【0001】[0001]
【発明の属する技術分野】本発明は、半導体スイッチン
グ素子を用いた車載用電力変換装置における電気的絶縁
方法と装置の小型化及び信頼性向上に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of electrically insulating a power conversion device for a vehicle using a semiconductor switching element and a method for miniaturizing the device and improving reliability.
【0002】[0002]
【従来の技術】図4は、従来の車載用電力変換装置の電
源構成を示す回路ブロック図で、三相交流負荷を駆動す
るスイッチング部に関しては、その一相分の回路のみを
抜粋した図である。なお、他二相分の回路は、上記一相
分の回路と同一であるので、本図では省略する(図5の
全体構成を示す回路ブロック図を参照)。同図におい
て、1は図外の交流負荷を駆動するための高電圧系の直
流電源であり、電気自動車などの用途では、一般に数十
Vから数百Vの電圧が使用されている。また、上記直流
電源1は、安全上の理由から車体とは電気的に絶縁され
ている。2は上記直流電源1の電源間に2個直列に接続
され、スイッチング部の1個のアームを構成するスイッ
チング素子で、一般的にIGBT(Insulated GateBip
olar Transistor)に代表されるパワー素子が使用され
ており、後述するように、3組のアームが並列接続され
た構成のスイッチング動作により、上記直流電源1を三
相交流電力に変換して出力する。3は上記各スイッチン
グ素子2とペアで構成され、スイッチング時の還流電流
を交流負荷または直流電源1に還元するためのフライホ
イールダイオードである。4は上記各スイッチング素子
2を駆動するとともに、上記各スイッチング素子2を過
熱や短絡電流等から保護するためのスイッチング素子の
駆動・保護回路で、フォトカプラ8を介して、マイクロ
コンピュータ(以下、マイコンと略す)5の駆動信号出
力ポートとスイッチング異常信号入力のポートとに接続
されている。なお、10はスイッチング時のリップル電
流を平滑するための平滑用コンデンサである。また、上
記マイコン5の駆動電源は、低電圧系の直流電源6より
供給され、一般的な定電圧レギュレータ回路7で作られ
た5Vを使用している。2. Description of the Related Art FIG. 4 is a circuit block diagram showing a power supply configuration of a conventional on-vehicle power converter. As for a switching unit for driving a three-phase AC load, only one phase circuit is extracted. is there. Note that the circuits for the other two phases are the same as the circuits for the above-described one phase, and thus are omitted in this drawing (see a circuit block diagram showing the entire configuration in FIG. 5). In FIG. 1, reference numeral 1 denotes a high-voltage DC power supply for driving an AC load (not shown). In an application such as an electric vehicle, a voltage of several tens V to several hundreds V is generally used. The DC power supply 1 is electrically insulated from the vehicle body for safety reasons. Reference numeral 2 denotes a switching element which is connected in series between the power supplies of the DC power supply 1 and constitutes one arm of a switching unit, and is generally an IGBT (Insulated GateBip).
A power element typified by an OLED (transistor) is used. The DC power supply 1 is converted into three-phase AC power and output by a switching operation in which three arms are connected in parallel, as described later. . Reference numeral 3 denotes a flywheel diode configured as a pair with each of the switching elements 2 and for reducing a return current during switching to the AC load or the DC power supply 1. Reference numeral 4 denotes a switching element drive / protection circuit for driving the switching elements 2 and protecting the switching elements 2 from overheating, short-circuit current, and the like. 5) is connected to the drive signal output port 5 and the switching abnormality signal input port. Reference numeral 10 denotes a smoothing capacitor for smoothing a ripple current at the time of switching. The driving power of the microcomputer 5 is supplied from a low-voltage DC power supply 6 and uses 5 V generated by a general constant voltage regulator circuit 7.
【0003】このように、電気自動車やハイブリッド電
気自動車の場合には、一般的に2種類の直流電源構成と
なっている。すなわち、低電圧系の直流電源6は、通常
の車載用途で使用される12V電圧バッテリが流用され
ており、電源のGND電位は車体の電位と共通となるよ
うに、ボディアースされている。また、高電圧系の直流
電源1は、一般的に高電庄であることから、車体とは完
全に電気絶縁された状態で使用される場合が多く、感電
防止等の安全上の問題やスイッチング素子2の動作原理
上(動作基準電位の違い)から、絶縁処理用素子を用い
て、上記駆動・保護回路4と上記マイコン5との間に電
気的な絶縁処理を行っている。上記絶縁処理用素子とし
ては、一般的に比較的安価で入手性のよいフォトカプラ
(光半導体)8が使用される場合が多い。なお、以下で
は、上記ボディアースを符号Zで示す。As described above, electric vehicles and hybrid electric vehicles generally have two types of DC power supply configurations. In other words, the low-voltage DC power supply 6 is a 12 V voltage battery used for normal in-vehicle use, and is body-grounded so that the GND potential of the power supply is common to the potential of the vehicle body. In addition, since the high-voltage DC power supply 1 is generally a high-voltage power supply, it is often used in a state where it is completely electrically insulated from the vehicle body. In view of the operation principle of the element 2 (difference in operation reference potential), electrical insulation processing is performed between the drive / protection circuit 4 and the microcomputer 5 using an insulation processing element. In general, a photocoupler (optical semiconductor) 8 that is relatively inexpensive and easily available is often used as the insulating element. Note that, in the following, the body earth is indicated by a symbol Z.
