【0001】[0001]
【発明の属する技術分野】本発明は、炊飯器等の保温容
器の断熱材として使用可能な真空断熱体に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulator which can be used as a heat insulator for a heat insulating container such as a rice cooker.
【0002】[0002]
【従来の技術】近年、地球環境保護が大きく叫ばれる
中、家電製品に対する省エネルギー化を早急に実施する
必要性が高まっている。このため、特に、熱を利用する
様々な家電製品において断熱材の高性能化が課題となっ
てきている。2. Description of the Related Art In recent years, as the protection of the global environment has been greatly called out, there is an increasing need to promptly save energy for home electric appliances. For this reason, in particular, in various home electric appliances using heat, improvement of the performance of the heat insulating material has become an issue.
【0003】この課題を解決する一手段として真空断熱
体があり、従来のグラスウール等の断熱材と比較して約
3倍の断熱性能を有する。As one means for solving this problem, there is a vacuum heat insulator, which has about three times the heat insulation performance as compared with a conventional heat insulator such as glass wool.
【0004】しかしながら、真空断熱体を炊飯器等の保
温容器に巻き付けて使用する場合、外郭体の内側にはハ
ンドル,フック等を取り付けるための凸部が存在するた
め、真空断熱体の厚みを薄くしなければならなかった。However, when the vacuum heat insulator is used by being wound around a heat insulating container such as a rice cooker, the thickness of the vacuum heat insulator is reduced because a convex portion for attaching a handle, a hook or the like exists inside the outer shell. I had to.
【0005】一方、この凸部を避けることができる手段
として、特開平8−303686号公報に記載の方法が
ある。内容は、芯材に切欠き部を設け、切欠き部の内周
部に沿って外被材を溶着することによって、ヒンジ固定
部材等を避けるものである。On the other hand, as a means for avoiding the convex portion, there is a method described in Japanese Patent Application Laid-Open No. Hei 8-303686. The content is to avoid a hinge fixing member and the like by providing a cutout portion in the core material and welding a jacket material along an inner peripheral portion of the cutout portion.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
構成による真空断熱体は、真空断熱体の厚みを薄くする
必要は無いが、切欠き部で芯材が完全に除去されている
ため、凸部を形成する部材により内外の距離が近くなり
伝熱し易い部分において、真空断熱体の効果を引き出せ
ない。また、外被材が表裏で連続するため、特に金属層
などを介し表面を伝わる熱伝導が生じ安くなるものであ
った。However, in the vacuum heat insulator having the conventional structure, it is not necessary to reduce the thickness of the vacuum heat insulator, but since the core material is completely removed at the cutout portion, the convex portion is not provided. The effect of the vacuum heat insulator cannot be brought out in a portion where heat is easily transferred because the distance between the inside and the outside is short due to the member forming. In addition, since the jacket material is continuous on the front and back sides, heat conduction particularly on the surface via a metal layer or the like occurs, and the cost is reduced.
【0007】本発明は上記課題を鑑み、保温容器の外郭
体の凸部を形成する部材により真空断熱体の断熱性能を
落とすことなく、必要な厚みを確保できる真空断熱体を
提供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a vacuum heat insulator which can secure a required thickness without deteriorating the heat insulating performance of the vacuum heat insulator by a member forming a convex portion of an outer shell of a heat insulating container. And
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、本発明の真空断熱体は、多孔質体からなる芯材がガ
スバリア性フィルムからなる外被材によって減圧密封さ
れたものにおいて、真空断熱体の一部に少なくとも一箇
所以上の薄肉部が形成されてなるものである。したがっ
て、真空断熱体の厚みを全体に亘って薄くする必要がな
く、断熱性能を大きく損なうことがない。Means for Solving the Problems In order to solve the above problems, a vacuum heat insulator according to the present invention is a vacuum heat insulator in which a core material made of a porous material is sealed under reduced pressure by a jacket material made of a gas barrier film. At least one thin portion is formed in a part of the body. Therefore, it is not necessary to reduce the thickness of the vacuum heat insulator over the whole, and the heat insulation performance is not significantly impaired.
【0009】また、真空断熱体の一部に形成された薄肉
部が圧縮により薄肉化されてなるため、薄肉部において
も必然的に芯材が存在し、部分的に著しく断熱性能を損
なうことがない。Further, since the thin portion formed in a part of the vacuum heat insulator is thinned by compression, a core material is inevitably present even in the thin portion, and the heat insulation performance may be partially impaired significantly. Absent.
