【0001】[0001]
【発明の属する技術分野】本発明は、高周波電力の非接
触給電装置及び非接触給電方法に関し、特に、高速コン
ピュータ断層撮像装置(以下、高速CT装置という。)や
高荷役クレーン、又は電気自動車を利用した新交通シス
テムなどに広く適用される高周波電力の非接触給電装置
及び非接触給電方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact power supply apparatus and a non-contact power supply method for high-frequency power, and more particularly, to a high-speed computer tomography apparatus (hereinafter, referred to as a high-speed CT apparatus), a high-loading crane, or an electric vehicle. The present invention relates to a non-contact power supply device and a non-contact power supply method for high-frequency power widely applied to new transportation systems and the like.
【0002】[0002]
【従来の技術】高速CT装置では、脳や内臓の断面を撮
像するため、X線等を放射する撮像部が撮影対象の周囲
を移動する。また、高荷役クレーンでは、コンテナ等の
上げ下ろしを行うため、コンテナ等を吊り上げるモータ
部がレールの上を移動する。このような高速CT装置及
び高荷役クレーンでは、撮像部やモータ部等の移動体
に、パンタグラフや、給電ケーブルを支持線で吊り下げ
て移動可能にしたいわゆるカーテン状ケーブルによって
駆動電力が供給される。2. Description of the Related Art In a high-speed CT apparatus, an imaging unit that emits X-rays or the like moves around an object to be imaged in order to image a cross section of the brain or internal organs. In a high-loading crane, a motor unit for lifting a container or the like moves on rails in order to raise or lower a container or the like. In such a high-speed CT apparatus and a high loading / unloading crane, driving power is supplied to a moving body such as an imaging unit and a motor unit by a pantograph or a so-called curtain-shaped cable that is movable by suspending a power supply cable with a support wire. .
【0003】しかしながら、パンタグラフを用いた給電
方法では、移動体の移動に伴い接触部が磨耗するため、
定期的なメンテナンスが必要となったり、磨耗粉が周囲
に付着して絶縁性能を低下させる欠点がある。However, in a power supply method using a pantograph, a contact portion is worn due to movement of a moving body.
There are drawbacks that regular maintenance is required and that the abrasion powder adheres to the surroundings and lowers insulation performance.
【0004】また、カーテン状ケーブルを用いた給電方
法では、移動体の移動に伴いケーブルも同時に移動する
ため、ケーブルの長さによって移動範囲が制限された
り、ケーブルの重量によって移動速度が低下する欠点が
ある。特に、高速CT装置では、撮像部が撮影対象の周
囲で回転運動を行うため、撮像部の移動形態に制限を加
えてケーブルの混線を防止する必要がある。[0004] In the power supply method using a curtain-shaped cable, the cable moves at the same time as the moving body moves, so that the moving range is limited by the length of the cable, and the moving speed is reduced by the weight of the cable. There is. In particular, in the high-speed CT apparatus, since the imaging unit performs a rotating motion around the imaging target, it is necessary to prevent the cross-connection of the cable by restricting the movement form of the imaging unit.
【0005】そこで、移動体に給電線を接触させて駆動
電力を供給する上記の不具合を解消するため、移動体に
非接触で駆動電力を供給する非接触給電装置が使用され
る。[0005] In order to solve the above-mentioned problem of supplying driving power by bringing a power supply line into contact with a moving body, a non-contact power supply device for supplying driving power to the moving body in a non-contact manner is used.
【0006】従来の非接触給電装置の構成例を図8、図
9に示す。これらの非接触給電装置は、固定設備である
給電側回路15(1次側)に流れる交流によって生ずる
磁束を、移動体に設けられる受電側回路16(2次側)
に鎖交させ、受電側回路16に誘導起電力を生じさせて
移動体のモータ等に電力を供給するものである。FIGS. 8 and 9 show examples of the configuration of a conventional contactless power supply device. These non-contact power supply devices transmit a magnetic flux generated by an alternating current flowing through a power supply side circuit 15 (primary side) which is a fixed facility to a power receiving side circuit 16 (secondary side) provided on a moving body.
To generate an induced electromotive force in the power receiving side circuit 16 to supply power to a motor or the like of the moving body.
【0007】図8に示す従来の非接触給電装置は、固定
設備である給電側回路15と、移動体に設けられる受電
側回路16とで構成され、給電側回路15は、商用周波
数の交流電源部1と、交流電源部1から給電される交流
電力を直流電力に変換する直流電源部2と、直流電源部
2から給電される直流電力を周波数1〜50kHz程度の
高周波電力に逆変換する電流型インバータ部5aと、電
流型インバータ部5aから出力される高周波電力を絶縁
するトランス4と、トランス4で絶縁された高周波電力
を受電側回路16に非接触で供給する1次導線3と、1
次導線3と並列に設けられて給電側の共振回路を構成す
る1次コンデンサ6aとを有する。The conventional non-contact power supply device shown in FIG. 8 is composed of a power supply side circuit 15 which is a fixed facility and a power receiving side circuit 16 provided on a moving body. Unit 1, a DC power supply unit 2 for converting AC power supplied from the AC power supply unit 1 to DC power, and a current for inversely converting DC power supplied from the DC power supply unit 2 to high-frequency power having a frequency of about 1 to 50 kHz. Type inverter unit 5a, a transformer 4 for insulating high-frequency power output from the current-type inverter unit 5a, a primary conductor 3 for supplying high-frequency power insulated by the transformer 4 to a power receiving side circuit 16 in a non-contact manner,
A primary capacitor 6a provided in parallel with the secondary conductor 3 and constituting a resonance circuit on the power supply side.
【0008】一方、移動体に設けられる受電側回路16
は、給電側回路15の1次導線3から電磁誘導作用によ
り非接触状態で高周波電力を受電する受電コイル8と、
受電コイル8に並列に設けられて受電側の共振回路を構
成する2次コンデンサ9と、受電コイル8で受電した高
周波電力を整流する整流部7と、整流部7から出力され
る直流電力を直流変換または周波数変換する2次電源部
10と、2次電源部10からの電力供給により動作する
移動体走行用のモータ等の負荷11とを有する。On the other hand, the power receiving side circuit 16 provided in the moving body
A power receiving coil 8 for receiving high-frequency power from the primary conductor 3 of the power supply side circuit 15 in a non-contact state by electromagnetic induction,
A secondary capacitor 9 provided in parallel with the power receiving coil 8 to form a power receiving side resonance circuit; a rectifying unit 7 for rectifying high frequency power received by the power receiving coil 8; The secondary power supply unit 10 includes a secondary power supply unit 10 that performs conversion or frequency conversion, and a load 11 such as a motor for moving a moving body that operates by power supply from the secondary power supply unit 10.
【0009】このような非接触給電装置では、受電側の
共振回路を構成する2次コンデンサ9が、受電コイル8
及び負荷11のインダクタンス成分と所定の共振周波数
で共振するように設定される。また、給電側の共振回路
を構成する1次コンデンサ6aが、1次導線3及び1次
側から見た負荷11を含む2次側のインダクタンス成分
と、受電側と同じ共振周波数で共振するように設定さ
れ、給電側の電力が効率的に負荷11へ供給される。In such a non-contact power feeding device, the secondary capacitor 9 constituting the power receiving side resonance circuit is connected to the power receiving coil 8.
The resonance frequency is set so as to resonate with the inductance component of the load 11 at a predetermined resonance frequency. Also, the primary capacitor 6a constituting the resonance circuit on the power supply side resonates with the secondary wire inductance component including the primary conductor 3 and the load 11 viewed from the primary side at the same resonance frequency as the power receiving side. Then, the power on the power supply side is efficiently supplied to the load 11.
【0010】図9は、従来の非接触給電装置の他の構成
例である。この非接触給電装置では、図8の非接触給電
装置と異なり、電圧型インバータ5bにより高周波電力
が生成され、1次コンデンサ6bが1次導線3と直列に
接続される。この非接触給電装置においても、給電側と
受電側の共振回路が同じ共振周波数で共振するように構
成され、給電側の電力が効率的に負荷11へ供給され
る。FIG. 9 shows another configuration example of a conventional non-contact power feeding device. In this non-contact power supply device, unlike the non-contact power supply device of FIG. 8, high-frequency power is generated by the voltage-type inverter 5b, and the primary capacitor 6b is connected in series with the primary conductor 3. Also in this non-contact power supply device, the power supply side and the power receiving side resonance circuits are configured to resonate at the same resonance frequency, and the power supply side power is efficiently supplied to the load 11.