【0004】次に、図5の車載用電力変換装置の全体回
路ブロック図について説明する。なお、図4と同符号の
ものは、同じ機能を有する。車載用電力変換装置の主回
路である高電圧系を構成する電力変換装置9は、直流電
源1と、平滑用コンデンサ10と、3組並列に接続され
た6個のスイッチング素子2と6個のフライホイールダ
イオード3で構成されたスイッチング部とを備え、平滑
用コンデンサ10の端子間でスイッチング時のリップル
電流が平滑された直流電圧を三相交流電圧に変換(逆変
換)し、負荷となる交流電動機等の三相交流負荷11に
可変電圧可変周波数の三相交流電力を供給する。上記ス
イッチング素子2には、一般的にIGBTが使用される
場合が多く、同図において、Gはゲート、Cはコレク
タ、Eはエミッタを表す。スイッチング素子の駆動・保
護回路4は、通常、上記電力変換装置9とは分離されて
設けられた交流負荷制御回路である制御演算装置12か
らの駆動信号を電流増幅した後、上記各スイッチング素
子をオン(導通)・オフ(遮断)することで、直流電源
1の直流電力を可変電圧可変周波数の三相交流電力に変
換するのに必要なスイッチング動作を行わせるもので、
PWM制御に代表されるデジタル信号による駆動方法が
多く使用されている。また、上記駆動・保護回路4は、
スイッチング素子2の過熱や短絡電流等を図外のセンサ
で検知し、上記センサ信号に基づいて上記スイッチング
素子2を保護する働きを持つ。このため、制御演算装置
12は、一般的に交流負荷制御演算を行うためのマイコ
ン5を内蔵し、電流検出器13で検出した三相交流負荷
11の各相電流や車両制御装置14からの三相交流負荷
トルク制御指令信号、その他アラーム信号などを取り込
み、種々の保護機能を備えた電力変換装置9を制御する
ようにしている。Next, an overall circuit block diagram of the vehicle-mounted power converter shown in FIG. 5 will be described. 4 have the same functions. A power converter 9 constituting a high-voltage system, which is a main circuit of a vehicle-mounted power converter, includes a DC power supply 1, a smoothing capacitor 10, three switching elements 2 connected in parallel with three sets, and six switching elements. A switching unit composed of a flywheel diode 3 for converting (inverting) a DC voltage in which a ripple current at the time of switching is smoothed between terminals of the smoothing capacitor 10 into a three-phase AC voltage (reverse conversion), and A three-phase AC power having a variable voltage and a variable frequency is supplied to a three-phase AC load 11 such as a motor. In general, an IGBT is often used for the switching element 2. In the figure, G represents a gate, C represents a collector, and E represents an emitter. The drive / protection circuit 4 of the switching element normally amplifies a drive signal from a control operation device 12 which is an AC load control circuit provided separately from the power conversion device 9 and then amplifies each of the switching elements. By turning on (conducting) and off (cutting off), the switching operation required to convert the DC power of the DC power supply 1 into three-phase AC power of variable voltage and variable frequency is performed.
A driving method using a digital signal represented by PWM control is often used. Further, the drive / protection circuit 4 includes:
It has a function of detecting overheating and short-circuit current of the switching element 2 with a sensor (not shown) and protecting the switching element 2 based on the sensor signal. For this reason, the control arithmetic unit 12 generally incorporates the microcomputer 5 for performing the AC load control arithmetic, and controls each phase current of the three-phase AC load 11 detected by the current detector 13 and the three-phase current from the vehicle control device 14. A phase AC load torque control command signal and other alarm signals are received to control the power converter 9 having various protection functions.
【0005】[0005]
【発明が解決しようとする課題】従来の車載用電力変換
装置は以上のように構成されているので、安全上、また
は動作原理上、スイッチング素子の駆動・保護回路4と
制御演算装置12との間を電気的に絶縁する必要があ
る。上記絶縁処理用素子としては、一般的に光半導体素
子から成るフォトカプラ8を使用している場合が多い。
しかしながら、このフォトカプラ8は、光半導体の性質
・構造上、車載等の温度サイクルの厳しい過酷な環境下
で使用すると光結合部のシール性が劣化し、一次側と二
次側の結合度(増幅度)が低下する。また、最悪の場
合、一次側と二次側が結合されず、信号伝達ができなく
なる等の信頼性(製品寿命)の点での問題があった。ま
た、絶縁のための信号変換行程(電気信号→光信号→電
気信号)が必要となるため、入力信号と出力信号の間に
遅延時間や波形のなまりが発生し、PWM駆動に必要な
スイッチング時間幅が確保されない等の制約があった。Since the conventional on-vehicle power converter is constructed as described above, the drive / protection circuit 4 of the switching element and the control arithmetic unit 12 are connected for safety or operating principle. It is necessary to electrically insulate them. In general, a photocoupler 8 composed of an optical semiconductor element is often used as the insulating element.