【0010】また、真空断熱体の一部に形成された薄肉
部の周縁がテーパーまたは曲面であるため、外被材に加
わる応力がコーナー部に集中することなく分散し、外部
からの衝撃に対して真空破壊を起こすことがない。[0010] Further, since the peripheral edge of the thin portion formed in a part of the vacuum heat insulator is tapered or curved, the stress applied to the jacket material is dispersed without concentrating on the corner portion, and the impact from the outside is prevented. It does not cause vacuum breakdown.
【0011】また、真空断熱体の内部を構成する芯材が
凝集シリカ粉末であり、かつ、薄肉部の密度が0.50
g/cm3以下であるため、容易に圧縮加工することが
でき、また、密度増加による断熱性能の悪化も一定値以
下に抑えることができる。[0011] Further, the core material constituting the inside of the vacuum heat insulator is agglomerated silica powder, and the density of the thin portion is 0.50.
Since it is not more than g / cm3 , compression processing can be easily performed, and deterioration of heat insulation performance due to increase in density can be suppressed to a certain value or less.
【0012】また、本発明の真空断熱体の製造方法は、
多孔質体からなる芯材をガスバリア性フィルムからなる
外被材に挿入し減圧密封したのち、真空断熱体の一部を
圧縮成形により薄肉化してなるため、薄肉部の位置,寸
法、及び厚みを精度良く製造することができる。Further, the method for manufacturing a vacuum heat insulator according to the present invention comprises:
After inserting the core material made of a porous material into the envelope material made of a gas barrier film and sealing it under reduced pressure, a part of the vacuum heat insulator is thinned by compression molding, so that the position, size and thickness of the thin portion are reduced. It can be manufactured with high accuracy.
【0013】また、本発明の保温容器は、外郭体と内容
器によって形成される空間部に真空断熱体が配置された
保温容器において、前記真空断熱体の一部に少なくとも
一箇所以上の薄肉部が形成されており、前記薄肉部を外
郭体の凸部に位置せしめてなるため、空間部に隙間無く
密着することができ、高い保温性能を確保することがで
きる。[0013] Further, the heat insulating container according to the present invention is a heat insulating container in which a vacuum heat insulator is disposed in a space formed by an outer shell and an inner container, wherein at least one thin wall portion is provided in a part of the vacuum heat insulator. Is formed, and the thin portion is positioned on the convex portion of the outer body, so that the thin portion can be closely attached to the space without any gap, and high heat retention performance can be secured.
【0014】[0014]
【発明の実施の形態】図面を使って本発明の実施の形態
を説明する。Embodiments of the present invention will be described with reference to the drawings.
【0015】図1は、本発明の真空断熱体で、芯材2と
外被材3によって構成したものであり、薄肉部4a,4
bを形成したものである。芯材2は多孔質体、外被材3
は熱溶着可能なガスバリヤ性フィルムである。FIG. 1 shows a vacuum heat insulator according to the present invention, which comprises a core material 2 and a jacket material 3 and has thin portions 4a, 4a.
b is formed. The core material 2 is a porous body,
Is a gas barrier film that can be thermally welded.
【0016】図3は、図1の真空断熱体を製造するため
の装置で、チャンバー5内で外被材3に挿入した芯材2
を設置し、真空ポンプ6によって内部を減圧状態にし、
減圧下においてヒートシール機7によって熱溶着した
後、リーク弁8により大気解放する。FIG. 3 shows an apparatus for manufacturing the vacuum heat insulator shown in FIG.
Is installed, and the inside is depressurized by the vacuum pump 6,
After heat-welding by the heat sealing machine 7 under reduced pressure, the air is released to the atmosphere by the leak valve 8.
【0017】前記チャンバー4内において予め突起部を
形成したプレス板によって芯材2を挟み込むことによっ
て、薄肉部4a,4bを形成することは可能であるが、
好ましくは、前記製造工程を経た後、プレス成形機によ
って薄肉化する方が良い。Although it is possible to form the thin portions 4a and 4b by sandwiching the core material 2 in the chamber 4 with a press plate in which a projection is formed in advance,
Preferably, after the production process, it is better to reduce the thickness by a press molding machine.
