【0001】[0001]
【発明の属する技術分野】本発明は有機発光ダイオード
(LED)素子に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic light emitting diode (LED) device.
【0002】[0002]
【従来の技術】通常、有機LED素子は、ガラス板や透
明樹脂フィルム等の透明基板上に陽極パターン、有機発
光媒体層、陰極金属層の順に形成される。陽極としては
ITO(インジウムと錫の複合酸化物)、IZO(イン
ジウムと亜鉛の複合酸化物)等の透明酸化物膜、または
膜厚10nm以下で透光性の金、パラジウム、白金、銅
等の単体金属膜、またはそれらの合金膜、または透明酸
化物電極と金属膜の積層膜、または、発光領域における
開口率が50%以上のスリット状またはメッシュ状金属
電極、ポリチオフェン系導電性ポリマーの塗布電極等が
使用される。2. Description of the Related Art Generally, an organic LED element is formed on a transparent substrate such as a glass plate or a transparent resin film in the order of an anode pattern, an organic light emitting medium layer, and a cathode metal layer. As the anode, a transparent oxide film such as ITO (composite oxide of indium and tin), IZO (composite oxide of indium and zinc), or a light-transmitting gold, palladium, platinum, copper, etc. A single metal film, an alloy film thereof, a laminated film of a transparent oxide electrode and a metal film, a slit-shaped or mesh-shaped metal electrode having an aperture ratio of 50% or more in a light emitting region, or a coated electrode of a polythiophene-based conductive polymer Etc. are used.
【0003】次に、陽極上に有機正孔輸送層、有機発光
層、有機電子注入層等からなる厚さ100〜150nm
程度の有機発光媒体層が蒸着、湿式コーティング等の方
法で形成された後、陰極としてMgAg合金,AlLi
合金、Al等の陰極が蒸着され有機LED素子が形成さ
れる。[0003] Next, on the anode, an organic hole transport layer, an organic light emitting layer, an organic electron injection layer, etc., having a thickness of 100 to 150 nm.
After the organic light-emitting medium layer is formed by a method such as vapor deposition and wet coating, a MgAg alloy, AlLi
A cathode such as an alloy or Al is deposited to form an organic LED element.
【0004】また、陰極はMgAg合金等を10nm以
下の透光性に形成した後ITO、IZO等の透明導電性
酸化物膜を形成することにより、透明な有機LED素子
を作製することも可能である。Further, a transparent organic LED element can be manufactured by forming a transparent conductive oxide film such as ITO and IZO after forming a cathode of a MgAg alloy or the like with a translucency of 10 nm or less. is there.
【0005】より低電圧で高輝度を得るため、界面のイ
オン化エネルギーを低下させ電子注入効率を向上するた
め有機発光媒体層と陰極層間にLi錯体、LiF、酸化
LiやCsのアルカリ金属含有層を形成することも行わ
れている。In order to obtain high luminance at a lower voltage, a layer containing an alkali metal such as Li complex, LiF, Li oxide or Cs is provided between the organic light emitting medium layer and the cathode layer in order to reduce the ionization energy at the interface and improve the electron injection efficiency. Forming has also been performed.
【0006】また、有機LED素子は通常とは逆に透明
基板上に陰極、有機発光媒体、陽極の順に形成すること
も可能である。The organic LED element can be formed on a transparent substrate in the order of a cathode, an organic luminous medium, and an anode in reverse order.
【0007】有機LED素子の作製上の問題点として
は、基板1上の陽極、陰極電極2間の有機発光媒体4層
が非常に薄いため、陽極表面に微小な突起や付着異物5
がある場合、図3で示すようにその陰の部分は有機発光
媒体が蒸着されず、陰極金属が蒸着された際にその部分
で陽極と陰極が直接接触したり、陽極陰極間に空洞が生
じたりすることにより、リーク電流や放電を起こし素子
を破壊する原因となる問題がある。The problem with the production of the organic LED element is that the organic light emitting medium 4 layer between the anode and the cathode electrode 2 on the substrate 1 is very thin, so that minute projections and foreign matter 5
In the case where there is, as shown in FIG. 3, the organic luminescent medium is not deposited in the shaded portion, and when the cathode metal is deposited, the anode and the cathode directly contact at that portion, or a cavity is formed between the anode and the cathode. This causes a problem of causing a leakage current or a discharge to destroy the element.
【0008】破壊部で発生したガスは陰極金属層を持ち
上げ、発光層または電子注入層から陰極を剥離させると
ともに、陰極に開いた穴から水分、酸素が侵入し陰極の
酸化を引き起こすため、破壊部を中心とした非発光点が
生じる。The gas generated in the destruction part lifts the cathode metal layer, peels off the cathode from the light emitting layer or the electron injection layer, and causes moisture and oxygen to penetrate through the hole opened in the cathode to cause oxidation of the cathode. A non-emission point centered on.
【0009】そのため、陽極は数10nm以上の突起が
無いことが望まれる。ITO膜は、通常、低抵抗化のた
め200℃以上で高温スパッタし成膜しているが、結晶
粒が成長し表面が数10nmの凸凹になる。凸凹は研磨
による表面平滑化が試みられたが研磨傷や研磨剤が残り
やすく、うねりのあるガラス板上の薄膜を均一な厚さに
研磨するためにはクラスターイオンビーム等による特殊
な研磨法が必要であった。Therefore, it is desired that the anode has no protrusions of several tens nm or more. The ITO film is usually formed by sputtering at a high temperature of 200 ° C. or higher to reduce the resistance, but the crystal grains grow and the surface becomes uneven with several tens of nm. Attempts have been made to smooth the surface by polishing, but polishing scratches and abrasives are likely to remain, and a special polishing method using a cluster ion beam or the like is required to polish the thin film on the undulating glass plate to a uniform thickness. Was needed.
【0010】また、高温成膜したITOを酸でウエット
エッチングしパターン形成する場合には膜が多結晶のた
め結晶粒の影響でエッチング端が凸凹になり、その陰に
より有機発光媒体蒸着層が薄くなったり、突起部に高電
界がかかり素子が短絡しやすい問題もあった。In the case of forming a pattern by wet-etching ITO formed at a high temperature with an acid, the film is polycrystalline, so that the etching end becomes uneven due to the influence of crystal grains, and the organic light-emitting medium vapor deposition layer becomes thin due to the shadow. Also, there is a problem that the element is easily short-circuited due to a high electric field applied to the projection.