【0011】図10は、このような非接触給電装置にお
ける1次導線3と受電コイル8の概略構成図である。図
10に示すように、1次導線3は、例えば、移動体の移
動範囲に沿ってレール状に敷設され、受電コイル8は、
1次導線3に対して移動可能なE型のフェライトコア2
1に、1次導線3が誘起する磁束22と鎖交するように
巻き付けられる。この場合、受電コイル8及びフェライ
トコア21を内蔵する移動体は、1次導線3から非接触
で高周波電力を受電し、モータ23及び車輪24を駆動
して1次導線3に沿って走行する。FIG. 10 is a schematic configuration diagram of the primary conductor 3 and the power receiving coil 8 in such a non-contact power feeding device. As shown in FIG. 10, for example, the primary conductor 3 is laid in a rail shape along the moving range of the moving body, and the power receiving coil 8 is
E-type ferrite core 2 movable with respect to primary conductor 3
1 is wound so as to link with the magnetic flux 22 induced by the primary conductor 3. In this case, the moving body including the power receiving coil 8 and the ferrite core 21 receives the high-frequency power from the primary conductor 3 in a non-contact manner, and drives the motor 23 and the wheels 24 to travel along the primary conductor 3.
【0012】[0012]
【発明が解決しようとする課題】このように従来の非接
触給電装置では、負荷11への給電が効率的に行われる
ように、受電側の2次コンデンサ9が、受電コイル8及
び負荷11のインダクタンス成分と所定の共振周波数で
共振するように設定され、給電側の1次コンデンサ6a
又は6bが、1次導線3及び1次側から見た負荷11を
含む2次側のインダクタンス成分と同じ共振周波数で共
振するように設定される。As described above, in the conventional non-contact power supply device, the secondary capacitor 9 on the power receiving side is connected to the power receiving coil 8 and the load 11 so that the power supply to the load 11 is performed efficiently. The primary capacitor 6a is set to resonate with the inductance component at a predetermined resonance frequency, and
Or, 6b is set so as to resonate at the same resonance frequency as the inductance component on the secondary side including the primary conductor 3 and the load 11 viewed from the primary side.
【0013】一方、モータなどの回転機負荷は、起動時
にすべりが大きくなり、定格よりも大きな電力が必要に
なる。また、高荷役クレーン等のモータでは、荷物重量
により吊り上げ負荷が変化する。このため、負荷11の
等価的な抵抗成分は駆動に伴って大きく変動する。On the other hand, a rotating machine load such as a motor has a large slip at the time of startup, and requires a power larger than a rated power. Further, in a motor such as a heavy cargo handling crane, the lifting load changes depending on the load weight. For this reason, the equivalent resistance component of the load 11 fluctuates greatly with driving.
【0014】しかしながら、従来の非接触給電装置で
は、給電側の1次コンデンサ6a、6b及び受電側の2
次コンデンサ9の容量値を固定しているため、負荷11
の等価的な抵抗成分が変化した場合に、給電側及び受電
側の共振回路の共振周波数が変化してしまい、給電側及
び受電側の共振回路の共振周波数と電流型インバータ部
5a又は電圧型インバータ部5bの駆動周波数のずれが
大きくなる。However, in the conventional non-contact power supply device, the primary capacitors 6a and 6b on the power supply side and the two
Since the capacitance value of the secondary capacitor 9 is fixed, the load 11
When the equivalent resistance component changes, the resonance frequencies of the resonance circuits on the power supply side and the power reception side change, and the resonance frequency of the resonance circuit on the power supply side and the power reception side and the current-type inverter unit 5a or the voltage-type inverter. The deviation of the driving frequency of the portion 5b increases.
【0015】このため、電流型インバータ部5a又は電
圧型インバータ部5bから供給する電力の力率が「1」
から大きくずれ、供給する皮相電力(電圧×電流)に対
して負荷11で消費される電力の効率が低下し、効率的
な電力伝送を行うことが困難になる。Therefore, the power factor of the electric power supplied from the current-type inverter unit 5a or the voltage-type inverter unit 5b is "1".
, The efficiency of the power consumed by the load 11 with respect to the apparent power (voltage × current) supplied decreases, and it becomes difficult to perform efficient power transmission.
【0016】そこで、本発明の目的は、負荷の等価的な
抵抗成分が変化しても、電流型インバータ部又は電圧型
インバータ部から供給する電力の力率を維持し、効率的
な電力伝送を行うことができる非接触給電装置及び非接
触給電方法を提供することにある。Therefore, an object of the present invention is to maintain a power factor of power supplied from a current-type inverter unit or a voltage-type inverter unit even if an equivalent resistance component of a load changes, thereby achieving efficient power transmission. An object of the present invention is to provide a non-contact power supply device and a non-contact power supply method that can be performed.
【0017】[0017]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の一つの側面は、高周波電力を非接触で負
荷に供給する非接触給電装置において、高周波電力を生
成する高周波電源部と、高周波電源部が生成した高周波
電力を高周波磁束に変換する1次導線と、1次導線が変
換した高周波磁束と鎖交して誘導起電力を生成し、誘導
起電力を負荷に供給する受電コイルと、負荷の抵抗成分
を検出する抵抗検出回路と、抵抗検出回路が検出した負
荷の抵抗成分に応じて、高周波電源部が生成する高周波
電力の周波数を制御する周波数制御部とを有することを
特徴とする。In order to achieve the above object, one aspect of the present invention is a high-frequency power supply for generating high-frequency power in a non-contact power supply apparatus for supplying high-frequency power to a load in a non-contact manner. And a primary conductor for converting high-frequency power generated by the high-frequency power supply unit into high-frequency magnetic flux, and a power receiving unit for generating induced electromotive force by interlinking with the high-frequency magnetic flux converted by the primary conductor and supplying the induced electromotive force to the load. A coil, a resistance detection circuit that detects a resistance component of the load, and a frequency control unit that controls a frequency of high-frequency power generated by the high-frequency power supply unit according to the resistance component of the load detected by the resistance detection circuit. Features.
【0018】本発明によれば、抵抗検出回路が検出した
負荷の抵抗成分に応じて、高周波電源部が生成する高周
波電力の周波数を制御するので、高周波電源部から出力
される高周波電力の力率をほぼ「1」近くにすることが
できる。従って、高周波電源部が供給する皮相電力(電
圧×電流)に対して負荷で消費される電力の効率が高く
なり、効率的な電力伝送を行うことができる。According to the present invention, since the frequency of the high-frequency power generated by the high-frequency power supply is controlled in accordance with the resistance component of the load detected by the resistance detection circuit, the power factor of the high-frequency power output from the high-frequency power supply is controlled. Can be made substantially close to “1”. Accordingly, the efficiency of the power consumed by the load with respect to the apparent power (voltage × current) supplied by the high-frequency power supply unit increases, and efficient power transmission can be performed.
【0019】また、上記の発明における好ましい態様と
して、高周波電源部は、スイッチング素子で構成される
高周波インバータと、周波数制御部から出力される信号
に応答して、スイッチング素子の導通のタイミングを制
御するタイミング制御回路とを有することを特徴とす
る。In a preferred aspect of the present invention, the high-frequency power supply unit controls the conduction timing of the switching element in response to a high-frequency inverter including a switching element and a signal output from the frequency control unit. And a timing control circuit.
【0020】更に、高周波電源部は、1次導線と共に共
振回路を構成する1次コンデンサを有し、高周波インバ
ータは、駆動周波数が共振回路の共振周波数になるよう
に制御されることを特徴とする。Further, the high-frequency power supply section has a primary capacitor that forms a resonance circuit together with the primary conductor, and the high-frequency inverter is controlled so that the driving frequency becomes the resonance frequency of the resonance circuit. .
