-28 | 2015-06-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10428939B2 (en) | 2003-02-28 | 2019-10-01 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9732848B2 (en) | 2003-02-28 | 2017-08-15 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8920285B2 (en) | 2004-10-05 | 2014-12-30 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| AU2005294611B2 (en)* | 2004-10-05 | 2011-10-06 | Enviolo B.V. | Continuously variable transmission |
| US8133149B2 (en) | 2004-10-05 | 2012-03-13 | Fallbrook Technologies Inc. | Continuously variable transmission |
| US10036453B2 (en) | 2004-10-05 | 2018-07-31 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| KR101276080B1 (en)* | 2004-10-05 | 2013-06-18 | 폴브룩 테크놀로지즈 인크 | Continuously variable transmission |
| US9506562B2 (en) | 2005-10-28 | 2016-11-29 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
| US9950608B2 (en) | 2005-10-28 | 2018-04-24 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
| US9022889B2 (en) | 2005-10-28 | 2015-05-05 | Fallbrook Intellectual Property Company Llc | Electromotive drives |
| US10711869B2 (en) | 2005-11-22 | 2020-07-14 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9341246B2 (en) | 2005-11-22 | 2016-05-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9709138B2 (en) | 2005-11-22 | 2017-07-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US11454303B2 (en) | 2005-12-09 | 2022-09-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9121464B2 (en) | 2005-12-09 | 2015-09-01 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10208840B2 (en) | 2005-12-09 | 2019-02-19 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9683638B2 (en) | 2005-12-30 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
| US11598397B2 (en) | 2005-12-30 | 2023-03-07 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
| JP2007255699A (en)* | 2006-02-24 | 2007-10-04 | Mikuni Corp | Planetary roller transmission and power transmission conversion mechanism |
| US9726282B2 (en) | 2006-06-26 | 2017-08-08 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9017207B2 (en) | 2006-06-26 | 2015-04-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9086145B2 (en) | 2006-11-08 | 2015-07-21 | Fallbrook Intellectual Property Company Llc | Clamping force generator |
| US9878719B2 (en) | 2007-02-01 | 2018-01-30 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US9676391B2 (en) | 2007-02-01 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US9328807B2 (en) | 2007-02-01 | 2016-05-03 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US10703372B2 (en) | 2007-02-01 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US10260607B2 (en) | 2007-02-12 | 2019-04-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
| US9371894B2 (en) | 2007-02-12 | 2016-06-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions and methods therefor |
| US9239099B2 (en) | 2007-02-16 | 2016-01-19 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US10094453B2 (en) | 2007-02-16 | 2018-10-09 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US10056811B2 (en) | 2007-04-24 | 2018-08-21 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
| US9574643B2 (en) | 2007-04-24 | 2017-02-21 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
| US9273760B2 (en) | 2007-04-24 | 2016-03-01 | Fallbrook Intellectual Property Company Llc | Electric traction drives |
| US9945456B2 (en) | 2007-06-11 | 2018-04-17 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9869388B2 (en) | 2007-07-05 | 2018-01-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10260629B2 (en) | 2007-07-05 | 2019-04-16 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8900085B2 (en) | 2007-07-05 | 2014-12-02 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10100927B2 (en) | 2007-11-16 | 2018-10-16 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
| US8996263B2 (en) | 2007-11-16 | 2015-03-31 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
| US11125329B2 (en) | 2007-11-16 | 2021-09-21 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
| US9739375B2 (en) | 2007-12-21 | 2017-08-22 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
| US9249880B2 (en) | 2007-12-21 | 2016-02-02 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
| US10704687B2 (en) | 2007-12-21 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Automatic transmissions and methods therefor |
| US9850993B2 (en) | 2008-02-29 | 2017-12-26 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
| US9182018B2 (en) | 2008-02-29 | 2015-11-10 | Fallbrook Intellectual Property Company Llc | Continuously and/or infinitely variable transmissions and methods therefor |
| US9618100B2 (en) | 2008-05-07 | 2017-04-11 | Fallbrook Intellectual Property Company Llc | Assemblies and methods for clamping force generation |
| US10634224B2 (en) | 2008-06-06 | 2020-04-28 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9683640B2 (en) | 2008-06-06 | 2017-06-20 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9074674B2 (en) | 2008-06-23 | 2015-07-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9528561B2 (en) | 2008-06-23 | 2016-12-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10066713B2 (en) | 2008-06-23 | 2018-09-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9365203B2 (en) | 2008-08-05 | 2016-06-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US9878717B2 (en) | 2008-08-05 | 2018-01-30 | Fallbrook Intellectual Property Company Llc | Systems and methods for control of transmission and/or prime mover |
