【0001】[0001]
【発明の属する技術分野】本発明は、希薄な自然太陽光
を集光してそのエネルギー密度を増大化させる太陽光の
面集光装置に関し、更に詳細には、自然太陽光を集光し
て照明・暖房・殺菌等に利用できる太陽光の面集光装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar condensing device for concentrating dilute natural sunlight and increasing its energy density, and more particularly, for condensing natural sunlight. The present invention relates to a solar light collecting device that can be used for lighting, heating, sterilization, and the like.
【0002】[0002]
【従来の技術】太陽エネルギーは地球環境に最も優しい
自然エネルギーであり、石油・原子力等の限りある資源
に替わるエネルギーとして、太陽エネルギーの利用は人
類の重要な課題である。2. Description of the Related Art Solar energy is the most natural energy friendly to the global environment, and utilization of solar energy as an alternative to limited resources such as oil and nuclear power is an important issue for human beings.
【0003】太陽エネルギーの利用に関して最も多い事
例は、太陽光を太陽電池により電気エネルギーに変換し
た後、この電気エネルギーを一般家庭及び業務用の電力
として利用することである。[0003] The most frequent use of solar energy is to convert sunlight into electric energy by a solar cell and then use this electric energy as electric power for ordinary households and businesses.
【0004】太陽エネルギーの直接利用としては、太陽
熱温水器や太陽熱給湯システムがあげられる。これは太
陽光の中の赤外エネルギーを利用するもので、冷水を温
ためて温水を風呂や家事利用に配分するシステムであ
る。The direct use of solar energy includes a solar water heater and a solar hot water supply system. This is a system that uses infrared energy in sunlight to warm cold water and distribute hot water to baths and housework.
【0005】[0005]
【発明が解決しようとする課題】太陽電池による発電は
今後益々拡大してゆくと思われるが、太陽光を電気に変
換し、この電気を照明などに更に変換しなければならな
いから、変換時のロスがかなり大きくなる。また、太陽
電池の製造や付帯設備・器具等に多額な費用がかかると
いう弱点がある。その結果、太陽電池を用いた家庭用発
電設備の普及は中々進んでいない。The power generation by solar cells is expected to expand more and more in the future. However, since it is necessary to convert sunlight into electricity and further convert this electricity into lighting, etc. The loss is quite large. In addition, there is a disadvantage that a large amount of cost is required for manufacturing solar cells and incidental facilities and equipment. As a result, household power generation equipment using solar cells has not been widely spread.
【0006】一方、太陽熱温水器や太陽熱給湯システム
の普及はかなり進んでいるが、太陽光の中の赤外線利用
に限られており、他の波長領域の太陽光は未利用のまま
である弱点を有している。[0006] On the other hand, solar water heaters and solar hot water supply systems have become quite popular, but they are limited to the use of infrared light in sunlight, and the sunlight in other wavelength regions remains unused. Have.
【0007】しかしながら、太陽光には赤外線・可視光
線・紫外線等が含まれ、赤外線は暖房や加熱に、可視光
線は照明に、紫外線は殺菌やサニタリーに利用すること
ができる。これらを光として直接利用することを実現す
るためには、まず希薄な太陽光を集光してエネルギー密
度を増大化する必要がある。従って、本発明の目的は、
分散した希薄な自然太陽光を集光して光エネルギー密度
を増大化できる太陽光の面集光装置を提供することであ
る。However, sunlight includes infrared rays, visible rays, ultraviolet rays, etc., and infrared rays can be used for heating and heating, visible rays for illumination, and ultraviolet rays for sterilization and sanitary. In order to directly use these as light, it is necessary to condense dilute sunlight to increase the energy density. Therefore, the object of the present invention is to
An object of the present invention is to provide a solar light condensing device capable of concentrating dispersed rare sunlight and increasing the light energy density.