【0021】本発明によれば、高周波インバータの駆動
周波数が共振回路の共振周波数になるように制御される
ので、高周波電源部から負荷側を見たインピーダンスが
ほぼ純抵抗成分になる。従って、高周波電源部から負荷
側に供給する電力の力率をほぼ「1」近くにして効率的
な電力伝送を行うことができる。According to the present invention, since the driving frequency of the high-frequency inverter is controlled to be the resonance frequency of the resonance circuit, the impedance when the load side is viewed from the high-frequency power supply becomes substantially a pure resistance component. Therefore, the power factor of the power supplied from the high-frequency power supply unit to the load side can be made substantially close to “1”, and efficient power transmission can be performed.
【0022】また、上記の発明における好ましい態様と
して、高周波電源部は、スイッチング素子で構成される
高周波インバータと、周波数制御部から出力される信号
に応答してインダクタンス値が制御される可飽和インダ
クタとを有することを特徴とする。In a preferred aspect of the present invention, the high-frequency power supply includes a high-frequency inverter including a switching element and a saturable inductor whose inductance is controlled in response to a signal output from the frequency controller. It is characterized by having.
【0023】更に、高周波電源部は、1次導線及び可飽
和インダクタと共に共振回路を構成する1次コンデンサ
を有し、可飽和インダクタは、共振回路の共振周波数が
高周波インバータの駆動周波数になるように制御される
ことを特徴とする。Further, the high-frequency power supply section has a primary capacitor which forms a resonance circuit together with the primary conductor and the saturable inductor, and the saturable inductor has a resonance frequency of the resonance circuit equal to a driving frequency of the high-frequency inverter. It is characterized by being controlled.
【0024】本発明によれば、可飽和インダクタは、共
振回路の共振周波数が高周波インバータの駆動周波数に
なるように制御されるので、高周波電源部から負荷側を
見たインピーダンスがほぼ純抵抗成分になる。従って、
高周波電源部から負荷側に供給する電力の力率をほぼ
「1」近くにして効率的な電力伝送を行うことができ
る。According to the present invention, the saturable inductor is controlled so that the resonance frequency of the resonance circuit becomes equal to the drive frequency of the high-frequency inverter. Become. Therefore,
By setting the power factor of the power supplied from the high-frequency power supply unit to the load side to approximately "1", efficient power transmission can be performed.
【0025】また、上記の発明における好ましい態様と
して、高周波電源部は、スイッチング素子で構成される
高周波インバータと、周波数制御部から出力される信号
に応答して容量値が制御される可変キャパシタとを有す
ることを特徴とする。In a preferred aspect of the present invention, the high-frequency power supply includes a high-frequency inverter including a switching element and a variable capacitor whose capacitance is controlled in response to a signal output from the frequency controller. It is characterized by having.
【0026】更に、高周波電源部は、1次導線及び可変
キャパシタと共に共振回路を構成する1次コンデンサを
有し、可変キャパシタは、共振回路の共振周波数が高周
波インバータの駆動周波数になるように制御されること
を特徴とする。Further, the high-frequency power supply has a primary capacitor constituting a resonance circuit together with the primary conductor and the variable capacitor, and the variable capacitor is controlled such that the resonance frequency of the resonance circuit becomes the driving frequency of the high-frequency inverter. It is characterized by that.
【0027】本発明によれば、可変キャパシタは、共振
回路の共振周波数が高周波インバータの駆動周波数にな
るように制御されるので、高周波電源部から負荷側を見
たインピーダンスがほぼ純抵抗成分になる。従って、高
周波電源部から負荷側に供給する電力の力率をほぼ
「1」近くにして効率的な電力伝送を行うことができ
る。According to the present invention, since the variable capacitor is controlled such that the resonance frequency of the resonance circuit becomes equal to the drive frequency of the high-frequency inverter, the impedance seen from the high-frequency power supply to the load side becomes substantially a pure resistance component. . Therefore, the power factor of the power supplied from the high-frequency power supply unit to the load side can be made substantially close to “1”, and efficient power transmission can be performed.
【0028】[0028]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態例を説明する。しかしながら、かかる実施の形
態例が、本発明の技術的範囲を限定するものではない。Embodiments of the present invention will be described below with reference to the drawings. However, such embodiments do not limit the technical scope of the present invention.
【0029】図1は、本発明の実施の形態の非接触給電
装置の構成図である。本実施の形態の非接触給電装置
は、固定設備である給電側回路15(1次側)と、移動
体に設けられる受電側回路16(2次側)とで構成さ
れ、給電側回路15は、商用周波数の交流電源部1と、
交流電源部1から給電される交流電力を直流電力に変換
する直流電源部2と、直流電源部2から出力される直流
電力を周波数1〜50kHz程度の高周波電力に逆変換す
る電流型インバータ部5aと、電流型インバータ部5a
から出力される高周波電力を絶縁するトランス4と、ト
ランス4で絶縁された高周波電力を受電側回路16に非
接触で供給する1次導線3と、1次導線3と並列に設け
られて給電側の共振回路を構成する1次コンデンサ6a
とを有する。FIG. 1 is a configuration diagram of a contactless power supply device according to an embodiment of the present invention. The contactless power supply device according to the present embodiment includes a power supply side circuit 15 (primary side) which is a fixed facility and a power reception side circuit 16 (secondary side) provided in a moving body. , A commercial frequency AC power supply unit 1,
DC power supply unit 2 for converting AC power supplied from AC power supply unit 1 to DC power, and current-type inverter unit 5a for inversely converting DC power output from DC power supply unit 2 to high-frequency power having a frequency of about 1 to 50 kHz. And the current type inverter section 5a
4 that insulates the high-frequency power output from the power supply, the primary conductor 3 that supplies the high-frequency power insulated by the transformer 4 to the power receiving side circuit 16 in a non-contact manner, and the power supply side that is provided in parallel with the primary conductor 3. Primary capacitor 6a constituting the resonance circuit of FIG.
And
【0030】また、給電側回路15には、負荷11の等
価的な抵抗成分の変化に応じて電流型インバータ部5a
の駆動周波数を変化させる周波数コントローラ13と、
周波数コントローラ13からの信号により電流型インバ
ータ部5aの導通のタイミングを制御する周波数制御装
置12とを有する。The power supply side circuit 15 includes a current type inverter 5a in accordance with a change in an equivalent resistance component of the load 11.
A frequency controller 13 for changing the driving frequency of
And a frequency control device 12 that controls the timing of conduction of the current-type inverter unit 5a by a signal from the frequency controller 13.
【0031】電流型インバータ部5aは、ブリッジ接続
されたサイリスタ又はGTO(ゲート・ターンオフ・サ
イリスタ)等のスイッチング素子により構成され、周波
数制御装置12から出力されるゲート信号のタイミング
でスイッチング素子が制御され、ゲート信号のタイミン
グに対応した周波数の高周波電力を出力する。The current type inverter section 5a is composed of a switching element such as a thyristor or a GTO (gate turn-off thyristor) connected in a bridge, and the switching element is controlled at the timing of a gate signal output from the frequency control device 12. And outputs high-frequency power having a frequency corresponding to the timing of the gate signal.
【0032】一方、受電側回路16は、給電側回路15
の1次導線3から電磁誘導作用により非接触状態で高周
波電力を受電する受電コイル8と、受電コイル8に並列
に設けられて受電側の共振回路を構成する2次コンデン
サ9と、負荷11の等価的な抵抗成分を検出する抵抗検
出回路14と、受電コイル8で受電した高周波電力を整
流する整流部7と、整流部7から出力される直流電力を
直流変換または周波数変換する2次電源部10と、2次
電源部10からの電力供給により動作する移動体走行用
のモータ等の負荷11とを有する。On the other hand, the power receiving side circuit 16 is
A power receiving coil 8 for receiving high-frequency power in a non-contact state from the primary conductor 3 by electromagnetic induction, a secondary capacitor 9 provided in parallel with the power receiving coil 8 to form a power receiving side resonance circuit, and a load 11. A resistance detection circuit 14 for detecting an equivalent resistance component, a rectification unit 7 for rectifying high-frequency power received by the power receiving coil 8, and a secondary power supply unit for DC-converting or frequency-converting DC power output from the rectification unit 7. And a load 11 such as a motor for moving a mobile object that operates by power supply from the secondary power supply unit 10.
