【0001】[0001]
【発明の属する技術分野】本発明はレーザー加工技術、
特に、フェムト秒(fs)からピコ秒(ps)(10
-15〜10-12秒)領域の超短パルスレーザーを用いた加
工技術に関する。The present invention relates to a laser processing technology,
In particular, femtoseconds (fs) to picoseconds (ps) (10
The present invention relates to a processing technique using an ultrashort pulse laser in a range of-15 to 10-12 seconds.
【0002】[0002]
【従来の技術】従来のCWレーザー又は短パルス(ナノ
秒(ns)より長いパルス)レーザーを用いるレーザー
加工においては、加工スループットを向上させることを
目的として、図4に示すように、これらのレーザービー
ム15を回折光学素子2で分岐させ、その回折ビームア
レイを利用して集光光学系3により被加工物4上に複数
の集光スポット5a,5b・・・を生じさせて、被加工
物4の複数箇所を同時に加工することが行われている。
なお、レーザービームを分岐させるための回折光学素子
としては、位相格子が一般に知られており、それは、例
えば、H.Dammann and K.Gortler共著の、"Optics Comm
unication,Vol.13,No.5,pp.312-315(1971)"に紹介され
ている。2. Description of the Related Art In laser processing using a conventional CW laser or a short pulse (pulse longer than nanosecond (ns)) laser, as shown in FIG. The beam 15 is split by the diffractive optical element 2, and a plurality of condensed spots 5a, 5b,... 4 are simultaneously machined.
A phase grating is generally known as a diffractive optical element for splitting a laser beam, and is described, for example, in "Optics Comm", which is co-authored by H. Dammann and K. Gortler.
unication, Vol. 13, No. 5, pp. 312-315 (1971) ".
【0003】[0003]
【発明が解決しようとする課題】しかしながら、アブレ
ーション痕、特にその縁部分での熱変成を小さくできる
等の効果により、近年注目されてきたフェムト秒パルス
等の超短パルスレーザーを用いたレーザー加工に、従来
の技術をそのまま適用することはいささか問題がある。
なお、フェムト秒レーザー加工については、熊谷寛氏に
よる文献(応用物理、第67巻、第9号、1051−1
055頁(1998))が参考になるであろう。上記の
問題というのは、パルス幅がフェトム秒ほどに短くなる
とスペクトル幅が広がり、その特性が光の波長に依存す
る屈折光学素子(レンズ、プリズム)や回折光学素子
(位相格子、ホログラム)の特性を低下させ、回折ビー
ム毎にビーム径や集光スポット径が異なって、各集光ス
ポットで均一な加工を行うことが難しくなるからであ
る。However, due to the effect of minimizing ablation traces, especially thermal denaturation at the edges thereof, laser processing using an ultrashort pulse laser such as a femtosecond pulse, which has recently attracted attention. However, applying the conventional technique as it is has some problems.
The femtosecond laser processing is described in a document by Hiroshi Kumagai (Applied Physics, Vol. 67, No. 9, 1051-1).
055 (1998)). The problem is that when the pulse width becomes as short as femtoseconds, the spectrum width expands, and the characteristics of refractive optical elements (lenses and prisms) and diffractive optical elements (phase gratings and holograms) whose characteristics depend on the wavelength of light. This is because the beam diameter and the focused spot diameter are different for each diffracted beam, making it difficult to perform uniform processing at each focused spot.
【0004】レーザービームのパルス幅△tとスペクト
ル幅△λとの間には、以下の関係が成り立つ。 (△t・△λ)≧C(定数)・・・・・(1) この式(1)から、パルス幅△tが短くなるほどスペク
トル幅△λが広がることがわかる。パルス幅が1ps以
上の場合には、スペクトル幅の広がりは1nm程度まで
であり、レーザー加工の際にスペクトル幅の広がりをほ
とんど無視して差し支えない。しかしながら、フェトム
秒等の超短パルスを用いる場合には、このスペクトル幅
の広がりが問題となってくる。The following relationship holds between the pulse width Δt of the laser beam and the spectrum width Δλ. (△ t · △ λ) ≧ C (constant) (1) From this equation (1), it can be seen that the shorter the pulse width Δt, the wider the spectrum width Δλ. When the pulse width is 1 ps or more, the spread of the spectral width is up to about 1 nm, and the spread of the spectral width can be almost ignored during laser processing. However, when using ultrashort pulses such as femtoseconds, the spread of the spectrum width becomes a problem.