【0011】成膜時点で平滑にする方法としては、基板
温度を室温程度以下で成膜したアモルファス膜を用いる
方法がある。アモルファス膜は極めて表面平滑性が高
く、エッチング端をテーパー状に形成できるためアモル
ファスITO膜やIZO膜は、リーク電流や短絡を減ら
すのに効果を上げているが、抵抗率が高温成膜したIT
Oの1.5 倍程度高い問題と付着異物による短絡の解決の
方法にはなっていない。As a method of smoothing at the time of film formation, there is a method of using an amorphous film formed at a substrate temperature of about room temperature or lower. Since amorphous films have extremely high surface smoothness and can form an etched end in a tapered shape, amorphous ITO films and IZO films are effective in reducing leakage currents and short circuits.
It is not a method of solving the problem that is about 1.5 times higher than O and the short circuit due to the attached foreign matter.
【0012】基板上への付着異物を防ぐためにはクリー
ンルームで基板を扱うが、0. 1μm程度のほこりを大
面積基板上に一つも付着させないことは極めて困難な問
題であった。Although the substrate is handled in a clean room in order to prevent foreign matter adhering to the substrate, it is extremely difficult to prevent any dust of about 0.1 μm from adhering to a large area substrate.
【0013】基板上に付着異物があっても短絡を防ぐ方
法としては、正孔輸送層を蒸着後ガラス転移温度以上に
加熱処理し軟化流動させ、付着異物の陰になり未蒸着に
なった部分を埋めることも可能だが、通常使われている
正孔輸送層材料は加熱により結晶化し膜が凹凸になりや
すく、そのため、加熱により結晶化せずアモルファス性
の非常に高い特殊な分子構造を持つ高価な正孔輸送材料
が必要になることと、加熱冷却に時間がかかり生産性に
問題があった。As a method of preventing a short circuit even if foreign substances are present on the substrate, the hole transport layer is heated to a temperature higher than the glass transition temperature after the vapor deposition to soften and flow. Although it is possible to fill the hole transport layer, the commonly used hole transport layer material is crystallized by heating and the film tends to be uneven, so it is not crystallized by heating and has a highly amorphous amorphous molecular structure. In addition, there has been a problem in that a large hole transporting material is required, and it takes a long time to heat and cool, and thus productivity is low.
【0014】[0014]
【発明が解決しようとする課題】本発明は以上の問題点
に鑑みて成されたものであり、有機LED素子の電極表
面の突起や基板付着異物によるリーク電流や電気的短絡
の悪影響を抑制することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and suppresses an adverse effect of a leak current or an electric short circuit due to a projection on an electrode surface of an organic LED element or a foreign matter attached to a substrate. The purpose is to:
【0015】[0015]
【課題を解決するための手段】すなわち本発明は、ガラ
スまたは樹脂からなる透明基板上に形成された透光性電
極パターンからなる陽極または陰極上の発光領域上の一
部または全ての上を膜厚10nm〜10μm、かつ、1
cm2当たりの膜厚方向の電気抵抗が0.01〜2Ω、
かつ抵抗膜表面のイオン化エネルギーが5.1eV以上
の透光性金属酸化物からなる中間抵抗膜が積層されたこ
とを特徴とする有機LED素子用中間抵抗膜付基板であ
る。また、中間抵抗膜が少なくとも導電性金属酸化物と
して酸化雰囲気で成膜または焼成されたインジウム酸化
物からなることを特徴とする請求項1の有機LED素子
用基板である。また、 中間抵抗膜が少なくとも導電性
金属酸化物と非導電性金属酸化物との複合酸化物膜、ま
たは少なくとも導電性金属酸化物と非導電性金属窒化物
との複合酸化窒化物膜であることを特徴とする請求項1
の有機LED素子用基板である。また、導電性金属酸化
物としてインジウム酸化物、非導電性金属酸化物として
ケイ素酸化物を含む複合酸化物膜であることを特徴とす
る請求項2の有機LED素子用基板である。That is, the present invention provides a method of forming a film on a part or all of a light emitting region on an anode or a cathode formed of a translucent electrode pattern formed on a transparent substrate made of glass or resin. 10 nm to 10 μm thick and 1
electric resistance in the thickness direction per cm2 is 0.01 to 2Ω,
A substrate with an intermediate resistance film for an organic LED element, wherein an intermediate resistance film made of a translucent metal oxide having an ionization energy of 5.1 eV or more on the surface of the resistance film is laminated. The substrate for an organic LED element according to claim 1, wherein the intermediate resistance film is made of indium oxide formed or fired in an oxidizing atmosphere as at least a conductive metal oxide. The intermediate resistance film is at least a composite oxide film of a conductive metal oxide and a non-conductive metal oxide, or at least a composite oxynitride film of a conductive metal oxide and a non-conductive metal nitride. Claim 1 characterized by the following:
Of the organic LED element. 3. The organic LED element substrate according to claim 2, wherein the substrate is a composite oxide film containing indium oxide as a conductive metal oxide and silicon oxide as a non-conductive metal oxide.
【0016】更に、本発明は上記基板上に少なくとも有
機発光媒体層と対向電極層を順に積層した有機LED素
子である。Further, the present invention is an organic LED device in which at least an organic light emitting medium layer and a counter electrode layer are sequentially laminated on the substrate.
【0017】[0017]
【発明の実施の形態】本発明では、低抵抗率な透明電極
と高抵抗率な有機発光媒体4膜の中間の抵抗を有する中
間抵抗膜3が、有機LED素子用の基板1上に形成され
た陽極または陰極からなる電極2パターンに接し、かつ
発光領域の一部または全てを覆い1層の膜が配置される
(図1参照)。または、基板上に形成された陽極または
陰極パターンと、対極のそれぞれに接し、かつ発光領域
の一部または全てを覆い2層の膜が配置されることも可
能である(図2参照)。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an intermediate resistance film 3 having an intermediate resistance between a transparent electrode having a low resistivity and an organic luminescent medium 4 having a high resistivity is formed on a substrate 1 for an organic LED element. A single-layer film is disposed in contact with the electrode 2 pattern composed of the anode or the cathode and covers part or all of the light emitting region (see FIG. 1). Alternatively, a two-layer film may be disposed so as to be in contact with each of the anode or cathode pattern formed on the substrate and the counter electrode and to cover part or all of the light emitting region (see FIG. 2).
【0018】以下に本発明についてさらに詳しく説明す
る。通常陰極に用いられているAl等の金属電極の体積
抵抗率は10-5Ω・cm以下であり、ITO等の透明電
極の体積抵抗率は2×10-4Ω・cm以下である。Hereinafter, the present invention will be described in more detail. The volume resistivity of a metal electrode such as Al usually used for a cathode is 10−5 Ω · cm or less, and the volume resistivity of a transparent electrode such as ITO is 2 × 10−4 Ω · cm or less.