【0033】抵抗検出回路14は、具体的には、受電コ
イル8及び2次コンデンサ9に並列に接続される負荷電
圧計及び直列に接続される負荷電流計、又はインピーダ
ンス・メータなどにより、抵抗検出回路14から負荷側
を見たインピーダンスを求め、そのインピーダンスから
整流部7及び2次電源部10の抵抗成分を差し引いて負
荷11の等価的な抵抗成分を求める。そして、負荷11
の等価的な抵抗成分を、無線通信等により非接触で給電
側回路15の周波数コントローラ13に送信する。Specifically, the resistance detection circuit 14 detects the resistance using a load voltmeter connected in parallel to the power receiving coil 8 and the secondary capacitor 9 and a load ammeter connected in series, or an impedance meter. The impedance seen from the load side is obtained from the circuit 14, and the resistance components of the rectifier 7 and the secondary power supply 10 are subtracted from the impedance to obtain an equivalent resistance component of the load 11. And the load 11
Is transmitted to the frequency controller 13 of the power supply side circuit 15 in a non-contact manner by wireless communication or the like.
【0034】このように本実施の形態の非接触給電装置
では、抵抗検出回路14により負荷11の等価的な抵抗
成分を検出し、検出した抵抗成分の情報を周波数コント
ローラ13に送り、周波数制御装置12は、周波数コン
トローラ13からの指令信号により、電流型インバータ
部5aから負荷側を見たインピーダンスがほぼ純抵抗成
分になるように、電流型インバータ部5aの駆動周波数
を制御する。As described above, in the contactless power supply device of the present embodiment, the equivalent resistance component of the load 11 is detected by the resistance detection circuit 14, and information on the detected resistance component is sent to the frequency controller 13. Reference numeral 12 controls the drive frequency of the current-type inverter unit 5a in accordance with a command signal from the frequency controller 13 such that the impedance when the load is viewed from the current-type inverter unit 5a is substantially a pure resistance component.
【0035】このため、電流型インバータ部5aから負
荷側に供給する電力の力率をほぼ「1」近くに制御する
ことができ、供給する皮相電力(電圧×電流)に対して
負荷11で消費される電力の効率をほぼ100%近くに
して、効率的な電力伝送を行うことができる。For this reason, the power factor of the electric power supplied from the current-type inverter unit 5a to the load side can be controlled to approximately "1", and the apparent power (voltage × current) supplied to the load 11 is consumed. Power efficiency can be made nearly 100%, and efficient power transmission can be performed.
【0036】図2は、本発明の実施の形態の非接触給電
装置の他の構成例である。この非接触給電装置では、図
1の非接触給電装置と異なり、電圧型インバータ部5b
により高周波電力が生成され、給電側回路15の1次コ
ンデンサ6bが1次導線3と直列に接続される。FIG. 2 shows another configuration example of the non-contact power supply device according to the embodiment of the present invention. This contactless power supply device differs from the contactless power supply device of FIG.
As a result, high-frequency power is generated, and the primary capacitor 6 b of the power supply side circuit 15 is connected in series with the primary conductor 3.
【0037】本実施の形態の非接触給電装置において
も、負荷11の等価的な抵抗成分に応じて電圧型インバ
ータ部5bの駆動周波数を制御することにより、電圧型
インバータ部5bから負荷側に供給する電力の力率をほ
ぼ「1」近くに制御することができ、効率的な電力伝送
を行うことができる。Also in the contactless power supply device of the present embodiment, the driving frequency of the voltage type inverter unit 5b is controlled according to the equivalent resistance component of the load 11, so that the voltage type inverter unit 5b supplies the load to the load. The power factor of the power to be transmitted can be controlled to be almost "1", and efficient power transmission can be performed.
【0038】次に、本発明の実施の形態の非接触給電装
置において、負荷11の抵抗成分RLが変化した場合の
力率位相θ及び駆動周波数frの変化の様子を、従来例
と比較しながら説明する。Next, in the contactless power supply device according to the embodiment of the present invention, the change of the power factor phase θ and the drive frequency fr when the resistance component RL of the load 11 changes will be compared with the conventional example. explain.
【0039】図3は、図1及び図8に示した非接触給電
装置の等価回路である。この等価回路では、図1及び図
8の電流型インバータ部5aの出力電圧をV5、電流型
インバータ部5aの出力抵抗をR0、1次導線3のイン
ダクタンス成分をLax及びLline、受電コイル8の抵抗
成分をR1、受電コイル8の1次側漏れインダクタンス
をL1、受電コイル8の1次/2次結合インダクタンス
をLM、受電コイル8の2次側漏れインダクタンスをL
2、受電コイル8の2次コイル及び整流部7並びに2次
電源部10の抵抗成分をR2、負荷11の抵抗成分をR
Lとする。FIG. 3 is an equivalent circuit of the non-contact power supply device shown in FIGS. In this equivalent circuit, the output voltage of the current-type inverter 5a in FIGS. 1 and 8 is V5, the output resistance of the current-type inverter 5a is R0, the inductance components of the primary conductor 3 are Lax and Lline, the resistance of the receiving coil 8 is The component is R1, the primary leakage inductance of the receiving coil 8 is L1, the primary / secondary coupling inductance of the receiving coil 8 is LM, and the secondary leakage inductance of the receiving coil 8 is L.
2. The resistance component of the secondary coil and the rectification unit 7 of the receiving coil 8 and the secondary power supply unit 10 is R2, and the resistance component of the load 11 is R2.
L.
【0040】図3に示す等価回路において、従来のよう
に、電流型インバータ部5aの駆動周波数frを、例え
ば、26kHzに固定して運転動作をさせて負荷抵抗R
Lを変化させた場合に、電流型インバータ部5aから負
荷側を見た力率位相θ(deg)の変化の様子を図4に示
す。In the equivalent circuit shown in FIG. 3, the driving frequency fr of the current-type inverter unit 5a is fixed to, for example, 26 kHz, and the load resistance R
FIG. 4 shows how the power factor phase θ (deg) changes when the load side is viewed from the current-type inverter section 5a when L is changed.
【0041】即ち、図4は、電流型インバータ部5aの
駆動周波数frを26kHzに固定し、負荷抵抗RLが
1Ωから1000Ωまで変化した場合に、電流型インバ
ータ部5aから負荷側を見た力率位相θが、0〜約70
degと大きく変化していることを示す。That is, FIG. 4 shows a case where the drive frequency fr of the current-type inverter 5a is fixed at 26 kHz and the power factor when the load side is viewed from the current-type inverter 5a when the load resistance RL changes from 1Ω to 1000Ω. Phase θ is 0 to about 70
It shows that it changes greatly with deg.
【0042】このように、電流型インバータ部5aの駆
動周波数frを固定している場合は、負荷の等価的な抵
抗成分が変化した場合に、電流型インバータ部5aから
負荷側を見た力率位相θが大きく変動するため、電流型
インバータ部5aでは、負荷での消費電力に対して、最
大1/cos(70deg)=2.9倍の皮相電力が必要となる。As described above, when the driving frequency fr of the current-type inverter unit 5a is fixed, when the equivalent resistance component of the load changes, the power factor as viewed from the current-type inverter unit 5a to the load side is changed. Since the phase θ fluctuates greatly, the current-type inverter unit 5a needs apparent power that is at most 1 / cos (70 deg) = 2.9 times the power consumption at the load.
【0043】一方、本実施の形態の非接触給電装置にお
いて、負荷の等価的な抵抗成分を検出し、電流型インバ
ータ部5aの駆動周波数frを制御した場合に、負荷の
変動に対応する電流型インバータ部5aから負荷側を見
た力率位相θ(deg)の変化の様子を図5に示す。On the other hand, in the non-contact power supply device of the present embodiment, when the equivalent resistance component of the load is detected and the driving frequency fr of the current type inverter unit 5a is controlled, the current type corresponding to the load variation is controlled. FIG. 5 shows how the power factor phase θ (deg) changes when the load side is viewed from the inverter unit 5a.
【0044】即ち、図5は、負荷抵抗RLが1Ωから1
000Ωまで変化した場合に、電流型インバータ部5a
の駆動周波数frを図示のように変化させると、電流型
インバータ部5aから負荷側を見た力率位相θの変動が
約2deg以内に抑えられることを示す。That is, FIG. 5 shows that the load resistance RL is changed from 1Ω to 1Ω.
000Ω, the current-type inverter 5a
When the driving frequency fr is changed as shown in the figure, it is shown that the fluctuation of the power factor phase θ when the load side is viewed from the current-type inverter unit 5a can be suppressed within about 2 deg.