【0008】[0008]
【課題を解決するための手段】請求項1の発明は、太陽
光を受光する受光面と、受光した太陽光を特定方向に偏
向させる偏向手段と、偏向した太陽光を集中させるレン
ズ手段と、集中した太陽光を導入する開口部と、この開
口部から導入された太陽光を両面反射させながら進行さ
せる導光路から構成されることを特徴とする太陽光の面
集光装置である。According to a first aspect of the present invention, there is provided a light receiving surface for receiving sunlight, a deflecting means for deflecting the received sunlight in a specific direction, a lens means for concentrating the deflected sunlight, A sunlight condensing device, comprising: an opening for introducing concentrated sunlight; and a light guide path for traveling while reflecting both sides of the sunlight introduced from the opening.
【0009】請求項2の発明は、前記偏向手段および/
または前記レンズ手段を複数段設けることにより太陽光
の偏向角度を大きくとる請求項1に記載の太陽光の面集
光装置である。According to a second aspect of the present invention, the deflection means and / or
2. The sunlight condensing device according to claim 1, wherein a deflection angle of sunlight is increased by providing a plurality of lens means.
【0010】請求項3の発明は、前記偏向手段がプリズ
ムである請求項1又は2に記載の太陽光の面集光装置で
ある。According to a third aspect of the present invention, there is provided the surface condensing device for sunlight according to the first or second aspect, wherein the deflecting means is a prism.
【0011】請求項4の発明は、前記偏向手段が回折格
子である請求項1又は2に記載の太陽光の面集光装置で
ある。According to a fourth aspect of the present invention, there is provided the surface condensing device for sunlight according to the first or second aspect, wherein the deflecting means is a diffraction grating.
【0012】請求項5の発明は、前記レンズ手段が凸レ
ンズからなる請求項1又は2に記載の太陽光の面集光装
置である。According to a fifth aspect of the present invention, there is provided the surface condensing device for sunlight according to the first or second aspect, wherein the lens means comprises a convex lens.
【0013】請求項6の発明は、前記レンズ手段がフレ
ネルレンズからなる請求項1又は2に記載の太陽光の面
集光装置である。According to a sixth aspect of the present invention, there is provided the surface condensing device for sunlight according to the first or second aspect, wherein the lens means comprises a Fresnel lens.
【0014】[0014]
【発明の実施の形態】本発明者は太陽光を集光する装置
を鋭意検討した結果、2次元面で受光した太陽光を1次
元に集光濃縮する集光装置を想倒するに到った。以下
に、本発明に係る太陽光の面集光装置の実施形態を図面
に従って詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION As a result of diligent studies of an apparatus for concentrating sunlight, the present inventor has come to think of a condensing apparatus for concentrating and concentrating sunlight received on a two-dimensional surface in one dimension. Was. Hereinafter, an embodiment of a solar condensing device according to the present invention will be described in detail with reference to the drawings.
【0015】図1は本発明に係る面集光装置の第1実施
形態の概要構成図である。この面集光装置2は導光ユニ
ット12の上に多数の柱状の受光ユニット4を列設して
構成される。この受光ユニット4、4…の上面は太陽光
の受光面6となる。受光ユニット4の上半部は太陽光の
方向を変化させる偏向手段8であり、その下半部は偏向
された太陽光を焦点へと集中させるレンズ手段10で構
成されている。FIG. 1 is a schematic configuration diagram of a first embodiment of a surface focusing device according to the present invention. The surface condensing device 2 is configured by arranging a large number of columnar light receiving units 4 on a light guide unit 12. The upper surfaces of the light receiving units 4, 4,... Serve as light receiving surfaces 6 for sunlight. The upper half of the light receiving unit 4 is a deflecting means 8 for changing the direction of sunlight, and the lower half thereof is constituted by a lens means 10 for concentrating the deflected sunlight to a focal point.