However, due to the nature and structure of the optical semiconductor, the photocoupler 8 deteriorates the sealing property of the optical coupling portion when used in a severe environment such as a vehicle where the temperature cycle is severe, and the degree of coupling between the primary side and the secondary side ( Amplification degree). In the worst case, the primary side and the secondary side are not connected, and there is a problem in reliability (product life) such that signal transmission cannot be performed. In addition, since a signal conversion process (electrical signal → optical signal → electrical signal) for insulation is required, a delay time and a rounded waveform occur between an input signal and an output signal, and a switching time required for PWM driving is required. There were restrictions such as the width not being secured.
【0006】この発明は、かかる問題点を解決するため
になされたもので、スイッチング時間の遅れや波形なま
りを改善し、車載等の過酷な使用環境下においても信頼
性の高い電力変換装置を得るとともに、高電圧回路の集
約化と電力変換制御回路の小型化を図ること目的として
いる。SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is possible to improve the switching time delay and the waveform rounding, and to obtain a highly reliable power conversion device even in a severe use environment such as a vehicle. At the same time, it aims to consolidate high-voltage circuits and downsize power conversion control circuits.
【0007】[0007]
【課題を解決するための手段】請求項1の発明に係わる
車載用電力変換装置は、スイッチング素子の駆動・保護
回路と制御演算装置とを、絶縁機能を有し、上記駆動・
保護回路と上記制御演算装置との間の信号伝達を行う信
号伝達手段を介して同一基板上に形成するとともに、上
記基板と、上記スイッチング素子と上記平滑用コンデン
サとで構成される電力変換部とを同一モジュールで構成
したものである。According to a first aspect of the present invention, there is provided an on-vehicle power converter having a function of insulating a drive / protection circuit for a switching element and a control arithmetic unit from each other.
A power conversion unit formed on the same substrate via signal transmission means for transmitting a signal between the protection circuit and the control arithmetic unit, and the substrate, and the power conversion unit including the switching element and the smoothing capacitor. Are constituted by the same module.
【0008】請求項2の発明に係わる車載用電力変換装
置は、上記信号伝達手段を、フォトカプラのような絶縁
素子ではなく、HVIC(High Voltage Integrated
Circuit;高耐圧の半導体集積回路)により構成した
ものである。According to a second aspect of the present invention, in the vehicle-mounted power converter, the signal transmitting means is not an insulating element such as a photocoupler but an HVIC (High Voltage Integrated).
Circuit; a high voltage semiconductor integrated circuit).
【0009】請求項3の発明に係わる車載用電力変換装
置は、同一基板上に形成されたスイッチング素子の駆動
・保護回路と制御演算装置のそれぞれの電源GNDを、
スイッチング素子の電源GNDと共通としたものであ
る。According to a third aspect of the present invention, there is provided an on-vehicle power converter, comprising: a drive / protection circuit for a switching element and a power supply GND of a control arithmetic unit, which are formed on the same substrate;
This is common to the power supply GND of the switching element.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基づき説明する。なお、以下の説明中、従来
例と共通する部分については同一符号を用いて説明す
る。 実施の形態1.図1は、本発明の車載用電力変換装置の
電源構成を示す回路ブロック図で、三相交流負荷を駆動
するスイッチング部に関しては、その一相分の回路のみ
を抜粋した図である。図1において、1は高電圧系の直
流電源、2はIGBTから成るスイッチング素子、3は
フライホイールダイオード、4はスイッチング素子の駆
動・保護回路、10は平滑用コンデンサ、12は交流負
荷制御演算を行うためのマイコン5と低電圧系の直流電
源6とを備えた制御演算装置、15は上記制御演算装置
12とを絶縁する機能を有するとともに、上記駆動・保
護回路4と上記制御演算装置12との間の信号伝達を行
う信号伝達手段であるHVIC、16は上記マイコン5
に電圧を供給するための絶縁電源である。本実施の形態
の車載用電力変換装置は、従来の装置に対して、スイッ
チング素子の駆動・保護回路4と交流負荷制御回路であ
る制御演算装置12に内蔵されているマイコン5との絶
縁処理用素子であるフォトカプラ8を廃止し、HVIC
(High Voltage Integrated Circuit;高耐圧の半導
体集積回路)15を使用している点と、マイコン5の電
源GNDを高電圧系の直流電源1のGNDと共通にする
とともに、マイコン5用電源に、低電圧系の直流電源か
ら5V電圧を得る絶縁電源16を用いることで、最小限
に車体との電気絶縁を構成している点が大きく異なって
いる。Embodiments of the present invention will be described below with reference to the drawings. In the following description, portions common to the conventional example will be described using the same reference numerals. Embodiment 1 FIG. FIG. 1 is a circuit block diagram showing a power supply configuration of a vehicle-mounted power conversion device according to the present invention. As for a switching unit for driving a three-phase AC load, only one phase circuit is extracted. In FIG. 1, 1 is a high-voltage DC power supply, 2 is a switching element composed of an IGBT, 3 is a flywheel diode, 4 is a driving / protection circuit for the switching element, 10 is a smoothing capacitor, and 12 is an AC load control operation. The control / operation device 15 includes a microcomputer 5 for performing the operation and a low-voltage DC power supply 6. The control / operation device 15 has a function of insulating the control operation device 12 from the drive / protection circuit 4 and the control operation device 12. HVIC 16 which is a signal transmission means for transmitting a signal between the microcomputer 5 and the microcomputer 5
Is an insulated power supply for supplying voltage to the power supply. The in-vehicle power converter of the present embodiment is different from the conventional device in that the drive / protection circuit 4 for the switching element and the microcomputer 5 built in the control operation device 12 which is an AC load control circuit are insulated. Photocoupler 8 is abolished and HVIC
(High Voltage Integrated Circuit), and the power supply GND of the microcomputer 5 is shared with the GND of the DC power supply 1 of the high voltage system. The use of an insulated power supply 16 that obtains a voltage of 5 V from a DC power supply of a voltage system greatly reduces electrical insulation from a vehicle body.