【0019】発光媒体層の抵抗は、発光媒体層が50n
mのトリフェニルアミン系正孔輸送層、50nmのAl
オキシン錯体発光層からなる一般的な有機LED素子の
例では、有機発光媒体は非線形な抵抗を示し、印加電圧
が高いほど抵抗が低くなる。例えば通常有機LEDは1
0V以内の駆動電圧で駆動するが、その場合、無欠陥な
有機発光媒体層の体積抵抗率は最高駆動電圧の10Vで
約106Ω・cmであり、他の有機LED用発光媒体材
料を用いた場合でも概略106Ω・cmの抵抗率であ
る。The resistance of the luminous medium layer is 50 n
m triphenylamine-based hole transport layer, 50 nm Al
In an example of a general organic LED element including an oxine complex light emitting layer, the organic light emitting medium exhibits a non-linear resistance, and the resistance decreases as the applied voltage increases. For example, organic LED is usually 1
It is driven with a drive voltage of 0 V or less, in which case the volume resistivity of the defect-free organic light-emitting medium layer is about 106 Ω · cm at the maximum drive voltage of 10 V, and other organic LED light-emitting medium materials are used. The resistivity is approximately 106 Ω · cm.
【0020】その場合、発光媒体層の膜厚方向の抵抗は
1cm2当たり10Ωとなる。そこで、体積抵抗率10
-5Ω・cmの電極材料が0.1 μm角の面積(10-10c
m2)で0.1μmの長さで電極間を短絡し欠陥を生じ
させたとすると、欠陥箇所の抵抗は1カ所当たり1Ωで
あり、欠陥密度が1箇所/cm2の場合、電極間の抵抗
は1cm2当たり約0.9Ωとなる。In this case, the resistance in the thickness direction of the light emitting medium layer is 10Ω per 1 cm2 . Therefore, the volume resistivity 10
An electrode material of-5 Ω · cm has an area of 0.1 μm square (10-10 c
m2 ), if a short circuit occurs between the electrodes with a length of 0.1 μm to cause a defect, the resistance of the defective part is 1Ω per one place, and when the defect density is one place / cm2 , the resistance between the electrodes is Is about 0.9Ω / cm2 .
【0021】その結果、面積1cm2の定電流駆動素子
の場合は1カ所欠陥があると欠陥部で電流の大部分が半
分リークし印加電圧が減少するとともに輝度が激減して
しまう問題があった。また、定電圧駆動素子の場合は欠
陥部の電流密度が高くなり、ジュール熱により素子の破
壊につながる問題があった。As a result, in the case of a constant-current driving element having an area of 1 cm2 , if there is one defect, most of the current leaks at the defective portion, causing a problem that the applied voltage is reduced and the luminance is drastically reduced. . Further, in the case of the constant voltage driving element, there is a problem that the current density of the defective portion becomes high and the element is destroyed by Joule heat.
【0022】また、XYマトリクスディスプレイの場合
は、欠陥部からのリーク電流でクロストークが増大し、
表示が不鮮明になる問題があった。In the case of an XY matrix display, crosstalk increases due to leakage current from a defective portion.
There was a problem that the display became unclear.
【0023】本発明の中間抵抗膜は、基板表面の異物付
着や突起等による有機発光媒体の蒸着不良欠陥カ所での
電極同士の直接接触を防止し、有機発光媒体の蒸着不良
カ所においては中間抵抗膜を通して電流がリークするた
めリーク電流は電極同士が直接接触した場合に比べて大
幅に抑制できる。The intermediate resistance film of the present invention prevents direct contact between the electrodes at the defective deposition point of the organic luminous medium due to the adhesion of foreign matter or projections on the substrate surface, and the intermediate resistance film at the defective deposition point of the organic luminous medium. Since the current leaks through the film, the leak current can be greatly suppressed as compared with the case where the electrodes are in direct contact with each other.
【0024】中間抵抗膜の抵抗は、発光媒体の抵抗と直
列にかかるため、電力損失を小さくするために発光媒体
の膜厚方向の抵抗値の1/5以下が望ましい。すなわち
10V以下の駆動電圧で駆動する場合、発光媒体の抵抗
が最低な10V印加時に中間抵抗膜無しの有機LED素
子の抵抗が1cm2当たり10Ωであるとすると、中間
抵抗膜の膜厚方向の抵抗は2Ω以下、好ましくは0. 5
Ω以下とすることで、中間抵抗膜を入れた場合の抵抗増
加による有機LED素子の電流−電圧特性の悪化を抑制
できる。Since the resistance of the intermediate resistance film is applied in series with the resistance of the luminous medium, it is desirable that the resistance in the thickness direction of the luminous medium is 1/5 or less in order to reduce power loss. That is, when driving at a driving voltage of 10 V or less, assuming that the resistance of the organic LED element without the intermediate resistance film is 10Ω / cm2 when the resistance of the light emitting medium is 10 V minimum, the resistance in the thickness direction of the intermediate resistance film is Is less than 2Ω, preferably 0.5
By setting the resistance to Ω or less, it is possible to suppress deterioration of the current-voltage characteristics of the organic LED element due to an increase in resistance when an intermediate resistance film is provided.
【0025】膜厚方向の抵抗膜の抵抗値が発光媒体の膜
厚方向の抵抗の1/5以上の場合、素子の駆動電圧は、
配線抵抗を無視すると1. 2倍以上上昇し発光効率が低
下するとともに、抵抗層でのジュール熱の増加により素
子の劣化が速まる。When the resistance value of the resistance film in the film thickness direction is equal to or more than 5 of the resistance of the light emitting medium in the film thickness direction, the driving voltage of the element becomes
If the wiring resistance is neglected, the luminous efficiency is reduced by a factor of 1.2 or more, and the deterioration of the element is accelerated due to an increase in Joule heat in the resistance layer.
【0026】また、XYマトリクスディスプレイの透明
電極ラインを形成した基板上に本発明の中間抵抗膜をベ
タで積層する場合は、膜厚方向の中間抵抗膜の抵抗値が
発光媒体の膜厚方向の抵抗値の1/ 1000以下で透明
電極ライン間のスペースが数μm以下に狭い場合、透明
電極間のリーク電流が無視できなくなり、クロストーク
が生じる場合がある。In the case where the intermediate resistance film of the present invention is solidly laminated on the substrate on which the transparent electrode lines of the XY matrix display are formed, the resistance value of the intermediate resistance film in the thickness direction of the luminous medium is reduced. If the resistance value is 1/1000 or less and the space between the transparent electrode lines is as small as several μm or less, the leakage current between the transparent electrodes cannot be ignored and crosstalk may occur.