【0016】偏向手段8により太陽光を偏向させるに
は、例えば屈折や回折を利用する。屈折方式ではプリズ
ム、回折方式では回折格子を用いることができる。又、
レンズ手段10により太陽光を焦点に集中させるには凸
レンズやレンズ系を用いることができ、またフレネルレ
ンズを用いることもできる。To deflect sunlight by the deflecting means 8, for example, refraction or diffraction is used. A prism can be used in the refraction method, and a diffraction grating can be used in the diffraction method. or,
A convex lens or a lens system can be used to concentrate the sunlight on the focal point by the lens means 10, and a Fresnel lens can also be used.
【0017】レンズ手段10の焦点位置にはスリット状
の開口部16が設けられている。導光ユニット12の内
表面の上面12aと下面12bは高反射率を有する鏡面
に形成されている。導光ユニット12の空間部は集光さ
れた太陽光の導光路14となる。A slit-shaped opening 16 is provided at the focal position of the lens means 10. The upper surface 12a and the lower surface 12b of the inner surface of the light guide unit 12 are formed as mirror surfaces having high reflectivity. The space of the light guide unit 12 becomes a light guide path 14 for the collected sunlight.
【0018】次に、太陽光の集光過程を説明する。受光
面6に太陽光が矢印a方向に入射すると、偏向手段8に
より太陽光は矢印b方向に偏向する。この偏向した太陽
光をレンズ手段10により矢印c方向へと焦点に集中さ
せ、焦点位置に形成された開口部16を通して太陽光を
導光路14内に導入する。Next, the process of concentrating sunlight will be described. When sunlight is incident on the light receiving surface 6 in the direction of arrow a, the sunlight is deflected by the deflecting means 8 in the direction of arrow b. The deflected sunlight is focused on the focal point in the direction of arrow c by the lens means 10, and the sunlight is introduced into the light guide path 14 through the opening 16 formed at the focal position.
【0019】太陽光は矢印b方向に偏向しているから、
導光路14の上下面の鏡面で両面反射(矢印d方向)し
ながら、集中した太陽光は矢印e方向へと進行する。偏
向方向bの傾斜角が小さい場合には、太陽光は矢印f方
向へも進行するが、太陽光の大部分はe方向に進行す
る。つまり偏向角を大きくすることによってe方向にの
み集中させることも可能である。また、開口部16の開
口面積が小さい程太陽光の逃散量も小さくなり、太陽光
線の集中量を大きくすることができる。Since sunlight is deflected in the direction of arrow b,
The concentrated sunlight travels in the direction of the arrow e while being reflected on both upper and lower mirror surfaces of the light guide path 14 (in the direction of the arrow d). When the inclination angle in the deflection direction b is small, the sunlight also travels in the direction of arrow f, but most of the sunlight travels in the direction e. That is, it is possible to concentrate only in the e direction by increasing the deflection angle. In addition, the smaller the opening area of the opening 16 is, the smaller the amount of sunlight that escapes is, and the greater the amount of concentrated sunlight can be.
【0020】この面集光装置2によれば、受光面6に2
次元的に入射する太陽光をe方向に1次元的に高濃縮
(高集中)して取り出すことができる。導出された高濃
縮光を波長毎に分光して、赤外光は暖房・加熱に、可視
光は照明に、紫外光は殺菌・サニタリーへと種々活用す
ることができる。According to the surface condensing device 2, the light receiving surface 6
It is possible to take out sunlight that is one-dimensionally highly concentrated (highly concentrated) in the e direction. The derived highly concentrated light is spectrally separated for each wavelength, and the infrared light can be used for heating and heating, the visible light can be used for illumination, and the ultraviolet light can be used for sterilization and sanitary.
【0021】図2は本発明に係る面集光装置の第2実施
形態の概要構成図である。図1と異なる点は受光ユニッ
ト4が矩形状に形成されていることで、その結果、偏向
手段8およびレンズ手段10も矩形内に配置される構成
となる。FIG. 2 is a schematic configuration diagram of a second embodiment of the surface focusing device according to the present invention. The difference from FIG. 1 is that the light receiving unit 4 is formed in a rectangular shape, and as a result, the deflecting means 8 and the lens means 10 are also arranged in the rectangle.