【0011】HVICは、一般的には、Nch MOSで
低電圧系から高電圧系へ、Pch MOSで高電圧系から
低電圧系へ信号レベルのシフトを行う周知の高耐圧の半
導体集積回路であり、JI形、DI形と呼ばれている構
造が多く用いられている。上記HVICは、MOSゲー
ト相当の絶縁抵抗が確保できることから、産業・民生分
野においては、絶縁機能を有する信号伝達手段として実
用化されている。HVICは、図2の等価回路ブロック
図に示すように、接続点aを介してマイコン5の出力ポ
ートと接続される高耐圧のNch MOS(HV Nch
MOS)を備えたON回路15a及びOFF回路15b
と、上記ON回路15a及びOFF回路15bからの出
力に応じて作動するSR−FF(スレーブ・フリップフ
ロップ)15cとを備え、マイコン5からの信号をスイ
ッチング素子の駆動・保護回路4へ伝達する第1の信号
伝達回路15Aと、接続点bを介して上記駆動・保護回
路4の出力側と接続されるHV Pch MOSを備えた
ON回路15d及びOFF回路15eと、上記ON回路
15d及びOFF回路15eからの出力に応じて作動す
るSR−FF15fとを備え、上記駆動・保護回路4か
らの信号をマイコン5へ伝達する第2の信号伝達回路1
5Bとから構成され、上記駆動・保護回路4とマイコン
5とを絶縁する機能を有するとともに、上記駆動・保護
回路4とマイコン5との間の信号伝達を行う。The HVIC is a known high voltage semiconductor integrated circuit which generally shifts the signal level from a low voltage system to a high voltage system using an Nch MOS and from a high voltage system to a low voltage system using a Pch MOS. , JI type and DI type are often used. Since the HVIC can secure an insulation resistance equivalent to a MOS gate, it is practically used as a signal transmission means having an insulation function in the industrial and consumer fields. As shown in the equivalent circuit block diagram of FIG. 2, the HVIC is a high-breakdown-voltage Nch MOS (HV Nch) connected to the output port of the microcomputer 5 via the connection point a.
ON circuit 15a and OFF circuit 15b with MOS
And an SR-FF (slave flip-flop) 15c that operates in response to the outputs from the ON circuit 15a and the OFF circuit 15b, and transmits a signal from the microcomputer 5 to the switching element drive / protection circuit 4. No. 1 signal transmission circuit 15A, an ON circuit 15d and an OFF circuit 15e having an HV Pch MOS connected to the output side of the drive / protection circuit 4 via a connection point b, and an ON circuit 15d and an OFF circuit 15e. And a SR-FF 15f that operates in response to an output from the microcomputer, and a second signal transmission circuit 1 that transmits a signal from the drive / protection circuit 4 to the microcomputer 5
5B, and has a function of insulating the drive / protection circuit 4 from the microcomputer 5 and transmits signals between the drive / protection circuit 4 and the microcomputer 5.
【0012】すなわち、第1の信号伝達回路15Aで
は、接続点aから入力された入力パルスの立ち上がりエ
ッジでON回路15aが作動し、立ち下がりエッジでO
FF回路15bが作動することにより2系統の信号を作
り、後段のSR−FF15cを作動させる。ON回路1
5aのHV Nch MOSがオンすることで、SR−F
F15cがセットされ、駆動・保護回路4との接続点b
の電位がHighになり、ON回路15bのHV Nch
MOSがオンすることで、SR−FF15cがリセッ
トされ、上記b点の電位がLowになることにより、マ
イコン5からの信号がスイッチング素子の駆動・保護回
路4へ伝達される。第2の信号伝達回路15Bは、上記
第1の信号伝達回路15Aにおいて、高耐圧の MOS
がNch MOSからPch MOSに変わっただけであ
り、同様の動作を行い、スイッチング素子の駆動・保護
回路4からの信号をマイコン5へ伝達する。That is, in the first signal transmission circuit 15A, the ON circuit 15a operates at the rising edge of the input pulse input from the connection point a, and the ON circuit 15a operates at the falling edge.