【0027】その場合は、中間抵抗膜3の抵抗が低い場
合は膜厚を薄めにするか、または図4のように透明電極
ラインごとに分離して積層することが望ましい。In this case, when the resistance of the intermediate resistance film 3 is low, it is desirable to reduce the film thickness or to separate and laminate the transparent electrode lines as shown in FIG.
【0028】本発明の有機LED素子用基板の中間抵抗
膜の厚さは、10nm〜10μmの厚さで形成される。
中間抵抗膜の厚さが発光媒体層と同じ100nm程度の
場合は体積抵抗率104〜105Ω・cm程度の抵抗膜
を用いることが望ましい。The thickness of the intermediate resistance film of the substrate for an organic LED element of the present invention is formed to a thickness of 10 nm to 10 μm.
When the thickness of the intermediate resistance film is about 100 nm, which is the same as that of the light emitting medium layer, it is desirable to use a resistance film having a volume resistivity of about 104 to 105 Ω · cm.
【0029】中間抵抗膜を10nm以下にした場合は、
電極表面の凹凸や付着異物を十分にカバーできない場合
がある。When the thickness of the intermediate resistance film is set to 10 nm or less,
In some cases, irregularities on the electrode surface and adhered foreign substances cannot be sufficiently covered.
【0030】中間抵抗膜を10μm以上に形成した場合
は、膜応力による膜剥がれや割れの問題、成膜コストが
増す問題、陽極電極間または選択していない陽極と陰極
間でのリーク電流が増して発光のにじみやクロストーク
が生じ易い。If the intermediate resistance film is formed to a thickness of 10 μm or more, the problem of film peeling or cracking due to film stress, the problem of increased film formation cost, and the increase in leakage current between anode electrodes or between unselected anode and cathode will increase. Bleeding of light emission and crosstalk are likely to occur.
【0031】中間抵抗膜を透光性陽極上に積層し、陽極
側から光を取り出す場合には中間抵抗膜も有機LEDの
発光スペクトルをできるだけ透過することが望ましい。
本発明ではエネルギーギャップが広く可視光領域で50
%以上光透過可能な材料として金属酸化物材料を用い
る。When an intermediate resistance film is laminated on a translucent anode and light is extracted from the anode side, it is desirable that the intermediate resistance film also transmits the emission spectrum of the organic LED as much as possible.
In the present invention, the energy gap is wide and 50 in the visible light region.
% Or more is a metal oxide material.
【0032】中間抵抗膜に使用する金属酸化物材料とし
ては透明導電膜材料として知られている材料の抵抗率を
高めて用いることができる。As a metal oxide material used for the intermediate resistance film, a material known as a transparent conductive film material can be used with an increased resistivity.
【0033】透明導電膜材料として知られている材料の
例としては、Mg、Zn,Ga、Ge、In、Snから
少なくとも一つ以上選ばれた金属の酸素欠損型透明導電
性酸化物または複合酸化物が上げられる。具体的にはI
n2O3、In2-XGaXO3、ITO、IZO、Sn
O2、Sn1-XGeXO2、ZnO、ZnXMg
1-XO、AgInO2等がある。A material known as a transparent conductive film material
Examples include Mg, Zn, Ga, Ge, In, and Sn.
Oxygen-deficient transparent conductive material of at least one selected metal
Oxides or composite oxides. Specifically, I
nTwoOThree, In2-XGaXOThree, ITO, IZO, Sn
OTwo, Sn1-XGeXOTwo, ZnO, ZnXMg
1-XO, AgInOTwoEtc.
【0034】また、Sr,Ni、Cu,Alから少なく
とも一つ以上選ばれた金属の酸素過剰型透明導電性金属
酸化物または複合酸化物が上げられる。具体的にはNi
O、CuAlO2、SrCu2O2等がある。In addition, an oxygen-excess type transparent conductive metal oxide or composite oxide of a metal selected from at least one of Sr, Ni, Cu, and Al can be used. Specifically, Ni
O, CuAlO2 , SrCu2 O2 and the like.
【0035】これらの膜の抵抗率を高める方法として
は、酸素欠損型透明導電性金属酸化物または複合酸化物
の場合は、通常低抵抗な酸化物膜を反応性蒸着やスパッ
タで成膜する条件よりも成膜雰囲気の酸素濃度を高めて
成膜し膜中の酸素欠損を減らすか、または成膜後、酸化
雰囲気で熱処理することにより酸素欠損を減らしキャリ
ア密度を減らすことである。または、酸素欠陥をつぶす
Li、Cu等の1価金属をドープすることによっても導
電性を低下させ適当な抵抗値に高めることができる。As a method for increasing the resistivity of these films, in the case of an oxygen-deficient transparent conductive metal oxide or a composite oxide, conditions for forming a low-resistance oxide film by reactive vapor deposition or sputtering are usually used. This is to reduce the oxygen vacancies in the film by increasing the oxygen concentration in the film formation atmosphere to reduce oxygen vacancies in the film, or to reduce the oxygen vacancies and reduce the carrier density by performing heat treatment in an oxidizing atmosphere after the film formation. Alternatively, by doping a monovalent metal such as Li or Cu that crushes oxygen defects, the conductivity can be reduced and the resistance can be increased to an appropriate value.
【0036】酸素過剰型透明導電性金属酸化物または複
合酸化物の場合は、逆に通常低抵抗な酸化物膜を成膜す
る条件よりも成膜時の酸素濃度を減らすか、成膜後還元
雰囲気で焼成することである。In the case of an oxygen-excess type transparent conductive metal oxide or composite oxide, on the contrary, the oxygen concentration at the time of film formation is reduced as compared with the condition for forming a low-resistance oxide film, or reduction is performed after film formation. Firing in an atmosphere.
【0037】Inを含む酸素過剰型透明導電性金属酸化
物または複合酸化物の場合は、成膜時においては膜が金
属膜または不完全な金属酸化物であってもよく、成膜後
に酸素やオゾン雰囲気等の酸化雰囲気中で150℃〜4
00℃で処理し酸化を進行させ酸化物膜を形成すること
もできる。しかし、熱処理は中間抵抗膜の結晶化を進行
させ、結晶化に伴う移動度向上により所望の抵抗値より
も低抵抗化してしまう場合もある。In the case of an oxygen-excess type transparent conductive metal oxide or composite oxide containing In, the film may be a metal film or an incomplete metal oxide at the time of film formation. 150 ° C ~ 4 in oxidizing atmosphere such as ozone atmosphere
The treatment may be performed at 00 ° C. to progress the oxidation to form an oxide film. However, the heat treatment promotes crystallization of the intermediate resistance film, and the resistance may be lower than a desired resistance value due to the improvement in mobility accompanying the crystallization.
