Movatterモバイル変換


[0]ホーム

URL:


JP2003050144A - Ultrasonic flow measurement device - Google Patents

Ultrasonic flow measurement device

Info

Publication number
JP2003050144A
JP2003050144AJP2001238926AJP2001238926AJP2003050144AJP 2003050144 AJP2003050144 AJP 2003050144AJP 2001238926 AJP2001238926 AJP 2001238926AJP 2001238926 AJP2001238926 AJP 2001238926AJP 2003050144 AJP2003050144 AJP 2003050144A
Authority
JP
Japan
Prior art keywords
conduit
guide frame
ultrasonic flow
transducer
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001238926A
Other languages
Japanese (ja)
Inventor
Masami Osone
正美 大曽根
Hironobu Yao
博信 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co LtdfiledCriticalFuji Electric Co Ltd
Priority to JP2001238926ApriorityCriticalpatent/JP2003050144A/en
Publication of JP2003050144ApublicationCriticalpatent/JP2003050144A/en
Withdrawnlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】【課題】 超音波流量測定装置の案内フレームの取り付
け位置が自動的に正確に決められ、作業性の向上を図る
ことができる超音波流量測定装置を提供する。【解決手段】 この発明の超音波流量測定装置100
は、導管10の外周面に一対の送受波器20を配置し、
一方の送受波器から送波された超音波が導管の内周面で
反射されて他方の送受波器に受波されるべく、超音波の
伝播経路がなす伝播平面が導管の軸線を含むように送受
波器をガイドする案内フレーム30と、案内フレームに
ガイドされる送受波器を導管の軸線方向の所望の位置に
固定できる固定レール40とを有する。この場合、案内
フレームに取り付けられたトーションスプリング35
は、案内フレームが導管の上に装着されるとき、案内フ
レームの中心線が伝播平面の延長面の中に来るように、
延長面の両側で導管の外周面を弾性的に押圧する。
(57) [Summary] To provide an ultrasonic flow measurement device capable of automatically and accurately determining a mounting position of a guide frame of an ultrasonic flow measurement device and improving workability. SOLUTION: An ultrasonic flow rate measuring apparatus 100 according to the present invention.
Arranges a pair of transducers 20 on the outer peripheral surface of the conduit 10,
In order for the ultrasonic wave transmitted from one transducer to be reflected by the inner peripheral surface of the conduit and received by the other transducer, the propagation plane formed by the ultrasonic wave propagation path includes the axis of the conduit. A guide frame 30 for guiding the transducer is provided, and a fixed rail 40 capable of fixing the transducer guided by the guide frame to a desired position in the axial direction of the conduit. In this case, the torsion spring 35 attached to the guide frame
So that when the guide frame is mounted on the conduit, the center line of the guide frame is in the extension of the propagation plane,
The outer surface of the conduit is elastically pressed on both sides of the extension surface.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は超音波流量測定装
置に関し、特に、流体が内部を一定方向に流れる導管の
上流と下流の外周面に一対の送受波器を配置し、一方の
送受波器から送波された超音波が導管の内周面で反射さ
れて他方の送受波器に受波されるべく、超音波の伝播経
路がなす伝播平面が導管の軸線を含むように送受波器を
ガイドし装着させる案内手段と、案内手段にガイドされ
る送受波器を導管の軸線方向の所望の位置に固定できる
軸線方向位置固定手段とを有し、送受波器が送受する超
音波により導管を流れる流体の速度を測定する超音波流
量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow rate measuring device, and in particular, a pair of transducers are arranged on the outer peripheral surface upstream and downstream of a conduit through which a fluid flows in a fixed direction, and one transducer is provided. In order for the ultrasonic wave transmitted from the ultrasonic wave to be reflected by the inner peripheral surface of the conduit and to be received by the other transducer, set the transducer so that the propagation plane of the ultrasonic wave propagation path includes the axis of the conduit. It has guide means for guiding and mounting, and axial position fixing means for fixing the wave transmitter / receiver guided by the guide means to a desired position in the axial direction of the conduit. The present invention relates to an ultrasonic flow rate measuring device that measures the velocity of flowing fluid.

【0002】[0002]

【従来の技術】この種の超音波流量測定装置の原理につ
いて図5を参照して説明する。図5の超音波流量測定装
置200においては、測定対象となる流体が導管60の
中を矢印FDの向きに流れる。導管60の外周面には、
振動子71とプラスチックの楔形台座72とからなる送
受波器70の一対が所定の距離をあけて配置されてい
る。また、台座72と導管60の外周面との間には、超
音波の伝播効率を向上させるために、音響整合媒質が塗
られている。一方の送受波器からの送波が導管60の内
周面で反射し、他方の送受波器で受波される超音波の伝
播経路のなす平面を伝播平面と呼ぶことにすると、この
伝播平面は、図5において、導管60の軸線を含む紙面
に相当する。このように送受波器70が超音波を正確に
授受できる正規の方向および位置をとっている場合、導
管60を流れる流体の速度をV、伝播経路長をL、音速
をcとすると、一方の送受波器から他方の送受波器への
到達時間について、流れ方向に対する順方向と逆方向と
の時間差Δt(伝播時間差)は、近似的に下記の式
(1)で表される。すなわち、Δt=2LV/c2 ・・・ (1)であって、この式から分かるように、測定により伝播時
間差Δtが分かれば、流速Vを求めることができ、さら
に、導管60の断面積から流量を求めることができる。
2. Description of the Related Art The principle of this type of ultrasonic flow rate measuring device will be described with reference to FIG. In the ultrasonic flow rate measuring device 200 of FIG. 5, the fluid to be measured flows through the conduit 60 in the direction of the arrow FD. On the outer peripheral surface of the conduit 60,
A pair of transducers 70 each including a vibrator 71 and a plastic wedge-shaped pedestal 72 are arranged with a predetermined distance. An acoustic matching medium is applied between the pedestal 72 and the outer peripheral surface of the conduit 60 in order to improve the propagation efficiency of ultrasonic waves. The plane formed by the propagation path of the ultrasonic wave transmitted from one of the wave transmitters and reflected by the inner peripheral surface of the conduit 60 and received by the other wave transmitter / receiver is called a propagation plane. 5 corresponds to the paper surface including the axis of the conduit 60 in FIG. In this way, when the transmitter / receiver 70 is in the normal direction and position where ultrasonic waves can be transmitted and received accurately, if the velocity of the fluid flowing through the conduit 60 is V, the propagation path length is L, and the sound velocity is c, one of Regarding the arrival time from the wave transmitter / receiver to the other wave transmitter / receiver, the time difference Δt (propagation time difference) between the forward direction and the backward direction with respect to the flow direction is approximately represented by the following formula (1). That is, Δt = 2LV / c2 (1), and as can be seen from this equation, if the propagation time difference Δt is known from the measurement, the flow velocity V can be obtained, and the flow rate can be calculated from the cross-sectional area of the conduit 60. Can be asked.