【0018】前記によって得られた真空断熱体は、厚み
方向の形状を自由に変形することができ、パネルサイズ
に関する設計上の制約を著しく減少することが可能なも
のである。そのため、真空断熱体の厚みを全体に亘って
薄くする必要がなくなる。The vacuum heat insulator obtained as described above can freely deform the shape in the thickness direction, and can significantly reduce design restrictions on the panel size. Therefore, it is not necessary to reduce the thickness of the vacuum heat insulator over the whole.
【0019】また、芯材が真空断熱体の内部で連続して
いるため、部分的に圧縮されても、容積が低下すること
による内部圧力の変化は、真空断熱体の全容積当たりの
比率であるため真空度がほとんど低下しない。Further, since the core material is continuous inside the vacuum heat insulator, even if the core material is partially compressed, the change in the internal pressure due to the decrease in the volume is a ratio of the total pressure of the vacuum heat insulator to the total volume. As a result, the degree of vacuum hardly decreases.
【0020】図2は、本発明の真空断熱体の外観図であ
り、図1と図2における薄肉部の周縁をテーパー面また
は湾曲した面に仕上げている。FIG. 2 is an external view of the vacuum heat insulator of the present invention, in which the periphery of the thin portion in FIGS. 1 and 2 is finished to a tapered surface or a curved surface.
【0021】前記面形状に仕上げることによって、成形
時および成形後において、外被材に加わる応力がコーナ
ー部に集中することなく分散し、外部からの衝撃に対し
て真空破壊を起こすことがない。By finishing the surface shape, the stress applied to the outer cover material during and after molding is dispersed without concentrating on the corner portion, and vacuum breakage is not caused by an external impact.
【0022】また、芯材1を凝集シリカ粉末とし、か
つ、薄肉部の密度が0.50g/cm3以下とする。Further, the core material 1 is made of aggregated silica powder,
The density of the thin part is 0.50 g / cmThreeThe following is assumed.
【0023】凝集シリカ粉末は、単粒子が多くの細孔を
形成し2次凝集体あるいは3次凝集体を形成しているた
め、圧縮応力に対して細孔を変形させることによって容
易に変形し、また流動性に優れるため応力を緩和する。The aggregated silica powder is easily deformed by deforming the pores in response to compressive stress, since the single particles form many pores and form secondary or tertiary aggregates. In addition, stress is relaxed due to excellent fluidity.
【0024】図4は、本発明の保温容器で、外郭体9と
内容器10によって形成される空間部に真空断熱体1が
配置されており、外郭体9生じた凸部に重ね合わせるよ
うに真空断熱体の薄肉部4a,4bを位置させている。FIG. 4 shows a heat insulating container according to the present invention, in which a vacuum heat insulator 1 is disposed in a space defined by an outer shell 9 and an inner container 10 so as to be superimposed on a projection formed on the outer shell 9. The thin portions 4a and 4b of the vacuum heat insulator are located.
【0025】外郭体9と内容器10の空間部は、真空断
熱体1が充足されているため、空気の対流による伝熱が
生じず高い断熱性能をえることができる。Since the space between the shell 9 and the inner container 10 is filled with the vacuum heat insulator 1, heat transfer due to convection of air does not occur and high heat insulation performance can be obtained.
【0026】[0026]
【実施例】本発明の実施例について、図面を参照しなが
ら具体的に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described with reference to the drawings.
【0027】(実施の形態1)図1に示した真空断熱体
の実施例について述べる。(Embodiment 1) An embodiment of the vacuum heat insulator shown in FIG. 1 will be described.
【0028】図1に示した真空断熱体において、芯材2
の多孔質体は、粉末、例えば凝集シリカ粉末,発泡パー
ライト粉砕粉末,珪藻土粉末,珪酸カルシウム粉末,炭
酸カルシウム粉末,炭酸マグネシウム粉末,クレー,タ
ルク,発泡プラスチック粉砕粉末等、あるいは微小中空
体、例えば、ホウ珪酸ガラスバルーン,アルミノ珪酸塩
バルーン,アルミノシリケートバルーン,シラスバルー
ン等、あるいは無機成形体、例えば珪酸カルシウム成形
体,発泡パーライト成形体,シリカ粉末成形体等、ある
いは有機発泡体、例えば連通化発泡ポリウレタン,連通
化発泡ポリスチレン等から必要性能に応じた材料を選択
する。また、外被材3は、表面保護層,ガスバリヤ層、
および熱溶着層によって構成し、それぞれ1種類以上の
フィルムを積層している。表面保護層としては、ポリエ
チレンテレフタレートフィルム,ナイロンフィルム,ポ
リプロピレンフィルムの延伸加工品等、ガスバリヤ層と
しては、金属蒸着フィルム,無機質蒸着フィルム,金属
箔等,熱溶着層としては、低密度ポリエチレンフィル
ム,高密度ポリエチレンフィルム,ポリプロピレンフィ
ルム,ポリアクリロニトリルフィルム,無延伸ポリエチ
レンテレフタレートフィルム等が使用可能である。In the vacuum heat insulator shown in FIG.