【0022】例えば、レンズ手段10として丸凸レンズ
を用いれば、開口部16はその焦点位置にピンポイント
状に形成される。図1のレンズ手段10が円筒凸レンズ
で、開口部16がスリット状であるのと対照的である。
他の構成・作用は図1と同様であるから、その説明は省
略する。For example, if a round convex lens is used as the lens means 10, the opening 16 is formed in a pinpoint shape at the focal position. This is in contrast to the lens means 10 of FIG. 1 which is a cylindrical convex lens and the opening 16 is slit-shaped.
Other configurations and operations are the same as those in FIG. 1, and the description thereof is omitted.
【0023】[0023]
【実施例】以下に更に詳細な実施例を図面を参照して説
明する。図3は面集光装置の第1実施例の概要説明図
で、偏向手段8としてプリズム8aを、レンズ手段10
として凸レンズ10aを用いた場合である。太陽光は矢
印a方向から矢印b方向に偏向され、次に矢印c方向に
集中した後、開口部16から導光路14を通って矢印d
方向に両面反射しながら、矢印e方向へと集中濃縮され
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A more detailed embodiment will be described below with reference to the drawings. FIG. 3 is a schematic explanatory view of the first embodiment of the surface light condensing device.
Is a case where the convex lens 10a is used. The sunlight is deflected from the direction of the arrow a to the direction of the arrow b, and then concentrated in the direction of the arrow c.
While being reflected on both sides in the direction, the concentration is concentrated in the direction of arrow e.
【0024】図4は面集光装置の第2実施例の概要説明
図で、開口部16の位置に第2のプリズム8bと第2の
凸レンズ10bを追加配置した場合を示す。プリズム8
aで偏向させた後、第2のプリズム8aで更に偏向させ
ることができ、総合偏向角度を大きく設定できる利点が
ある。この場合には、受光した太陽光のほとんどを矢印
e方向に濃縮でき、矢印f方向への進行をゼロにするこ
とができる。第2の凸レンズ10bはプリズム8bを出
た太陽光を平行に導光路14へと導入する作用をする。FIG. 4 is a schematic explanatory view of a second embodiment of the surface condensing device, in which a second prism 8b and a second convex lens 10b are additionally arranged at the position of the opening 16. Prism 8
After being deflected by a, it can be further deflected by the second prism 8a, and there is an advantage that the total deflection angle can be set large. In this case, most of the received sunlight can be concentrated in the direction of arrow e, and the progress in the direction of arrow f can be made zero. The second convex lens 10b has a function of introducing sunlight coming out of the prism 8b into the light guide path 14 in parallel.
【0025】図5は面集光装置の第3実施例の概要説明
図で、開口部16の位置に第2のプリズム8bを配置
し、凸レンズ10bを除去した場合を示している。第2
のプリズム8bを出た太陽光は開口部16から拡散状に
導光路14へと入射し、両面反射しながら矢印e方向へ
と濃縮進行する。FIG. 5 is a schematic explanatory view of a third embodiment of the surface condensing device, in which the second prism 8b is arranged at the position of the opening 16 and the convex lens 10b is removed. Second
The sunlight that has exited the prism 8b enters the light guide path 14 in a diffused manner from the opening 16 and concentrates in the direction of arrow e while being reflected on both sides.
【0026】図6は面集光装置の第4実施例の概要説明
図で、開口部16の位置に偏向手段として回折格子8c
を、レンズ手段としてフレネルレンズ10cを配置した
場合を示し、詳細は図7に示されている。回折格子8c
で第2の偏向を行い、フレネルレンズ10cで平行光線
化するものであるが、図6では完全な平行化ができてい
ない場合を示す。回折格子とフレネルレンズを用いるこ
とによって面集光装置2をコンパクトにできる。FIG. 6 is a schematic explanatory view of a fourth embodiment of the surface condensing device.