【0038】また、他の抵抗率を高める方法としては、
導電性金属酸化物中に抵抗率が高いSiO2、Al2O
3、GeO2、Ta2O5、Y2O3等の非導電性金属
酸化物またはSi3N4等の非導電性金属窒化物を(非
導電性金属酸化物または窒化物中の金属原子数)/(導
電性金属酸化物中の金属原子数)比で1/10〜10/
1程度の適当な割合で混合し複合することである。Another method for increasing the resistivity is as follows.
SiO2 , Al2 O with high resistivity in conductive metal oxide
3 , non-conductive metal oxides such as GeO2 , Ta2 O5 , Y2 O3 or non-conductive metal nitrides such as Si3 N4 (metal atoms in the non-conductive metal oxide or nitride). Number) / (number of metal atoms in conductive metal oxide) ratio is 1/10 to 10 /
It is to mix and composite at an appropriate ratio of about 1.
【0039】導電性金属酸化物と非導電性金属酸化物ま
たは窒化物を複合させる方法は、それらの構成金属また
は金属酸化物及び金属窒化物を予め複合した蒸発材料ま
たはターゲット材料を用いるか、または別々の蒸発源ま
たはターゲットより同時に、酸素および窒素雰囲気下反
応性蒸着、パルスレーザー堆積、スパッタ法等を行い成
膜できる。The method of compounding the conductive metal oxide and the non-conductive metal oxide or nitride is to use an evaporation material or a target material in which the constituent metals or metal oxides and metal nitrides are previously compounded, or Reactive vapor deposition, pulsed laser deposition, sputtering, and the like can be performed simultaneously from different evaporation sources or targets in an oxygen and nitrogen atmosphere to form a film.
【0040】具体的には、非導電性金属酸化物であるシ
リカ等のケイ素酸化物、アルミナ等のアルミ酸化物また
は非導電性金属窒化物であるケイ素窒化物を導電性金属
酸化物である酸化InやITOのターゲット中に予め混
合しスパッタする。または、Inを酸素雰囲気で反応性
蒸着しながら同時にSiOを共蒸着する。または、In
とSiOを共蒸着した後酸素雰囲気で焼成する等の方法
で中間抵抗膜を作製できる。Specifically, a silicon oxide such as silica which is a non-conductive metal oxide, an aluminum oxide such as alumina or a silicon nitride which is a non-conductive metal nitride is converted into an oxide which is a conductive metal oxide. It is mixed and sputtered in a target such as In or ITO in advance. Alternatively, SiO is co-deposited simultaneously with reactive deposition of In in an oxygen atmosphere. Or In
An intermediate resistance film can be manufactured by a method such as co-depositing SiO and SiO, followed by baking in an oxygen atmosphere.
【0041】例えば酸素雰囲気中で酸化Inをスパッタ
中に金属原子比10〜200%程度の割合でSiOを共
蒸着し基板温度室温で成膜すると、平滑なアモルファス
性の高い膜が形成でき、300℃程度に加熱した場合で
も膜中の非導電性ケイ素酸化物が導電性の酸化Inの結
晶化を妨げ、結晶化に伴う移動度向上による低抵抗化を
抑制することができ熱安定性が高まる。For example, when co-depositing SiO at a metal atom ratio of about 10 to 200% during sputtering of In oxide in an oxygen atmosphere and forming a film at a substrate temperature of room temperature, a smooth highly amorphous film can be formed. Even when heated to about ° C, the non-conductive silicon oxide in the film hinders crystallization of the conductive In oxide and suppresses a reduction in resistance due to an increase in mobility due to crystallization, thereby increasing thermal stability. .
【0042】また、中間抵抗膜付き有機LED素子用基
板においては、中間抵抗膜は有機発光媒体層に正孔を注
入しやすくするために、その表面は有機発光媒体を構成
する正孔輸送材料と同等の大きなイオン化エネルギーを
持つ必要がある。In the substrate for an organic LED element having an intermediate resistance film, the surface of the intermediate resistance film is made of a hole transporting material constituting the organic light emitting medium so that holes can be easily injected into the organic light emitting medium layer. It is necessary to have the same large ionization energy.
【0043】一般的に有機LEDに用いられている銅フ
タロシアニンやトリフェニルアミン系正孔輸送材料は理
研計器製表面分析装置AC−1で測定し5. 1〜5. 8
eV、発光材料のAlオキシン錯体は5. 8eV程度の
イオン化エネルギーを持つため、低駆動電圧で効率良く
正孔輸送層または発光層の有機発光媒体に正孔注入する
ためには少なくとも5.1eV以上、好ましくは5. 8
eV程度のイオン化エネルギーが求められる。Copper phthalocyanine and triphenylamine-based hole transport materials generally used for organic LEDs are measured with a surface analyzer, AC-1 manufactured by Riken Keiki, to be 5.1 to 5.8.
eV, since the Al oxine complex of the light emitting material has an ionization energy of about 5.8 eV, at least 5.1 eV or more for efficiently injecting holes into the organic light emitting medium of the hole transport layer or the light emitting layer at a low driving voltage. Preferably 5.8
An ionization energy of about eV is required.
【0044】本発明では透明酸化物導電膜とケイ素酸化
物をケイ素以外の金属原子に対して10〜200原子%
程度複合化することによりキャリア密度も下がるため通
常低抵抗な透明電極として用いられているITOの4.
8eVより大きな5.5eV以上のイオン化エネルギー
を実現することもできる。In the present invention, the transparent oxide conductive film and the silicon oxide are added in an amount of 10 to 200 atomic% with respect to metal atoms other than silicon.
Since the composite density is reduced, the carrier density is also reduced, so that ITO which is usually used as a transparent electrode having low resistance is used.
An ionization energy of 5.5 eV or more, which is larger than 8 eV, can be realized.
【0045】[0045]
【実施例】<実施例1>まず、RFマグネトロンスパッ
タリング(TOKUDA CFS- 10EP−70)に
より直径5インチのITOターゲット(酸化錫10wt
%)とジグ面との距離を17.5cm、アルゴン雰囲気
(圧力0.34Pa)でRF出力300Wで室温成膜
後、ストライプ状に有機酸でテーパーエッチング(発光
部2×3mmの素子18素子分)した。次に300℃で
1時間空気中アニールし膜厚190nmのITO電極パ
ターン(20Ω/ □)付基板(5センチ角)を作製し
た。<Example 1> First, a 5 inch diameter ITO target (tin oxide 10wt) was prepared by RF magnetron sputtering (TOKUDA CFS-10EP-70).