When the FF circuit 15b operates, two signals are generated, and the subsequent SR-FF 15c is operated. ON circuit 1
When the HV Nch MOS of 5a is turned on, the SR-F
F15c is set, and the connection point b with the drive / protection circuit 4 is set.
Becomes high, and the HV Nch of the ON circuit 15b is turned on.
When the MOS is turned on, the SR-FF 15c is reset, and the potential at the point b becomes Low, so that a signal from the microcomputer 5 is transmitted to the drive / protection circuit 4 of the switching element. The second signal transmission circuit 15B is different from the first signal transmission circuit 15A in that a high withstand voltage MOS
Only changes from Nch MOS to Pch MOS, and performs the same operation to transmit the signal from the switching element drive / protection circuit 4 to the microcomputer 5.
【0013】次に、上記構成の車載用電力変換装置の動
作について説明する。マイコン5は、制御演算装置12
に内蔵され予め定められたパターンでPWM信号を出力
し、HVIC15を介してスイッチング素子駆動・保護
回路4をオン(導通)・オフ(遮断)することで、スイ
ッチング素子2を駆動して、高電圧系の直流電源1を可
変電圧可変周波数の三相交流電力に変換(逆変換)す
る。また、スイッチング素子2が過熱や短絡電流などの
異常を発生した時には、スイッチング素子駆動・保護回
路4内部にて、スイッチング素子2へのゲート信号を遮
断するなどの処理を行い、同時に、上記異常が発生した
ことをHVIC15を介してマイコン5に伝達する。こ
のように、本実施の形態の車載用電力変換装置は、GN
Dレベルの異なる素子間の信号伝達にHVIC15を使
用しているため、フォトカプラを使用しなくても、マイ
コン5のGNDを高電圧系の直流電源1のGNDと共通
にすることができるので、電力変換制御回路を小型化す
ることができる。Next, the operation of the vehicle-mounted power converter having the above configuration will be described. The microcomputer 5 includes a control arithmetic unit 12
A PWM signal is output in a predetermined pattern and is turned on (conducted) and turned off (cut off) via the HVIC 15 to drive the switching element 2 so that the high voltage is output. The system DC power supply 1 is converted (reversely converted) into three-phase AC power of variable voltage and variable frequency. Further, when an abnormality such as overheating or short-circuit current occurs in the switching element 2, processing such as shutting off a gate signal to the switching element 2 is performed inside the switching element driving / protection circuit 4, and at the same time, the abnormality is detected. The occurrence is transmitted to the microcomputer 5 via the HVIC 15. As described above, the vehicle-mounted power converter according to the present embodiment has the GN
Since the HVIC 15 is used for signal transmission between elements having different D levels, the GND of the microcomputer 5 can be shared with the GND of the high-voltage DC power supply 1 without using a photocoupler. The power conversion control circuit can be reduced in size.
【0014】実施の形態2.図3は、本発明の車載用電
力変換装置の全体回路ブロック図を示している。なお、
図3において、上記図1と同符号のものは、同様の機能
を有する。本発明の車載用電力変換装置は、従来の装置
に対して、交流負荷制御回路である制御演算装置12を
電力変換装置9に内蔵し、上記制御演算装置12とスイ
ッチング素子の駆動・保護回路4とを同一基板上に形成
する構成としている。更に、上記実施の形態1で説明し
たように、マイコン5を含んだ制御演算装置12の大半
の回路のGND電位が、スイッチング素子2のアームの
Low側の基準電位、すなわち高電圧系の直流電源1の
GND電位と共通になるようにしているので、トリプル
ブリッジに回路構成された6個のスイッチング素子2
を、フォトカプラのような電気絶縁素子を使用しなくて
も、あたかも同電位コモンであるかのように信号伝達す
ることが可能になる。また、スイッチング素子2の過熱
や短絡電流などの異常発生時には、スイッチング素子2
のオンチップ上に形成されたセンサの信号により、スイ
ッチング素子の駆動・保護回路4内部にて異常処理する
とともに、異常が発生したことをHVIC15を介して
マイコン5に伝達するようにしている。したがって、通
常、電力変換装置9とは分離された車両制御装置14と
の制御指令信号の伝達部分で一括して電気的な絶縁を行
うことにより、高電圧回路の集約と電力変換制御回路の
小型化を実現することができる。Embodiment 2 FIG. FIG. 3 shows an overall circuit block diagram of the vehicle-mounted power converter of the present invention. In addition,
In FIG. 3, components having the same reference numerals as those in FIG. 1 have similar functions. The on-vehicle power converter of the present invention is different from the conventional device in that a control operation device 12 which is an AC load control circuit is built in the power conversion device 9, and the control operation device 12 and the switching element drive / protection circuit 4 are provided. Are formed on the same substrate. Further, as described in the first embodiment, the GND potential of most circuits of the control operation device 12 including the microcomputer 5 is the reference potential on the Low side of the arm of the switching element 2, that is, the high-voltage DC power supply. 1 and a common GND potential, so that six switching elements 2 configured in a triple bridge circuit
Can be transmitted as if they are at the same potential common without using an electrical insulating element such as a photocoupler. When an abnormality such as overheating or short-circuit current of the switching element 2 occurs, the switching element 2
In accordance with the signal of the sensor formed on the on-chip, abnormality processing is performed inside the switching element drive / protection circuit 4 and the occurrence of abnormality is transmitted to the microcomputer 5 via the HVIC 15. Therefore, usually, the electrical isolation is performed collectively at the transmission portion of the control command signal with the vehicle control device 14 which is separated from the power conversion device 9, thereby consolidating the high voltage circuits and reducing the size of the power conversion control circuit. Can be realized.