FIG. 7 shows a case where a Fresnel lens 10c is arranged as a lens means, and the details are shown in FIG. Diffraction grating 8c
Perform the second deflection, and convert the light into parallel rays by the Fresnel lens 10c. FIG. 6 shows a case where complete parallelization has not been achieved. By using the diffraction grating and the Fresnel lens, the surface condensing device 2 can be made compact.
【0027】図8は回折格子の偏向作用の説明図であ
る。回折格子8cには鋸歯刃状に凹凸が刻まれ、エッジ
9aと斜部9bが反復形成されている。エッジ9aに入
射した太陽光11は第0次回折光11a、第1次回折光
11b…と拡散して透過する。一方、斜部9bに入射し
た太陽光は屈折しながら屈折光11cとして透過してゆ
く。第1次回折光11bと屈折光11cが同方向になる
ように凹凸形成すると、回折格子8cの偏向強度を大き
く設定できる。FIG. 8 is an explanatory diagram of the deflection action of the diffraction grating. The diffraction grating 8c is formed with a saw-tooth blade-like unevenness, and an edge 9a and an oblique portion 9b are repeatedly formed. The sunlight 11 incident on the edge 9a is diffused and transmitted as the 0th-order diffracted light 11a, the first-order diffracted light 11b, and so on. On the other hand, sunlight incident on the oblique portion 9b is transmitted as refracted light 11c while being refracted. When the unevenness is formed so that the first-order diffracted light 11b and the refracted light 11c are in the same direction, the deflection intensity of the diffraction grating 8c can be set large.
【0028】図9は面集光装置の第5実施例の概要説明
図である。2個の偏向手段8を回折格子8d、8cで構
成し、2個のレンズ手段10をフレネルレンズ10d、
10cで構成したものである。回折格子とフレネルレン
ズはフィルム状に形成できるから、面集光装置2の全体
をコンパクト化できる利点がある。FIG. 9 is a schematic explanatory view of a fifth embodiment of the surface light collecting device. The two deflecting means 8 are composed of diffraction gratings 8d and 8c, and the two lens means 10 are Fresnel lenses 10d and
10c. Since the diffraction grating and the Fresnel lens can be formed in a film shape, there is an advantage that the entire surface condensing device 2 can be made compact.
【0029】本発明は上記実施形態及び実施例に限定さ
れるものではなく、本発明の技術的思想を逸脱しない範
囲における種々の変形例、設計変更等をその技術的範囲
内に包含するものである。The present invention is not limited to the above embodiments and examples, but encompasses various modifications and design changes within the technical scope without departing from the technical idea of the present invention. is there.
【0030】[0030]
【発明の効果】請求項1の発明によれば、この面集光装
置を壁・窓・屋根・屋外などに設置することによって、
2次元の受光面に入射する太陽光を1次元状の導光路に
集光して光エネルギー密度の増大化を図ることができ、
この高密度化された太陽光を暖房・照明・殺菌等の諸用
途に利用できる道を開くことができる。又、太陽光を光
として直接濃縮できるから、変換ロスの少ない太陽光利
用方法を提供するものである。According to the first aspect of the present invention, by installing this surface condensing device on a wall, a window, a roof, or the outdoors,
The sunlight incident on the two-dimensional light receiving surface can be converged on a one-dimensional light guide path to increase the light energy density,
This can open the way to use the high-density sunlight for various purposes such as heating, lighting, and sterilization. Moreover, since sunlight can be directly concentrated as light, a method of using sunlight with a small conversion loss is provided.