%) And a jig surface at a temperature of 17.5 cm in an argon atmosphere (pressure 0.34 Pa) at a RF output of 300 W at room temperature, and then taper-etched in stripes with an organic acid (18 elements with a light-emitting part of 2 × 3 mm) )did. Next, the substrate was annealed at 300 ° C. for 1 hour in the air to prepare a substrate (5 cm square) with a 190 nm-thick ITO electrode pattern (20Ω / □).
【0046】次に、3インチRFマグネトロンスッパタ
リングガンと抵抗加熱蒸着源付き真空成膜装置を用い、
アルゴン/酸素= 10/1(圧力0.34Pa)でRF
出力250 WでITOをスパッタしながらSiOを抵抗加
熱蒸着しITO電極パターン上に中間抵抗膜を1μmの
厚さでベタで積層し中間抵抗膜付き基板を作製した。得
られた膜は透明で、X線回折測定でアモルファスであっ
た。表面のSi/(In+ Sn)比= 約25原子%、体
積抵抗率は7×103Ω・cm、イオン化エネルギー
5.5eVであった。Next, using a 3 inch RF magnetron sputtering gun and a vacuum film forming apparatus equipped with a resistance heating evaporation source,
RF at argon / oxygen = 10/1 (pressure 0.34Pa)
SiO was resistively heated and vapor-deposited while sputtering ITO at an output of 250 W, and an intermediate resistance film was solidly laminated to a thickness of 1 μm on the ITO electrode pattern to produce a substrate with an intermediate resistance film. The obtained film was transparent and amorphous by X-ray diffraction measurement. The ratio of Si / (In + Sn) on the surface was about 25 atomic%, the volume resistivity was 7 × 103 Ω · cm, and the ionization energy was 5.5 eV.
【0047】<実施例2>実施例1で作製した中間抵抗
膜付基板上に、正孔輸送層としてN,N’−ジフェニル
- N,N’−(1−ナフチル)−ベンジジンを50n
m、発光層としてAlオキシン錯体を50nmを順に蒸
着し、陰極としてLiFを0.5nm共蒸着した後、A
lを200nm積層し有機LED素子(発光部2×3m
m2)を基板上に18素子を作製した。なお、素子はク
ラス1000のクリーンブース中で作製した。Example 2 On the substrate with an intermediate resistance film prepared in Example 1, N, N'-diphenyl was used as a hole transport layer.
-50 n of N, N '-(1-naphthyl) -benzidine
m, 50 nm of Al oxine complex was sequentially deposited as a light emitting layer, and 0.5 nm of LiF was co-deposited as a cathode.
l are stacked in a thickness of 200 nm to form an organic LED element (light-emitting section 2 × 3 m
m2 ) were fabricated on a substrate. The device was manufactured in a class 1000 clean booth.
【0048】この素子は作製したすべての18素子は、
配線抵抗を含む端子間の抵抗をテスターで測定(約1.
7V印加)し、30MΩ(テスター測定の上限)以上の
抵抗を持ち短絡はなかった。素子はすべて7V以下の電
圧で5000時間以上500cd/m2以上の輝度で安
定に発光する。This device was fabricated with all 18 devices
Measure the resistance between the terminals including the wiring resistance with a tester (about 1.
7 V was applied), the resistance was 30 MΩ (the upper limit of the tester measurement) or more, and there was no short circuit. All the elements emit light stably at a voltage of 7 V or less and a luminance of 500 cd / m2 or more for 5000 hours or more.
【0049】<比較例1>中間抵抗膜無しのITO基板
(表面のイオン化エネルギー4.8eV)を用いて実施
例2と同様に素子を作製した。<Comparative Example 1> An element was fabricated in the same manner as in Example 2 using an ITO substrate without an intermediate resistance film (surface ionization energy: 4.8 eV).
【0050】その結果、18個作製中15素子は、テス
ターで測定(約1.7V印加)し、30MΩ以上、11
MΩが1素子、200KΩが1素子、1 KΩの素子が1
素子で、短絡した素子が生じた。30MΩ以上抵抗のあ
る素子は7V以下の駆動電圧で5000時間以上安定に
発光し、200KΩ以下の素子は1000時間以内に非
発光点が広がりショートし光らなくなった。電流電圧特
性は実施例2で作製した素子よりも1〜2V高電圧化し
た。As a result, 15 devices out of the 18 manufactured were measured with a tester (approximately 1.7 V applied).
1 element for MΩ, 1 element for 200KΩ, 1 element for 1KΩ
A short-circuited element occurred in the element. An element having a resistance of 30 MΩ or more stably emitted light at a driving voltage of 7 V or less for 5000 hours or more, and an element having a resistance of 200 KΩ or less spread a non-emission point within 1000 hours and became short-circuited and did not emit light. The current-voltage characteristics were higher by 1 to 2 V than the device manufactured in Example 2.
【0051】<実施例3>まず、RFマグネトロンスパ
ッタリング(TOKUDA CFS- 10EP−70)
により直径5インチのITOターゲット(酸化錫10w
t%)とジグ面との距離を17.5cm、アルゴン雰囲
気(圧力0.34Pa)でRF出力300Wで室温成膜
後、ストライプ状に有機酸でテーパーエッチング(発光
部2×3mmの素子18素子分)し、300℃で1時間
空気中アニールし膜厚190nmのITO電極パターン
(20Ω/ □)付基板(5センチ角)を作製した。Embodiment 3 First, RF magnetron sputtering (TOKUDA CFS-10EP-70)
5 inch diameter ITO target (tin oxide 10w)
t%) and the jig surface at a distance of 17.5 cm, an argon atmosphere (pressure 0.34 Pa), RF output of 300 W at room temperature, taper etching with organic acid in stripes (18 elements of 2 × 3 mm light-emitting part) The substrate was annealed at 300 ° C. for 1 hour in the air to prepare a substrate (5 cm square) with a 190 nm-thick ITO electrode pattern (20Ω / □).
【0052】次に、3インチRFマグネトロンスッパタ
リングガンと抵抗加熱蒸着源付き真空成膜装置を用い、
アルゴン/酸素= 10/1(圧力0.34Pa)でRF
出力250 Wで酸化インジウムをスパッタしながら同時に
SiOを抵抗加熱蒸着しITO電極パターン上に中間抵
抗膜を1μmの厚さでベタで積層した。その後、空気中
300℃で熱処理し中間抵抗膜付き基板を作製した。得
られた膜は透明で、X線回折測定でアモルファスであっ
た。表面のSi/In比= 約125原子%、体積抵抗率
は100Ω・cm、イオン化エネルギー5.6eVであ
った。Next, using a 3 inch RF magnetron sputtering gun and a vacuum film forming apparatus equipped with a resistance heating evaporation source,
RF at argon / oxygen = 10/1 (pressure 0.34Pa)
While sputtering indium oxide at an output of 250 W, SiO was simultaneously deposited by resistance heating, and an intermediate resistance film having a thickness of 1 μm was solidly laminated on the ITO electrode pattern. Thereafter, the substrate was heat-treated at 300 ° C. in air to produce a substrate with an intermediate resistance film. The obtained film was transparent and amorphous by X-ray diffraction measurement. The Si / In ratio on the surface was about 125 atomic%, the volume resistivity was 100 Ω · cm, and the ionization energy was 5.6 eV.