【0015】また、従来のフォトカプラに代えて、HV
IC15を使用したことで、絶縁処理時における電気信
号から光信号などの変換行程がないことから、信号伝達
速度が大幅に向上し、スイッチングパルス幅を有効に利
用することができ、PWM制御範囲が拡大する。更に、
電力変換装置9にマイコン5を含んだ制御演算装置12
を配置したことでスイッチング素子2のオンチップ上に
形成されたセンサの学習制御機能や上記センサ信号を用
いての保護機能等を容易に付加でき、高機能な電力変換
装置となっている。なお、HVIC15は、完全な電気
絶縁にはならないため、安全上、外部の車両制御装置1
4との間に電気絶縁素子17が必要となるが、外部の車
両制御装置14との信号伝達方法を一般的なシリアル通
信、またはLAN形式にすることで信号伝達の本数を減
少すればよい。このことは、車両配線の削減に寄与し、
コネクタ接触不良等の確率が減少することから信頼性向
上にも繋がる。上記電気絶縁素子17には、例えばパル
ストランスのような磁気結合素子を使用すればよい。Also, instead of the conventional photocoupler, HV
The use of the IC 15 eliminates the process of converting an electrical signal to an optical signal during the insulation process, so that the signal transmission speed is greatly improved, the switching pulse width can be used effectively, and the PWM control range can be increased. Expanding. Furthermore,
Control arithmetic unit 12 including microcomputer 5 in power converter 9
Is provided, a learning control function of a sensor formed on the on-chip of the switching element 2, a protection function using the sensor signal, and the like can be easily added, thereby providing a high-performance power conversion device. Since the HVIC 15 does not provide complete electrical insulation, the safety of the external vehicle control device
Although an electrical insulating element 17 is required between the control unit 4 and the external control unit 4, the number of signal transmissions may be reduced by using a general serial communication or LAN format as a signal transmission method with the external vehicle control device 14. This contributes to the reduction of vehicle wiring,
Since the probability of connector contact failure and the like is reduced, reliability is improved. A magnetic coupling element such as a pulse transformer may be used as the electrical insulation element 17.
【0016】なお、上記実施の形態1,2においては、
スイッチング素子2として、一般的なIGBTを使用し
た例を示したが、バイポーラトランジスタやMOSFE
T等のパワー素子を使用しても、同様の効果が得られる
ことは明らかである。In the first and second embodiments,
An example in which a general IGBT is used as the switching element 2 has been described.
It is clear that the same effect can be obtained even if a power element such as T is used.
【0017】以上説明したように、請求項1に記載の発
明によれば、スイッチング素子駆動・保護回路と制御演
算装置とを、絶縁機能を有する信号伝達手段を介して、
同一基板上に形成するとともに、上記基板と、上記スイ
ッチング素子と上記平滑用コンデンサで構成される電力
変換部とを同一モジュールで構成することにより、信号
伝達距離を短くでき、回路を小容量化することができる
ので、車載用電力変換装置自体を小型化することができ
るとともに、装置のEMC特性を向上させことができ
る。As described above, according to the first aspect of the present invention, the switching element drive / protection circuit and the control operation device are connected via the signal transmission means having the insulation function.
The signal transmission distance can be shortened and the circuit capacity can be reduced by forming the substrate and the power conversion unit including the switching element and the smoothing capacitor in the same module while being formed on the same substrate. Therefore, it is possible to reduce the size of the in-vehicle power conversion device itself and improve the EMC characteristics of the device.
【0018】請求項2に記載の発明によれば、上記信号
伝達手段を、HVICにより構成したので、車載等の過
酷な環境下においても信頼性の高い電力変換装置を得る
ことができるとともに、スイッチング時間の遅延や波形
なまりを改善することができるので、PWM制御波形の
デューテイ領域を広く使用でき、制御領域を拡大するこ
とができる。According to the second aspect of the present invention, since the signal transmission means is constituted by HVIC, a highly reliable power converter can be obtained even in a severe environment such as a vehicle, and switching can be performed. Since time delay and waveform rounding can be improved, the duty region of the PWM control waveform can be widely used, and the control region can be expanded.