【0031】請求項2の発明によれば、複数段の偏向手
段および/またはレンズ手段により、太陽光を導光路の
一方向に高効率に誘導でき、集光効率の向上を図ること
ができる。According to the second aspect of the present invention, sunlight can be guided in one direction of the light guide path with high efficiency by a plurality of stages of deflecting means and / or lens means, and the light collection efficiency can be improved.
【0032】請求項3の発明によれば、偏向手段として
プリズムを用いるから、太陽光の偏向角度を大きくとる
ことができ、太陽光を導光路の一方向に高効率に集光で
きる。According to the third aspect of the present invention, since the prism is used as the deflecting means, the angle of deflection of the sunlight can be increased, and the sunlight can be concentrated in one direction of the light guide path with high efficiency.
【0033】請求項4の発明によれば、偏向手段として
回折格子を用いるから、偏向手段をフィルム状に薄く形
成でき、本装置のコンパクト化を図ることができる。According to the fourth aspect of the present invention, since the diffraction grating is used as the deflecting means, the deflecting means can be formed in a thin film shape, and the apparatus can be made compact.
【0034】請求項5の発明によれば、レンズ手段とし
て凸レンズを用いるから、拡散した希薄な太陽光を確実
に焦点化することができ、太陽光を開口部を通して導光
路に効率的に導入でき、集光効率の高効率化を達成でき
る。According to the fifth aspect of the present invention, since the convex lens is used as the lens means, it is possible to surely focus the diffused dilute sunlight, and to efficiently introduce the sunlight into the light guide path through the opening. Thus, it is possible to achieve a high light-collecting efficiency.
【0035】請求項6の発明によれば、レンズ手段とし
てフレネルレンズを用いるから、レンズ手段をフィルム
状に薄く形成でき、本装置のコンパクト化を図ることが
できる。According to the sixth aspect of the invention, since the Fresnel lens is used as the lens means, the lens means can be formed in a thin film shape, and the apparatus can be made compact.
【図1】本発明に係る面集光装置の第1実施形態の概要
構成図である。FIG. 1 is a schematic configuration diagram of a first embodiment of a surface focusing device according to the present invention.
【図2】本発明に係る面集光装置の第2実施形態の概要
構成図である。FIG. 2 is a schematic configuration diagram of a second embodiment of the surface focusing device according to the present invention.
【図3】面集光装置の第1実施例の概要説明図である。FIG. 3 is a schematic explanatory view of a first embodiment of the surface light collecting device.
【図4】面集光装置の第2実施例の概要説明図である。FIG. 4 is a schematic explanatory view of a second embodiment of the surface focusing device.
【図5】面集光装置の第3実施例の概要説明図である。FIG. 5 is a schematic explanatory view of a third embodiment of the surface condensing device.
【図6】面集光装置の第4実施例の概要説明図である。FIG. 6 is a schematic explanatory view of a fourth embodiment of the surface condensing device.
【図7】図6の回折格子とフレネルレンズの配置図であ
る。FIG. 7 is an arrangement diagram of the diffraction grating and the Fresnel lens of FIG. 6;
【図8】回折格子の偏向作用の説明図である。FIG. 8 is an explanatory diagram of a deflection action of the diffraction grating.
【図9】面集光装置の第5実施例の概要説明図である。FIG. 9 is a schematic explanatory view of a fifth embodiment of the surface condensing device.