【0005】次に、レーザービームを分岐させるために
位相格子を用いた例を取り上げ、図5の光学系の模式図
を参照しながら、上記問題の生じる原因を説明する。位
相格子2に入射したパルスビームは、次式に従って角度
θで回折される。 θ=λ/p・・・・・(2) ただし、λはパルスビームの波長、pは位相格子2の格
子の周期である。また、被加工物4上でのビームの到達
位置hは次式から求まる。 h=λz/p・・・・・(3) ここで、zは位相格子2から被加工物4までの距離であ
る。パルスのスペクトル幅に広がりがある(波長λが幅
を有する)と、ビームの到達位置がずれる、あるいは、
集光スポットが広がることになる。この広がりの大きさ
△hは、式(3)から、次式で見積もることができる。 △h/h=△λ/λ ・・・・・(4) すなわち、集光スポットの広がりはスペクトル幅の広が
りに比例することがわかる。いま、超短パルス光源であ
るTiサファイアレーザーを例にとると、中心波長80
0nmに対するスペクトル幅の広がりは8nmとなるこ
とが知られている。この事実を式(4)に当てはめる
と、△h/h=△λ/λ =8/800=0.01とな
り、集光スポットサイズが少なくとも1%広がることに
なる。一般に、スペクトル幅の広がりは半値で表現され
るため、集光スポットサイズの広がりは、実際には1%
以上と予想される。パルス幅がさらに短くなり、例えば
10fsになると、スペクトル幅の広がりは式(1)か
ら、およそ10倍になることがわかる。従って、集光ス
ポットは少なくとも10%以上広がることになる。これ
では、精度が要求される加工に、そのようなパルスビー
ムを用いることは難しい。このように、レーザービーム
のパルス幅における10fsか100fsかの選択は、
光学素子の観点からすると、実に大きな問題となるので
ある。Next, an example in which a phase grating is used to split a laser beam will be described, and the cause of the above problem will be described with reference to a schematic diagram of an optical system shown in FIG. The pulse beam incident on the phase grating 2 is diffracted at an angle θ according to the following equation. θ = λ / p (2) where λ is the wavelength of the pulse beam, and p is the period of the phase grating 2. Further, the arrival position h of the beam on the workpiece 4 is obtained from the following equation. h = λz / p (3) Here, z is the distance from the phase grating 2 to the workpiece 4. If the spectrum width of the pulse is wide (the wavelength λ has a width), the arrival position of the beam shifts, or
The condensed spot spreads. The magnitude Δh of this spread can be estimated from the following equation from equation (3). Δh / h = △ λ / λ (4) That is, it can be seen that the spread of the condensed spot is proportional to the spread of the spectrum width. Now, taking a Ti sapphire laser as an ultrashort pulse light source as an example, a center wavelength of 80
It is known that the spread of the spectrum width with respect to 0 nm is 8 nm. When this fact is applied to equation (4), Δh / h = Δλ / λ = 8/800 = 0.01, and the focused spot size is expanded by at least 1%. In general, the spread of the spectral width is expressed by half value, so that the spread of the focused spot size is actually 1%.
This is expected. When the pulse width is further reduced, for example, to 10 fs, it can be seen from Expression (1) that the spread of the spectrum width is increased about 10 times. Therefore, the condensed spot spreads at least 10% or more. In this case, it is difficult to use such a pulse beam for processing that requires accuracy. Thus, the choice of 10 fs or 100 fs in the pulse width of the laser beam is as follows:
From an optical element point of view, this is a really big problem.
【0006】本発明は、これらの問題を解決するために
なされたもので、フェムト秒パルス等の超短パルスレー
ザーを用いたレーザー加工においても、1本のレーザー
ビームから複数のほぼ同じ大きさの集光スポットが得ら
れる加工装置を提供することを目的とする。The present invention has been made in order to solve these problems. Even in laser processing using an ultrashort pulse laser such as a femtosecond pulse, a plurality of laser beams having substantially the same size can be obtained from one laser beam. It is an object of the present invention to provide a processing device capable of obtaining a converging spot.
【0007】[0007]
【課題を解決するための手段】本発明の第1は、レーザ
ービームを用いて被加工物の複数箇所を加工するレーザ
ー加工装置であって、レーザービームを分岐させて複数
の回折ビームを生じさせる回折光学素子と、前記回折光
学素子から出射した回折ビームを前記被加工物の複数箇
所に照射する集光光学系と、を有してなり、前記集光光
学系は屈折光学素子と色収差補正用の回折光学素子とか
らなるものである。これによれば、集光光学系の屈折効
果と回折効果とにより、回折ビーム径をほぼ同じにし
て、被加工物上に、複数のほぼ同じ大きさの集光スポッ
トを等間隔で得ることが可能となる。また、前記屈折光
学素子がレンズからなるものである。これによれば、集
光光学系が比較的簡単に構成できる。また、前記集光光
学系により、前記被加工物に照射されるレーザービーム
の形状を制御してなるものである。これによれば、加工
に応じて照射ビームの形状を変えることが可能になる。
また、レーザー分岐用の前記回折光学素子と前記集光光
学系とが所定の間隔を置いて、あるいは 前記集光光学
系を構成する屈折光学素子と回折光学素子とが所定の間
隔を置いて配置されてなるものである。これによれば、
レーザー光学系をより柔軟に設計することが可能とな
る。また、前記被加工物の複数箇所に照射されるレーザ
ービームはそれぞれがほぼ同じ強度を有してなるもので
ある。これによれば、各集光スポットで加工の進み具合
を同じくすることが可能となる。また、前記レーザービ
ームが超短パルスのものである。上記のように、超短パ
ルスレーザーを用いても、被加工物上に複数のほぼ同じ
大きさの集光スポットを等間隔で得ることができるの
で、これによって超短パルスレーザーを用いた加工に特
有の優れた精密加工が可能となる。A first aspect of the present invention is a laser processing apparatus for processing a plurality of portions of a workpiece by using a laser beam, wherein the laser beam is branched to generate a plurality of diffraction beams. A diffractive optical element, and a condensing optical system that irradiates a diffraction beam emitted from the diffractive optical element to a plurality of portions of the workpiece, wherein the condensing optical system includes a refractive optical element and a chromatic aberration correcting element. And a diffractive optical element. According to this, the refraction effect and the diffraction effect of the condensing optical system make it possible to obtain a plurality of condensed spots of substantially the same size at equal intervals on the workpiece by making the diameter of the diffracted beam substantially the same. It becomes possible. Further, the refractive optical element comprises a lens. According to this, the condensing optical system can be configured relatively easily. Further, the shape of the laser beam irradiated on the workpiece is controlled by the condensing optical system. According to this, it becomes possible to change the shape of the irradiation beam according to the processing.