【0003】図6は、上述の原理に基づいて構成されて
いる従来例の超音波流量測定装置の側面図である。この
超音波流量測定装置201において、一対の送受波器7
0は、案内フレーム80により、導管60の軸線に平行
に直進できるようにガイドされている。この案内フレー
ム80は、平行に対向する2つの部材を主構成部材と
し、その中心線が導管60の軸線と平行になるように導
管60の外周上に配置されている。このような案内フレ
ーム80の位置決めは、案内フレーム80の両端に取り
付けられたサドル81によって行われる。このサドル8
1は、導管60の外周面と外接する溝形状を有してお
り、金属あるいはプラスチック布からなるベルト82に
より導管60の外周面上に締め付け固定される。この溝
形状面は、数段階の幅寸法を有しており、サドル81が
装着される種々の径の導管60に適切に対応できるよう
に意図されている。
FIG. 6 is a side view of a conventional ultrasonic flow rate measuring apparatus constructed on the basis of the above-mentioned principle. In this ultrasonic flow rate measuring device 201, a pair of transducers 7
The 0 is guided by a guide frame 80 so that it can travel straight in parallel to the axis of the conduit 60. The guide frame 80 has two members facing each other in parallel as main constituent members, and is arranged on the outer periphery of the conduit 60 so that its center line is parallel to the axis of the conduit 60. Such positioning of the guide frame 80 is performed by saddles 81 attached to both ends of the guide frame 80. This saddle 8
1 has a groove shape circumscribing the outer peripheral surface of the conduit 60, and is fastened and fixed on the outer peripheral surface of the conduit 60 by a belt 82 made of metal or plastic cloth. This groove-shaped surface has several width dimensions and is intended to accommodate various conduits 60 of various diameters in which the saddle 81 is mounted.

【0004】[0004]

【発明が解決しようとする課題】上述の従来例において
は、導管の外周面への送受波器の取り付けは、超音波の
送受波が2つの送受波器の間で正確に行われるために、
超音波の伝播平面が導管の軸線を含むように行われなけ
ればならない。これに対応するために、案内フレームの
両端に取り付けられたサドルに数段階の幅寸法を有する
溝形状面が形成されている。この数段階の幅寸法の溝形
状面に対して、それに接する導管の外周寸法は多種類に
わたるため、導管のサイズによっては、溝形状面の幅寸
法に適合せず、案内フレームが導管の上に装着されると
き、案内フレームの中心線が伝播平面の延長面の中に来
るように設定できない、すなわち、送受波器が組み付け
られたとき、超音波の伝播平面が導管の軸線を含むよう
に設定できないという問題がある。
In the above-mentioned conventional example, the transducer is mounted on the outer peripheral surface of the conduit because the transmission and reception of ultrasonic waves is accurately performed between the two transducers.
The plane of propagation of the ultrasonic waves must be such that it contains the axis of the conduit. In order to cope with this, the saddles attached to both ends of the guide frame are formed with groove-shaped surfaces having several width dimensions. Since there are many types of outer peripheral dimensions of the conduit that is in contact with the groove-shaped surface having several widths, the guide frame may not fit on the conduit depending on the size of the groove depending on the size of the conduit. When installed, the guideline centerline cannot be set to lie in the extension of the propagation plane, i.e., when the transducer is installed, the ultrasonic propagation plane is set to include the conduit axis There is a problem that you cannot do it.

【0005】この発明は、上記の問題を解決するために
なされたものであって、超音波流量測定装置の主要構成
要素である案内フレームの取り付け位置が自動的に正確
に決められ、ひいては、作業時間の短縮などの作業性の
向上を図ることができる超音波流量測定装置を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and the mounting position of the guide frame, which is a main component of the ultrasonic flow rate measuring device, is automatically and accurately determined, and the work is performed. An object is to provide an ultrasonic flow rate measuring device capable of improving workability such as shortening of time.