2は面集光装置、4は受光ユニット、6は受光面、8は
偏向手段、8a・8bはプリズム、8c・8dは回折格
子、9aはエッジ、9bは斜部、10はレンズ手段、1
0a・10bは凸レンズ、10c・10dはフレネルレ
ンズ、11は太陽光、12は導光ユニット、12aは上
面、12bは下面、14は導光路、16は開口部。2 is a surface condensing device, 4 is a light receiving unit, 6 is a light receiving surface, 8 is a deflecting means, 8a and 8b are prisms, 8c and 8d are diffraction gratings, 9a is an edge, 9b is an oblique portion, 10 is a lens means, 1
Reference numerals 0a and 10b are convex lenses, 10c and 10d are Fresnel lenses, 11 is sunlight, 12 is a light guide unit, 12a is an upper surface, 12b is a lower surface, 14 is a light guide path, and 16 is an opening.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000106206AJP2001289515A (en) | 2000-04-07 | 2000-04-07 | Planar solar ray concentrating device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000106206AJP2001289515A (en) | 2000-04-07 | 2000-04-07 | Planar solar ray concentrating device |
| Publication Number | Publication Date |
|---|---|
| JP2001289515Atrue JP2001289515A (en) | 2001-10-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000106206APendingJP2001289515A (en) | 2000-04-07 | 2000-04-07 | Planar solar ray concentrating device |
| Country | Link |
|---|---|
| JP (1) | JP2001289515A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7873257B2 (en) | 2007-05-01 | 2011-01-18 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
| KR101018879B1 (en) | 2010-08-26 | 2011-03-04 | 정하영 | Prismatic Fresnel lens sheet, solar concentrator, and solar system using the same |
| WO2011074108A1 (en)* | 2009-12-18 | 2011-06-23 | サン電子株式会社 | Light gathering apparatus |
| WO2012033132A1 (en)* | 2010-09-07 | 2012-03-15 | 株式会社ニコン | Light condenser, photovoltaic system, and photothermal converter |
| US8328403B1 (en) | 2012-03-21 | 2012-12-11 | Morgan Solar Inc. | Light guide illumination devices |
| JP2013543150A (en)* | 2010-11-04 | 2013-11-28 | バニヤン エナジー インコーポレイテッド | Compact optical components for heat collection and lighting systems |
| US8885995B2 (en) | 2011-02-07 | 2014-11-11 | Morgan Solar Inc. | Light-guide solar energy concentrator |
| US9040808B2 (en) | 2007-05-01 | 2015-05-26 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
| US9337373B2 (en) | 2007-05-01 | 2016-05-10 | Morgan Solar Inc. | Light-guide solar module, method of fabrication thereof, and panel made therefrom |
| CN108826209A (en)* | 2018-08-20 | 2018-11-16 | 长春理工大学 | A kind of sunlight room lighting optical system |
| US11276795B2 (en) | 2010-07-13 | 2022-03-15 | S.V.V. Technology Innovations, Inc. | Light converting systems employing thin light absorbing and light trapping structures with lens arrays |
| CN115127072A (en)* | 2022-08-03 | 2022-09-30 | 复旦大学 | A daylighting lighting system and lighting method free from sun tracking |
| USRE49630E1 (en) | 2011-10-08 | 2023-08-29 | S.V.V. Technology Innovations, Inc. | Collimating illumination systems employing a waveguide |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9040808B2 (en) | 2007-05-01 | 2015-05-26 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
| US9337373B2 (en) | 2007-05-01 | 2016-05-10 | Morgan Solar Inc. | Light-guide solar module, method of fabrication thereof, and panel made therefrom |
| US7991261B2 (en) | 2007-05-01 | 2011-08-02 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
| US8152339B2 (en) | 2007-05-01 | 2012-04-10 | Morgan Solar Inc. | Illumination device |
| US7873257B2 (en) | 2007-05-01 | 2011-01-18 | Morgan Solar Inc. | Light-guide solar panel and method of fabrication thereof |
| US9335530B2 (en) | 2007-05-01 | 2016-05-10 | Morgan Solar Inc. | Planar solar energy concentrator |
| WO2011074108A1 (en)* | 2009-12-18 | 2011-06-23 | サン電子株式会社 | Light gathering apparatus |