Further, the diffractive optical element for laser branching and the condensing optical system are arranged at a predetermined distance, or the refractive optical element and the diffractive optical element constituting the condensing optical system are arranged at a predetermined distance. It has been done. According to this,
The laser optical system can be designed more flexibly. Further, the laser beams applied to a plurality of locations on the workpiece each have substantially the same intensity. According to this, it is possible to make the progress of processing the same at each of the condensing spots. Further, the laser beam has an ultrashort pulse. As described above, even if an ultra-short pulse laser is used, a plurality of condensed spots of substantially the same size can be obtained at equal intervals on a workpiece, thereby enabling processing using an ultra-short pulse laser. The unique superior precision processing becomes possible.
【0008】本発明の第2は、レーザービームを用いて
被加工物の複数箇所を加工するレーザー加工装置であっ
て、レーザービームをほぼ一様な強度分布を有するレー
ザービームに変換する第1回折光学素子と、前記第1回
折光学素子から出射したレーザービームを平行光にする
第2回折光学素子と、前記第2回折光学素子から出射し
たレーザービームを分岐集光させて被加工物の複数箇所
に照射する光学素子と、を有するものである。これによ
れば、第1及び第2の位相型回折光学素子により、ガウ
シアン強度分布を持つレーザービームが一様な強度の平
行光に変換され、その平行光が照射用光学素子により被
加工物の複数箇所に集光されて、複数のほぼ同じ大きさ
の集光スポットを得ることが可能となる。また、前記第
1回折光学素子はレーザービームのガウシアン光強度分
布をほぼ一様な強度分布を有するレーザービームに変換
するものであり、一方、前記第2回折光学素子はレーザ
ービームを平行光に変換する機能を有するものである。
また、前記照射用光学素子により、前記被加工物に照射
されるレーザービームの形状を制御してなるものであ
る。これによれば、加工に応じて照射ビームの形状を変
えることが可能になる。また、前記被加工物の複数箇所
に照射されるレーザービームはそれぞれほぼ同じ強度を
有するものである。これによれば、各集光スポットで加
工の進み具合を同じくすることが可能となる。また、前
記照射用光学素子はレンズアレイからなるものである。
これによれば、装置を比較的簡単に構成することができ
る。また、前記照射用光学素子はトールボット素子から
なるものである。これによれば、第1及び第2の位相型
回折光学素子により変換された平行光がトールボット素
子で回折され、その回折ビームが干渉し合って、被加工
物の複数箇所にほぼ同じ大きさの集光スポットを得るこ
とが可能となる。また、前記レーザービームは超短パル
スのものである。超短パルスレーザーを用いても、被加
工物上に複数のほぼ同じ大きさの集光スポットを得るこ
とができるので、これにより、超短パルスレーザーを用
いた加工に特有の優れた精密加工が可能となる。A second aspect of the present invention is a laser processing apparatus for processing a plurality of portions of a workpiece using a laser beam, wherein the first diffraction device converts the laser beam into a laser beam having a substantially uniform intensity distribution. An optical element, a second diffractive optical element for converting a laser beam emitted from the first diffractive optical element into parallel light, and a laser beam emitted from the second diffractive optical element is branched and condensed to form a plurality of portions on a workpiece. And an optical element for irradiating the light. According to this, a laser beam having a Gaussian intensity distribution is converted into parallel light of uniform intensity by the first and second phase-type diffractive optical elements, and the parallel light is applied to the workpiece by the irradiation optical element. It is possible to obtain a plurality of condensed spots having substantially the same size by being condensed at a plurality of locations. The first diffractive optical element converts the Gaussian light intensity distribution of the laser beam into a laser beam having a substantially uniform intensity distribution, while the second diffractive optical element converts the laser beam into parallel light. It has a function to perform.
Further, the shape of the laser beam irradiated on the workpiece is controlled by the irradiation optical element. According to this, it becomes possible to change the shape of the irradiation beam according to the processing. Further, the laser beams applied to a plurality of locations on the workpiece have substantially the same intensity. According to this, it is possible to make the progress of processing the same at each of the condensing spots. Further, the irradiation optical element comprises a lens array.
According to this, the device can be configured relatively easily. Further, the irradiation optical element is a Talbot element. According to this, the parallel light converted by the first and second phase-type diffractive optical elements is diffracted by the Talbot element, and the diffracted beams interfere with each other, so that they have substantially the same size at a plurality of positions on the workpiece. Can be obtained. Further, the laser beam is of an ultrashort pulse. Even if an ultra-short pulse laser is used, a plurality of condensed spots of substantially the same size can be obtained on the workpiece, thereby achieving excellent precision processing unique to processing using an ultra-short pulse laser. It becomes possible.