【0006】[0006]

【課題を解決するための手段】前述した課題を解決する
ために、この発明は、流体が内部を一定方向に流れる導
管の上流と下流の外周面に一対の送受波器を配置し、一
方の送受波器から送波された超音波が導管の内周面で反
射されて他方の送受波器に受波されるべく、超音波の伝
播経路がなす伝播平面が導管の軸線を含むように送受波
器をガイドし装着させる案内手段と、案内手段にガイド
される送受波器を導管の軸線方向の所望の位置に固定で
きる軸線方向位置固定手段とを有し、送受波器が送受す
る超音波により導管を流れる流体の速度を測定する超音
波流量測定装置において、案内手段に取り付けられた弾
性部材であって、案内手段が導管の上に装着されると
き、案内手段の中心線が伝播平面の延長面内に位置する
ように、延長面の両側で導管の外周面を弾性的に押圧す
る弾性部材を有する。
In order to solve the above-mentioned problems, the present invention arranges a pair of wave transmitters / receivers on the outer peripheral surface upstream and downstream of a conduit through which a fluid flows in a certain direction, and In order for the ultrasonic wave transmitted from the transducer to be reflected by the inner peripheral surface of the conduit and received by the other transducer, the transmission plane formed by the propagation path of the ultrasonic wave is transmitted and received so as to include the axis of the conduit. The ultrasonic wave transmitted and received by the transducer includes guide means for guiding and mounting the wave device, and axial position fixing means for fixing the wave guide guided by the wave guide at a desired position in the axial direction of the conduit. In an ultrasonic flow rate measuring device for measuring the velocity of a fluid flowing through a conduit by means of an elastic member attached to the guide means, when the guide means is mounted on the conduit, the center line of the guide means is the plane of propagation. Place both sides of the extension surface so that they are located in the extension surface. In having an elastic member for pressing the outer peripheral surface of the conduit elastically.

【0007】このような構成によれば、超音波流量測定
装置を組み立てる場合、その主要構成要素である案内手
段を導管の外周面に装着する際に、弾性部材が伝播平面
の延長面の両側において、導管の外周面を押圧するの
で、案内手段は、その中心線が伝播平面の延長面の中に
自動的に来るように設置される。したがって、この案内
手段にガイドされて装着される送受波器の送受する超音
波の伝播経路がなす伝播平面は、導管の軸線を含むよう
になる。
According to this structure, when assembling the ultrasonic flow rate measuring device, the elastic members are provided on both sides of the extension surface of the propagation plane when the guide means, which is a main component of the ultrasonic flow measuring device, is mounted on the outer peripheral surface of the conduit. Since the outer peripheral surface of the conduit is pressed, the guide means is installed so that its center line automatically comes into the extension surface of the propagation plane. Therefore, the propagation plane formed by the propagation path of the ultrasonic waves transmitted and received by the transducer installed while being guided by the guide means includes the axis of the conduit.

【0008】また、この発明において、前記弾性部材
は、トーションスプリングであって、その巻の中心線が
案内手段の中心線と平行となるように取り付けられ、ト
ーションスプリングの両端末は、直線的に延び、案内手
段が導管に装着された状態のとき、導管の外周面に接し
て導管を押圧しているトーションスプリングである。こ
の場合、部材は、一般的なトーションスプリングなので
実施が容易である。
Further, in the present invention, the elastic member is a torsion spring and is attached so that the center line of the winding is parallel to the center line of the guide means, and both ends of the torsion spring are linear. A torsion spring that extends and presses the conduit in contact with the outer peripheral surface of the conduit when the guide means is attached to the conduit. In this case, since the member is a general torsion spring, it is easy to implement.

【0009】さらに、この発明において、前記弾性部材
は、板スプリングであって、案内手段の側面にそれぞれ
取り付けられ、その両端末は、直線的に延び、案内手段
が導管に装着された状態のとき、導管の外周面に接して
導管を押圧している板スプリングである。板スプリング
を案内手段の側面にそれぞれ取り付けることは、極めて
容易であり、その構造から、案内手段の導管上への装着
も容易である。
Further, in the present invention, the elastic member is a leaf spring and is attached to each side surface of the guide means. Both ends of the elastic member extend linearly and when the guide means is attached to the conduit. The leaf spring is in contact with the outer peripheral surface of the conduit and presses the conduit. It is extremely easy to attach the leaf springs to the side surfaces of the guide means, respectively, and because of its structure, it is easy to mount the guide means on the conduit.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施の形態につ
いて添付図面に基づいて説明する。実施の形態1.図1は、この発明の超音波流量測定装置
の第1の実施の形態を示す正面図、図2は、図1の側面
図である。図1の超音波流量測定装置100において、
導管10は、円形断面を有し、測定対象となる流体を通
過させる。送受波器20は、導管10の上流と下流の外
周面にそれぞれ配置され、一方が送出した超音波が導管
10の内周面で反射され、それを他方が受信する。案内
フレーム30は、送受波器20が挿入できるような間隔
をもって平行に配置された一対の板状部材を有し、その
両端部はサドル31によって接合され一体化されてい
る。この一対の板状部材を有する案内フレーム30は、
その仮想中心平面に対しては、面対称となるように構成
されている。この案内フレーム30が正確に導管10の
上に装着され、その案内フレーム30に送受波器20が
正確に装着された場合には、案内フレーム30の仮想中
心平面IMSは、先に説明した導管の中の伝播平面を含
み、換言すれば、仮想中心平面IMSが伝播平面の延長
上にあることとなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Embodiment 1. FIG. 1 is a front view showing a first embodiment of an ultrasonic flow rate measuring device of the present invention, and FIG. 2 is a side view of FIG. In the ultrasonic flow rate measuring device 100 of FIG.
The conduit 10 has a circular cross section and allows the fluid to be measured to pass through. The wave transmitters / receivers 20 are arranged on the outer peripheral surfaces of the upstream side and the downstream side of the conduit 10, respectively, and the ultrasonic wave transmitted by one is reflected on the inner peripheral surface of the conduit 10, and the ultrasonic wave is received by the other. The guide frame 30 has a pair of plate-shaped members that are arranged in parallel with each other so that the wave transmitter / receiver 20 can be inserted therein. Both ends of the guide frame 30 are joined and integrated by a saddle 31. The guide frame 30 having the pair of plate-shaped members is
It is configured to be plane-symmetric with respect to the virtual center plane. When the guide frame 30 is mounted exactly on the conduit 10 and the transducer 20 is mounted correctly on the guide frame 30, the virtual center plane IMS of the guide frame 30 is equal to that of the conduit described above. Including the propagation plane therein, in other words, the virtual center plane IMS is on an extension of the propagation plane.