【0019】請求項3に記載の発明によれば、同一モジ
ュール内に形成されたスイッチング素子の駆動・保護回
路と制御演算装置のそれぞれの電源GNDを、スイッチ
ング素子の電源GNDと共通としたので、高電圧回路の
集約と電力変換装置自体の小型化を図ることができる。According to the third aspect of the present invention, the power supply GND of the switching element drive / protection circuit and the control arithmetic unit formed in the same module is shared with the power supply GND of the switching element. It is possible to reduce the size of the power conversion device itself by integrating high voltage circuits.
【図1】 本実施の形態に係わる車載用電力変換装置の
電源回路ブロック図である。FIG. 1 is a power supply circuit block diagram of a vehicle-mounted power converter according to the present embodiment.
【図2】 HVICの等価回路ブロック図である。FIG. 2 is an equivalent circuit block diagram of the HVIC.
【図3】 本実施の形態に係わる車載用電力変換装置の
全体回路ブロック図である。FIG. 3 is an overall circuit block diagram of the vehicle-mounted power converter according to the present embodiment.
【図4】 従来の車載用電力変換装置の電源回路ブロッ
ク図である。FIG. 4 is a power supply circuit block diagram of a conventional vehicle-mounted power converter.
【図5】 従来の車載用電力変換装置の全体回路ブロッ
ク図である。FIG. 5 is an overall circuit block diagram of a conventional vehicle-mounted power converter.
1 高電圧系の直流電源、2 スイッチング素子、3
フライホイールダイオード、4 スイッチング素子の駆
動・保護回路、5 マイクロコンピュータ、6 低電圧
系の直流電源、9 電力変換装置、10 平滑用コンデ
ンサ、11 三相交流負荷、12 制御演算装置、13
電流検出器、14 車両制御装置、15 HVIC、
16 絶縁電源、17 電気絶縁素子。1 High-voltage DC power supply, 2 Switching element, 3
Flywheel diode, 4 switching element drive / protection circuit, 5 microcomputer, 6 low-voltage DC power supply, 9 power conversion device, 10 smoothing capacitor, 11 three-phase AC load, 12 control operation device, 13
Current detector, 14 vehicle control device, 15 HVIC,
16 insulated power supply, 17 electrical insulation element.
フロントページの続き (72)発明者 土屋 英二 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 Fターム(参考) 5H007 AA01 AA06 BB06 CA01 CB04 CB05 CC23 DB03 DB12 EA02 HA03 HA04 HA07 5H115 PA15 PG04 PI14 PU08 PV10 QN02 QN09 TO05 TO12 TR01 TR14 TU02 TU12 TZ03 5H740 BA11 BB05 BB09 BB10 JA28 KK04 PP02 PP03 PP07Continued on the front page (72) Inventor Eiji Tsuchiya F-term (reference) 5H007 AA01 AA06 BB06 CA01 CB04 CB05 CC23 DB03 DB12 EA02 HA03 HA04 HA07 5H115 PA15 PG04 PI14 PU08 PV10 QN02 QN09 TO05 TO12 TR01 TR14 TU02 TU12 TZ03 5H740 BA11 BB05 BB09 BB10 JA28 KK04 PP02 PP03 PP07
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11149783AJP2000341974A (en) | 1999-05-28 | 1999-05-28 | Automotive power converter |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11149783AJP2000341974A (en) | 1999-05-28 | 1999-05-28 | Automotive power converter |
| Publication Number | Publication Date |
|---|---|
| JP2000341974Atrue JP2000341974A (en) | 2000-12-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11149783APendingJP2000341974A (en) | 1999-05-28 | 1999-05-28 | Automotive power converter |
| Country | Link |
|---|---|
| JP (1) | JP2000341974A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004100348A1 (en)* | 2003-05-06 | 2004-11-18 | Enecsys Limited | Power supply circuits |
| JP2006081255A (en)* | 2004-09-08 | 2006-03-23 | Fuji Electric Device Technology Co Ltd | Inverter device, integrated circuit chip, and vehicle drive device |
| US7126308B2 (en) | 2002-11-20 | 2006-10-24 | Hitachi, Ltd. | Interface circuit with power converter with interface circuit and electric vehicle with power converter |
| JP2008067518A (en)* | 2006-09-07 | 2008-03-21 | Mitsubishi Heavy Ind Ltd | Inverter apparatus and air conditioner |
| JP2008283766A (en)* | 2007-05-09 | 2008-11-20 | Denso Corp | Motor drive device for vehicle |
| WO2008152906A1 (en)* | 2007-06-14 | 2008-12-18 | Sanden Corporation | Electric compressor control device |
| JP2009254088A (en)* | 2008-04-04 | 2009-10-29 | Hitachi Ltd | Power conversion device |
| US8067855B2 (en) | 2003-05-06 | 2011-11-29 | Enecsys Limited | Power supply circuits |
| JP2012019564A (en)* | 2010-07-06 | 2012-01-26 | Toyota Motor Corp | Power converter and power supply unit |
| WO2014167734A1 (en)* | 2013-04-12 | 2014-10-16 | トヨタ自動車株式会社 | Electronic apparatus |
| JP2014236530A (en)* | 2013-05-30 | 2014-12-15 | 富士電機株式会社 | Power conversion device |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| DE102016212656A1 (en)* | 2016-07-12 | 2018-01-18 | Hanon Systems | Control device for an electric compressor |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7126308B2 (en) | 2002-11-20 | 2006-10-24 | Hitachi, Ltd. | Interface circuit with power converter with interface circuit and electric vehicle with power converter |