【0009】本発明の第3は、複数箇所にレーザービー
ムを照射するレーザー照射方法であって、光源から出射
されたレーザービームを回折光学素子により複数の回折
ビームに分岐する工程と、前記回折光学素子から出射し
た回折ビームを屈折光学素子と色収差補正用の回折光学
素子とからなる集光光学系により集光させ、複数箇所に
レーザービームを照射させる工程と、を少なくとも有し
たものである。これによれば、集光光学系の屈折効果と
回折効果とにより、回折ビーム径をほぼ同じにして、被
加工物上に、複数のほぼ同じ大きさの集光スポットを等
間隔で得ることが可能となる。A third aspect of the present invention is a laser irradiation method for irradiating a plurality of portions with a laser beam, wherein the step of splitting the laser beam emitted from the light source into a plurality of diffracted beams by a diffractive optical element; Converging a diffracted beam emitted from the element by a condensing optical system including a refractive optical element and a diffractive optical element for correcting chromatic aberration, and irradiating a laser beam to a plurality of locations. According to this, the refraction effect and the diffraction effect of the condensing optical system make it possible to obtain a plurality of condensed spots of substantially the same size at equal intervals on the workpiece by making the diameter of the diffracted beam substantially the same. It becomes possible.
【0010】本発明の第4は、複数箇所にレーザービー
ムを照射するレーザー照射方法であって、光源から出射
されたレーザービームを第1回折光学素子によりほぼ一
様な光強度分布を有するレーザービームに変換する工程
と、前記第1回折光学素子から出射したレーザービーム
を第2回折光学素子により平行光に変換する工程と、前
記第2回折光学素子から出射したレーザービームを光学
素子により分岐集光させて複数箇所に照射する工程と、
を少なくとも有したものである。これによれば、第1及
び第2の回折光学素子により、ガウシアン強度分布を持
つレーザービームが一様な強度分布を有する平行光に変
換され、さらにその平行光が光学素子で分岐及び集光さ
れて、被加工物の複数箇所にほぼ同じ大きさの集光スポ
ットを得ることが可能となる。A fourth aspect of the present invention is a laser irradiation method for irradiating a plurality of portions with a laser beam, wherein a laser beam emitted from a light source has a substantially uniform light intensity distribution by a first diffractive optical element. Converting the laser beam emitted from the first diffractive optical element to parallel light by the second diffractive optical element; and branching and condensing the laser beam emitted from the second diffractive optical element by the optical element. And irradiating a plurality of locations,
At least. According to this, a laser beam having a Gaussian intensity distribution is converted into a parallel light having a uniform intensity distribution by the first and second diffractive optical elements, and the parallel light is branched and condensed by the optical element. Thus, it is possible to obtain condensed spots having substantially the same size at a plurality of locations on the workpiece.
【0011】[0011]
【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】実施の形態1.図1は本発明の実施の形態
1を示すレーザー加工装置の光学系を表した模式図であ
る。この実施の形態で、レーザー加工装置の光学系は、
フェトム秒パルスレーザービーム1を複数の回折ビーム
に分岐する位相格子2と、光学的フーリエ変換機能を有
するレンズ(又はレンズ群)6と色収差補正用の回折素
子7とからなる集光光学系8とを備える。そして、位相
格子2で生成された複数の回折ビームを集光光学系8に
通し、その光学的フーリエ変換機能を利用して、被加工
物4上にほぼ同じ大きさの集光スポット9a,9b,・
・・を等間隔で生じさせる。Embodiment 1 FIG. 1 is a schematic diagram illustrating an optical system of a laser processing apparatus according to Embodiment 1 of the present invention. In this embodiment, the optical system of the laser processing device
A phase grating 2 for splitting the femtosecond pulse laser beam 1 into a plurality of diffracted beams, a condensing optical system 8 including a lens (or lens group) 6 having an optical Fourier transform function, and a diffractive element 7 for correcting chromatic aberration. Is provided. Then, the plurality of diffracted beams generated by the phase grating 2 are passed through a condensing optical system 8, and condensed spots 9a and 9b of substantially the same size are formed on the workpiece 4 by using the optical Fourier transform function. ,
・ ・ Are generated at equal intervals.