【0053】<実施例4>実施例3で得られた中間抵抗
膜付基板上に実施例2と同様に18素子作製した。Example 4 On the substrate with an intermediate resistance film obtained in Example 3, 18 elements were produced in the same manner as in Example 2.
【0054】その結果、この素子は18個が30MΩ
(3Vで測定)以上の抵抗を持ち短絡はなかった。素子
はすべて5000時間以上500cd/m2以上の輝度
で安定に発光する。As a result, 18 of these elements were 30 MΩ.
(Measured at 3 V) The resistance was higher than that of the above, and there was no short circuit. All the elements emit light stably at a luminance of 500 cd / m2 or more for 5000 hours or more.
【0055】[0055]
【発明の効果】以上により明らかなように、本発明によ
る中間抵抗膜付基板は、有機LED素子の電極表面の突
起や基板付着異物によるリーク電流や電気的短絡の悪影
響を抑制することができる。従って、有機LED素子と
した場合には、欠陥拡大防止と長寿命化に効果がある。As is clear from the above, the substrate with an intermediate resistance film according to the present invention can suppress the adverse effects of leak current and electrical short-circuit caused by protrusions on the electrode surface of the organic LED element and foreign substances adhering to the substrate. Therefore, when an organic LED element is used, it is effective in preventing the spread of defects and extending the life.
【0056】[0056]
【図1】本発明の中間抵抗膜付基板の一実施例を示す説
明図である。FIG. 1 is an explanatory view showing one embodiment of a substrate with an intermediate resistance film of the present invention.
【図2】本発明の中間抵抗膜付基板の一実施例を示す説
明図である。FIG. 2 is an explanatory view showing one embodiment of a substrate with an intermediate resistance film of the present invention.
【図3】従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.
【図4】本発明の中間抵抗膜付基板の一実施例を示す説
明図である。FIG. 4 is an explanatory view showing one embodiment of a substrate with an intermediate resistance film of the present invention.
1・・・ 基板 2・・・ 電極 3・・・ 中間抵抗膜 4・・・ 有機発光媒体 5・・・ 異物 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Electrode 3 ... Intermediate resistance film 4 ... Organic luminescent medium 5 ... Foreign matter
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001000700AJP2002208479A (en) | 2001-01-05 | 2001-01-05 | Substrate with intermediate resistance film for organic LED element and organic LED element |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001000700AJP2002208479A (en) | 2001-01-05 | 2001-01-05 | Substrate with intermediate resistance film for organic LED element and organic LED element |
| Publication Number | Publication Date |
|---|---|
| JP2002208479Atrue JP2002208479A (en) | 2002-07-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001000700APendingJP2002208479A (en) | 2001-01-05 | 2001-01-05 | Substrate with intermediate resistance film for organic LED element and organic LED element |
| Country | Link |
|---|---|
| JP (1) | JP2002208479A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003100154A (en)* | 2001-09-26 | 2003-04-04 | Tosoh Corp | Transparent conductive film, method for producing the same, and use thereof |
| JP2005093402A (en)* | 2003-09-19 | 2005-04-07 | Semiconductor Energy Lab Co Ltd | Light emitting device |
| JP2005116518A (en)* | 2003-09-19 | 2005-04-28 | Semiconductor Energy Lab Co Ltd | Display device and manufacturing method of the same |
| JP2005228739A (en)* | 2004-01-16 | 2005-08-25 | Semiconductor Energy Lab Co Ltd | Manufacturing method of display device |
| JP2006338916A (en)* | 2005-05-31 | 2006-12-14 | Sony Corp | Organic el element, display device and manufacturing method of organic el element |
| US7183707B2 (en) | 2004-04-12 | 2007-02-27 | Eastman Kodak Company | OLED device with short reduction |
| US7338844B2 (en) | 2003-10-14 | 2008-03-04 | Seiko Epson Corporation | Method of manufacturing electro-optical device having a plurality of unit regions arranged in a matrix |
| WO2009022556A1 (en)* | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | Organic electroluminescence element and method for manufacturing the same |
| WO2009022554A1 (en)* | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | Organic electroluminescence element and method for manufacturing the same |
| JP2009141077A (en)* | 2007-12-05 | 2009-06-25 | Toppan Printing Co Ltd | ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE |
| US7564181B2 (en) | 2005-04-08 | 2009-07-21 | Eastman Kodak Company | Performance enhancement layer for OLED devices |
| JP2010192451A (en)* | 2003-09-19 | 2010-09-02 | Semiconductor Energy Lab Co Ltd | Light-emitting device |
| US7825021B2 (en) | 2004-01-16 | 2010-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device |
| DE102009022900A1 (en)* | 2009-04-30 | 2010-11-18 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for its production |
| JP2010272547A (en)* | 2002-11-06 | 2010-12-02 | Samsung Mobile Display Co Ltd | Organic light emitting device for display and method for producing the same |
| US7851995B2 (en) | 2006-05-05 | 2010-12-14 | Global Oled Technology Llc | Electroluminescent device having improved light output |
| JP2013211132A (en)* | 2012-03-30 | 2013-10-10 | Sony Corp | Light-emitting device, method of manufacturing the same, and electronic apparatus |
| WO2015174675A1 (en)* | 2014-05-13 | 2015-11-19 | 주식회사 엘지화학 | Method for repairing organic light-emitting device |
| WO2015174674A1 (en)* | 2014-05-13 | 2015-11-19 | 주식회사 엘지화학 | Method for detecting short-circuit defect area of organic light-emitting device |
| WO2016079957A1 (en)* | 2014-11-17 | 2016-05-26 | 株式会社Joled | Method for manufacturing organic electroluminescence element, and organic electroluminescence element |
| JP2020077766A (en)* | 2018-11-08 | 2020-05-21 | 株式会社Joled | Organic electroluminescent device and manufacturing method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003100154A (en)* | 2001-09-26 | 2003-04-04 | Tosoh Corp | Transparent conductive film, method for producing the same, and use thereof |
| JP2010272547A (en)* | 2002-11-06 | 2010-12-02 | Samsung Mobile Display Co Ltd | Organic light emitting device for display and method for producing the same |
| JP2005093402A (en)* | 2003-09-19 | 2005-04-07 | Semiconductor Energy Lab Co Ltd | Light emitting device |
| JP2005116518A (en)* | 2003-09-19 | 2005-04-28 | Semiconductor Energy Lab Co Ltd | Display device and manufacturing method of the same |
| US8129900B2 (en) | 2003-09-19 | 2012-03-06 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| US8970106B2 (en) | 2003-09-19 | 2015-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| JP2010192451A (en)* | 2003-09-19 | 2010-09-02 | Semiconductor Energy Lab Co Ltd | Light-emitting device |