【0011】サドル31の組立ねじ33の周囲にはトー
ションスプリング35が配置され、その端末は、互いに
交差して導管10の上に延び、案内フレーム30が導管
10に組み付けられるとき、案内フレーム30が導管1
0の上に押圧されると、トーションスプリング35の端
末部分は、配導管10の外周面を押圧する。その押圧力
に対抗して発生する弾性力は、案内フレーム30の仮想
中心平面IMSが導管10の中心軸(伝播平面)と重な
るように作用する。図1の例の場合、トーションスプリ
ング35の2つの端末部分は、巻の中間のところで交差
するようにされているので、力の平行をとり易くなって
いる。このように一体化された案内フレーム30および
サドル31の取り付けのために、ベルト32がトーショ
ンスプリング35の上にを通って導管10に掛けられ、
締め付けられる。
A torsion spring 35 is arranged around the assembly screw 33 of the saddle 31 and its ends extend over the conduit 10 to intersect each other so that when the guide frame 30 is assembled to the conduit 10, the guide frame 30 is Conduit 1
When pressed above 0, the end portion of the torsion spring 35 presses the outer peripheral surface of the conduit 10. The elastic force generated against the pressing force acts so that the virtual center plane IMS of the guide frame 30 overlaps the center axis (propagation plane) of the conduit 10. In the case of the example of FIG. 1, the two end portions of the torsion spring 35 are made to intersect at the middle of the winding, so that the forces can be easily parallelized. For the attachment of the guide frame 30 and the saddle 31 thus integrated, the belt 32 is passed over the torsion spring 35 and hung on the conduit 10.
Tightened.

【0012】上述したように構成されているので、一体
化された案内フレーム30およびサドル31の取り付け
時において、サドル31に取り付けられたトーションス
プリング35の上を通って導管10の外周に巻き付けら
れたベルト32が締め付けられると、案内フレーム30
およびサドル31は、導管10の上に押圧され、同時
に、トーションスプリング35の2つの端末部分は、案
内フレーム30の仮想中心平面IMSのそれぞれの側に
おいて、導管10の外周面を押圧するので、その押圧力
に対抗して発生するトーションスプリング35による弾
性力が案内フレーム30の仮想中心平面IMSが導管1
0の中心軸と重なるように(導管10の中心軸の真上に
配置されるように)作用する。このとき、送受波器20
は、まだ組み付けられていないので、送受波器20に関
する位置調整は必要でなく、音響整合媒質を塗布する必
要もないので、一体化された案内フレーム30およびサ
ドル31の取り付けに関する位置の選択や移動を含めて
作業は容易である。
Since the guide frame 30 and the saddle 31 are integrated as described above, the guide frame 30 and the saddle 31 are wound around the outer periphery of the conduit 10 while passing over the torsion spring 35 attached to the saddle 31. When the belt 32 is tightened, the guide frame 30
And the saddle 31 is pressed onto the conduit 10, while at the same time the two end portions of the torsion spring 35 press against the outer peripheral surface of the conduit 10 on each side of the virtual center plane IMS of the guide frame 30. The elastic force of the torsion spring 35 generated against the pressing force causes the virtual center plane IMS of the guide frame 30 to move to the conduit 1.
It acts so as to overlap with the central axis of 0 (so as to be arranged directly above the central axis of the conduit 10). At this time, the transceiver 20
Since it is not assembled yet, it is not necessary to adjust the position of the transducer 20, and it is not necessary to apply the acoustic matching medium. Therefore, the position selection and the movement regarding the mounting of the integrated guide frame 30 and the saddle 31 are performed. It is easy to work including.

【0013】このように導管10の外周面上に取り付け
られた案内フレーム30は、その板状部材の間に送受波
器20が挿入されたときに、送受波器20を導管10の
軸線に平行に直進案内する。そこで、例えば、図1の例
の場合、2つの送受波器20を指定の間隔をあけて予め
固定レール40に取り付け、送受波器20の底面に音響
整合媒質29を塗布した後に、固定レール40と一体化
した送受波器20を案内フレーム30にガイドされるよ
うに、2つの案内フレーム30の間に挿入し、固定レー
ル40を固定ねじ43により案内フレーム30に固定す
れば、送受波器20は、正規の方向と位置(伝播平面が
導管10の中心軸を含む)とをもって導管10の上に装
着され、超音波流量測定装置100の組立が完了する。
このことから、送受波器20の方向や位置の調整を要せ
ず、ひとりの作業者によって容易に作業することができ
る。
The guide frame 30 attached to the outer peripheral surface of the conduit 10 in this way is parallel to the axis of the conduit 10 when the transducer 20 is inserted between the plate members. Go straight to. Therefore, for example, in the case of the example of FIG. 1, the two transducers 20 are attached to the fixed rail 40 in advance at a specified interval, the acoustic matching medium 29 is applied to the bottom surface of the transducer 20, and then the fixed rail 40 is applied. The transducer 20 integrated with the guide frame 30 is inserted between the two guide frames 30 so as to be guided by the guide frame 30, and the fixed rail 40 is fixed to the guide frame 30 by the fixing screw 43. Is mounted on the conduit 10 in the proper direction and position (the propagation plane includes the central axis of the conduit 10), and the assembly of the ultrasonic flow measuring device 100 is completed.
Therefore, it is not necessary to adjust the direction and position of the wave transmitter / receiver 20, and a single worker can easily work.