| US8852050B2 (en) | 2008-08-26 | 2014-10-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9903450B2 (en) | 2008-08-26 | 2018-02-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10704657B2 (en) | 2008-08-26 | 2020-07-07 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8870711B2 (en) | 2008-10-14 | 2014-10-28 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9574642B2 (en) | 2008-10-14 | 2017-02-21 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10253880B2 (en) | 2008-10-14 | 2019-04-09 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9279482B2 (en) | 2009-04-16 | 2016-03-08 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9920823B2 (en) | 2009-04-16 | 2018-03-20 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10746270B2 (en) | 2009-04-16 | 2020-08-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8888377B2 (en) | 2009-12-17 | 2014-11-18 | Daimler Ag | Bearing mounting arrangement for a drive train of a motor vehicle |
| JP2013514501A (en)* | 2009-12-17 | 2013-04-25 | ダイムラー・アクチェンゲゼルシャフト | Mounting device for driving system of automobile |
| US10066712B2 (en) | 2010-03-03 | 2018-09-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US9360089B2 (en) | 2010-03-03 | 2016-06-07 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US10197147B2 (en) | 2010-11-10 | 2019-02-05 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9291251B2 (en) | 2010-11-10 | 2016-03-22 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8888643B2 (en) | 2010-11-10 | 2014-11-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US8845485B2 (en) | 2011-04-04 | 2014-09-30 | Fallbrook Intellectual Property Company Llc | Auxiliary power unit having a continuously variable transmission |
| US9611921B2 (en) | 2012-01-23 | 2017-04-04 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US10428915B2 (en) | 2012-01-23 | 2019-10-01 | Fallbrook Intellectual Property Company Llc | Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor |
| US10323732B2 (en) | 2013-04-19 | 2019-06-18 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US9677650B2 (en) | 2013-04-19 | 2017-06-13 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
| US10920882B2 (en) | 2016-01-15 | 2021-02-16 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
| US11306818B2 (en) | 2016-01-15 | 2022-04-19 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
| US10047861B2 (en) | 2016-01-15 | 2018-08-14 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
| US10458526B2 (en) | 2016-03-18 | 2019-10-29 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, systems and methods |
| US12145690B2 (en) | 2016-05-11 | 2024-11-19 | Enviolo B.V. | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions |
| US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
| US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
| US11624432B2 (en) | 2018-11-06 | 2023-04-11 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
| US12173778B2 (en) | 2018-11-06 | 2024-12-24 | Enviolo B.V. | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
| US11530739B2 (en) | 2019-02-26 | 2022-12-20 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
| US12000458B2 (en) | 2019-02-26 | 2024-06-04 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
| US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
| US12442434B2 (en) | 2024-06-04 | 2025-10-14 | Enviolo B.V. | Reversible variable drives and systems and methods for control in forward and reverse directions |
| Publication | Publication Date | Title |
|---|---|---|
| JP2003056662A (en) | Toroidal continuously variable transmission | |
| JP3456267B2 (en) | Toroidal type continuously variable transmission | |
| JP2003130159A5 (en) | ||
| JP2004517289A (en) | Constant velocity joint and its mechanical transmission member | |
| JPH10169741A (en) | Toroidal type continuously variable transmission | |
| JP3783626B2 (en) | Toroidal continuously variable transmission | |
| JP3651929B2 (en) | Toroidal continuously variable transmission | |
| JP6068402B2 (en) | One-way clutch and continuously variable transmission | |
| JP3603544B2 (en) | Toroidal continuously variable transmission | |
| JP3368262B2 (en) | Power transmission device | |
| JP2014209013A (en) | One-way clutch and continuously variable transmission | |
| JP3654425B2 (en) | Toroidal continuously variable transmission | |
| JP3395467B2 (en) | Toroidal type continuously variable transmission | |
| JP2576534Y2 (en) | Toroidal type continuously variable transmission | |
| JP2576535Y2 (en) | Disc for toroidal type continuously variable transmission | |
| JP4894178B2 (en) | Toroidal continuously variable transmission | |
| JP2601343Y2 (en) | Toroidal type continuously variable transmission | |
| JP4026237B2 (en) | Toroidal continuously variable transmission | |
| JP2003113914A (en) | Toroidal-type continuously variable transmission and method of assembling the same | |
| JP3444189B2 (en) | Toroidal type continuously variable transmission | |
| JP2003049927A (en) | Differential limitting-device | |
| JP2001065656A (en) | Loading cam device for toroidal type continuously variable transmission | |
| JPH10169740A (en) | Toroidal type non-stage variable transmission | |
| JP2024085625A (en) | Toroidal Continuously Variable Transmission | |
| JP2003307261A (en) | Loading cam device for toroidal type continuously variable transmission |