| US7601943B2 (en) | 2003-10-14 | 2009-10-13 | Seiko Epson Corporation | Electro-optical device having electro-optical elements provided selectively at pixel regions and electronic apparatus |
| US7338844B2 (en) | 2003-10-14 | 2008-03-04 | Seiko Epson Corporation | Method of manufacturing electro-optical device having a plurality of unit regions arranged in a matrix |
| JP2005228739A (en)* | 2004-01-16 | 2005-08-25 | Semiconductor Energy Lab Co Ltd | Manufacturing method of display device |
| US7825021B2 (en) | 2004-01-16 | 2010-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device |
| US7183707B2 (en) | 2004-04-12 | 2007-02-27 | Eastman Kodak Company | OLED device with short reduction |
| JP2012049146A (en)* | 2004-04-12 | 2012-03-08 | Global Oled Technology Llc | Oled device reduced in short circuit |
| JP2012049561A (en)* | 2004-04-12 | 2012-03-08 | Global Oled Technology Llc | Oled device reduced in short circuit |
| JP2012049145A (en)* | 2004-04-12 | 2012-03-08 | Global Oled Technology Llc | Oled device reduced in short circuit |
| US7564181B2 (en) | 2005-04-08 | 2009-07-21 | Eastman Kodak Company | Performance enhancement layer for OLED devices |
| JP2006338916A (en)* | 2005-05-31 | 2006-12-14 | Sony Corp | Organic el element, display device and manufacturing method of organic el element |
| US7851995B2 (en) | 2006-05-05 | 2010-12-14 | Global Oled Technology Llc | Electroluminescent device having improved light output |
| JP2009044103A (en)* | 2007-08-10 | 2009-02-26 | Sumitomo Chemical Co Ltd | Organic electroluminescence device and manufacturing method |
| JP2009044104A (en)* | 2007-08-10 | 2009-02-26 | Sumitomo Chemical Co Ltd | Organic electroluminescence device and manufacturing method |
| WO2009022554A1 (en)* | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | Organic electroluminescence element and method for manufacturing the same |
| WO2009022556A1 (en)* | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | Organic electroluminescence element and method for manufacturing the same |
| JP2009141077A (en)* | 2007-12-05 | 2009-06-25 | Toppan Printing Co Ltd | ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE |
| DE102009022900A1 (en)* | 2009-04-30 | 2010-11-18 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for its production |
| US8680563B2 (en) | 2009-04-30 | 2014-03-25 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for the production thereof |
| US9130189B2 (en) | 2009-04-30 | 2015-09-08 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for the production thereof |
| JP2013211132A (en)* | 2012-03-30 | 2013-10-10 | Sony Corp | Light-emitting device, method of manufacturing the same, and electronic apparatus |
| WO2015174675A1 (en)* | 2014-05-13 | 2015-11-19 | 주식회사 엘지화학 | Method for repairing organic light-emitting device |
| WO2015174674A1 (en)* | 2014-05-13 | 2015-11-19 | 주식회사 엘지화학 | Method for detecting short-circuit defect area of organic light-emitting device |
| KR101938695B1 (en) | 2014-05-13 | 2019-01-15 | 엘지디스플레이 주식회사 | Method for detection of short defects region of organic light emitting device |
| WO2016079957A1 (en)* | 2014-11-17 | 2016-05-26 | 株式会社Joled | Method for manufacturing organic electroluminescence element, and organic electroluminescence element |
| JPWO2016079957A1 (en)* | 2014-11-17 | 2017-07-13 | 株式会社Joled | Method for manufacturing organic electroluminescent element and organic electroluminescent element |
| JP2020077766A (en)* | 2018-11-08 | 2020-05-21 | 株式会社Joled | Organic electroluminescent device and manufacturing method thereof |
| Publication | Publication Date | Title |
|---|---|---|
| JP2002208479A (en) | Substrate with intermediate resistance film for organic LED element and organic LED element | |
| JP3428152B2 (en) | Manufacturing method of organic EL element | |
| JP2001085158A (en) | Organic electroluminescent device | |
| JPH1167459A (en) | Organic electroluminescent element and its manufacture | |
| US6917158B2 (en) | High-qualty aluminum-doped zinc oxide layer as transparent conductive electrode for organic light-emitting devices | |
| JP4310843B2 (en) | Method for manufacturing organic electroluminescent device | |
| JPH0487187A (en) | Organic electroluminescence element | |
| JP4308497B2 (en) | Electrode substrate for organic electroluminescence device, organic electroluminescence device and method for producing the device | |
| JPH09306668A (en) | EL element and manufacturing method thereof | |
| JP2001351778A (en) | Organic electroluminescent display device and its manufacturing method | |
| JP4428502B2 (en) | Electrode substrate for organic electroluminescent element, method for producing the same, and organic EL light emitting device | |
| KR20030064604A (en) | Transparent conductive film and electroluminescence light emitting device therewith | |
| JP4892795B2 (en) | Organic EL device and method for manufacturing the same | |
| JP2001076887A (en) | Forming method of transparent conductive film and manufacture of organic el device using this | |
| JP4241003B2 (en) | Electrode substrate for organic electroluminescence device and organic EL light emitting device | |
| US20020125495A1 (en) | Thin film alternating current electroluminescent displays | |
| JPH02253593A (en) | light emitting element | |
| JP4268161B2 (en) | Electrode substrate for organic electroluminescence device and organic EL light emitting device | |
| JPH0778691A (en) | Electroluminescent device and method of manufacturing the same | |
| JP2007234325A (en) | Organic electroluminescent element and its manufacturing method | |
| CN114015919B (en) | A visible and near-infrared high transmittance electrode and its preparation method and an organic light-emitting device | |
| JPH01320796A (en) | Electroluminescence element | |
| JPH04363892A (en) | Dc electroluminescence element | |
| JP2005310473A (en) | Manufacturing method of organic EL element | |
| JP2000228287A (en) | Organic electroluminescent device and method of manufacturing the same |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20041216 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20061212 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20061226 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20070223 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20070403 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20070531 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20071113 |