【0014】実施の形態2.図3は、この発明の超音波
流量測定装置の第2の実施の形態を示す正面図、図4
は、図3の側面図である。図3の超音波流量測定装置1
01と、図1の超音波流量測定装置100との相違は、
超音波流量測定装置101は、超音波流量測定装置10
0で用いているトーションスプリング35の代わりに板
スプリング36を用いている点である。すなわち、案内
フレーム30の側面であって、サドル31に近い部分に
板スプリング36が固定ねじ44によって取り付けられ
ている。この場合においても、板スプリング36は、案
内フレーム30の仮想中心平面IMSに対して面対称と
なるように配置されている。トーションスプリング35
も入手、加工、組立の面で容易であるが、板スプリング
36の場合、これらは、さらに容易である。
Embodiment 2. FIG. 3 is a front view showing a second embodiment of the ultrasonic flow rate measuring device of the present invention, and FIG.
FIG. 4 is a side view of FIG. 3. Ultrasonic flow measuring device 1 of FIG.
01 and the ultrasonic flow rate measuring device 100 of FIG.
The ultrasonic flow rate measuring device 101 is the ultrasonic flow rate measuring device 10
The point is that a leaf spring 36 is used instead of the torsion spring 35 used in 0. That is, the leaf spring 36 is attached to the side surface of the guide frame 30 near the saddle 31 by the fixing screw 44. Also in this case, the leaf spring 36 is arranged so as to be plane-symmetric with respect to the virtual center plane IMS of the guide frame 30. Torsion spring 35
It is also easy to obtain, process, and assemble, but in the case of the leaf spring 36, these are even easier.

【0015】図3の超音波流量測定装置101は、この
ように構成されているので、一体化された案内フレーム
30およびサドル31の取り付け時において、サドル3
1の上を通って導管10の外周に巻き付けられたベルト
32が締め付けられると、案内フレーム30およびサド
ル31は、導管10の上に押圧され、同時に、板スプリ
ング36の端末部分は、案内フレーム30の仮想中心平
面IMSのそれぞれの側において、配導管10の外周面
を押圧する。その押圧力に対抗して発生する板スプリン
グ36による弾性力が、案内フレーム30の仮想中心平
面IMSが導管10の中心軸と重なるように(導管10
の中心軸の真上に配置されるように)作用する。したが
って、図1の超音波流量測定装置100と同様に、送受
波器20に関する位置調整は必要でなく、音響整合媒質
を塗布する必要もないので、一体化された案内フレーム
30およびサドル31の取り付けは、位置の選択や移動
を含めて容易である。また、固定レール40と一体化し
た送受波器20を案内フレーム30の間に挿入し、固定
レール40を固定する方法は、図1の場合と同じであ
る。
Since the ultrasonic flow rate measuring device 101 of FIG. 3 is constructed in this manner, the saddle 3 is attached when the integrated guide frame 30 and saddle 31 are attached.
When the belt 32 wrapped around the outer circumference of the conduit 10 is tightened over the conduit 1, the guide frame 30 and the saddle 31 are pressed onto the conduit 10, and at the same time, the end portion of the leaf spring 36 causes the guide frame 30 to move. The outer peripheral surface of the conduit 10 is pressed on each side of the virtual center plane IMS. The elastic force generated by the plate spring 36 against the pressing force causes the virtual center plane IMS of the guide frame 30 to overlap the central axis of the conduit 10 (conduit 10
(Just above the central axis of). Therefore, similarly to the ultrasonic flow rate measuring device 100 of FIG. 1, it is not necessary to adjust the position of the transducer 20, and it is not necessary to apply the acoustic matching medium, so that the integrated guide frame 30 and saddle 31 are attached. Is easy including position selection and movement. The method of inserting the wave transceiver 20 integrated with the fixed rail 40 between the guide frames 30 and fixing the fixed rail 40 is the same as in the case of FIG.

【0016】[0016]

【発明の効果】この発明の超音波流量測定装置は、以上
において説明したように構成されているので、案内手段
を送受波器とは独立して導管に装着することができ、そ
の装着に際しては、弾性部材が伝播平面の延長面の両側
において、導管の外周面を押圧するので、案内手段は、
その中心線が伝播平面の延長面の中に来るように自動的
に設置される。したがって、このように正確に装着され
た案内手段にガイドされて装着される送受波器の送受す
る超音波の伝播経路がなす伝播平面は、導管の軸線を含
むようになり、正確な流量測定を行うことができるとと
もに、案内手段の位置決めや位置の変更を含む作業は容
易になり、作業時間の短縮などの作業性の向上を図るこ
とができる。
Since the ultrasonic flow rate measuring device of the present invention is constructed as described above, the guide means can be attached to the conduit independently of the wave transmitter / receiver. Since the elastic member presses the outer peripheral surface of the conduit on both sides of the extension surface of the propagation plane, the guide means is
It is installed automatically so that its centerline lies in the extension of the plane of propagation. Therefore, the propagation plane formed by the propagation path of the ultrasonic waves transmitted and received by the transducer, which is guided and mounted by the accurately mounted guide means as described above, includes the axis line of the conduit tube, so that accurate flow rate measurement can be performed. In addition to being able to perform the work, the work including positioning and changing the position of the guide means is facilitated, and workability can be improved such as shortening the work time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の超音波流量測定装置の第1の実施の
形態を示す正面図である。
FIG. 1 is a front view showing a first embodiment of an ultrasonic flow rate measuring device of the present invention.