【0045】従って、負荷の等価的な抵抗成分を検出
し、電流型インバータ部5aの駆動周波数frを制御し
た場合には、負荷抵抗の変動に対して力率位相θの変動
が約2deg以内となり、電流型インバータ部5aに負荷で
の消費電力とほぼ同等の皮相電力を供給すればよい。Therefore, when the equivalent resistance component of the load is detected and the driving frequency fr of the current-type inverter unit 5a is controlled, the variation of the power factor phase θ is within about 2 deg with respect to the variation of the load resistance. It is sufficient to supply apparent current approximately equal to the power consumed by the load to the current-type inverter unit 5a.
【0046】このように本実施の形態の非接触給電装置
では、電流型インバータ部5aから負荷側を見たインピ
ーダンスがほぼ純抵抗成分になるように、電流型インバ
ータ部5aの駆動周波数を制御するので、電流型インバ
ータ部5aから負荷側に供給する電力の力率をほぼ
「1」近くにすることができる。従って、供給する皮相
電力(電圧×電流)に対して負荷11で消費される電力
の効率をほぼ100%近くにして、効率的な電力伝送を
行うことができる。As described above, in the contactless power supply device of the present embodiment, the drive frequency of the current-type inverter unit 5a is controlled so that the impedance seen from the current-type inverter unit 5a to the load side becomes substantially a pure resistance component. Therefore, the power factor of the electric power supplied from the current-type inverter unit 5a to the load side can be made substantially close to "1". Therefore, the efficiency of the power consumed by the load 11 with respect to the apparent power (voltage × current) to be supplied can be made nearly 100%, and efficient power transmission can be performed.
【0047】次に、本発明の実施の形態の非接触給電装
置の他の構成例を図6に示す。この非接触給電装置は、
図1とほぼ同様の構成であるが、1次導線3と直列に可
飽和インダクタ15を設け、可飽和インダクタ15のイ
ンダクタンス値を、抵抗検出回路14が検出する負荷1
1の等価的な抵抗成分に対応して変化させる。なお、電
流型インバータ部5aの駆動周波数frは、所定の値に
固定される。Next, another configuration example of the non-contact power supply device according to the embodiment of the present invention is shown in FIG. This wireless power transfer device
Although the configuration is substantially the same as that of FIG. 1, a saturable inductor 15 is provided in series with the primary conductor 3, and the inductance value of the saturable inductor 15 is detected by the resistance detection circuit 14.
It is changed corresponding to the equivalent resistance component of 1. The drive frequency fr of the current-type inverter 5a is fixed at a predetermined value.
【0048】図6の非接触給電装置において、給電側回
路15の共振回路は、1次コンデンサ6aと1次導線3
及び可飽和インダクタ15で構成され、その共振周波数
fo(Hz)は、次式(1)で表される。In the contactless power supply device shown in FIG. 6, the resonance circuit of the power supply side circuit 15 includes a primary capacitor 6a and a primary conductor 3
And the saturable inductor 15, and its resonance frequency fo (Hz) is expressed by the following equation (1).
【0049】 fo=1/〔2π・[(L+Ls)・C]1/2〕 … 式(1) 但し、式(1)において、Lは、受電側回路16を含む
1次導線3のインダクタンス値(単位はH)、Lsは、
可飽和インダクタ15のインダクタンス値、Cは、1次
コンデンサ6aの静電容量(単位はF)である。Fo = 1 / [2π · [(L + Ls) · C]1/2 ] (1) where L is the inductance value of the primary conductor 3 including the power receiving side circuit 16. (Unit is H), Ls is
The inductance value C of the saturable inductor 15 is the capacitance (unit: F) of the primary capacitor 6a.
【0050】本実施の形態の非接触給電装置では、抵抗
検出回路14で検出した負荷11の等価的な抵抗成分に
対応して、可飽和インダクタ15のインダクタンス値を
制御することにより、給電側回路15の共振回路の共振
周波数foを電流型インバータ5aの駆動周波数frに
一致させることが可能となる。In the contactless power supply device of the present embodiment, the power supply side circuit is controlled by controlling the inductance value of the saturable inductor 15 in accordance with the equivalent resistance component of the load 11 detected by the resistance detection circuit 14. The resonance frequency fo of the 15 resonance circuits can be matched with the drive frequency fr of the current-type inverter 5a.
【0051】このため、電流型インバータ部5aから負
荷側に供給する電力の力率をほぼ「1」近くにすること
ができ、供給する皮相電力(電圧×電流)に対して負荷
11で消費される電力の効率をほぼ100%近くにし
て、効率的な電力伝送を行うことができる。For this reason, the power factor of the power supplied from the current-type inverter unit 5a to the load side can be made substantially close to “1”, and the apparent power (voltage × current) supplied to the load 11 is consumed. Power efficiency can be made nearly 100%, and efficient power transmission can be performed.
【0052】図7は、本発明の実施の形態の非接触給電
装置の他の構成例である。この非接触給電装置は、図2
とほぼ同様の構成であるが、1次導線3と直列に可変キ
ャパシタ16を設け、抵抗検出回路14が検出する負荷
11の等価的な抵抗成分に対応して、可変キャパシタ1
6の容量値を変化させる。なお、電圧型インバータ部5
bの駆動周波数frは、所定の値に固定される。FIG. 7 shows another configuration example of the non-contact power supply device according to the embodiment of the present invention. FIG.
However, a variable capacitor 16 is provided in series with the primary conductor 3, and the variable capacitor 1 corresponds to the equivalent resistance component of the load 11 detected by the resistance detection circuit 14.
6 is changed. The voltage type inverter unit 5
The drive frequency fr of b is fixed to a predetermined value.
【0053】図7の非接触給電装置において、給電側回
路15の共振回路は、1次コンデンサ6bと可変キャパ
シタ16及び1次導線3で構成され、その共振周波数f
o(Hz)は、次式(2)で表される。In the contactless power supply device of FIG. 7, the resonance circuit of the power supply side circuit 15 is composed of the primary capacitor 6b, the variable capacitor 16 and the primary conductor 3, and has a resonance frequency f.
o (Hz) is represented by the following equation (2).
【0054】 fo=1/〔2π・[L・(C+Cs)]1/2〕 … 式(2) 但し、式(2)において、Lは、受電側回路16を含む
1次導線3のインダクタンス値(単位はH)、Cは、1
次コンデンサ6bの容量値(単位はF)、Csは、可変
キャパシタ16の容量値である。Fo = 1 / [2π · [L · (C + Cs)]1/2 ] (2) where L is the inductance value of the primary conductor 3 including the power receiving side circuit 16. (Unit is H), C is 1
The capacitance value (unit is F) of the next capacitor 6b and Cs is the capacitance value of the variable capacitor 16.
【0055】本実施の形態の非接触給電装置では、抵抗
検出回路14で検出した負荷11の等価的な抵抗成分に
対応して、可変キャパシタ16の容量値を制御すること
により、給電側回路15の共振回路の共振周波数foを
電圧型インバータ5bの駆動周波数frに一致させるこ
とが可能となる。In the contactless power supply device of the present embodiment, by controlling the capacitance value of the variable capacitor 16 in accordance with the equivalent resistance component of the load 11 detected by the resistance detection circuit 14, the power supply side circuit 15 Can be matched with the drive frequency fr of the voltage-type inverter 5b.
【0056】このため、電圧型インバータ部5bから負
荷側に供給する電力の力率をほぼ「1」近くに制御する
ことができ、供給する皮相電力(電圧×電流)に対して
負荷11で消費される電力の効率をほぼ100%近くに
して、効率的な電力伝送を行うことができる。Therefore, the power factor of the power supplied from the voltage-type inverter unit 5b to the load side can be controlled to be substantially close to “1”, and the apparent power (voltage × current) supplied to the load 11 is consumed. Power efficiency can be made nearly 100%, and efficient power transmission can be performed.
【0057】本発明の保護範囲は、上記の実施の形態に
限定されず、特許請求の範囲に記載された発明とその均
等物に及ぶものである。The scope of protection of the present invention is not limited to the above embodiments, but extends to the inventions described in the claims and their equivalents.