【0013】ここで、集光光学系8を具体的に検討す
る。集光光学系8の焦点距離をfとすると、次式が成立
する。 1/f=1/fr+1/fd (5) ただし、frはレンズ6の焦点距離、fdは回折素子7の
焦点距離である。式(5)をビームの波長λで微分する
ことにより、次式を得る。 △f/f2=△fr/fr2+△fd/fd2 (6) 波長によらず光が一点に集中するためには、△f=0で
あればよい。そこで、式(6)からを、次式を得る。 0=△fr/fr2+△fd/fd2 (7) さらに、レンズ6の分散をDr、回折素子7の分散をDd
とすると、式(7)は次のようになる。 1/Drfr=1/Ddfd (8) なお、ここでは、△fr=fr/Dr、△fd=fd/Dd
を用いた。したがって、式(8)を満足するように設計
した、レンズ6及び回折素子7を利用すれば、この実施
の形態1にて、被加工物4上にほぼ同じ大きさの集光ス
ポットアレイを得て、それぞれのスポットで形状、深さ
がほぼ均一な加工が可能となる。Here, the condensing optical system 8 will be specifically considered. Assuming that the focal length of the light collecting optical system 8 is f, the following equation is established.1 / f = 1 / f r + 1 / f d (5) , however, fr is the focal length of the lens 6, is fd is the focal length of the diffractive element 7. By differentiating equation (5) with the beam wavelength λ, the following equation is obtained. △ forf / f 2 = △ f r / f r 2 + △ f d / f d 2 where (6) light regardless of the wavelength is concentrated at one point, may be a △ f = 0. Therefore, the following equation is obtained from the equation (6).0 = △ f r / f r 2 + △ f d / f d 2 (7) further dispersed Dr of the lens 6, the dispersion of the diffractive element 7 Dd
Then, equation (7) becomes as follows. 1 / Drfr = 1 / Dd fd (8) Here, Δfr =fr / Dr , Δfd = fd / Dd
Was used. Therefore, if the lens 6 and the diffractive element 7 designed to satisfy the expression (8) are used, a light-converged spot array having substantially the same size on the workpiece 4 can be obtained in the first embodiment. As a result, it is possible to perform processing with a substantially uniform shape and depth at each spot.
【0014】なお、集光光学系8を構成するにあたっ
て、回折素子7はレンズ6と別に独立させて設けても良
く、また、図1のようにレンズ6の面上に形成しても良
い。さらに、分岐させた複数のレーザービームで被加工
物4を均一に加工するためには、回折ビームの光強度分
布も問題となるが、それは、位相格子2によってほぼ一
定の強度分布とされているものとする。In constructing the condensing optical system 8, the diffraction element 7 may be provided independently of the lens 6, or may be formed on the surface of the lens 6 as shown in FIG. Furthermore, in order to uniformly process the workpiece 4 with the plurality of branched laser beams, the light intensity distribution of the diffracted beam also becomes a problem, but the distribution is made substantially constant by the phase grating 2. Shall be.
【0015】実施の形態2.図2は本発明の実施の形態
2を示すレーザー加工装置の光学系を表した模式図であ
る。このレーザー加工装置の光学系は、フェムト秒パル
スレーザービーム1の入力方向に対してほぼ直角に配置
した、レーザーのガウシアン光強度分布を一様な強度分
布にする位相分布を有した第1の位相型回折光学素子1
1と、第1の位相型回折光学素子11から間隔を置いて
それとほぼ平行に配置した、レーザービームを平行光に
する位相分布を有した第2の位相型回折光学素子12
と、第2の位相型回折光学素子12の背後にあって、複
数の凸レンズが繋がって成るマイクロレンズアレイ13
とを備える。Embodiment 2 FIG. 2 is a schematic diagram illustrating an optical system of a laser processing apparatus according to a second embodiment of the present invention. The optical system of this laser processing apparatus has a first phase having a phase distribution arranged substantially perpendicular to the input direction of the femtosecond pulsed laser beam 1 and having a uniform Gaussian light intensity distribution of the laser. Type diffractive optical element 1
1 and a second phase diffractive optical element 12 spaced from the first phase diffractive optical element 11 and arranged substantially parallel to the first phase diffractive optical element 11 and having a phase distribution for converting a laser beam into parallel light.
And a microlens array 13 behind a second phase type diffractive optical element 12 and formed by connecting a plurality of convex lenses.
And
【0016】この装置において、第1の位相型回折光学
素子11に入射したガウシアン光強度分布を有するフェ
ムト秒パルスレーザービーム1は、そこで一様な強度分
布を有するレーザー光に変換され、続いて第2の位相型
回折光学素子12で一様な位相分布にされて平行光とな
る。その平行光は、マイクロレンズアレイ13のそれぞ
れの凸レンズで集光されて、被加工物4上に複数の集光
スポット9a,9b,9cを生じさせる。したがって、
この実施の形態によれば、被加工物4上でほぼ同じ大き
さの集光スポットアレイが得られるとともに、それらの
スポットでの光強度もほぼ同じにすることができるた
め、被加工物4の複数箇所を同時に、しかも、それらの
箇所をほぼ均一な形状及び深さに加工することが可能と
なる。In this apparatus, the femtosecond pulse laser beam 1 having a Gaussian light intensity distribution incident on the first phase type diffractive optical element 11 is converted there into a laser light having a uniform intensity distribution, and subsequently converted into a laser light having a uniform intensity distribution. The two phase-type diffractive optical elements 12 form a uniform phase distribution and become parallel light. The parallel light is condensed by each convex lens of the microlens array 13 to generate a plurality of condensed spots 9a, 9b, 9c on the workpiece 4. Therefore,
According to this embodiment, a condensed spot array having substantially the same size on the workpiece 4 can be obtained, and the light intensity at those spots can be made substantially the same. It is possible to process a plurality of locations at the same time, and to process those locations to a substantially uniform shape and depth.