【図2】図1の超音波流量測定装置の側面図である。FIG. 2 is a side view of the ultrasonic flow rate measuring device of FIG.

【図3】この発明の超音波流量測定装置の第2の実施の
形態を示す正面図である。
FIG. 3 is a front view showing a second embodiment of the ultrasonic flow rate measuring device of the present invention.

【図4】図3の超音波流量測定装置の側面図である。FIG. 4 is a side view of the ultrasonic flow rate measuring device of FIG.

【図5】超音波流量測定装置の原理を説明するための図
である。
FIG. 5 is a diagram for explaining the principle of the ultrasonic flow rate measuring device.

【図6】図5の原理によって構成された従来の超音波流
量測定装置を示す側面図である。
FIG. 6 is a side view showing a conventional ultrasonic flow rate measuring device configured according to the principle of FIG.

【符号の説明】[Explanation of symbols]

10 導管、20 送受波器、29 音響整合媒質、3
0 案内フレーム、31 サドル、32 ベルト、33
組立ねじ、35 トーションスプリング、36 板ス
プリング、40 固定レール、43,44 固定ねじ、
100,101超音波流量測定装置、IMS 仮想中心
平面(伝播平面)。
10 conduits, 20 transducers, 29 acoustic matching medium, 3
0 guide frame, 31 saddle, 32 belt, 33
Assembly screws, 35 torsion springs, 36 leaf springs, 40 fixed rails, 43, 44 fixing screws,
100, 101 ultrasonic flowmeter, IMS virtual center plane (propagation plane).

Claims (3)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 流体が内部を一定方向に流れる導管の上
流と下流の外周面に一対の送受波器を配置し、一方の送
受波器から送波された超音波が導管の内周面で反射され
て他方の送受波器に受波されるべく、超音波の伝播経路
がなす伝播平面が導管の軸線を含むように送受波器をガ
イドし装着させる案内手段と、案内手段にガイドされる
送受波器を導管の軸線方向の所望の位置に固定できる軸
線方向位置固定手段とを有し、送受波器が送受する超音
波により導管を流れる流体の速度を測定する超音波流量
測定装置において、案内手段に取り付けられた弾性部材であって、案内手段
が導管の上に装着されるとき、案内手段の中心線が伝播
平面の延長面内に位置するように、延長面の両側で導管
の外周面を弾性的に押圧する弾性部材を有することを特
徴とする超音波流量測定装置。
1. A pair of transducers are arranged on the outer peripheral surface upstream and downstream of a conduit in which a fluid flows in a fixed direction, and ultrasonic waves transmitted from one transducer are transmitted on the inner peripheral surface of the conduit. Guide means for guiding and mounting the transducer so that the propagation plane of the ultrasonic wave propagation path includes the axis of the conduit so as to be reflected and received by the other transducer. In the ultrasonic flow rate measuring device having an axial position fixing means capable of fixing the transducer at a desired position in the axial direction of the conduit, and measuring the velocity of the fluid flowing through the conduit by the ultrasonic waves transmitted and received by the transceiver. An elastic member attached to the guide means, the outer circumference of the conduit on both sides of the extension surface such that the center line of the guide means is located in the extension surface of the propagation plane when the guide means is mounted on the conduit. Having an elastic member that elastically presses the surface Ultrasonic flow measuring device according to symptoms.
【請求項2】 前記弾性部材は、トーションスプリング
であって、その巻の中心線が案内手段の中心線と平行と
なるように取り付けられ、トーションスプリングの両端
末は、直線的に延び、案内手段が導管に装着された状態
のとき、導管の外周面に接して導管を押圧しているトー
ションスプリングである請求項1記載の超音波流量測定
装置。
2. The elastic member is a torsion spring, and is attached such that the center line of the winding is parallel to the center line of the guide means, and both ends of the torsion spring extend linearly, 2. The ultrasonic flow rate measuring device according to claim 1, wherein is a torsion spring that is in contact with the outer peripheral surface of the conduit and presses the conduit when it is attached to the conduit.
【請求項3】 前記弾性部材は、板スプリングであっ
て、案内手段の側面にそれぞれ取り付けられ、その両端
末は、直線的に延び、案内手段が導管に装着された状態
のとき、導管の外周面に接して導管を押圧している板ス
プリングである請求項1記載の超音波流量測定装置。
3. The elastic member is a leaf spring, each of which is attached to a side surface of the guide means, both ends of which extend linearly, and when the guide means is attached to the conduit, an outer circumference of the conduit. The ultrasonic flow measuring device according to claim 1, wherein the ultrasonic flow measuring device is a leaf spring that is in contact with a surface and presses the conduit.
JP2001238926A2001-08-072001-08-07 Ultrasonic flow measurement deviceWithdrawnJP2003050144A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2001238926AJP2003050144A (en)2001-08-072001-08-07 Ultrasonic flow measurement device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2001238926AJP2003050144A (en)2001-08-072001-08-07 Ultrasonic flow measurement device

Publications (1)

Publication NumberPublication Date
JP2003050144Atrue JP2003050144A (en)2003-02-21

Family

ID=19069765

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2001238926AWithdrawnJP2003050144A (en)2001-08-072001-08-07 Ultrasonic flow measurement device