Is a powder, for example, an agglomerated silica powder, a crushed pearlite powder, a diatomaceous earth powder, a calcium silicate powder, a calcium carbonate powder, a magnesium carbonate powder, a clay, a talc, a crushed foamed plastic powder or the like, or a fine hollow body, for example, Borosilicate glass balloons, aluminosilicate balloons, aluminosilicate balloons, shirasu balloons, or the like, or inorganic moldings, such as calcium silicate moldings, foamed pearlite moldings, silica powder moldings, or the like, or organic foams, such as continuous foamed polyurethane , Select a material according to the required performance from the expanded polystyrene and the like. The outer cover material 3 includes a surface protection layer, a gas barrier layer,
And one or more films are laminated. As a surface protective layer, a stretched product of a polyethylene terephthalate film, a nylon film, a polypropylene film, or the like; as a gas barrier layer, a metal vapor-deposited film, an inorganic vapor-deposited film, a metal foil, etc .; Density polyethylene film, polypropylene film, polyacrylonitrile film, unstretched polyethylene terephthalate film and the like can be used.
【0029】図3は真空断熱体の製造装置である。真空
断熱体は、芯材2を予め水分除去のため乾燥処理し、熱
溶着によって三方シールした外被材3に挿入し、真空ポ
ンプ6を接続したチャンバー5内に設置し13Pa以下
の減圧に維持した状態で残る一辺をヒートシール機7に
よって熱溶着した後、リーク弁8から大気解放すること
によって製造される。FIG. 3 shows an apparatus for manufacturing a vacuum heat insulator. The vacuum heat insulator is dried in advance to remove moisture from the core material 2, inserted into a jacket material 3 sealed three-sided by heat welding, installed in a chamber 5 to which a vacuum pump 6 is connected, and maintained at a reduced pressure of 13 Pa or less. The remaining side is heat-welded by a heat sealing machine 7 and then released from the leak valve 8 to the atmosphere.
【0030】乾燥処理の条件は、温度を105〜150
℃範囲で選択し、時間は1〜2時間が好ましい。また、
外被材は、L型シール,ピローシール,ガゼットシール
によって得られる袋を用いても良い。The conditions for the drying treatment are as follows:
C is selected in the range, and the time is preferably 1 to 2 hours. Also,
As the jacket material, a bag obtained by an L-shaped seal, a pillow seal, or a gusset seal may be used.
【0031】前記製造工程において、チャンバー5内に
プレス機9を設置し、大気解放に至る前工程から大気解
放が完了するまで、芯材2を少なくとも9.8N/cm
2以上の加重で部分的に圧縮しながら製造することによ
って、薄肉部4a,4bを形成することが可能である。In the above manufacturing process, the press 9 is set in the chamber 5 and the core material 2 is kept at least 9.8 N / cm from the process before the release to the atmosphere until the release to the atmosphere is completed.
It is possible to form the thin portions 4a and 4b by manufacturing while partially compressing with a load of2 or more.
【0032】また、圧縮成形の方法として、前記プレス
機9による圧縮成形を大気解放が完了した後、大気中で
行うことも可能である。むしろこの方法で行った方が、
薄肉部の位置,寸法、及び厚みを設計に対し精度良く製
造することが可能であることが判った。As a compression molding method, the compression molding by the press machine 9 may be performed in the atmosphere after the release to the atmosphere is completed. Rather this way,
It has been found that the position, size, and thickness of the thin portion can be manufactured with high accuracy for the design.
【0033】本発明の構成によって得られた7mmの真
空断熱体の熱貫流率は、薄肉部を基準にした3mmの平
板の真空断熱体の熱貫流率の約1/2となった。The heat transmission coefficient of the 7 mm vacuum heat insulator obtained by the structure of the present invention was about の of that of a 3 mm flat plate vacuum heat insulator based on the thin portion.