| US8405248B2 (en) | 2003-05-06 | 2013-03-26 | Enecsys Limited | Power supply circuits |
| WO2004100348A1 (en)* | 2003-05-06 | 2004-11-18 | Enecsys Limited | Power supply circuits |
| US10291032B2 (en) | 2003-05-06 | 2019-05-14 | Tesla, Inc. | Power supply circuits |
| US9425623B2 (en) | 2003-05-06 | 2016-08-23 | Solarcity Corporation | Power supply circuits |
| US8067855B2 (en) | 2003-05-06 | 2011-11-29 | Enecsys Limited | Power supply circuits |
| JP2006081255A (en)* | 2004-09-08 | 2006-03-23 | Fuji Electric Device Technology Co Ltd | Inverter device, integrated circuit chip, and vehicle drive device |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| JP2008067518A (en)* | 2006-09-07 | 2008-03-21 | Mitsubishi Heavy Ind Ltd | Inverter apparatus and air conditioner |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| JP2008283766A (en)* | 2007-05-09 | 2008-11-20 | Denso Corp | Motor drive device for vehicle |
| US8305027B2 (en) | 2007-06-14 | 2012-11-06 | Sanden Corporation | Electric compressor control device |
| JP2008312342A (en)* | 2007-06-14 | 2008-12-25 | Sanden Corp | Controller for electric compressor |
| WO2008152906A1 (en)* | 2007-06-14 | 2008-12-18 | Sanden Corporation | Electric compressor control device |
| US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| JP2009254088A (en)* | 2008-04-04 | 2009-10-29 | Hitachi Ltd | Power conversion device |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| JP2012019564A (en)* | 2010-07-06 | 2012-01-26 | Toyota Motor Corp | Power converter and power supply unit |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US12295184B2 (en) | 2010-12-09 | 2025-05-06 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
| US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
| US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
| US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
| US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
| JP5987974B2 (en)* | 2013-04-12 | 2016-09-07 | トヨタ自動車株式会社 | Electronic equipment |
| WO2014167734A1 (en)* | 2013-04-12 | 2014-10-16 | トヨタ自動車株式会社 | Electronic apparatus |
| JP2014236530A (en)* | 2013-05-30 | 2014-12-15 | 富士電機株式会社 | Power conversion device |
| US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| DE102016212656A1 (en)* | 2016-07-12 | 2018-01-18 | Hanon Systems | Control device for an electric compressor |
| DE102016212656B4 (en) | 2016-07-12 | 2019-05-29 | Hanon Systems | Control device for an electric compressor |
| US11415351B2 (en) | 2016-07-12 | 2022-08-16 | Hanon Systems | Topology of converter power supplies in electrical climate compressors |
| Publication | Publication Date | Title |
|---|---|---|
| JP2000341974A (en) | Automotive power converter | |
| JP3625692B2 (en) | Automotive power converter | |
| EP3618259B1 (en) | Circuit for actively performing short-circuit and motor controller | |
| CN101983322B (en) | Temperature detecting circuit | |
| CN104052373A (en) | Motor fault protection system and method | |
| EP3651341B1 (en) | Driving power supply device | |
| CN111213312B (en) | Inverter control substrate | |
| US9762146B2 (en) | Methods and systems for interconnecting parallel IGBT modules | |
| CN113630033B (en) | Semiconductor circuit with a high-voltage power supply | |
| US9300231B2 (en) | Output control apparatus of a motor and method for controlling a controller of the same | |
| EP2555410B1 (en) | Inverter device | |
| EP3010137B1 (en) | Multilevel inverter | |
| US10622593B2 (en) | Reduction of packaging parasitic inductance in power modules | |
| JP4670833B2 (en) | Motor drive device for vehicle | |
| JP2005304143A (en) | Power converter | |
| US10333499B2 (en) | Signal transmission circuit and vehicle | |
| US11012021B2 (en) | Inverter device and control circuit therefor, and motor driving system | |
| WO2017099191A1 (en) | Signal transfer circuit | |
| JP6579031B2 (en) | Signal transmission circuit | |
| JP2000312488A (en) | Inverter device for vehicle | |
| JP7690841B2 (en) | Vehicle control device | |
| CN114688008B (en) | Automobile electronic pump driving control circuit and automobile electronic module | |
| KR20240143103A (en) | Inverter for electric compressor | |
| CN118572959A (en) | Motor control system and vehicle | |
| CN116960899A (en) | Motor drive control circuit, motor control module and automobile |