Country Status (1)

CountryLink
JP (1)JP2003050144A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006047243A (en)*2004-08-092006-02-16Honda Electronic Co LtdUltrasonic flowmeter
JP2007121299A (en)*2005-10-252007-05-17Krohne Ag Mounting method of clamp-on type flow measuring device and mounting device for mounting clamp-on type flow measuring device
KR100780707B1 (en)2007-02-072007-11-30자인테크놀로지(주) Ultrasonic Flowmeter Sensor Block
JP2008504543A (en)*2004-06-282008-02-14フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for calibrating mounting type or clamp type ultrasonic flow measuring device
US8857269B2 (en)2010-08-052014-10-14Hospira, Inc.Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
CN104390669A (en)*2014-11-172015-03-04浙江大学Positioning device and method for effectively improving strength of receiving signals of ultrasonic probes
CN105181044A (en)*2015-05-152015-12-23何相之Ultrasonic flowmeter
EP2966416A3 (en)*2014-07-112016-01-27Flexim Flexible Industriemesstechnik GmbhMeasuring head clamp-on device for ultrasonic flow measuring heads
US10022498B2 (en)2011-12-162018-07-17Icu Medical, Inc.System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10166328B2 (en)2013-05-292019-01-01Icu Medical, Inc.Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en)2014-02-282019-07-09Icu Medical, Inc.Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en)2011-08-192019-10-01Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en)2012-07-312019-11-05Icu Medical, Inc.Patient care system for critical medications
US10578474B2 (en)2012-03-302020-03-03Icu Medical, Inc.Air detection system and method for detecting air in a pump of an infusion system
US10596316B2 (en)2013-05-292020-03-24Icu Medical, Inc.Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en)2007-12-182020-04-28Icu Medical, Inc.User interface improvements for medical devices
US10656894B2 (en)2017-12-272020-05-19Icu Medical, Inc.Synchronized display of screen content on networked devices
US10850024B2 (en)2015-03-022020-12-01Icu Medical, Inc.Infusion system, device, and method having advanced infusion features
US10874793B2 (en)2013-05-242020-12-29Icu Medical, Inc.Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11135360B1 (en)2020-12-072021-10-05Icu Medical, Inc.Concurrent infusion with common line auto flush
US11246985B2 (en)2016-05-132022-02-15Icu Medical, Inc.Infusion pump system and method with common line auto flush
US11278671B2 (en)2019-12-042022-03-22Icu Medical, Inc.Infusion pump with safety sequence keypad
US11324888B2 (en)2016-06-102022-05-10Icu Medical, Inc.Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en)2014-05-292022-05-31Icu Medical, Inc.Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en)2014-12-192022-05-31Icu Medical, Inc.Infusion system with concurrent TPN/insulin infusion
US11883361B2 (en)2020-07-212024-01-30Icu Medical, Inc.Fluid transfer devices and methods of use
US12350233B2 (en)2021-12-102025-07-08Icu Medical, Inc.Medical fluid compounding systems with coordinated flow control
USD1091564S1 (en)2021-10-132025-09-02Icu Medical, Inc.Display screen or portion thereof with graphical user interface for a medical device