【0034】(実施の形態2)図2は真空断熱体の外観
図である。外被材2は、外層がポリエチレンテレフタレ
ートフィルム(12μm)、中間層がアルミ蒸着エチレ
ンビニルアルコール共重合フィルム(12μm)、内層
が無延伸ポリプロピレン(50μm)で構成している。(Embodiment 2) FIG. 2 is an external view of a vacuum heat insulator. The outer layer of the jacket material 2 is composed of a polyethylene terephthalate film (12 μm), the intermediate layer is an aluminum-evaporated ethylene vinyl alcohol copolymer film (12 μm), and the inner layer is a non-stretched polypropylene (50 μm).
【0035】薄肉部4a,4bの周縁部は湾曲した形状
としている。The peripheral portions of the thin portions 4a and 4b have a curved shape.
【0036】湾曲形状を形成する製造方法は、図3に示
した方法と同様であり、プレス機9の冶具が形成する凸
部形状を予め曲面加工しておくのみで容易に製造するこ
とが可能である。The manufacturing method for forming the curved shape is the same as the method shown in FIG. 3, and the manufacturing can be easily performed only by forming the convex shape formed by the jig of the press 9 in advance into a curved surface. It is.
【0037】前記製造方法によって得られた、曲面加工
せずに製造した真空断熱体の薄肉部の周縁には白濁した
樹脂及び蒸着の破壊痕が見られたのに対し、曲率半径5
mmで曲面加工したものでは破壊痕が見られなかった。While the opaque resin and the destruction trace of vapor deposition were observed on the periphery of the thin portion of the vacuum heat insulator manufactured without the curved surface obtained by the above manufacturing method, the radius of curvature was 5 mm.
No destruction marks were observed in the case of the curved surface processing in mm.
【0038】次に、芯材1をいくつかの材料の中で最も
容易に薄肉化できた凝集シリカ粉末とすると、曲率半径
3mmの条件で、1/3の厚さまで薄肉化しても破壊痕
は発生しなかった。Next, assuming that the core material 1 is an agglomerated silica powder which can be most easily reduced in thickness among some materials, even if the thickness is reduced to 1/3 under a condition of a radius of curvature of 3 mm, a fracture mark is not generated. Did not occur.
【0039】凝集シリカ粉末は、単粒子が多くの細孔を
形成し2次凝集体あるいは3次凝集体を形成しているた
め、圧縮応力に対して細孔を変形させることによって容
易に変形し、また流動性に優れるため応力を緩和するた
めである。The aggregated silica powder easily deforms by deforming the pores in response to compressive stress, since the single particles form many pores and form secondary or tertiary aggregates. In addition, the reason for this is that stress is relaxed due to excellent fluidity.
【0040】また、芯材2に平均粒径7μm,比表面積
170m2/gの凝集シリカ粉末を用いて製造した真空
断熱体1を種々の密度に圧縮した。図5に真空断熱体の
密度と熱伝導率の関係を示す。密度が0.50g/cm
3から熱伝導率が大きく悪化し、空気の熱伝導率を超え
る値を示した。Further, the vacuum heat insulator 1 manufactured using the aggregated silica powder having an average particle diameter of 7 μm and a specific surface area of 170 m2 / g as the core material 2 was compressed to various densities. FIG. 5 shows the relationship between the density of the vacuum insulator and the thermal conductivity. 0.50g / cm density
From 3 , the thermal conductivity deteriorated greatly and showed a value exceeding the thermal conductivity of air.
【0041】(実施の形態3)図4は、本発明の保温容
器で、外郭体9と内容器10によって形成される空間部
に真空断熱体1が配置されており、外郭体9生じた凸部
に重ね合わせるように真空断熱体の薄肉部4a,4bを
位置させている。(Embodiment 3) FIG. 4 shows a heat insulating container according to the present invention, in which a vacuum heat insulator 1 is disposed in a space formed by an outer body 9 and an inner container 10, and a convex formed on the outer body 9. The thin portions 4a and 4b of the vacuum heat insulator are positioned so as to overlap the portions.
【0042】外郭体9と内容器10の空間部は、真空断
熱体1が充足されているため、空気の対流による伝熱が
生じず高い断熱性能をえることができる。Since the space between the outer shell 9 and the inner container 10 is filled with the vacuum heat insulator 1, heat transfer due to convection of air does not occur and high heat insulation performance can be obtained.