【0017】なお、2つの位相型回折光学素子を用いて
レーザービームのガウシアン強度分布を一様にする方法
については、Xin Tan, Ben-Yuan Gu, Guo-Zhen Yang,an
d Bi-Zhen Dong共著の "APPLIED OPTICS/Vol.34,No.8
/10 March 1995"により詳しい記載がある。The method of making the Gaussian intensity distribution of a laser beam uniform using two phase-type diffractive optical elements is described in Xin Tan, Ben-Yuan Gu, Guo-Zhen Yang, an
d Bi-Zhen Dong co-authored "APPLIED OPTICS / Vol.34, No.8
/ 10 March 1995 ".
【0018】実施の形態3.図3は本発明の実施の形態
3を示すレーザー加工装置の光学系を表した模式図であ
る。このレーザー加工装置の光学系は、実施の形態2と
同様の作用を果たす第1の位相型回折光学素子11及び
第2の位相型回折光学素子12と、第2の位相型回折光
学素子12の背後にあって、1本の拡げられた平行光を
規則的なビームアレイに変換するトールボット効果を備
えたトールボット素子(位相板)14とを備える。Embodiment 3 FIG. 3 is a schematic diagram illustrating an optical system of a laser processing apparatus according to a third embodiment of the present invention. The optical system of this laser processing apparatus includes a first phase-type diffractive optical element 11 and a second phase-type diffractive optical element 12 that perform the same action as in the second embodiment, and a second phase-type diffractive optical element 12. Behind it, there is a Talbot element (phase plate) 14 having a Talbot effect for converting one expanded parallel light into a regular beam array.
【0019】第1及び及び第2の位相型回折光学素子1
1,12によって、一様な光強度分布を持つ平行光とさ
れたレーザービームは、トールボット素子14で回折さ
れた後、回折ビーム同士が干渉し合って、トールボット
素子14の後方に周期的に集光スポット(9a〜9c)
アレイを生じさせる。したがって、この実施の形態によ
っても、被加工物4上でほぼ同じ大きさの集光スポット
アレイが得られるとともに、それらのスポットでの光強
度もほぼ同じにすることができるため、被加工物4の複
数箇所を同時に、しかも、それらをほぼ均一な形状及び
深さに加工することが可能となる。First and second phase diffractive optical elements 1
The laser beams converted into parallel beams having a uniform light intensity distribution by the light beams 1 and 12 are diffracted by the Talbot element 14, and the diffracted beams interfere with each other, so that the laser beams are periodically shifted behind the Talbot element 14. Focus spot (9a-9c)
Generate the array. Therefore, according to this embodiment, a light-converged spot array having substantially the same size can be obtained on the workpiece 4 and the light intensity at those spots can be made substantially the same. At the same time, and at the same time, they can be processed into a substantially uniform shape and depth.
【0020】なお、トールボット効果を利用して、1本
の平行光から集光スッポアレイを得る方法については、
J.R.Leger and G.J.Swanson共著の、"OPTICS LETTERS/V
ol.15,No.5/March 1 1990"により詳しい記載がある。A method for obtaining a condensing spot array from a single parallel beam using the Talbot effect is described in the following.
"OPTICS LETTERS / V", co-authored by JRLeger and GJSwanson
ol. 15, No. 5 / March 1 1990 ".
【0021】[0021]
【発明の効果】以上説明したように、本発明によれば、
レーザー加工にフェムト秒パルス等の超短パルスレーザ
ーを用いた場合でも、1本のレーザービームから複数の
ほぼ同じ大きさの集光スポットを得ることが可能とな
り、従って、被加工物を複数の集光スポットでほぼ均一
に加工することができる。As described above, according to the present invention,
Even when an ultrashort pulse laser such as a femtosecond pulse is used for laser processing, it is possible to obtain a plurality of condensed spots of substantially the same size from one laser beam. The light spot can be processed almost uniformly.
【図1】フェムト秒パルスレーザーを用いた実施の形態
1のレーザー加工装置の光学系を示す模式図。FIG. 1 is a schematic diagram showing an optical system of a laser processing apparatus according to a first embodiment using a femtosecond pulse laser.
【図2】フェムト秒パルスレーザーを用いた実施の形態
2のレーザー加工装置の光学系を示す模式図。FIG. 2 is a schematic diagram showing an optical system of a laser processing apparatus according to a second embodiment using a femtosecond pulse laser.
【図3】フェムト秒パルスレーザーを用いた実施の形態
3のレーザー加工装置の光学系を示す模式図。FIG. 3 is a schematic diagram illustrating an optical system of a laser processing apparatus according to a third embodiment using a femtosecond pulse laser.
【図4】CWレーザー又は短パルスレーザーを用いた従
来のレーザー加工装置の光学系を示す模式図。FIG. 4 is a schematic view showing an optical system of a conventional laser processing apparatus using a CW laser or a short pulse laser.
【図5】集光スポットの広がりを説明する光学系の模式
図。FIG. 5 is a schematic diagram of an optical system for explaining the spread of a condensed spot.