Cited By (53)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008504543A (en)*2004-06-282008-02-14フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for calibrating mounting type or clamp type ultrasonic flow measuring device
JP2006047243A (en)*2004-08-092006-02-16Honda Electronic Co LtdUltrasonic flowmeter
JP2007121299A (en)*2005-10-252007-05-17Krohne Ag Mounting method of clamp-on type flow measuring device and mounting device for mounting clamp-on type flow measuring device
KR100780707B1 (en)2007-02-072007-11-30자인테크놀로지(주) Ultrasonic Flowmeter Sensor Block
US10635784B2 (en)2007-12-182020-04-28Icu Medical, Inc.User interface improvements for medical devices
US8857269B2 (en)2010-08-052014-10-14Hospira, Inc.Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
US12346879B2 (en)2011-08-192025-07-01Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US11004035B2 (en)2011-08-192021-05-11Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US11972395B2 (en)2011-08-192024-04-30Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US10430761B2 (en)2011-08-192019-10-01Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US11599854B2 (en)2011-08-192023-03-07Icu Medical, Inc.Systems and methods for a graphical interface including a graphical representation of medical data
US10022498B2 (en)2011-12-162018-07-17Icu Medical, Inc.System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11376361B2 (en)2011-12-162022-07-05Icu Medical, Inc.System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11933650B2 (en)2012-03-302024-03-19Icu Medical, Inc.Air detection system and method for detecting air in a pump of an infusion system
US10578474B2 (en)2012-03-302020-03-03Icu Medical, Inc.Air detection system and method for detecting air in a pump of an infusion system
US11623042B2 (en)2012-07-312023-04-11Icu Medical, Inc.Patient care system for critical medications
US10463788B2 (en)2012-07-312019-11-05Icu Medical, Inc.Patient care system for critical medications
US12280239B2 (en)2012-07-312025-04-22Icu Medical, Inc.Patient care system for critical medications
US10874793B2 (en)2013-05-242020-12-29Icu Medical, Inc.Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US12048831B2 (en)2013-05-242024-07-30Icu Medical, Inc.Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10166328B2 (en)2013-05-292019-01-01Icu Medical, Inc.Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US12059551B2 (en)2013-05-292024-08-13Icu Medical, Inc.Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10596316B2 (en)2013-05-292020-03-24Icu Medical, Inc.Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11433177B2 (en)2013-05-292022-09-06Icu Medical, Inc.Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US11596737B2 (en)2013-05-292023-03-07Icu Medical, Inc.Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10342917B2 (en)2014-02-282019-07-09Icu Medical, Inc.Infusion system and method which utilizes dual wavelength optical air-in-line detection
US12083310B2 (en)2014-02-282024-09-10Icu Medical, Inc.Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en)2014-05-292022-05-31Icu Medical, Inc.Infusion system and pump with configurable closed loop delivery rate catch-up
EP2966416A3 (en)*2014-07-112016-01-27Flexim Flexible Industriemesstechnik GmbhMeasuring head clamp-on device for ultrasonic flow measuring heads
JP2016020907A (en)*2014-07-112016-02-04フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハーMeasurement head fixing part for ultrasonic flowmeter measurement head
CN105318931A (en)*2014-07-112016-02-10弗莱克森柔性工业计量有限公司Measuring head clamp-on device for ultrasonic flow measuring heads
CN105318931B (en)*2014-07-112018-12-18弗莱克森柔性工业计量有限公司Measuring head clamping device for measuring ultrasonic wave flow head
CN104390669A (en)*2014-11-172015-03-04浙江大学Positioning device and method for effectively improving strength of receiving signals of ultrasonic probes
US11344668B2 (en)2014-12-192022-05-31Icu Medical, Inc.Infusion system with concurrent TPN/insulin infusion
US12115337B2 (en)2015-03-022024-10-15Icu Medical, Inc.Infusion system, device, and method having advanced infusion features
US10850024B2 (en)2015-03-022020-12-01Icu Medical, Inc.Infusion system, device, and method having advanced infusion features
CN105181044A (en)*2015-05-152015-12-23何相之Ultrasonic flowmeter
US12201811B2 (en)2016-05-132025-01-21Icu Medical, Inc.Infusion pump system and method with common line auto flush
US11246985B2 (en)2016-05-132022-02-15Icu Medical, Inc.Infusion pump system and method with common line auto flush
US12076531B2 (en)2016-06-102024-09-03Icu Medical, Inc.Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11324888B2 (en)2016-06-102022-05-10Icu Medical, Inc.Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11029911B2 (en)2017-12-272021-06-08Icu Medical, Inc.Synchronized display of screen content on networked devices
US11868161B2 (en)2017-12-272024-01-09Icu Medical, Inc.Synchronized display of screen content on networked devices
US12333201B2 (en)2017-12-272025-06-17Icu Medical, Inc.Synchronized display of screen content on networked devices
US10656894B2 (en)2017-12-272020-05-19Icu Medical, Inc.Synchronized display of screen content on networked devices
US11278671B2 (en)2019-12-042022-03-22Icu Medical, Inc.Infusion pump with safety sequence keypad
US12268843B2 (en)2019-12-042025-04-08Icu Medical, Inc.Infusion pump with safety sequence keypad
US11883361B2 (en)2020-07-212024-01-30Icu Medical, Inc.Fluid transfer devices and methods of use
US12310921B2 (en)2020-07-212025-05-27Icu Medical, Inc.Fluid transfer devices and methods of use
US11135360B1 (en)2020-12-072021-10-05Icu Medical, Inc.Concurrent infusion with common line auto flush
US12390586B2 (en)2020-12-072025-08-19Icu Medical, Inc.Concurrent infusion with common line auto flush
USD1091564S1 (en)2021-10-132025-09-02Icu Medical, Inc.Display screen or portion thereof with graphical user interface for a medical device
US12350233B2 (en)2021-12-102025-07-08Icu Medical, Inc.Medical fluid compounding systems with coordinated flow control

Similar Documents

PublicationPublication DateTitle
JP2003050144A (en) Ultrasonic flow measurement device
US6883386B2 (en)Ultrasonic flow rate measurement instrument
CN116490751A (en)Coriolis flowmeter
US7658114B1 (en)Ultrasonic flow meter
US9528866B2 (en)Ultrasonic flow measuring device having a signal path of multiple straight subsection having a minimum separation in the range of 0.4-0.6r from the tube axis
JP6454816B1 (en) Ultrasonic flow measuring device
JPH08285647A (en)Detector for ultrasonic flowmeter
JPS6333619A (en)Coriolis mass flow sensor
JP2002303541A (en)Ultrasonic flow meter
JP2013174567A (en)Ultrasonic transceiver and clamp-on type ultrasonic flowmeter using ultrasonic transceiver
JP5858227B2 (en) Ultrasonic flow meter positioning bracket
US20200116537A1 (en)Clamp-On Type Ultrasonic Flowmeter
CN113167618A (en) Ultrasonic transducer arrangement for a clamp-on ultrasonic flow measuring point and a clamp-on ultrasonic flow measuring point and a method for putting into operation a clamp-on ultrasonic flow measuring point
JP2003083786A (en) Ultrasonic flow measurement device
JP2002236042A (en) Flowmeter
JP2883766B2 (en) Ultrasonic flow measurement device
JP2005030897A (en) Ultrasonic flow measuring device and manufacturing method thereof
JP5898369B1 (en) Ultrasonic flow meter
JPH0422454B2 (en)
JPH09189589A (en) Flow measurement device
CA2760859A1 (en)A flow meter including a balanced reference member
JP2005180988A (en) Ultrasonic flow meter
CN217304041U (en)Ultrasonic water meter
JPH05312611A (en) Transmission type ultrasonic flowmeter
JPH0447768B2 (en)

Legal Events

DateCodeTitleDescription
A300Application deemed to be withdrawn because no request for examination was validly filed

Free format text:JAPANESE INTERMEDIATE CODE: A300

Effective date:20081007


[8]ページ先頭

©2009-2025 Movatter.jp