【0043】[0043]
【発明の効果】以上のように、本発明の真空断熱体で
は、一部に少なくとも一箇所以上の薄肉部が形成されて
なるものであるので、真空断熱体の厚みを全体に亘って
薄くする必要がなく、断熱性能を大きく損なうことがな
くなる。As described above, in the vacuum heat insulator of the present invention, since at least one thin portion is formed in a part, the thickness of the vacuum heat insulator is reduced throughout. There is no necessity, and the heat insulation performance is not significantly impaired.
【0044】また、真空断熱体の一部に形成された薄肉
部が圧縮により薄肉化されてなるため、薄肉部において
も必然的に芯材が存在し、更に、芯材が真空断熱体の内
部で連続しているため、部分的に著しく断熱性能を損な
うことがない。Further, since a thin portion formed in a part of the vacuum heat insulator is thinned by compression, a core material is inevitably present even in the thin portion, and furthermore, the core material is formed inside the vacuum heat insulator. , The heat insulation performance is not significantly impaired in part.
【0045】また、真空断熱体の一部に形成された薄肉
部の周縁がテーパーまたは曲面であるため、外被材に加
わる応力がコーナー部に集中することなく分散し、外部
からの衝撃に対して真空破壊を起こすことがなくなる。Further, since the peripheral edge of the thin portion formed in a part of the vacuum heat insulator is tapered or curved, the stress applied to the outer cover material is dispersed without concentrating on the corner portion, and the external material is protected against external impact. No vacuum breakage.
【0046】また、真空断熱体の内部を構成する芯材が
凝集シリカ粉末であり、かつ、薄肉部の密度が0.50
g/cm3以下であるため、容易に圧縮加工することが
でき、また、密度増加による断熱性能の悪化も一定値以
下に抑えることができる。Further, the core material constituting the inside of the vacuum heat insulator is agglomerated silica powder, and the density of the thin portion is 0.50.
Since it is not more than g / cm3 , compression processing can be easily performed, and deterioration of heat insulation performance due to increase in density can be suppressed to a certain value or less.
【0047】また、本発明の真空断熱体の製造方法で
は、多孔質体からなる芯材をガスバリア性フィルムから
なる外被材に挿入し減圧密封したのち、真空断熱体の一
部を圧縮成形により薄肉化してなるため、薄肉部の位
置,寸法、及び厚みを精度良く製造することができる。In the method of manufacturing a vacuum heat insulator according to the present invention, a core material made of a porous material is inserted into a jacket material made of a gas barrier film, sealed under reduced pressure, and a part of the vacuum heat insulator is compression-molded. Since the thickness is reduced, the position, size, and thickness of the thin portion can be accurately manufactured.
【0048】また、本発明の保温容器は、外郭体と内容
器によって形成される空間部に真空断熱体が配置された
保温容器において、前記真空断熱体の一部に少なくとも
一箇所以上の薄肉部が形成されており、前記薄肉部を外
郭体の凸部に位置せしめてなるため、空間部に隙間無く
密着することができ、高い保温性能を確保することがで
きる。Further, the heat insulating container of the present invention is a heat insulating container in which a vacuum heat insulator is disposed in a space formed by an outer shell and an inner container, wherein at least one thin wall portion is provided in a part of the vacuum heat insulator. Is formed, and the thin portion is positioned on the convex portion of the outer body, so that the thin portion can be closely attached to the space without any gap, and high heat retention performance can be secured.
【図1】本発明の一実施形態による真空断熱体断面の断
面図FIG. 1 is a sectional view of a vacuum insulator cross section according to an embodiment of the present invention.
【図2】本発明の一実施形態による真空断熱体断面の外
観図FIG. 2 is an external view of a cross section of a vacuum insulator according to an embodiment of the present invention.
【図3】本発明の一実施形態による真空断熱体の製造装
置の断面図FIG. 3 is a cross-sectional view of an apparatus for manufacturing a vacuum insulator according to an embodiment of the present invention.
【図4】本発明の一実施形態による保温容器の断面図FIG. 4 is a sectional view of a thermal insulation container according to an embodiment of the present invention.
【図5】本発明の一実施形態による真空断熱体の密度と
熱伝導率の関係を示す図FIG. 5 is a diagram showing the relationship between the density and the thermal conductivity of the vacuum insulator according to one embodiment of the present invention.