1 フェムト秒パルスレーザービーム、2 回折光学素
子(位相格子)、4被加工物、6 レンズ(又はレンズ
群)、7 回折素子、8 レンズ6と回折素子7から構
成される集光光学系、9a,9b,9c 集光スポッ
ト、11 第1の位相型回折素子、12 第2の位相型
回折素子、13 マイクロレンズアレイ、14 トール
ボット素子。Reference Signs List 1 femtosecond pulse laser beam, 2 diffractive optical element (phase grating), 4 workpiece, 6 lens (or lens group), 7 diffractive element, 8 condensing optical system composed of lens 6 and diffractive element 7, 9a , 9b, 9c Focused spot, 11 first phase type diffraction element, 12 second phase type diffraction element, 13 micro lens array, 14 Talbot element.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA26 LA01 NA14 RA00 RA26 RA46 4E068 CA02 CA03 CD05 CD08 CD13 5F072 JJ20 SS08 YY06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H087 KA26 LA01 NA14 RA00 RA26 RA46 4E068 CA02 CA03 CD05 CD08 CD13 5F072 JJ20 SS08 YY06
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32811999AJP2001138083A (en) | 1999-11-18 | 1999-11-18 | Laser processing apparatus and laser irradiation method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32811999AJP2001138083A (en) | 1999-11-18 | 1999-11-18 | Laser processing apparatus and laser irradiation method |
| Publication Number | Publication Date |
|---|---|
| JP2001138083Atrue JP2001138083A (en) | 2001-05-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32811999APendingJP2001138083A (en) | 1999-11-18 | 1999-11-18 | Laser processing apparatus and laser irradiation method |
| Country | Link |
|---|---|
| JP (1) | JP2001138083A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003014915A (en)* | 2001-07-03 | 2003-01-15 | Japan Science & Technology Corp | Optical element with Dammann-type grating |
| JP2003084243A (en)* | 2001-09-17 | 2003-03-19 | Menicon Co Ltd | Method of marking ocular lens |
| US6946620B2 (en) | 2001-09-11 | 2005-09-20 | Seiko Epson Corporation | Laser processing method and laser processing apparatus |
| JP2005262290A (en)* | 2004-03-19 | 2005-09-29 | Ricoh Co Ltd | Laser processing apparatus, laser processing method, and structure manufactured by the processing apparatus or processing method |
| JP2006026726A (en)* | 2004-07-21 | 2006-02-02 | Takeji Arai | Laser beam machining method |
| CN1295170C (en)* | 2004-05-19 | 2007-01-17 | 上海大学 | Method for inducing functional cryctalline material from glass and crystalline using femtosecond laser |
| US7807942B2 (en) | 2004-11-22 | 2010-10-05 | Sumitomo Electric Industries, Ltd. | Laser processing method and laser processing apparatus |
| EP2762261A1 (en)* | 2013-02-01 | 2014-08-06 | Bystronic Laser AG | Optics for a laser cutting system with correction or targeted influence of the chromatic aberration ; laser cutting system with such optics |
| EP2913137A1 (en) | 2014-02-26 | 2015-09-02 | Bystronic Laser AG | Laser machining device and method |
| US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| US9850159B2 (en) | 2012-11-20 | 2017-12-26 | Corning Incorporated | High speed laser processing of transparent materials |
| US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
| CN107935054A (en)* | 2017-12-20 | 2018-04-20 | 长春微纪元科技有限公司 | Wet chemistry prepares the femtosecond pulse auxiliary nucleation device and method in nano material |
| US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
| US10144093B2 (en) | 2013-12-17 | 2018-12-04 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
| US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
| US10252931B2 (en) | 2015-01-12 | 2019-04-09 | Corning Incorporated | Laser cutting of thermally tempered substrates |
| US10280108B2 (en) | 2013-03-21 | 2019-05-07 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
| US10377658B2 (en) | 2016-07-29 | 2019-08-13 | Corning Incorporated | Apparatuses and methods for laser processing |
| US10421683B2 (en) | 2013-01-15 | 2019-09-24 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| US10522963B2 (en) | 2016-08-30 | 2019-12-31 | Corning Incorporated | Laser cutting of materials with intensity mapping optical system |
| US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
| US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
| US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
| US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
| US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
| US10730783B2 (en) | 2016-09-30 | 2020-08-04 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
| US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
| US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
| US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
| US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
| US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
| US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
| US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
| US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
| US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
| US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
| US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003014915A (en)* | 2001-07-03 | 2003-01-15 | Japan Science & Technology Corp | Optical element with Dammann-type grating |
| US6946620B2 (en) | 2001-09-11 | 2005-09-20 | Seiko Epson Corporation | Laser processing method and laser processing apparatus |
| JP2003084243A (en)* | 2001-09-17 | 2003-03-19 | Menicon Co Ltd | Method of marking ocular lens |
| JP2005262290A (en)* | 2004-03-19 | 2005-09-29 | Ricoh Co Ltd | Laser processing apparatus, laser processing method, and structure manufactured by the processing apparatus or processing method |
| CN1295170C (en)* | 2004-05-19 | 2007-01-17 | 上海大学 | Method for inducing functional cryctalline material from glass and crystalline using femtosecond laser |
| JP2006026726A (en)* | 2004-07-21 | 2006-02-02 | Takeji Arai | Laser beam machining method |
| US7807942B2 (en) | 2004-11-22 | 2010-10-05 | Sumitomo Electric Industries, Ltd. | Laser processing method and laser processing apparatus |
| US9850159B2 (en) | 2012-11-20 | 2017-12-26 | Corning Incorporated | High speed laser processing of transparent materials |