【0058】[0058]
【発明の効果】以上、本発明によれば、抵抗検出回路が
検出した負荷の抵抗成分に応じて、高周波電源部が生成
する高周波電力の周波数を制御するので、高周波電源部
から出力される高周波電力の力率をほぼ「1」近くにす
ることができる。従って、高周波電源部が供給する皮相
電力(電圧×電流)に対して負荷で消費される電力の効
率が高くなり、効率的な電力伝送を行うことができる。As described above, according to the present invention, the frequency of the high-frequency power generated by the high-frequency power supply is controlled in accordance with the resistance component of the load detected by the resistance detection circuit. The power factor of the electric power can be made substantially close to “1”. Accordingly, the efficiency of the power consumed by the load with respect to the apparent power (voltage × current) supplied by the high-frequency power supply unit increases, and efficient power transmission can be performed.
【0059】また、本発明によれば、高周波インバータ
の駆動周波数が共振回路の共振周波数になるように制御
されるので、高周波電源部から負荷側を見たインピーダ
ンスがほぼ純抵抗成分になる。従って、高周波電源部か
ら負荷側に供給する電力の力率をほぼ「1」近くにして
効率的な電力伝送を行うことができる。Further, according to the present invention, since the driving frequency of the high-frequency inverter is controlled to be equal to the resonance frequency of the resonance circuit, the impedance viewed from the high-frequency power supply to the load side becomes substantially a pure resistance component. Therefore, the power factor of the power supplied from the high-frequency power supply unit to the load side can be made substantially close to “1”, and efficient power transmission can be performed.
【0060】また、本発明によれば、可飽和インダクタ
は、共振回路の共振周波数が高周波インバータの駆動周
波数になるように制御されるので、高周波電源部から負
荷側を見たインピーダンスがほぼ純抵抗成分になる。従
って、高周波電源部から負荷側に供給する電力の力率を
ほぼ「1」近くにして効率的な電力伝送を行うことがで
きる。Further, according to the present invention, the saturable inductor is controlled such that the resonance frequency of the resonance circuit is equal to the drive frequency of the high-frequency inverter. Become an ingredient. Therefore, the power factor of the power supplied from the high-frequency power supply unit to the load side can be made substantially close to “1”, and efficient power transmission can be performed.
【0061】更に、本発明によれば、可変キャパシタ
は、共振回路の共振周波数が高周波インバータの駆動周
波数になるように制御されるので、高周波電源部から負
荷側を見たインピーダンスがほぼ純抵抗成分になる。従
って、高周波電源部から負荷側に供給する電力の力率を
ほぼ「1」近くにして効率的な電力伝送を行うことがで
きる。Further, according to the present invention, since the variable capacitor is controlled so that the resonance frequency of the resonance circuit becomes equal to the driving frequency of the high-frequency inverter, the impedance when the load is viewed from the high-frequency power supply section is substantially a pure resistance component. become. Therefore, the power factor of the power supplied from the high-frequency power supply unit to the load side can be made substantially close to “1”, and efficient power transmission can be performed.
【図1】本発明の実施の形態の非接触給電装置の構成図
(1)である。FIG. 1 is a configuration diagram (1) of a contactless power supply device according to an embodiment of the present invention.
【図2】本発明の実施の形態の非接触給電装置の構成図
(2)である。FIG. 2 is a configuration diagram (2) of the wireless power supply device according to the embodiment of the present invention.
【図3】非接触給電装置の等価回路図である。FIG. 3 is an equivalent circuit diagram of the wireless power supply device.
【図4】従来の非接触給電装置の特性図である。FIG. 4 is a characteristic diagram of a conventional wireless power supply device.
【図5】本発明の実施の形態の非接触給電装置の特性図
である。FIG. 5 is a characteristic diagram of the wireless power supply device according to the embodiment of the present invention.
【図6】本発明の実施の形態の非接触給電装置の構成図
(3)である。FIG. 6 is a configuration diagram (3) of the wireless power supply device according to the embodiment of the present invention.
【図7】本発明の実施の形態の非接触給電装置の構成図
(4)である。FIG. 7 is a configuration diagram (4) of the wireless power supply device according to the embodiment of the present invention.
【図8】従来の非接触給電装置の構成図(1)である。FIG. 8 is a configuration diagram (1) of a conventional wireless power supply device.
【図9】従来の非接触給電装置の構成図(2)である。FIG. 9 is a configuration diagram (2) of a conventional wireless power supply device.
【図10】1次導線及び受電コイルの概略構成図であ
る。FIG. 10 is a schematic configuration diagram of a primary conductor and a power receiving coil.
1 交流電源部 2 直流電源部 3 1次導線 4 トランス 5a 電流型インバータ部 5b 電圧型インバータ部 6a、6b 1次コンデンサ 7 整流部 8 受電コイル 9 2次コンデンサ 10 2次電源部 11 負荷 12 周波数制御装置 13 周波数コントローラ 14 抵抗検出回路 15 可飽和インダクタ 16 可変キャパシタ DESCRIPTION OF SYMBOLS 1 AC power supply part 2 DC power supply part 3 Primary conductor 4 Transformer 5a Current type inverter part 5b Voltage type inverter part 6a, 6b Primary capacitor 7 Rectification part 8 Receiving coil 9 Secondary capacitor 10 Secondary power supply part 11 Load 12 Frequency control Device 13 Frequency controller 14 Resistance detection circuit 15 Saturable inductor 16 Variable capacitor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 若元 郁夫 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 戸中 英樹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 5H007 AA02 AA07 CB04 CB09 CB25 CC32 DA03 DA05 DA06 DC05 EA09 5H105 AA20 BA09 BB05 CC02 CC12 CC19 DD10 EE19 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Ikuo Wakamoto, Inventor 4-62-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Inside Mitsubishi Heavy Industries, Ltd. F-term (reference) in Mitsubishi Heavy Industries, Ltd. Hiroshima R & D Co., Ltd. 4-chome No. 6-22 No. 5H007 AA02 AA07 CB04 CB09 CB25 CC32 DA03 DA05 DA06 DC05 EA09 5H105 AA20 BA09 BB05 CC02 CC12 CC19 DD10 EE19
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001064308AJP2002272134A (en) | 2001-03-08 | 2001-03-08 | Non-contact feeding device of high frequency power, and method therefor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001064308AJP2002272134A (en) | 2001-03-08 | 2001-03-08 | Non-contact feeding device of high frequency power, and method therefor |
| Publication Number | Publication Date |
|---|---|
| JP2002272134Atrue JP2002272134A (en) | 2002-09-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001064308AWithdrawnJP2002272134A (en) | 2001-03-08 | 2001-03-08 | Non-contact feeding device of high frequency power, and method therefor |
| Country | Link |
|---|---|
| JP (1) | JP2002272134A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007029438A1 (en)* | 2005-09-01 | 2007-03-15 | National University Corporation Saitama University | Noncontact power feeder |
| WO2007138372A1 (en)* | 2006-05-29 | 2007-12-06 | Tetra Laval Holdings & Finance Sa | Sealing device and method for producing sealed packages of a pourable food product |
| JP2009528812A (en)* | 2006-02-28 | 2009-08-06 | オークランド ユニサービシズ リミテッド | Single phase power supply for inductively coupled power transfer system |
| JP2009247114A (en)* | 2008-03-31 | 2009-10-22 | Panasonic Electric Works Co Ltd | Capacitance adjusting device for non-contact feeder system |
| JP2010068657A (en)* | 2008-09-11 | 2010-03-25 | Yazaki Corp | Wireless power transmitting device and resonance frequency adjustment method |
| JP2010515407A (en)* | 2006-12-20 | 2010-05-06 | アナロジック コーポレーション | Non-contact rotary power transmission system |
| WO2011086445A2 (en) | 2010-01-12 | 2011-07-21 | Toyota Jidosha Kabushiki Kaisha | Power transmission system and power supply device for vehicles |
| WO2011148254A3 (en)* | 2010-05-26 | 2012-01-12 | Toyota Jidosha Kabushiki Kaisha | Power feeding system and vehicle |
| EP2475073A1 (en)* | 2011-01-06 | 2012-07-11 | Kabushiki Kaisha Toyota Jidoshokki | Non-contact power transmission apparatus and power transmission method therefor |