1 真空断熱体 2 芯材 3 外被材 4a,4b 薄肉部 9 プレス機 10 保温容器 DESCRIPTION OF SYMBOLS 1 Vacuum heat insulator 2 Core material 3 Jacket material 4a, 4b Thin part 9 Press machine 10 Heat insulation container
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E067 AA11 AB01 BA01A BB12A BB14A BB16A CA04 CA18 GA06 GA14 3H036 AA09 AB28 AC06 AE02 4B002 AA01 AA21 BA22 BA59 CA32 4B055 AA02 BA23 CA15 CA19 CA75 CB03 CB05 CB18 CC43 CC68 EA07 FA06 FA17 FB12 FB35 FC11 FC14 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3E067 AA11 AB01 BA01A BB12A BB14A BB16A CA04 CA18 GA06 GA14 3H036 AA09 AB28 AC06 AE02 4B002 AA01 AA21 BA22 BA59 CA32 4B055 AA02 BA23 CA15 CA19 CA75 CB03 CC06 CB03 CC06 CB03 CC06 CB03 FC11 FC14
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28957699AJP2001108187A (en) | 1999-10-12 | 1999-10-12 | Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28957699AJP2001108187A (en) | 1999-10-12 | 1999-10-12 | Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel |
| Publication Number | Publication Date |
|---|---|
| JP2001108187Atrue JP2001108187A (en) | 2001-04-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28957699AWithdrawnJP2001108187A (en) | 1999-10-12 | 1999-10-12 | Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel |
| Country | Link |
|---|---|
| JP (1) | JP2001108187A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008154831A (en)* | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | Rice cooker |
| JP2009507535A (en)* | 2005-09-12 | 2009-02-26 | チア−イー ス | Heating container |
| JP2009063064A (en)* | 2007-09-06 | 2009-03-26 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
| JP2009541673A (en)* | 2006-06-22 | 2009-11-26 | ビーエーエスエフ ソシエタス・ヨーロピア | Insulation element |
| JP2010537786A (en)* | 2007-09-07 | 2010-12-09 | ボーズ・コーポレーション | Induction cooker |
| DE10234409B4 (en)* | 2002-07-29 | 2012-03-22 | Va-Q-Tec Ag | Vacuum insulation panel with indentations on the edges |
| KR101324928B1 (en)* | 2011-04-06 | 2013-11-01 | (주)엘지하우시스 | Vacuum heat insulation pannel and manufacturing mathod of the same |
| US8602248B2 (en) | 2011-03-02 | 2013-12-10 | Bose Corporation | Cooking utensil |
| US8796598B2 (en) | 2007-09-07 | 2014-08-05 | Bose Corporation | Induction cookware |
| JP2015148251A (en)* | 2014-02-05 | 2015-08-20 | 三菱電機株式会社 | Vacuum heat insulation material, refrigerator and process of manufacture of vacuum heat insulation material |
| JP2016017591A (en)* | 2014-07-09 | 2016-02-01 | 三菱電機株式会社 | Manufacturing method of vacuum heat insulation material and vacuum heat insulation material manufactured by the same |
| JP2016102618A (en)* | 2014-11-28 | 2016-06-02 | 株式会社東芝 | refrigerator |
| CN106795993A (en)* | 2014-10-20 | 2017-05-31 | 株式会社Lg化学 | Core material for vacuum insulation panel comprising porous aluminosilicate and vacuum insulation panel having the core material |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10234409B4 (en)* | 2002-07-29 | 2012-03-22 | Va-Q-Tec Ag | Vacuum insulation panel with indentations on the edges |
| JP2009507535A (en)* | 2005-09-12 | 2009-02-26 | チア−イー ス | Heating container |
| JP2009541673A (en)* | 2006-06-22 | 2009-11-26 | ビーエーエスエフ ソシエタス・ヨーロピア | Insulation element |
| JP2008154831A (en)* | 2006-12-25 | 2008-07-10 | Sanyo Electric Co Ltd | Rice cooker |
| JP2009063064A (en)* | 2007-09-06 | 2009-03-26 | Hitachi Appliances Inc | Vacuum heat insulating material and refrigerator using the same |
| JP2010537786A (en)* | 2007-09-07 | 2010-12-09 | ボーズ・コーポレーション | Induction cooker |
| JP2010537789A (en)* | 2007-09-07 | 2010-12-09 | ボーズ・コーポレーション | Induction cookware |
| US8796598B2 (en) | 2007-09-07 | 2014-08-05 | Bose Corporation | Induction cookware |
| US8602248B2 (en) | 2011-03-02 | 2013-12-10 | Bose Corporation | Cooking utensil |