| US11345625B2 (en) | 2013-01-15 | 2022-05-31 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| US11028003B2 (en) | 2013-01-15 | 2021-06-08 | Corning Laser Technologies GmbH | Method and device for laser-based machining of flat substrates |
| US10421683B2 (en) | 2013-01-15 | 2019-09-24 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| EP2762261A1 (en)* | 2013-02-01 | 2014-08-06 | Bystronic Laser AG | Optics for a laser cutting system with correction or targeted influence of the chromatic aberration ; laser cutting system with such optics |
| US11713271B2 (en) | 2013-03-21 | 2023-08-01 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US10280108B2 (en) | 2013-03-21 | 2019-05-07 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
| US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
| US10611668B2 (en) | 2013-12-17 | 2020-04-07 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US10144093B2 (en) | 2013-12-17 | 2018-12-04 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
| US10179748B2 (en) | 2013-12-17 | 2019-01-15 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US10183885B2 (en) | 2013-12-17 | 2019-01-22 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
| US10597321B2 (en) | 2013-12-17 | 2020-03-24 | Corning Incorporated | Edge chamfering methods |
| US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| US10293436B2 (en) | 2013-12-17 | 2019-05-21 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
| US11148225B2 (en) | 2013-12-17 | 2021-10-19 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US10392290B2 (en) | 2013-12-17 | 2019-08-27 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| WO2015128833A1 (en) | 2014-02-26 | 2015-09-03 | Bystronic Laser Ag | Laser machining apparatus and method |
| EP2913137A1 (en) | 2014-02-26 | 2015-09-02 | Bystronic Laser AG | Laser machining device and method |
| US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US11697178B2 (en) | 2014-07-08 | 2023-07-11 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
| US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
| US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
| US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
| US11014845B2 (en) | 2014-12-04 | 2021-05-25 | Corning Incorporated | Method of laser cutting glass using non-diffracting laser beams |
| US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
| US10252931B2 (en) | 2015-01-12 | 2019-04-09 | Corning Incorporated | Laser cutting of thermally tempered substrates |
| US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
| US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
| US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
| US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
| US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
| US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
| US10377658B2 (en) | 2016-07-29 | 2019-08-13 | Corning Incorporated | Apparatuses and methods for laser processing |
| US10522963B2 (en) | 2016-08-30 | 2019-12-31 | Corning Incorporated | Laser cutting of materials with intensity mapping optical system |
| US10730783B2 (en) | 2016-09-30 | 2020-08-04 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| US11130701B2 (en) | 2016-09-30 | 2021-09-28 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
| US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
| US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
| US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
| US11972993B2 (en) | 2017-05-25 | 2024-04-30 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
| US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
| CN107935054A (en)* | 2017-12-20 | 2018-04-20 | 长春微纪元科技有限公司 | Wet chemistry prepares the femtosecond pulse auxiliary nucleation device and method in nano material |
| US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
| Publication | Publication Date | Title |
|---|---|---|
| JP2001138083A (en) | Laser processing apparatus and laser irradiation method | |
| US11548093B2 (en) | Laser apparatus for cutting brittle material | |
| US11899229B2 (en) | Method and apparatus for preparing femtosecond optical filament interference direct writing volume grating/chirped volume grating | |
| JP6837969B2 (en) | Glass cutting system and method using non-diffraction laser beam | |
| US8692155B2 (en) | Method of material processing with laser pulses having a large spectral bandwidth and apparatus for carrying out said method | |
| US12204228B2 (en) | High-speed dynamic beam shaping | |
| US6507003B2 (en) | Method and apparatus for laser processing | |
| DK2976176T3 (en) | Method and apparatus for preparing a structure on the surfaces of components with a laser beam | |
| JP2003025085A (en) | Laser processing method and laser processing apparatus | |
| US8879056B2 (en) | Multi-spot illumination for wafer inspection | |
| US20040188393A1 (en) | Method and apparatus of drilling high density submicron cavities using parallel laser beams | |
| KR20170086594A (en) | Optical system for beam forming | |
| CN113196595A (en) | Phased array beam steering for material processing | |
| US20200039005A1 (en) | Device and method for laser-based separation of a transparent, brittle workpiece | |
| Kuang et al. | Diffractive multi-beam surface micro-processing using 10 ps laser pulses | |
| Tan et al. | Direct grating writing using femtosecond laser interference fringes formed at the focalpoint | |
| JP2005161372A (en) | Laser processing apparatus, structure, optical element, and laser processing method | |
| NL1035031C2 (en) | OPTICAL PROCESSING AT SELECTIVE DEPTH. | |
| KR100766300B1 (en) | Laser Processing Slit and Processing Equipment | |
| JP2006320938A (en) | Apparatus and method for laser beam machining | |
| JP4071052B2 (en) | Optical servo writer system, optical system and method for generating servo marks on digital linear tape | |
| JP4292906B2 (en) | Laser patterning method | |
| JP2016107321A (en) | Laser machining method and laser machining device | |
| SU1697042A1 (en) | Device for focussing of gaussian beam in rectangle with uniform distribution of intensity | |
| FR3124411A1 (en) | Apparatus and method for generating a periodic, uniform and regular nanostructured pattern on the surface of a material |