| US12159951B2 (en) | 2010-07-13 | 2024-12-03 | S.V.V. Technology Innovations, Inc. | Method of making light converting systems using thin light trapping structures and photoabsorptive films |
| US11923475B2 (en) | 2010-07-13 | 2024-03-05 | S.V.V. Technology Innovations, Inc. | Method of making light converting systems using thin light trapping structures and photoabsorptive films |
| US11616157B2 (en) | 2010-07-13 | 2023-03-28 | S.V.V. Technology Innovations, Inc. | Method of making light converting systems using thin light absorbing and light trapping structures |
| US11276795B2 (en) | 2010-07-13 | 2022-03-15 | S.V.V. Technology Innovations, Inc. | Light converting systems employing thin light absorbing and light trapping structures with lens arrays |
| KR101018879B1 (en) | 2010-08-26 | 2011-03-04 | 정하영 | Prismatic Fresnel lens sheet, solar concentrator, and solar system using the same |
| WO2012033132A1 (en)* | 2010-09-07 | 2012-03-15 | 株式会社ニコン | Light condenser, photovoltaic system, and photothermal converter |
| JP2013543150A (en)* | 2010-11-04 | 2013-11-28 | バニヤン エナジー インコーポレイテッド | Compact optical components for heat collection and lighting systems |
| US8885995B2 (en) | 2011-02-07 | 2014-11-11 | Morgan Solar Inc. | Light-guide solar energy concentrator |
| USRE49630E1 (en) | 2011-10-08 | 2023-08-29 | S.V.V. Technology Innovations, Inc. | Collimating illumination systems employing a waveguide |
| US8657479B2 (en) | 2012-03-21 | 2014-02-25 | Morgan Solar Inc. | Light guide illumination devices |
| US8328403B1 (en) | 2012-03-21 | 2012-12-11 | Morgan Solar Inc. | Light guide illumination devices |
| CN108826209A (en)* | 2018-08-20 | 2018-11-16 | 长春理工大学 | A kind of sunlight room lighting optical system |
| CN115127072A (en)* | 2022-08-03 | 2022-09-30 | 复旦大学 | A daylighting lighting system and lighting method free from sun tracking |
| Publication | Publication Date | Title |
|---|---|---|
| KR101455892B1 (en) | Compact Optics for Concentration, Aggregation and Illumination of Light Energy | |
| DK170125B1 (en) | Solar module | |
| JP4639337B2 (en) | Solar cell and solar collector | |
| US20110297229A1 (en) | Integrated concentrating photovoltaics | |
| JP2001289515A (en) | Planar solar ray concentrating device | |
| KR20090032900A (en) | Condensing Solar Power System by Highly Concentrated Solar Spectroscopy | |
| Karp et al. | Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide | |
| TW201214732A (en) | Light concentrator and solar cell apparatus | |
| US20100147375A1 (en) | Micro-concentrators for solar cells | |
| CN102800729B (en) | Photovoltaic system for efficient solar radiation collection and solar panel incorporating same | |
| KR101909228B1 (en) | Apparatus of concentrator for cpv using linear fresnel lens | |
| KR101468714B1 (en) | Solar ray generation device | |
| US20090320901A1 (en) | Concentration photovoltaic cell system with light guide | |
| JP2002280595A (en) | Solar concentrator | |
| KR101499973B1 (en) | Photovoltaic devices and concentrators | |
| EP2477054A1 (en) | Solar condensing device | |
| US7206142B1 (en) | Refractive spectrum splitting concentrator system | |
| Shieh et al. | Compact solar concentrator designed by minilens and slab waveguide | |
| KR100466257B1 (en) | Condensing lens and apparatus for solar photovoltaic generator | |
| JPH11266031A (en) | Concentrating photovoltaic power generation device with diffraction surface and concentrating photovoltaic power generation module | |
| RU2134849C1 (en) | Solar photoelectric module with concentrator | |
| KR101094923B1 (en) | Prism optical guide and how to use it | |
| RU2645800C1 (en) | Solar module with concentrator | |
| KR100891015B1 (en) | Solar focusing device that condenses infrared and visible light in opposite directions | |
| Karp et al. | Micro-optic solar concentration and next-generation prototypes |