| WO2012111085A1 (en) | 2011-02-15 | 2012-08-23 | トヨタ自動車株式会社 | Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein, non-contact power supply equipment, method for controlling non-contact power receiving apparatus, and method for controlling non-contact power supply equipment |
| JP2013501665A (en)* | 2009-08-07 | 2013-01-17 | オークランド ユニサービシズ リミテッド | Electric vehicle system that obtains electric energy from the road |
| JP5263391B2 (en)* | 2009-05-14 | 2013-08-14 | トヨタ自動車株式会社 | Non-contact power receiving apparatus and vehicle equipped with the same |
| WO2013145835A1 (en)* | 2012-03-28 | 2013-10-03 | ソニー株式会社 | Power reception device, electric circuit, and power feeding device |
| JP2013240189A (en)* | 2012-05-15 | 2013-11-28 | Ihi Corp | Transmitter and frequency change method |
| JP2013243890A (en)* | 2012-05-22 | 2013-12-05 | Heads Corp | Contactless feeding apparatus |
| EP2346141A4 (en)* | 2008-09-25 | 2014-05-07 | Toyota Motor Co Ltd | POWER SUPPLY SYSTEM AND ELECTRIC VEHICLE |
| US8816537B2 (en) | 2010-01-18 | 2014-08-26 | Toyota Jidosha Kabushiki Kaisha | Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle |
| JP2014226033A (en)* | 2003-02-04 | 2014-12-04 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Adaptive induction power supply with communication means |
| WO2015016146A1 (en)* | 2013-08-01 | 2015-02-05 | 三菱電機株式会社 | Gate-power-supply device and semiconductor circuit breaker using same |
| US9190874B2 (en) | 2003-02-04 | 2015-11-17 | Access Business Group International Llc | Adaptive inductive power supply |
| EP2947749A1 (en) | 2014-04-22 | 2015-11-25 | Toyota Jidosha Kabushiki Kaisha | Non-contact power transmitting and receiving system |
| EP2978098A1 (en) | 2014-07-11 | 2016-01-27 | Funai Electric Co., Ltd. | Power transfer unit |
| US9299493B2 (en) | 1999-06-21 | 2016-03-29 | Access Business Group International Llc | Inductively coupled ballast circuit |
| WO2016047137A1 (en)* | 2014-09-26 | 2016-03-31 | パナソニックIpマネジメント株式会社 | Power feeding device |
| JP2016101079A (en)* | 2014-11-26 | 2016-05-30 | パナソニックIpマネジメント株式会社 | Contactless power supply system |
| KR20170007744A (en) | 2014-05-14 | 2017-01-20 | 더블유큐씨 가부시키가이샤 | Wireless power transfer system |
| US9905358B2 (en) | 2013-10-31 | 2018-02-27 | Funai Electric Co., Ltd. | Contactless power feeding apparatus and contactless power feeding system |
| JP2018088806A (en)* | 2009-05-12 | 2018-06-07 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | Inductive power transfer apparatus and electric autocycle charger including the inductive power transfer apparatus |
| KR101904686B1 (en)* | 2008-03-05 | 2018-10-04 | 퀄컴 인코포레이티드 | Packaging and details of a wireless power device |
| WO2018229841A1 (en)* | 2017-06-12 | 2018-12-20 | 中国電力株式会社 | Wireless power supply device |
| JP2019030083A (en)* | 2017-07-27 | 2019-02-21 | 学校法人東京理科大学 | Electric device |
| CN111884355A (en)* | 2020-08-19 | 2020-11-03 | 华中科技大学 | Non-contact electric energy transmission device applied to CT system and CT system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10014722B2 (en) | 1999-06-21 | 2018-07-03 | Philips Ip Ventures B.V. | Inductively coupled ballast circuit |
| US9299493B2 (en) | 1999-06-21 | 2016-03-29 | Access Business Group International Llc | Inductively coupled ballast circuit |
| US9368976B2 (en) | 1999-06-21 | 2016-06-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
| US9397524B2 (en) | 1999-06-21 | 2016-07-19 | Access Business Group International Llc | Inductively coupled ballast circuit |
| US9590456B2 (en) | 1999-06-21 | 2017-03-07 | Access Business Group International Llc | Inductively coupled ballast circuit |
| JP2014226033A (en)* | 2003-02-04 | 2014-12-04 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Adaptive induction power supply with communication means |
| US9190874B2 (en) | 2003-02-04 | 2015-11-17 | Access Business Group International Llc | Adaptive inductive power supply |
| US9246356B2 (en) | 2003-02-04 | 2016-01-26 | Access Business Group International Llc | Adaptive inductive power supply |
| US10505385B2 (en) | 2003-02-04 | 2019-12-10 | Philips Ip Ventures B.V. | Adaptive inductive power supply |
| US10439437B2 (en) | 2003-02-04 | 2019-10-08 | Philips Ip Ventures B.V. | Adaptive inductive power supply with communication |
| US9906049B2 (en) | 2003-02-04 | 2018-02-27 | Access Business Group International Llc | Adaptive inductive power supply |
| WO2007029438A1 (en)* | 2005-09-01 | 2007-03-15 | National University Corporation Saitama University | Noncontact power feeder |
| US8164925B2 (en) | 2005-09-01 | 2012-04-24 | National University Corporation Saitama University | Non-contact power feeder |
| JP4644827B2 (en)* | 2005-09-01 | 2011-03-09 | 国立大学法人埼玉大学 | Non-contact power feeding device |
| JPWO2007029438A1 (en)* | 2005-09-01 | 2009-03-12 | 国立大学法人埼玉大学 | Non-contact power feeding device |
| JP2009528812A (en)* | 2006-02-28 | 2009-08-06 | オークランド ユニサービシズ リミテッド | Single phase power supply for inductively coupled power transfer system |
| US8844250B2 (en) | 2006-05-29 | 2014-09-30 | Tetra Laval Holdings & Finance S.A. | Sealing device and method for producing sealed packages of a pourable food product |
| JP2009538791A (en)* | 2006-05-29 | 2009-11-12 | テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム | Sealing apparatus and method for producing a sealed package of injectable food |
| WO2007138372A1 (en)* | 2006-05-29 | 2007-12-06 | Tetra Laval Holdings & Finance Sa | Sealing device and method for producing sealed packages of a pourable food product |
| EP2806437B1 (en)* | 2006-12-20 | 2018-11-28 | Analogic Corporation | Non-contact rotary power transfer system |
| JP2010515407A (en)* | 2006-12-20 | 2010-05-06 | アナロジック コーポレーション | Non-contact rotary power transmission system |
| KR101904686B1 (en)* | 2008-03-05 | 2018-10-04 | 퀄컴 인코포레이티드 | Packaging and details of a wireless power device |
| JP2009247114A (en)* | 2008-03-31 | 2009-10-22 | Panasonic Electric Works Co Ltd | Capacitance adjusting device for non-contact feeder system |
| JP2010068657A (en)* | 2008-09-11 | 2010-03-25 | Yazaki Corp | Wireless power transmitting device and resonance frequency adjustment method |
| EP2346141A4 (en)* | 2008-09-25 | 2014-05-07 | Toyota Motor Co Ltd | POWER SUPPLY SYSTEM AND ELECTRIC VEHICLE |
| JP2018088806A (en)* | 2009-05-12 | 2018-06-07 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | Inductive power transfer apparatus and electric autocycle charger including the inductive power transfer apparatus |
| JP5263391B2 (en)* | 2009-05-14 | 2013-08-14 | トヨタ自動車株式会社 | Non-contact power receiving apparatus and vehicle equipped with the same |
| JP2013501665A (en)* | 2009-08-07 | 2013-01-17 | オークランド ユニサービシズ リミテッド | Electric vehicle system that obtains electric energy from the road |
| US9421877B2 (en) | 2010-01-12 | 2016-08-23 | Toyota Jidosha Kabushiki Kaisha | Power transmission system and power supply device for vehicles |
| WO2011086445A3 (en)* | 2010-01-12 | 2011-12-01 | Toyota Jidosha Kabushiki Kaisha | Power transmission system and power supply device for vehicles |
| WO2011086445A2 (en) | 2010-01-12 | 2011-07-21 | Toyota Jidosha Kabushiki Kaisha | Power transmission system and power supply device for vehicles |
| US8816537B2 (en) | 2010-01-18 | 2014-08-26 | Toyota Jidosha Kabushiki Kaisha | Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle |
| WO2011148254A3 (en)* | 2010-05-26 | 2012-01-12 | Toyota Jidosha Kabushiki Kaisha | Power feeding system and vehicle |
| CN102905930B (en)* | 2010-05-26 | 2015-08-12 | 丰田自动车株式会社 | Feeding power system and vehicle |
| CN102905930A (en)* | 2010-05-26 | 2013-01-30 | 丰田自动车株式会社 | Power feeding system and vehicle |
| US8947046B2 (en) | 2010-05-26 | 2015-02-03 | Toyota Jidosha Kabushiki Kaisha | Power feeding system and vehicle |
| CN102593959A (en)* | 2011-01-06 | 2012-07-18 | 株式会社丰田自动织机 | Non-contact power transmission apparatus and power transmission method therefor |
| EP2475073A1 (en)* | 2011-01-06 | 2012-07-11 | Kabushiki Kaisha Toyota Jidoshokki | Non-contact power transmission apparatus and power transmission method therefor |
| JP2012143117A (en)* | 2011-01-06 | 2012-07-26 | Toyota Industries Corp | Non-contact power transmission device |
| WO2012111085A1 (en) | 2011-02-15 | 2012-08-23 | トヨタ自動車株式会社 | Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein, non-contact power supply equipment, method for controlling non-contact power receiving apparatus, and method for controlling non-contact power supply equipment |
| CN103370849A (en)* | 2011-02-15 | 2013-10-23 | 丰田自动车株式会社 | Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein, non-contact power supply equipment, method for controlling non-contact power receiving apparatus, and method for controlling non-contact |
| JPWO2012111085A1 (en)* | 2011-02-15 | 2014-07-03 | トヨタ自動車株式会社 | Non-contact power receiving device and vehicle equipped with the same, non-contact power feeding equipment, control method for non-contact power receiving device, and control method for non-contact power feeding equipment |
| US9559550B2 (en) | 2011-02-15 | 2017-01-31 | Toyota Jidosha Kabushiki Kaisha | Contactless power receiving apparatus and vehicle incorporating same, contactless power feeding facility, method of controlling contactless power receiving apparatus, and method of controlling contactless power feeding facility |
| US11101702B2 (en) | 2012-03-28 | 2021-08-24 | Sony Corporation | Power receiving device, electric circuit, and power supply device |
| US10381882B2 (en) | 2012-03-28 | 2019-08-13 | Sony Corporation | Power receiving device, electric circuit, and power supply device |
| WO2013145835A1 (en)* | 2012-03-28 | 2013-10-03 | ソニー株式会社 | Power reception device, electric circuit, and power feeding device |
| JPWO2013145835A1 (en)* | 2012-03-28 | 2015-12-10 | ソニー株式会社 | Power receiving device, electric circuit, and power feeding device |
| US9709690B2 (en) | 2012-03-28 | 2017-07-18 | Sony Corporation | Power receiving device, electric circuit, and power supply device |
| JP2013240189A (en)* | 2012-05-15 | 2013-11-28 | Ihi Corp | Transmitter and frequency change method |
| JP2013243890A (en)* | 2012-05-22 | 2013-12-05 | Heads Corp | Contactless feeding apparatus |
| JPWO2015016146A1 (en)* | 2013-08-01 | 2017-03-02 | 三菱電機株式会社 | Gate power supply device and semiconductor circuit breaker using the same |
| US9548664B2 (en) | 2013-08-01 | 2017-01-17 | Mitsubishi Electric Corporation | Gate-power-supply device and semiconductor circuit breaker using same |
| WO2015016146A1 (en)* | 2013-08-01 | 2015-02-05 | 三菱電機株式会社 | Gate-power-supply device and semiconductor circuit breaker using same |
| US9905358B2 (en) | 2013-10-31 | 2018-02-27 | Funai Electric Co., Ltd. | Contactless power feeding apparatus and contactless power feeding system |
| US9768622B2 (en) | 2014-04-22 | 2017-09-19 | Toyota Jidosha Kabushiki Kaisha | Non-contact power transmitting and receiving system |
| EP2947749A1 (en) | 2014-04-22 | 2015-11-25 | Toyota Jidosha Kabushiki Kaisha | Non-contact power transmitting and receiving system |
| EP3826141A1 (en) | 2014-05-14 | 2021-05-26 | WQC, Inc. | Wireless power transfer system |
| KR20170007744A (en) | 2014-05-14 | 2017-01-20 | 더블유큐씨 가부시키가이샤 | Wireless power transfer system |
| US11005300B2 (en) | 2014-05-14 | 2021-05-11 | WQC, Inc. | Wireless power transfer system |
| US10243406B2 (en) | 2014-05-14 | 2019-03-26 | WQC, Inc. | Wireless power transfer system |
| EP3487038A1 (en) | 2014-05-14 | 2019-05-22 | WQC, Inc. | Wireless power transfer system |
| KR20210010673A (en) | 2014-05-14 | 2021-01-27 | 더블유큐씨 가부시키가이샤 | Wireless power transfer system |
| US10547214B2 (en) | 2014-05-14 | 2020-01-28 | WQC, Inc. | Wireless power transfer system |
| EP3561997A1 (en) | 2014-05-14 | 2019-10-30 | WQC, Inc. | Wireless power transfer system |
| EP2978098A1 (en) | 2014-07-11 | 2016-01-27 | Funai Electric Co., Ltd. | Power transfer unit |
| JP2016073014A (en)* | 2014-09-26 | 2016-05-09 | パナソニックIpマネジメント株式会社 | Power supply device |
| WO2016047137A1 (en)* | 2014-09-26 | 2016-03-31 | パナソニックIpマネジメント株式会社 | Power feeding device |
| JP2016101079A (en)* | 2014-11-26 | 2016-05-30 | パナソニックIpマネジメント株式会社 | Contactless power supply system |
| JPWO2018229841A1 (en)* | 2017-06-12 | 2019-06-27 | 中国電力株式会社 | Wireless power feeder |
| WO2018229841A1 (en)* | 2017-06-12 | 2018-12-20 | 中国電力株式会社 | Wireless power supply device |
| JP2019030083A (en)* | 2017-07-27 | 2019-02-21 | 学校法人東京理科大学 | Electric device |
| CN111884355A (en)* | 2020-08-19 | 2020-11-03 | 华中科技大学 | Non-contact electric energy transmission device applied to CT system and CT system |
| Publication | Publication Date | Title |
|---|---|---|
| JP2002272134A (en) | Non-contact feeding device of high frequency power, and method therefor | |
| JP2667054B2 (en) | Induction power distribution system | |
| US6515878B1 (en) | Method and apparatus for supplying contactless power | |
| CN105027385B (en) | Power supply device and non-contact power supply system | |
| CN101278470B (en) | Excitation devices for electric motors | |
| US9793718B2 (en) | Coil unit having plural coils for wireless power transmission | |
| CN108718117A (en) | A kind of constant double pickup three phase dynamic radio energy transmission systems of output voltage | |
| US20210167631A1 (en) | Wireless power transmission system, power transmitting device, and power receiving device | |
| JP2002354712A (en) | Noncontact power feeder device | |
| US20230365027A1 (en) | Non-contact power supply system and transportation system | |
| JPWO2013136431A1 (en) | Power receiving apparatus and power receiving method | |
| US10218186B2 (en) | Power feeding device and non-contact power transmission device | |
| US12057706B2 (en) | Wireless power transfer system with open loop reactance matching circuitry | |
| US9954377B2 (en) | Inductive rotary joint | |
| JP2007089279A (en) | Noncontact feeder system | |
| JP6907041B2 (en) | Contactless charging system | |
| JP2020156307A (en) | Non-contact power supply device | |
| JP2019170017A (en) | Wireless power transmission system | |
| JP5250867B2 (en) | Induction power receiving circuit | |
| US9991749B2 (en) | Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device | |
| JP2001119806A (en) | Noncontact power supply system and receiving device used in the system | |
| JPH0898437A (en) | Contactless power supply device | |
| US20160261146A1 (en) | Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device | |
| JP2025088582A (en) | Non-contact charging control device | |
| JP2000166095A (en) | Feeder system |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20080513 |