| KR101324928B1 (en)* | 2011-04-06 | 2013-11-01 | (주)엘지하우시스 | Vacuum heat insulation pannel and manufacturing mathod of the same |
| JP2015148251A (en)* | 2014-02-05 | 2015-08-20 | 三菱電機株式会社 | Vacuum heat insulation material, refrigerator and process of manufacture of vacuum heat insulation material |
| JP2016017591A (en)* | 2014-07-09 | 2016-02-01 | 三菱電機株式会社 | Manufacturing method of vacuum heat insulation material and vacuum heat insulation material manufactured by the same |
| CN106795993A (en)* | 2014-10-20 | 2017-05-31 | 株式会社Lg化学 | Core material for vacuum insulation panel comprising porous aluminosilicate and vacuum insulation panel having the core material |
| KR101767658B1 (en) | 2014-10-20 | 2017-08-14 | 주식회사 엘지화학 | Core material for vacuum insulation panel comprising porous aluminosilicate and vacuum insulation panel with the core material |
| EP3184873A4 (en)* | 2014-10-20 | 2018-01-24 | LG Chem, Ltd. | Core material for vacuum insulation material comprising porous aluminosilicate, and vacuum insulation material having same |
| CN106795993B (en)* | 2014-10-20 | 2019-01-18 | 株式会社Lg化学 | Core material for vacuum insulation panel containing porous aluminosilicate and vacuum insulation panel having the same |
| US10226751B2 (en) | 2014-10-20 | 2019-03-12 | Lg Chem, Ltd. | Core material for vacuum insulation panel including porous aluminosilicate, and vacuum insulation panel provided with the same |
| JP2016102618A (en)* | 2014-11-28 | 2016-06-02 | 株式会社東芝 | refrigerator |
| Publication | Publication Date | Title |
|---|---|---|
| KR100540522B1 (en) | Vacuum Insulation and Devices Using it | |
| JP2001336691A (en) | Vacuum insulation material and refrigerator using vacuum insulation material | |
| JP2001108187A (en) | Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel | |
| KR101283728B1 (en) | Vacuum isolation panel and manufacturing method thereof | |
| JP2000097390A (en) | Heat insulating panel and manufacture thereof | |
| JPH07167377A (en) | Vacuum insulation | |
| JP2009063064A (en) | Vacuum heat insulating material and refrigerator using the same | |
| JP2004011705A (en) | Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator | |
| JP4701882B2 (en) | Vacuum insulation | |
| JP2000105069A (en) | Insulation | |
| JP2006029456A (en) | VACUUM HEAT INSULATION, HEAT AND COOLING DEVICE WITH VACUUM HEAT INSULATION | |
| JP2000291881A (en) | Decompressed heat insulating body and manufacture thereof | |
| JP2004197760A (en) | Vacuum heat insulating material | |
| JPH0763469A (en) | Vacuum insulation | |
| JPH08303685A (en) | Vacuum heat insulating body | |
| JPH0820034B2 (en) | Heat insulation manufacturing method | |
| JP2002317897A (en) | Vacuum heat insulation material, heat insulated container, refrigerator, and rice cooker | |
| JPH06281089A (en) | Vacuum heat-insulating material | |
| JP2001295986A (en) | Vacuum insulation material and method of manufacturing the same | |
| JP2001295984A (en) | Vacuum heat insulator and heat insulating box | |
| JP4443727B2 (en) | Manufacturing method of vacuum insulation container | |
| JPH07293783A (en) | Insulation material and insulation box body using it | |
| JP2694356B2 (en) | Insulation structure | |
| JPH1122896A (en) | Vacuum insulation | |
| JP2572157B2 (en) | Vacuum insulation |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20061005 | |
| RD01 | Notification of change of attorney | Free format text:JAPANESE INTERMEDIATE CODE: A7421 Effective date:20061114 | |
| A711 | Notification of change in applicant | Free format text:JAPANESE INTERMEDIATE CODE: A712 Effective date:20080425 | |
| A761 | Written withdrawal of application | Free format text:JAPANESE INTERMEDIATE CODE: A761 Effective date:20090304 |